2020中考数学 投影和视图(含答案)

合集下载

2020年全国数学中考精题分类汇编含解析-36-投影与视图

2020年全国数学中考精题分类汇编含解析-36-投影与视图

A.圆柱
B.正方体
C.球
D.圆锥
考点: 由三视图判断几何体. 分析: 由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状. 解答: 解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这 个几何体应该是圆锥,故选D. 点评: 主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥. 9.(2020•温州,第3题4分)如图所示的支架是由两个长方形构成的组合体,则它的主视 图是( )
12.(2020•襄阳,第4题3分)如图几何体的俯视图是( )
A.
B.
C.
D.
考 简单组合体的三视图. 点: 分 根据从上面看得到的图形是俯视图,可得答案. 析: 解 解:从上面看,第一层是三个正方形,第二层右边一个正方形, 答: 故选:B. 点 本题考查了简单组合体的三视图,从上面看得到的图形是俯视图. 评:
图是( )
A.
B.
C.
D.
考 简单组合体的三视图. 点: 分 根据从正面看得到的图形是主视图,可得答案. 析: 解 从正面看,第一层是两个正方形,第二层左边是一个正方形, 答: 故选:C. 点 本题考查了简单组合体的三视图,从正面看得到的图形是主视图. 评:
4. ( 2020•广西玉林市、防城港市,第5题3分)如图的几何体的三视图是( )

A 三棱柱 .
B 长方体 .
C 圆柱 .
D 圆锥 .
考点: 分析: 解答:
点评:
由三视图判断几何体 三视图中有两个视图为矩形,那么这个几何体为柱体,根据第3 个视图的形状可得几何体的具体形状. 解:∵三视图中有两个视图为矩形, ∴这个几何体为柱体, ∵另外一个视图的形状为圆, ∴这个几何体为圆柱体, 故选C. 考查由三视图判断几何体;用到的知识点为:三视图中有两个 视图为矩形,那么这个几何体为柱体,根据第3个视

初三数学投影与视图试题答案及解析

初三数学投影与视图试题答案及解析

初三数学投影与视图试题答案及解析1.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()A.3B.4C.5D.6【答案】B【解析】根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有3+1=4个.故选B.【考点】三视图2.如图,该几何体的左视图是()A.B.C.D.【答案】D【解析】左视图有2列,从左往右依次有2,1个正方形,其左视图为:.【考点】简单组合体的三视图.3.如下左图是由五个小正方体搭成的几何体,它的左视图是()【答案】A.【解析】从左面可看到从左往右2列小正方形的个数为:2,1,故选A.【考点】简单组合体的三视图.4.如图是由四个小正方体叠成的一个立体图形,那么它的左视图是()【答案】D.【解析】从左面可看到第一列有2个正方形,第一列有一个正方形.故选D.【考点】简单组合体的三视图.5.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为()A.3,2B.2,2C.3,2D.2,3【答案】C【解析】设底面边长为x,则x2+x2=(2)2,解得x=2,即底面边长为2,根据图形,这个长方体的高是3,根据求出的底面边长是2.【考点】1.由三视图判断几何体;2.简单几何体的三视图.6.如图所示的几何体中,俯视图形状相同的是()A.①④B.②④C.①②④D.②③④【答案】B.【解析】找到从上面看所得到的图形比较即可:①的俯视图是圆加中间一点;②的俯视图是一个圆;③的俯视图是一个圆环;④的俯视图是一个圆. 因此,俯视图形状相同的是②④. 故选B.【考点】简单几何体的三视图.7.如图是由相同的小正方体组成的几何体,它的俯视图为()【答案】B【解析】根据几何体的三视图可知,主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,由图可得它的为俯视图第二个,故选B【考点】几何体的三视图.8.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()【答案】A【解析】从几何体上面看,是左边2个,右边1个正方形.故选A.【考点】简单组合体的三视图.9.一个几何体的三视图如图所示,则这个几何体是()【答案】D.【解析】如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选D.【考点】由三视图判断几何体.10.下列四个水平放置的几何体中,三视图如右图所示的是()【答案】D【解析】三视图是指分别从物体的前面、左面、上面看到的平面图形.故选D.11.一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱【答案】D【解析】根据主视图和左视图可以确定该物体是棱柱,根据俯视图可以确定该物体的底面是三角形,满足上述条件的只有三棱柱,故选D.12.如图所示零件的左视图是()A. B. C. D.【答案】D.【解析】:零件的左视图是两个竖叠的矩形.中间有2条横着的虚线.故选D.【考点】三视图.13.如图是由五个相同的小正方体组成的几何体,则下列说法正确的是( )A.左视图面积最大B.左视图面积和主视图面积相等C.俯视图面积最小D.俯视图面积和主视图面积相等【答案】D.【解析】观察图形可知,几何体的主视图由4个正方形组成,俯视图由4个正方形组成,左视图由3个正方形组成,所以左视图的面积最小,俯视图面积和正视图面积相等.故选D.考点: 简单组合体的三视图.14.某几何体的三视图如下图所示,则该几何体可能为()【答案】D.【解析】试题分析:由主视图和左视图可以得到该几何体是圆柱和小圆锥的复合体,由俯视图可以得到小圆锥位于圆柱的正中间.故选D.考点:三视图判断几何体.15.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.4个B.5个C.6个D.7个【答案】A.【解析】根据给出的几何体,通过动手操作,观察可得答案为4,也可以根据画三视图的方法,发挥空间想象能力,直接想象出每个位置正方体的数目,再加上来.故选A.【考点】三视图.16.如图所示是小红在某天四个时刻看到一个棒及其影子的情况,那么她看到的先后顺序是.【答案】④③①②.【解析】根据平行投影中影子的变化规律:就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.可知先后顺序是④③①②.故答案是④③①②.【考点】平行投影.17.如图下面几何体的左视图是A.B.C.D.【答案】B【解析】左视图即从物体左面看到的图形,从左面看易得三个竖直排列的长方形,且上下两个长方形的长大于高,比较小,中间的长方形的高大于长,比较大。

2020年中考数学真题分类汇编第三期专题34投影与视图试题含解析

2020年中考数学真题分类汇编第三期专题34投影与视图试题含解析

投影与视图一.选择题1. (2018·广西贺州·3分)如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A.9πB.10π C.11π D.12π【解答】解:由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π.故选:B.2. (2018·湖北江汉·3分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱 D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.3. (2018·湖北十堰·3分)今年“父亲节”佳佳给父亲送了一个礼盒,该礼盒的主视图是()A.B.C.D.【分析】找出从几何体的正面看所得到的图形即可.【解答】解:由图可得,该礼盒的主视图是左边一个矩形,右面一个小正方形,故选:C.【点评】此题主要考查了简单几何体的三视图,画简单组合体的三视图要循序渐进,通过仔细观察和想象.4.(2018·云南省昆明·4分)下列几何体的左视图为长方形的是()A. B.C.D.【分析】找到个图形从左边看所得到的图形即可得出结论.【解答】解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.5.(2018·云南省曲靖·4分)如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A.B.C.D.【解答】解:从左面看去,是两个有公共边的矩形,如图所示:故选:D.6.(2018·云南省·4分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱 D.圆锥【分析】由三视图及题设条件知,此几何体为一个的圆锥.【解答】解:此几何体是一个圆锥,故选:D.【点评】考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.7.(2018·辽宁省沈阳市)(2.00分)如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:D.【点评】本题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.8.(2018·辽宁省葫芦岛市) 下列几何体中,俯视图为矩形的是()A.B.C.D.【解答】解:A.圆锥的俯视图是圆,故A不符合题意;B.圆柱的俯视图是圆,故B错误;C.长方体的主视图是矩形,故C符合题意;D.三棱柱的俯视图是三角形,故D不符合题意;故选C.9.(2018·辽宁省阜新市)如图所示,是一个空心正方体,它的左视图是()A.B.C.D.【解答】解:如图所示:左视图为:.故选C.10.(2018·辽宁省抚顺市)(3.00分)下列物体的左视图是圆的是()A.足球B.水杯C.圣诞帽D.鱼缸【分析】左视图是从物体左面看,所得到的图形.【解答】解:A.球的左视图是圆形,故此选项符合题意;B.水杯的左视图是等腰梯形,故此选项不合题意;C.圆锥的左视图是等腰三角形,故此选项不合题意;D.长方体的左视图是矩形,故此选项不合题意;故选:A.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.11. (2018•呼和浩特•3分)(3.00分)下面是几个一样的小正方体摆出的立体图形的三视图,由三视图可知小正方体的个数为()A.6个B.5个C.4个D.3个解:综合三视图,这个立体图形的底层应该有3个,第二层应该有1个小正方体,因此构成这个立体图形的小正方体的个数是3+1=4个.故选:C.12. (2018•乐山•3分)如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C.D.解:从上边看外面是正方形,里面是没有圆心的圆.故选A.13. (2018•广安•3分)下列图形中,主视图为①的是()A.B.C. D.【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.【解答】解:A.主视图是等腰梯形,故此选项错误;B.主视图是长方形,故此选项正确;C.主视图是等腰梯形,故此选项错误;D.主视图是三角形,故此选项错误;故选:B.【点评】此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.14. (2018•莱芜•3分)已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm2【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长==13,所以这个圆锥的侧面积=•2π•5•13=65π(cm2).故选:B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.15. (2018•陕西•3分)如图,是一个几何体的表面展开图,则该几何体是A. 正方体B. 长方体C. 三棱柱D. 四棱锥【答案】C【解析】根据表面展开图中有两个三角形,三个长方形,由此即可判断出此几何体为三棱柱。

2020年中考数学考点提分专题十三 投影与视图(解析版)

2020年中考数学考点提分专题十三 投影与视图(解析版)

2020年中考数学考点提分专题十三投影与视图(解析版)必考点1 投影用光线照射物体,在某个平面上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在平面叫做投影面.2.平行投影和中心投影由平行光线形成的投影是平行投影;由同一点(点光源)发出的光线形成的投影叫做中心投影.(1)平行投影:平行光线照射形成的投影(如太阳光线)。

当平行光线垂直投影面时叫正投影。

投影三视图都是正投影。

(2)中心投影:一点出发的光线形成的投影(如手电筒,路灯,台灯)3.正投影投影线垂直投影面产生的投影叫做正投影.要点诠释:正投影是平行投影的一种.【典例1】(2019·河北初三期末)把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是( )A.B.C.D.【举一反三】1.把一个正五棱柱如图摆放,当投射线由正前方射到后方时,它的正投影是图中的( )A.B.C.D.2.(2019·河北初三期末)如图是胡老师画的一幅写生画,四位同学对这幅画的作画时间作了猜测. 根据胡老师给出的方向坐标,猜测比较合理的是()A.小明:“早上8点”B.小亮:“中午12点”C.小刚:“下午5点”D.小红:“什么时间都行”3.(2019·山东初三期中)如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长B.逐渐变短C.长度不变D.先变短后变长必考点2 三视图当我们从某一角度观察一个物体时,所看到的图象叫做物体的视图.我们用三个互相垂直的平面作为投影面,其中正对我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.要点诠释:三视图就是我们从三个方向看物体所得到的3个图象.【典例2】(2019·湖北中考真题)如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变【举一反三】1.(2019·辽宁中考真题)如图所示几何体的俯视图是()A.B.C.D.2.(2019·云南中考模拟)如图所示的工件,其俯视图是()A.B.C.D.3.(2019·湖北中考真题)桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A.B.C.D.1.(2019·陕西初三期末)下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234 B.4312 C.3421 D.42312.(2020·山东初三期末)如图,某小区内有一条笔直的小路,路的旁边有一盏路灯,晚上小红由A处走到B处,表示她在灯光照射下的影长l与行走的路程s之间关系的大致图象是()A. B.C.D.3.(2019·山东初三期末)在某光源下,两根木棒,a b在同一平面内的影子如图所示,此时,第三根木棒c的影子表示正确的是( )A.B.C.D.4.(2019·四川初三)同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米5.(2019·四川省安岳实验中学初三期末)给出下列结论正确的有()①物体在阳光照射下,影子的方向是相同的②物体在任何光线照射下影子的方向都是相同的③物体在路灯照射下,影子的方向与路灯的位置有关④物体在光线照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个6.(2019·陕西初三期中)如图,白炽灯正下方有一个乒乓球,当乒乓球沿竖直方向越来越远离白炽灯时,它在地面上的影子()A.越来越大B.越来越小C.先变大后变小D.先变小后变大7.(2019·黑龙江中考真题)如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()A.6B.5C.4D.38.(2019·四川中考真题)如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.9.(2019·山东中考真题)以下给出的几何体中,主视图是矩形,俯视图是圆的是()A.B.C.D.10.(2019·安徽中考真题)一个由圆柱和圆锥组成的几何体如图水平放置,它的俯视图是()A.B.C.D.19.(2019·山东中考真题)如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图不变,左视图不变B.左视图改变,俯视图改变C.主视图改变,俯视图改变D.俯视图不变,左视图改变11.(2019·山东中考真题)如图所示的几何体是由4个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.12.(2019·北京中考真题)在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)13.(2019·湖南中考真题)已知某几何体的三视图如图,其中主视图和左视图都是腰长为5,底边长为4的等腰三角形,则该几何体的侧面展开图的面积是____.(结果保留π)14.(2019·山东中考真题)如图,一个正方体由27 个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走_________个小立方块.15.(2019·湖北中考模拟)如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是.16.(2019·山东中考模拟)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是.17.(2019·安徽中考模拟)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个cm.几何体的表面积为__________218.(2012·四川中考真题)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为_________.2020年中考数学考点提分专题十三投影与视图(解析版)必考点1 投影用光线照射物体,在某个平面上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在平面叫做投影面.2.平行投影和中心投影由平行光线形成的投影是平行投影;由同一点(点光源)发出的光线形成的投影叫做中心投影.(1)平行投影:平行光线照射形成的投影(如太阳光线)。

(浙教版)2020中考数学专项复习 投影和视图(原卷+解析卷)

(浙教版)2020中考数学专项复习  投影和视图(原卷+解析卷)

投影与视图【考点整理】1.投影投影:物体在光线的照射下,在某个平面内形成的影子叫做______,光线叫做投射线,投影所在的平面叫做投影面.平行投影:平行的投射线所形成的投影叫做平行投影.物体的视图实际上是该物体在______光线下且光线与投影面垂直时形成的投影.中心投影:由同一点发出的投射线所形成的投影.【智慧锦囊】在阳光下,不同时刻,同一物体的影子长度不同;在同一时刻,不同物体的影子长与它们的高度成比例,即两物体影子之比_______其对应的高的比.2.物体的三视图三视图:物体在正投影面上的正投影叫做________;在水平投影面上的正投影叫做________;在左侧投影面上的正投影叫做________ .主视图、左视图和俯视图合称三视图.三视图画法:首先确定主视图的位置,画出主视图,然后在主视图的下面画出俯视图,在主视图的右面画出左视图.主视图反映物体的_____和_____ ,俯视图反映物体的_____和_____ ,左视图反映物体的_____和_____ .【智慧锦囊】画三视图时,主、俯视图要长对正,主、左视图要高平齐,左、俯视图要宽相等,看得见部分的轮廓线通常画成______,看不见部分的轮廓线通常画成______.3.图形的展开与折叠圆柱的表面展开图:由两个相同的圆形和一个长方形组成的.棱柱的表面展开图:按棱柱表面不同的棱剪开,可能得到不同的组合形式的平面展开图.圆锥的表面展开图:由一个圆和一个扇形组成.多面体的平面展开:通过实验操作、合理想象解决这类问题,也可先动手折一折.正方体的平面展开图:将正方体表面沿着某些棱展开成一个平面图形,需要剪开7条棱,由于剪开的方法不同,会得到11种不同形状的展开图.(1)一四一型:(2)二三一型(3)三三型⑩(4)二二二型4.正方体的常见截面形状截面一般有横截面(水平截)、纵截面(竖直截)、斜截面,得到的截面不同.【解题秘籍】1.数小正方体的个数的方法(1)主视图与俯视图的行数相同,其每列方块数是俯视图中该列中的最大数字;(2)左视图的列数与俯视图的列数相同,其每列的方块数是俯视图中该行中的最大数字.此类问题可用口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”来理解.2.三视图的正逆向思维对三视图的考查主要有两类,一是根据所给物体画三视图,二是根据三视图描述物体形状.在画三视图要注意三视图的特征和视图时看不见的线要化为虚线,此考点是中考的热点考点.【易错提醒】1.注意区分平行投影与中心投影,理解各自特点和异同.2.画圆锥的俯视图时,应注意画上圆心(表示圆锥的顶点).3.画简单组合体的三视图,要善于观察和想象,分清图形特征与位置关系.【题型解析】1.投影【例题1】如图是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序排列正确的是()。

初三数学投影与视图试题答案及解析

初三数学投影与视图试题答案及解析

初三数学投影与视图试题答案及解析1.一个几何体的三个视图如图所示,这个几何体是()A.圆柱B.球C.圆锥D.正方体【答案】A.【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.因此,由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆形可得为圆柱体.故选A.【考点】由三视图判断几何体.2.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是.【答案】3.【解析】根据从上面看得到的图形是俯视图,可得俯视图,根据矩形的面积公式,可得答案:从上面看三个正方形组成的矩形,矩形的面积为1×3=3.【考点】简单组合体的三视图.3.如图的几何体是由4个完全相同的正方体组成的,这个几何体的左视图是()A B C D【答案】C.【解析】由几何体可知左视图由两列组成,从左至右小正方形的个数分别为2个、1个,故选C.【考点】三视图.4.下列几何体中,同一个几何体的主视图与俯视图不同的是()A.圆柱B.正方体C.圆锥D.球【答案】C【解析】A、主视图是矩形,俯视图是矩形,主视图与俯视图相同,故本选项错误;B、主视图是正方形,俯视图是正方形,主视图与俯视图相同,故本选项错误;C、主视图是三角形,俯视图是圆及圆心,主视图与俯视图不相同,故本选项正确;D、主视图是圆,俯视图是圆,主视图与俯视图相同,故本选项错误.【考点】三视图5.右图是一个由4个相同的正方体组成的立体图形,它的三视图是()【答案】A.【解析】从正面看可得从左往右2列正方形的个数依次为1,2;从左面看可得到从左往右2列正方形的个数依次为2,1;从上面看可得从上到下2行正方形的个数依次为1,2,故选A.【考点】简单组合体的三视图.6.如图,由三个小立方块搭成的俯视图是()【答案】A.【解析】从上面看可得到两个相邻的正方形.故选A.【考点】简单组合体的三视图.7.下列几何体的主视图是三角形的是()A.B.C.D.【答案】B.【解析】找到从正面看所得到的图形即可:A、主视图为矩形,错误;B、主视图为三角形,正确;C、主视图为圆,错误;D、主视图为正方形,错误.故选B.【考点】简单几何体的三视图.8.下图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π【答案】B.【解析】由几何体的三视图得,几何体是高为10,外径为8。

中考数学 投影与视图(含中考真题解析)

中考数学 投影与视图(含中考真题解析)

投影与视图☞解读考点☞2年中考1.(北海)一个几何体的三视图如图所示,则这个几何体是()A.圆柱 B.圆锥 C.球 D.以上都不正确【答案】A.【解析】试题分析:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.考点:由三视图判断几何体.2.(南宁)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A. B. C. D.【答案】B.考点:简单组合体的三视图.3.(柳州)如图是小李书桌上放的一本书,则这本书的俯视图是()A. B. C. D.【答案】A.【解析】试题分析:根据俯视图的概念可知,几何体的俯视图是A图形,故选A.考点:简单几何体的三视图.4.(桂林)下列四个物体的俯视图与右边给出视图一致的是()A.B.C.D.【答案】C.【解析】试题分析:几何体的俯视图为,故选C.考点:由三视图判断几何体.5.(梧州)如图是一个圆锥,下列平面图形既不是它的三视图,也不是它的侧面展开图的是()A.B.C.D.【答案】D.考点:1.几何体的展开图;2.简单几何体的三视图.6.(扬州)如图所示的物体的左视图为()A. B. C. D.【答案】A.【解析】试题分析:从左面看易得第一层有1个矩形,第二层最左边有一个正方形.故选A.考点:简单组合体的三视图.7.(攀枝花)如图所示的几何体为圆台,其俯视图正确的是()A.B.C.D.【答案】C.考点:简单几何体的三视图.8.(达州)一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()A. B. C. D.【答案】D.【解析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3,则符合题意的是D;故选D.考点:1.由三视图判断几何体;2.作图-三视图.9.(德阳)某商品的外包装盒的三视图如图所示,则这个包装盒的体积是()A.200πcm3 B.500πcm3 C.1000πcm3 D.2000πcm3【答案】B.考点:由三视图判断几何体.10.(南充)如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()A.B. C.D.【答案】A.【解析】试题分析:根据主视图的定义,可得它的主视图为:,故选A.考点:简单几何体的三视图.11.(襄阳)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.4 B.5 C.6 D.9【答案】A.考点:由三视图判断几何体.12.(齐齐哈尔)如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是()A.5或6或7 B.6或7 C.6或7或8 D.7或8或9【答案】C.【解析】试题分析:根据几何体的左视图,可得这个几何体共有3层,从俯视图可以可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时,组成这个几何体的小正方体的个数是:2+2+4=8(个).综上,可得组成这个几何体的小正方体的个数是6或7或8.故选C.考点:由三视图判断几何体.13.(连云港)如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为.【答案】8π.考点:1.由三视图判断几何体;2.几何体的展开图.14.(随州)如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是cm3.【答案】24.【解析】试题分析:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的体积为3×2×4=24cm3.故答案为:24.考点:由三视图判断几何体.15.(牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是个.【答案】7.【解析】试题分析:根据题意得:,则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故答案为:7.考点:由三视图判断几何体.16.(西宁)写出一个在三视图中俯视图与主视图完全相同的几何体.【答案】球或正方体(答案不唯一).考点:1.简单几何体的三视图;2.开放型.17.(青岛)如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.【答案】19,48.【解析】试题分析∵亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×23=36个,∵张明用17个边长为1的小正方形搭成了一个几何体,∴王亮至少还需36﹣17=19个小立方体,表面积为:2×(9+7+8)=48,故答案为:19,48.考点:由三视图判断几何体.三、解答题18.(镇江)某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB 方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.【答案】(1)作图见试题解析;(2)1.5m/s.试题解析:(1)如图,(2)设小明原来的速度为xm/s,则CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,∵点C,E,G在一条直线上,CG∥AB,∴△OCE∽△OAM,△OEG∽△OMB,∴CE OEAM OM=,EG OEBM OM=,∴CE EGAM BM=,即234 1.213.24x xx x=--,解得x=1.5,经检验x=1.5为方程的解,∴小明原来的速度为1.5m/s.答:小明原来的速度为1.5m/s.考点:1.相似三角形的应用;2.中心投影.19.(兰州)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【答案】(1)平行;(2)7.考点:1.相似三角形的应用;2.平行投影.20.(宁德)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).【答案】(1)答案见试题解析;(2)26.6°.(2)连接EO1,如图所示,∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO=2142EOOA==,则∠EAO≈26.6°.考点:1.圆锥的计算;2.圆柱的计算;3.作图-三视图.1.(绍兴)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.【答案】B.考点:简单组合体的三视图.2.(吉林)用4个完全相同的小正方体组成如图所示的立方体图形,它的俯视图是()A.B.C.D.【答案】A【解析】试题分析:从上面看可得到一个有2个小正方形组成的长方形.故选A.考点:三视图3.(衡阳)左图所示的图形是由七个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()【答案】B.【解析】试卷分析:针对三视图的概念,把右图的三视图画出来对号入座即可知B选项不是这个立体图形的三视图.故选B.考点:简单几何体的三视图.4.(十堰)在下面的四个几何体中,左视图与主视图不相同的几何体是()A .B .C .D .正方体 长方体 球 圆锥【答案】B .考点:简单几何体的三视图.5.(宁夏)如图是一个几何体的三视图,则这个几何体的侧面积是( )A 2cmB .2cmC .26cm πD .23cm π 【答案】A . 【解析】试题分析:俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.因此,∵半径为1cm ,高为3cm ,∴根据勾cm .∴侧面积=()2112r l 21cm 22ππ⋅⋅=⨯⨯.故选A .考点:1.由三视图判断几何体;2.圆锥的计算国3.勾股定理.6.(湖州) 如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是【答案】3.【解析】试题分析:从上面看三个正方形组成的矩形,矩形的面积为1×3=3.考点:简单组合体的三视图。

2020年北师大版九年级数学上册第5章《投影与视图》单元同步试卷 (含答案)

2020年北师大版九年级数学上册第5章《投影与视图》单元同步试卷 (含答案)

九年级上学期第5章《投影与视图》单元测试卷时间90分钟,满分120分姓名:__________ 班级:__________考号:__________成绩:__________一、单选题(共10题;共30分)1.如图几何体的主视图是()A.B.C.D.2.如图所示的几何体是由若干个完全相同的小正方体组成,从左面看这个几何体得到的平面图形是( )A.B.C.D.3.学校超市的货架上摆放着某品牌方便面,从三个不同的方向看可以看到下图所示的形状图,则货架上的方便面至多有()A.7盒B.8盒C.9盒D.10盒4.如图是一根空心方管,它的俯视图是()A.B.C.D.5.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.46.如图,正三棱柱的主视图为()A.B.C.D.7.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为( )A.5B.6C.7D.88.圆形的纸片在平行投影下的正投影是()A.圆形B.椭圆形C.线段D.以上都可能9.已知一个几何体如图所示,则该几何体的左视图是()A.B.C.D.10.如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子()A.越大B.越小C.不变D.无法确定二、填空题(共6题;共24分)11.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?(填序号).12.水平放置的长方体的底面是长和宽分别是4和6的长方形,它的左视图的面积是12,则这个长方体的体积等于.13.如图是由6个棱长均为1的正方体组成的几何体,它的左视图的面积为.14.某个立体图形的三视图的形状都相同,请你写出一种这样的几何体.15.一个几何体由几个大小相同的小立方块搭成,从上面和从左面看到的这个几何体的形状如图所示,则这个几何体中小正方体的个数最少是个.16.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要块正方体木块,至多需要块正方体木块.三、解答题(共6题;共66分)17.如图是一个由一些相同的小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.(1)请你画出它的主视图与左视图.(2)若每个小正方体的边长都为1,求这个几何体的表面积.18.根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.19.已知下图为一几何体的三视图(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面积.20.如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.(1)图中有个小正方体;(2)请在图1右侧方格中分别画出几何体的主视图、左视图;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加个小正方体.21.如图是由5个边长为1的正方体叠放而成的一个几何体,请画出这个几何体的三视图.(用铅笔描黑)22.根据要求完成下列题目:(1)图中有块小正方体;(2)请在下面方格纸中分别画出它的主视图,左视图和俯视图.(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.试题答案及解析部分一、填空题1.如图几何体的主视图是()A.B.C.D.【解答】解:由图可得,几何体的主视图是:故选:A.2.如图所示的几何体是由若干个完全相同的小正方体组成,从左面看这个几何体得到的平面图形是( )A.B.C.D.【解答】解:从左面看这个几何体得到的平面图形是:故选:B.3.学校超市的货架上摆放着某品牌方便面,从三个不同的方向看可以看到下图所示的形状图,则货架上的方便面至多有()A.7盒B.8盒C.9盒D.10盒【解答】解:由从三个不同的方向看到的形状,可以在俯视图上,标出相应的摆放的最多数量,求出至多有9盒,故选:C.4.如图是一根空心方管,它的俯视图是()A .B .C .D . 【解答】解:如图所示:俯视图应该是.故选:B . 5.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是( )A .6πB .4πC .8πD .4【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2, 那么它的表面积221126πππ=⨯+⨯⨯⨯=,故选:A .6.如图,正三棱柱的主视图为( )A .B .C .D .【解答】解:正三棱柱的主视图是矩形,主视图中间有竖着的实线.故选:B .7.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为( )A.5B.6C.7D.8【解答】解:由俯视图可得最底层有5个小正方体,由主视图可得第一列和第三列都有2个正方体,那么最少需要527+=个正方体.故选:C.8.圆形的纸片在平行投影下的正投影是()A.圆形B.椭圆形C.线段D.以上都可能【解答】解:圆形的纸片在平行投影下的正投影可能是圆形、椭圆形、线段,故选:D.9.已知一个几何体如图所示,则该几何体的左视图是()A.B.C.D.【解答】解:观察图形可知,该几何体的左视图是.故选:D.10.如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子()A.越大B.越小C.不变D.无法确定【解答】解:白炽灯向上移时,阴影会逐渐变小;相反当乒乓球越接近灯泡时,它在地面上的影子变大.故选:A.二、解答题11.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?②(填序号).【解答】解:圆柱的俯视图是圆,可以堵住圆形空洞,它的正视图和左视图是长方形,可以堵住方形空洞,故圆柱是最佳选项,故答案为②.12.水平放置的长方体的底面是长和宽分别是4和6的长方形,它的左视图的面积是12,则这个长方体的体积等于48.【解答】解:它的左视图的面积为12,长为6,因此宽为2,即长方体的高为2,因此体积为:46248⨯⨯=.故答案为:48.13.如图是由6个棱长均为1的正方体组成的几何体,它的左视图的面积为4.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故答案为:4.14.某个立体图形的三视图的形状都相同,请你写出一种这样的几何体球(答案不唯一)..【解答】解:球的3 个视图都为圆;正方体的 3 个视图都为正方形;所以主视图、左视图和俯视图都一样的几何体为球、正方体等.故答案为:球(答案不唯一).15.一个几何体由几个大小相同的小立方块搭成,从上面和从左面看到的这个几何体的形状如图所示,则这个几何体中小正方体的个数最少是5个.【解答】解:搭这样的几何体最少需要415+=个小正方体,最多需要426+=个小正方体,故答案为:516.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要6块正方体木块,至多需要块正方体木块.【解答】解:易得第一层最少有4个正方体,最多有12个正方体;第二层最少有2个正方体,最多有4个,故最少有6个小正方形,至多要16块小正方体.故答案为:6,16.三、解答题17.如图是一个由一些相同的小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.(1)请你画出它的主视图与左视图.(2)若每个小正方体的边长都为1,求这个几何体的表面积.【解答】解:(1)如图所示:(2)(929252)(11)⨯+⨯+⨯⨯⨯=⨯461=.46答:这个几何体的表面积为46.18.根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.【解答】解:根据题意,构成几何体所需正方体最多情况如图(1)所示,构成几何体所需正方体最少情况如图(2)所示:所以最多需要11个,最少需要9个小正方体.19.已知下图为一几何体的三视图(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为10cm ,俯视图中三角形的边长为4cm ,求这个几何体的侧面积.【解答】解:(1)由三视图知该几何体是:三棱柱;(2)其展开图如下:(3)()234103120S S cm =⨯=⨯⨯=侧长.20.如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.(1)图中有 10 个小正方体;(2)请在图1右侧方格中分别画出几何体的主视图、左视图;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加个小正方体.【解答】解:(1)正方体的个数:13610++=,(2)如图所示:;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加第一排的右边2列的2个,第2排的右边第3列的2个,+=.224答:最多还能在图1中添加4个小正方体.故答案为:10;4.21.如图是由5个边长为1的正方体叠放而成的一个几何体,请画出这个几何体的三视图.(用铅笔描黑)【解答】解:如图所示:24.根据要求完成下列题目:(1)图中有6块小正方体;(2)请在下面方格纸中分别画出它的主视图,左视图和俯视图.(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要 个小立方块,最多要 个小立方块.【解答】解:(1)图中有6块小正方体;故答案为:6;(2)如图所示:;(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要5个小立方块,最多要7个小立方块.故答案为:5,7.1、三人行,必有我师。

2020年中考数学第二轮复习 第28讲 投影与视图 强基训练+真题(后含答案)

2020年中考数学第二轮复习 第28讲 投影与视图 强基训练+真题(后含答案)

2020年中考数学第二轮复习第二十八讲投影与视图【强基知识】一、投影:1、定义:一般地,用光线照射物体,在某个平面上得到得影子叫做物体的其中照射光线叫做投影所在的平面叫做2、平行投影:太阳光可以近似地看作是光线,像这样的光线所形成的投影称为平行投影3、中心投影:由同一点(点光源)发出的光线形成的投影叫做,如物体在、、等照射下所形成的投影就是中心投影【注意:1、中心投影的光线平行投影的光线2、在同一时刻,不同物体在太阳下的影长与物高成3、物体投影问题有时也会出现计算解答题,解决这类问题首先要根据图形准确找出比例关系,然后求解】二、视图:1、定义:从不同的方向看一个物体,然后描绘出所看到的图形即视图。

其中,从看到的图形称为主视图,从看到的图形称为左视图,从看到的图形称为俯视图2、三种视图的位置及作用⑴画三视图时,首先确定的位置,然后在主视图的下面画出,在主视图的右边画出⑵主视图反映物体的和,左视图反映物体的和俯视图反映物体的和。

【注意:1、在画几何体的视图时,看得见部分的轮廓线通常画成线,看不见部分的轮廓线通常画成线2、在画几何体的三视图时要注意主俯对正,主左平齐,左俯相等】三、立体图形的展开与折叠:1、许多立体图形是由平面图形围成的,将它们适当展开即为平面展开图,同一个立体图形按不同的方式展开,会得到不同的平面展开图2、常见几何体的展开图:⑴正方体的展开图是⑵n边形的直棱柱展开图是两个n边形和一个⑶圆柱的展开图是一个和两个⑷圆锥的展开图是一个与一个【注意:有时会出现根据物体三视图中标注的数据求原几何体的表面积,体积等题目,这时要注意先根据三种视图还原几何体的形状,然后想象有关尺寸在几何体展开图中标注的是哪些部分,最后再根据公式进行计算】【重点考点例析】考点一:简单几何体的三视图例1(2019年济南)以下给出的几何体中,主视图是矩形,俯视图是圆的是()A. B. C. D.强基训练1-1(2019聊城中考)如图所示的几何体的左视图是()A. B. C. D.强基训练1-2(2019年淄博)下列几何体中,其主视图、左视图和俯视图完全相同的是(A)(B)(C)(D)强基训练1-3(2019浙江宁波)如图,下列关于物体的主视图画法正确的是()A.B.C.D.考点二:简单组合体的三视图例2(2019年山东滨州)如图,一个几何体由5 个大小相同、棱长为1 的小正方体搭成,下列说法正确的是()A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是4强基训练2-1(2019潍坊)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变强基训练2-2(2019年莱芜)如图是由4个相同的小正方形搭成的一个几何体,则它的俯视图是()A.B.C.D.强基训练2-3(2019浙江衢州)如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()强基训练2-4(2019浙江绍兴)如图的几何体由6个相同的小正方体搭成,它的主视图是()A. B. C. D.强基训练2-5(2019浙江温州)某露天舞台如图所示,它的俯视图是()A. B.C. D.强基训练2-6(2019浙江舟山、嘉兴)3.如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A. B. C. D.考点三:由三视图判断几何体例3(2019年菏泽)一个几何体的三视图如图所示,则这个几何体的表面积是A. 5cm2B. 8cm2C. 9cm2D. 10cm2强基训练3-1(扬州)某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥强基训练3-2(自贡)某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()碗A.8B.9C.10D.11强基训练3-3(2019浙江台州)如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.圆柱D.球考点四:几何体的相关计算例4(2019青岛中考)如图,一个正方体由27 个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走_________个小立方块.强基训练4-1(贺州)如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为()A.2cm3B.3cm3C.6cm3D.8cm3强基训练4-2(宁夏)如图是某几何体的三视图,其侧面积()A.6B.4πC.6πD.12π第二十七讲投影与视图参考答案【重点考点例析】考点一:简单几何体的三视图例1答案:D强基训练1-1答案:B强基训练1-2答案:D强基训练1-3答案:C考点二:简单组合体的三视图例2答案:A强基训练2-1答案:A强基训练2-2答案:A解:从上面可看到从左往右有三个正方形,故选A.强基训练2-3答案:A强基训练2-4答案:A强基训练2-5答案:B强基训练2-6答案:B考点三:由三视图判断几何体例3答案:B强基训练3-1答案:A解:如图,俯视图为三角形,故可排除C、B.主视图以及侧视图都是矩形,可排除D.故选A.强基训练3-2答案:B解:易得第一层有4碗,第二层最少有3碗,第三层最少有2碗,所以至少共有9个碗.故选B.强基训练3-3答案:C考点四:几何体的相关计算例4答案:8强基训练4-1答案:B解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,此长方体的长与宽都是1,高为3,所以该几何体的体积为1×1×3=3cm3.强基训练4-2答案:C【聚焦中考真题】一、选择题1.(云南)图为某个几何体的三视图,则该几何体是()A.B.C.D.2.(玉林)某几何体的三视图如图所示,则组成该几何体共用了()小方块.A.12块B.9块C.7块D.6块3.(2019年日照)如图所示的几何体是由4个大小相同的小立方块搭成,它的俯视图是()A. B. C. D.4.(2019年威海T4.)如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是A.B.C.D.5.(湛江)如图是由6个大小相同的正方体组成的几何体,它的左视图是()A.B.C.D.6.(襄阳)如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A .B.C.D .7.(2019年山东临沂)如图所示,正三棱柱的左视图是()8.(锦州)下列几何体中,主视图和左视图不同的是()A.B.C.D.9.(黄石)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④10.(烟台)下列水平放置的几何体中,俯视图不是圆的是()A.B.C.D.11.(淄博)下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是()A BC D圆柱正方体正三棱柱球A.B.C.D.12.(莱芜)下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个13.(滨州)如图所示的几何体是由若干个大小相同的小正方体组成的.若从正上方看这个几何体,则所看到的平面图形是()A.B.C.D.14.(潍坊)如图是常用的一种圆顶螺杆,它的俯视图正确的是()A.B.C.D.15.(青岛)如图所示的几何体的俯视图是()A.B.C.D.16.(济南)图中三视图所对应的直观图是()A.B.C.D.17.(威海)如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变18.(聊城)如图是由几个相同的小立方块组成的三视图,小立方块的个数是()A.3个B.4个C.5个D.6个19.(临沂)如图是一个几何体的三视图,则这个几何体的侧面积是()A.12πcm2B.8πcm2C.6πcm2D.3πcm220.(成都)如图所示的几何体的俯视图可能是()A.B.C.D.21.(昆明)下面几何体的左视图是()A.B.C.D.22.(安徽)如图所示的几何体为圆台,其主(正)视图正确的是()A.B.C.D.23.(本溪)如图放置的圆柱体的左视图为()A.B.C.D.24.(舟山)如图,由三个小立方体搭成的几何体的俯视图是()A.B.C.D.25.(义乌)如图几何体的主视图是()A.B.C.D.26.(株洲)下列几何体中,有一个几何体的俯视图的形状与其它三个不一样,这个几何体是()A.B .C.D.27.(营口)如图,下列水平放置的几何体中,主视图是三角形的是()A.B.C.D.28.(宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A.B.C.D.29.(新疆)下列几何体中,主视图相同的是()A.①②B.①③C.①④D.②④30.(桂林)下列物体的主视图、俯视图和左视图不全是圆的是()A.橄榄球B.兵乓球C.篮球D.排球31.(广东)下列四个几何体中,俯视图为四边形的是()A.B.C.D.32.(天津)如图是由3个相同的正方体组成的一个立体图形,它的三视图是()圆锥圆柱正方体球A.B.C.D.33.(泰州)由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A.B.C.D.34.(遂宁)如图所示的是三通管的立体图,则这个几何体的俯视图是()A.B.C.D.35.(南平)如图是由六个棱长为1的正方体组成的一个几何体,其主视图的面积是()A.3B.4C.5D.636.(宿迁)如图是由六个棱长为1的正方体组成的几何体,其俯视图的面积是()A.3B.4C.5D.637.(十堰)用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.38.(黔东南州)如图是有几个相同的小正方体组成的一个几何体.它的左视图是()A.B.C.D.39.(盘锦)如图下面几何体的左视图是()A.B.C.D.40.(杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.41.(茂名)如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是()A.B.C.D.42.(荆门)过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.43.(江西)一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则它的左视图可以是()A.B.C.D.44.(大庆)图1所示的几何体,它的俯视图为图2,则这个几何体的左视图是()A.B.C.D.45.(遵义)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.46.(铁岭)如图是4块小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小方块的个数,其主视图是()A.B.C.D.47.(黑龙江)由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.4B.5C.6D.748.(益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A.2个B.3个C.5个D.10个49.(孝感)如图,由8个大小相同的正方体组成的几何体的主视图和俯视图,则这个几何体的左视图是()A.B.C.D.50.(曲靖)如图是某几何体的三视图,则该几何体的侧面展开图是()A.B.C.D.51.(乐山)一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2πB.6πC.7πD.8π二、填空题52.(济宁)三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.53.(南通)一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是.54.(绥化)由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是.55.(无锡)如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是.第二十七讲投影与视图参考答案【聚焦中考真题】一、选择题:1-4 DCCC5 A解:从物体左面看,是左边2个正方形,右边1个正方形.故选A.6-7DA8 C解:A、圆柱的主视图与左视图都是长方形,不合题意,故本选项错误;B、正方体的主视图与左视图相同,都是正方形,不合题意,故本选项错误;C、正三棱柱的主视图是长方形,长方形中有一条杠,左视图是矩形,符合题意,故本选项正确;D、球的主视图和左视图相同,都是圆,且有一条水平的直径,不合题意,故本选项错误.故选:C.9-10 BC11-15 ABABB16-20 CDBCC21-25 AAAAC26-30 ABDBA31-35 DADAB36-40 CDBBC41-45 BBCDD46-50 DCCBA51 D二、填空题:52.答案:653.答案:球54.答案:3或455.答案:72。

2020年全国中考数学试卷分类汇编(一)专题34 视图与投影(含解析)

2020年全国中考数学试卷分类汇编(一)专题34 视图与投影(含解析)

视图与投影一.选择题1. (2020年辽宁省辽阳市)2.(3分)如图是由一个长方体和一个圆锥组成的几何体,它的主视图是()A.B.C.D.【分析】根据简单几何体的主视图的画法,利用“长对正”,从正面看到的图形.【解答】解:从正面看,“底座长方体”看到的图形是矩形,“上部圆锥体”看到的图形是等腰三角形,因此选项C的图形符合题意,故选:C.【点评】本题考查简单几何体的三视图的画法,画三视图时要注意“长对正、宽相等、高平齐”.2.(2020年德州市)4.(4分)如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图【分析】根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.【解答】解:图1主视图第一层三个正方形,第二层左边一个正方形;图2主视图第一层三个正方形,第二层右边一个正方形;故主视图发生变化;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图都是底层左边是一个正方形,上层是三个正方形,故俯视图不变.∴不改变的是左视图和俯视图.故选:D.【点评】本题考查了简单组合体的三视图,利用三视图的意义是解题关键.3 (2020•江苏省盐城市•3分)如图是由4个小正方体组合成的几何体,该几何体的俯视图是()A.B.C.D.【分析】根据从上面看得到的图象是俯视图,可得答案.【解答】解:观察图形可知,该几何体的俯视图是.故选:A.【点评】本题考查了简单组合体的三视图,从上面看到的视图是俯视图.4(2020•湖北武汉•3分)如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看上下各一个小正方形.故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.(2020•湖北襄阳•3分)如图所示的三视图表示的几何体是()A.B.C.D.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.故选:A.【点评】考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体.6.(2020•湖北孝感•3分)如图是由5个相同的正方体组成的几何体,则它的左视图是()A.B.C.D.【分析】从左侧看几何体所得到的图形就是该几何体的左视图,从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C符合题意.【解答】解:从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C的图形符合题意,故选:C.【点评】本题考查简单几何体的三视图,明确三种视图的形状和大小是正确判断的前提.7. (2020•江苏省常州市•2分)如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥【分析】该几何体的主视图与左视图均为矩形,俯视图为正方形,易得出该几何体的形状.【解答】解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形,则可得出该几何体是四棱柱.故选:C.【点评】主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.8. (2020•江苏省淮安市•3分)下列几何体中,主视图为圆的是()A.B.C.D.【分析】根据各个几何体的主视图的形状进行判断.【解答】解:正方体的主视图为正方形,球的主视图为圆,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:B.【点评】考查简单几何体的三视图,明确各个几何体的三视图的形状是正确判断的前提.9. (2020•江苏省连云港市•3分)如图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是()A.B.C.D.【分析】找到从几何体的正面看所得到的图形即可.【解答】解:从正面看有两层,底层是两个小正方形,上层的左边是一个小正方形.故选:D.【点评】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.10(2020•江苏省苏州市•3分)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A. B. C. D.【答案】C【解析】【分析】根据组合体的俯视图是从上向下看的图形,即可得到答案.【详解】组合体从上往下看是横着放的三个正方形.故选C.【点睛】本题主要考查组合体的三视图,熟练掌握三视图的概念,是解题的关键.11. (2020•湖南省怀化市•3分)如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是24π(结果保留π).【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:由三视图可知该几何体是圆柱体,其底面半径是4÷2=2,高是6,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π,∴这个圆柱的侧面积是4π×6=24π.故答案为:24π.【点评】本题考查由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.12. (2020•湖南省张家界·3分)如图是由5个完全相同的小正方体组成的立体图形,则它的主视图是()A. B. C. D.【答案】A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看有三列,从左到右依次有2.1.1个正方形,图形如下:故选A.【点睛】本题考查了简单组合体的三视图,解题时注意从正面看得到的图形是主视图.13. (2020•河南省•3分)如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.【分析】分别确定每个几何体的主视图和左视图即可作出判断.【解答】解:A.主视图和左视图是长方形,一定相同,故本选项不合题意题意;B.主视图和左视图都是等腰三角形,一定相同,故选项不符合题意;C.主视图和左视图都是圆,一定相同,故选项不符合题意;D.主视图是长方形,左视图是正方形,故本选项符合题意;故选:D.。

2023年中考数学一轮复习:投影与视图(含解析)

2023年中考数学一轮复习:投影与视图(含解析)

2023年中考数学一轮复习:投影与视图一、单选题1.如图,用一个平面去截正方体,截掉了正方形的一个角,且截面经过原正方体三条棱的中点,剩下几何体的展开图应该是()A.B.C.D.2.如图是由5个相同小正方形搭成的几何体,若将小正方体A放到小正方体B的正上方,则关于该几何体变化前后的三视图,下列说法正确的是()A.主视图不变B.俯视图改变C.左视图不变D.以上三种视图都改变3.两个完全相同的长方体,按如图方式摆放,其主视图为()A.B.C.D.二、填空题4.一个几何体是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图所示,要摆成这样的几何体,至少需用个正方体,最多需用个正方体;5.如图,是正方体的一种平面展开图,各面都标有数字,则数字为-4的面与它对面的数字之积是.6.如图所示,水平放置的长方体的底面是长为4 cm、宽为2 cm的长方形,它的主视图的面积为12 2cm,则长方体的体积等于3cm.三、综合题7.下面图(1),图(2)分别是两种不同情形下旗杆和木杆的影子.(1)哪个图反映了阳光下的情形?(2)若同一时刻阳光下,木杆的影子长为0.8米,旗杆的影子长为7.2米,木杆的高为1.5米,求旗杆的高度.8.如图是由10个同样大小的小正方体搭成的物体,(1)请分别画出它的主视图和俯视图.(2)在主视图和俯视图不变的情况下,你认为最多还可以添加个小正方体.9.如图是小明用10块棱长都为3cm的正方体搭成的几何体.(1)分别画出从正面、从左面、从上面看到的所搭几何体的形状图;(2)小明所搭几何体的表面积(包括与桌面接触的部分)是.10.李明同学设计了某个产品的正方体包装盒如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有种弥补方法;(2)任意画出一种成功的设计图(在图中补充);(3)在你帮忙设计成功的图中,要把-6,8,10,-10,-8,6这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得0.(直接在图中填上)11.如图是一个正方体纸盒的表面展开图,纸盒中相对两个面上的数互为倒数.(1)填空:a=,b=;(2)先化简,再求值:()()2223252ab a b ab a ab⎡⎤------⎣⎦.12.有若干个完全相同的小正方体堆成一个如图所示几何体.(1)图中共有个小正方体.(2)画出该几何体的主视图、左视图、俯视图.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加个小正方体.13.我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是.(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列图形中,可能是该长方体表面展开图的有(填序号)(3)下列图是题(2)中长方体的一种表面展开图,它的外围周长为52,事实上,题(2)中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.14.小彬做了探究物体投影规律的实验,并提出了一些数学问题请你解答:(1)如图1,白天在阳光下,小彬将木杆AB水平放置,此时木杆在水平地面上的影子为线段A B''.①若木杆AB的长为1m,则其影子A B''的长为m;②在同一时刻同一地点,将另一根木杆CD直立于地面,请画出表示此时木杆CD在地面上影子的线段DM;(2)如图2,夜晚在路灯下,小彬将木杆EF水平放置,此时木杆在水平地面上的影子为线段E F''.①请在图中画出表示路灯灯泡位置的点P;②若木杆EF的长为1m,经测量木杆EF距离地面1m,其影子E F''的长为1.5m,则路灯P距离地面的高度为m.15.如图,在平整的地面上,用10个棱长都为2cm的小正方体堆成一个几何体.(1)画出这个几何体的三视图;(2)求这个几何体的表面积;(3)如果现在你还有一些棱长都为2cm的小正方体,要求保持俯视图和左视图都不变,最多可以再添加个小正方体.16.用若干个完全相同的小正方体搭成一个几何体,使它从正面和左面看到的形状图如图所示.(1)搭这样一个几何体最多需要多少个小正方体?(2)画出(1)中所搭几何体从上面看到的形状图,并标出各个小正方形所在位置的小正方体的个数. 17.如图,是由6个大小相同的小正方体块搭建的几何体,其中每个小正方体的棱长为l厘米.(1)如果在这个几何体上再添加一些小立方体块,并保持俯视图和左视图不变,最多可以再添加个小立方块.(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.18.晚上,小亮在广场乘凉,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小亮在照明灯P照射下的影子BC(请保留作图痕迹,并把影子描成粗线);(2)如果小亮的身高 1.6AB m=,测得小亮影长2BC m=,小亮与灯杆的距离13BO m=,请求出灯杆的高PO.19.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无.盖.纸盒.操作探究:(1)若准备制作一个无盖..的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖..正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖..正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无.盖.长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高以及底面积,当小正方形边长为4cm时,求纸盒的容积.20.如图所示,一透明的敞口正方体容器ABCD﹣A'B'C'D'装有一些液体,棱AB始终在水平桌面上,液面刚好过棱CD,并与棱BB'交于点Q.此时液体的形状为直三棱柱,其三视图及尺寸见下图所示请解决下列问题:(1)CQ与BE的位置关系是,BQ的长是dm:(2)求液体的体积;(提示:直棱柱体积=底面积×高)(3)若容器底部的倾斜角∠CBE=α,求α的度数.(参考数据:sin49°=cos41°=34,tan37°=34)21.【问题情境】小圣所在的综合实践小组准备制作一些无盖纸盒收纳班级讲台上的粉笔.【操作探究】(1)图1中的哪些图形经过折叠能围成无盖正方体纸盒?(填序号).(2)小圣所在的综合实践小组把折叠成6个棱长都为2dm的无盖正方体纸盒摆成如图2所示的几何体.①请计算出这个几何体的体积;②如果在这个几何体上再添加一些相同的正方体纸盒,并保持从上面看到的形状和从左面看到的形状不变,最多可以再添加个正方体纸盒.22.阅读以下文字并解答问题:在“物体的高度”活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高度.在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1).小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米.小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m.(1)在横线上直接填写甲树的高度为米.(2)求出乙树的高度(画出示意图).(3)请选择丙树的高度为()A.6.5米B.5.75米C.6.05米D.7.25米(4)你能计算出丁树的高度吗?试试看.23.如图1是边长为20cm的正方形薄铁片,小明将其四角各剪去一个相同的小正方形(图中阴影部分)后,发现剩余的部分能折成一个无盖的长方体盒子,图2为盒子的示意图(铁片的厚度忽略不计).(1)设剪去的小正方形的边长为 (cm)x ,折成的长方体盒子的容积为 ()3cm V ,直接写出用只含字母x 的式子表示这个盒子的高为 cm ,底面积为 2cm ,盒子的容积 V 为3cm ,(2)为探究盒子的体积与剪去的小正方形的边长 x 之间的关系,小明列表分析:填空:①m = , n = ;②由表格中的数据观察可知当 x 的值逐渐增大时, V 的值 .(从“逐渐增大”,“逐渐减小”“先增大后减小”,“先减小后增大”中选一个进行填空)24.如图,A 、B 、C 分别表示甲、乙、丙三个物体的顶端,甲物体高3米,影长2米,乙物体高2米,影长3米,甲乙两物体相距4米.(1)请在图中画出光源灯的位置及灯杆,并画出物体丙的影子.(2)若甲、乙、丙及灯杆都与地面垂直,且在同一直线上,求灯杆的高度.25.测量金字塔高度:如图1,金字塔是正四棱锥 S ABCD -,点O是正方形 ABCD 的中心 SO 垂直于地面,是正四棱锥 S ABCD - 的高,泰勒斯借助太阳光.测量金字塔影子 PBC 的相关数据,利用平行投影测算出了金字塔的高度,受此启发,人们对甲、乙、丙三个金字塔高度也进行了测量.甲、乙、丙三个金字塔都用图1的正四棱锥 S ABCD - 表示.(1)测量甲金字塔高度:如图2,是甲金字塔的俯视图,测得底座正方形 ABCD 的边长为 80m ,金字塔甲的影子是 50m PBC PC PB ==, ,此刻,1米的标杆影长为0.7米,则甲金字塔的高度为m.(2)测量乙金字塔高度:如图1,乙金字塔底座正方形 ABCD 边长为 80m ,金字塔乙的影子是PBC , 75PCB PC ∠=︒=, ,此刻1米的标杆影长为0.8米,请利用已测出的数据,计算乙金字塔的高度.答案解析部分1.【答案】B【解析】【解答】将A、C、D折叠,发现都不能合成切口,只有B选项折叠后两个剪去的三角形与另一个剪去的三角形交于一点,与题目中的题设一致,故答案为:B.【分析】利用正方体的展开图定义和特征逐项判断即可。

2020年中考数学试题分类汇编:投影与视图(含答案解析)

2020年中考数学试题分类汇编:投影与视图(含答案解析)

2020中考分类投影与视图解析一.选择题1.(兰州)由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是A. 左视图与俯视图相同B. 左视图与主视图相同C. 主视图与俯视图相同D. 三种视图都相同2.(广东梅州)下图所示几何体的左视图为( )DC B A 第2题图考点:简单组合体的三视图..分析:根据从左边看得到的图形是左视图,可得答案. 解答:解:从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故选:A .点评:本题考查了简单组合体的三视图,从左边看看得到的图形是左视图.3.(广东汕尾)下图所示几何体的左视图为( )ADC B A 第2题图4.(贵州安顺)、下列立体图形中,俯视图是正方形的是( )A B CD5.(河南)如图所示的几何体的俯视图是( )D6.(孝感)如图是一个几何体的三视图,则这个几何体是 A .正方体 B .长方体 C .三棱柱 D .三棱锥CDBA正面 第2题)4(题第7.(湖南衡阳)如下左图的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是( C ).A .B .C .D .8. (2015•益阳)一个几何体的三视图如图所示,则这个几何体是( )A . 三棱锥B .三棱柱 C .圆柱 D .长方体考点:由三视图判断几何体. 分根据三视图的知识,正视图为两个矩形,侧视图为一个析: 矩形,俯视图为一个三角形,故这个几何体为直三棱柱. 解答: 解:根据图中三视图的形状,符合条件的只有直三棱柱,因此这个几何体的名称是直三棱柱.故选:B .点评: 本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.9.(江西)如图所示的几何体的左视图为()D10(南昌)如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( ).(第4题)正面D C B A解析:选C. ∵根据光的正投影可知,几何体的左视图是图C. ∴选C.11.(呼和浩特).如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为A . 236πB . 136πC . 132πD . 120π12.(黔西南州)下面几个几何体,主视图是圆的是A B C D13.(菏泽)如图是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变14(青岛).如图,在一次数学活动课上,张明用17个边长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭的几何体拼成一个大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小正方体,王亮所搭几何体表面积为________________.19, 4815(东营)由六个小正方体搭成的几何体如图所示,则它的主视图是()A .B .C .D .16.(临沂)如图所示,该几何体的主视图是(A) (B)(C) (D)17(深圳)下列主视图正确的是( )(第3题图)(第5题图)【答案】A.【解析】由前面往后面看,主视图为A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020中考数学投影与视图(含答案)一、选择题1.如图所示的几何体,它的左视图是( )2.如图所示的几何体是由五个小正方体组成的,它的左视图是( )3.某物体的主视图如图所示,则该物体可能为( )4.如图是由若干个小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是( )5. 某几何体的三视图如图所示,则该几何体是( )A.圆柱B.三棱柱C.长方体D.四棱锥6.将下列左侧的平面图形绕轴l旋转一周,可以得到的立体图形是( )7.白天在同一时刻,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明和小强的影子一样长D.无法判断谁的影子长8.圆桌面(桌面中间有一个直径为0.4 m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2 m,桌面离地面1 m,若灯泡离地面3 m,则地面圆环形阴影的面积是( )A.0.324π m2B.0.288π m2C.1.08π m2D.0.72π m29.如图,是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC,BC,CD剪开展成平面图形,则所得的展开图是( )二、填空题10.如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体的表面积为.11.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,则这个几何体的搭法共有种.12.一个侧面积为16√2π cm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为cm.13.如图,正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为.三、解答题14.如图,一个是由若干个完全相同的小正方体组成的几何体.(1)请画出这个几何体的左视图和俯视图;(用阴影表示)(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加几个小正方体?15.如图,甲、乙是住宅区内的两幢楼,它们的高AB=CD=30 m,两楼间的距离AC=30 m,现需了解甲楼对乙楼的采光的影响情况.(1)当太阳光与水平线的夹角为30°角时,求甲楼的影子在乙楼上的高度(精确到0.1m,√3≈1.73);(2)若甲楼的影子刚好不落在乙楼的墙上,则此时太阳光与水平线的夹角为多少度?提升题一、选择题1.如图所示的几何体的左视图为( )2.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( )A.3B.4C.5D.6⏜表示一条以A为圆3.如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,BD心,AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是( )A.A→B→E→GB.A→E→D→CC.A→E→B→FD.A→B→D→C二、填空题4.如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).三、解答题5.一位同学想利用树影测树高AB.在某一时刻测得1 m的竹竿的影长为0.7 m,但当他马上测树影时,发现影子不全落在地上,一部分落在了附近的一幢高楼上(如图).于是他只测出了留在墙上的影长CD为1.5 m,以及地面上的影长BD为4.9 m.请你帮他算一下树高到底为多少米.6.研究课题:蚂蚁怎样爬最近?研究方法:如图1,正方体的棱长为5 cm,一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处,要求该蚂蚁需要爬行的最短路程,可将该正方体右侧面展开,由勾股定理得最短路程为AC1=√AC2+CC12=√102+52=5√5cm.这里,我们将空间两点间最短路程问题转化为平面内两点间距离最短问题.研究实践:(1)如图2,正四棱柱的底面边长为5 cm,侧棱长为6 cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处,蚂蚁需要爬行的最短路程为;(2)如图3,圆锥的母线长为4 cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.求该蚂蚁需要爬行的最短路程;(3)如图5,没有上盖的圆柱盒高为10 cm,底面圆的周长为32 cm,点A距离下底面3 cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.请求出蚂蚁需要爬行的最短路程.答案 一、选择题1.D2.D3.A4.C5.C6.D7.D8.D9.B 二、填空题 10.答案 12+15π解析 由几何体的三视图可得:该几何体是底面圆半径为2,高为3的圆柱的34, 该几何体的表面积S=2×2×3+2×270π×22360+270π×2×2360×3=12+15π.11.答案 10解析 设俯视图有9个位置,如图:1 2 3 4 5 6 7 8 9由主视图和左视图知:①第1个位置一定有4个小立方块,第6个位置一定有3个小立方块; ②一定有2个位置有2个小立方块,其余5个位置有1个小立方块;③俯视图最下面一行至少有1个位置有2个小立方块,俯视图中间列至少有1个位置有2个小立方块.则这个几何体的搭法共有10种,如下图所示:4 2 1 1 1 3 2 1 1图1 4 2 1 1 1 3 1 2 1图2 4 2 1 1 1 3 1 1 2图3 4 1 2 1 1 3 1 2 1图4 4 1 11 2 32 1 1图5 4 1 1 1 2 3 1 2 1图6 4 1 1 1 2 3 1 1 2图7 4 1 1 1 1 32 2 1图84 1 11 1 31 2 2图94 1 12 1 31 2 1图10 故答案为10.12.答案 4解析设底面半径为r cm,母线为l cm,∵主视图为等腰直角三角形,∴2r=√2l,∴S侧=πrl=√2πr2=16√2π(cm2),解得 r=4,l=4√2,∴圆锥的高为4 cm.13.答案√13解析蚂蚁的爬行路线有两种情况:(1)将正方体展开如图,连接AM.∵点M是BC的中点,BC=2,∴CM=1BC=1.2又∵CD=AD=2,∴AC=2AD=4.∴AM=√AC2+MC2=√42+12=√17.(2)将正方体展开如图,连接AM.∵点M是BC的中点,BC=2,BC=1.∴CM=12又∵AD=CD=2,∴MD=MC+CD=1+2=3,∴AM=√MD2+AD2=√32+22=√13.∵√17>√13,∴蚂蚁从A点爬行到M点的最短距离为√13.三、解答题14.答案(1)画图如下:(2)在第二层第二列第二行和第三行各加一个;第三层第二列第三行加一个,第三列第三行加1个,2+1+1=4(个).故最多可再添加4个小正方体.15.解析(1)如图,延长OB交DC于点E,作EF⊥AB于点F.在Rt△BEF中,∵EF=AC=30 m,∠FEB=30°,∴BE=2BF.设BF=x m,则BE=2x m.根据勾股定理知BE2=BF2+EF2,∴(2x)2=x2+302,解得x=10√3(负值舍去),∴x≈17.3.∴EC=AF=AB-BF=30-17.3=12.7(m).∴当太阳光与水平线的夹角为30°时,甲楼的影子在乙楼上的高度为12.7 m.(2)当甲楼的影子刚好落在点C处时,△ABC为等腰直角三角形.因此,当太阳光与水平线的夹角为45°时,甲楼的影子刚好不落在乙楼的墙上.B组提升题组一、选择题1.D 从左边看是上长下短等宽的两个矩形,矩形的公共边是虚线,故选D.2.C 由题图易得这个几何体共有2层,结合主视图和俯视图可知,左边下层有2个正方体,左边上层最多有2个正方体;右边只有1层,且只有1个正方体.所以这个几何体中的正方体最多有5个.故选C.3.D 根据题图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,⏜,故中间一段图象对应的路径为BD又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC 或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选D.二、填空题4.答案20解析如图,将圆柱侧面展开,延长AC 至A',使A'C=AC,连接A'B,则线段A'B 的长为蚂蚁到蜂蜜的最短距离.过B 作BB'⊥AD,垂足为B'.在Rt△A'B'B 中,B'B=16 cm,A'B'=14-5+3=12(cm),所以A'B=√B 'B 2+A 'B '2=√162+122=20(cm),即蚂蚁从外壁A 处到内壁B 处的最短距离为20cm.三、解答题5.解析 如图.设树高为x m,过C 作CE⊥AB 于E.则有x -1.54.9=10.7,解得x=8.5.故树高为8.5 m.6.解析 (1)2√34 cm.分两种情况:①AC 1=√(5+5)2+62=√136 cm,②AC 1=√(6+5)2+52=√146 cm, ∵√146>√136,∴最短路程为 √136=2√34 cm.(2)如图1,连接AA 1,过点O 作OP⊥AA 1,则AP=A 1P,∠AOP=∠A 1OP.由题意,OA=4 cm,∠AOA 1=120°,∴∠AOP=60°.∴AP=OA·sin∠AOP=4·sin 60°=2√3 cm.∴蚂蚁需要爬行的最短路程为AA 1=4√3 cm.(3)如图2,点B与点B'关于PQ对称,可得AC=16 cm,B'C=12 cm, ∴最短路程为AB'=2+122。

相关文档
最新文档