高中数列七种求和+9大方法全总结高考知识点大全

合集下载

数列求和的七种基本方法

数列求和的七种基本方法

数列求和的七种基本方法数列求和是数学中常见的问题之一,它在各个领域都有广泛的应用。

本文将介绍数列求和的七种基本方法,包括等差数列求和、等比数列求和、算术平方平均数列求和、等差等比混合数列求和、调和数列求和、几何级数求和和级数求和。

通过了解和掌握这些方法,相信读者能更好地解决数列求和问题。

一、等差数列求和等差数列是指一个数列中的每两个相邻的项之差都相等。

求和等差数列的公式为:Sn = n(a1+an)/2,其中Sn是数列的和,n是项数,a1是第一个数,an是最后一个数。

二、等比数列求和等比数列是指一个数列中的每两个相邻的项之比都相等。

求和等比数列的公式为:Sn=a1(1-q^n)/(1-q),其中Sn是数列的和,a1是第一个数,q是公比,n是项数。

三、算术平方平均数列求和算术平方平均数列是指一个数列中的每两个相邻的项的算术平方平均数都相等。

求和算术平方平均数列的公式为:Sn=n(2a1+(n-1)d)/2,其中Sn是数列的和,n是项数,a1是第一个数,d是公差。

四、等差等比混合数列求和等差等比混合数列是指一个数列中的每两个相邻的项之比和差都相等。

求和等差等比混合数列的公式为:Sn = (a1+an)/2*n+(q^n-1)/(q-1),其中Sn是数列的和,n是项数,a1是第一个数,an是最后一个数,q是公比。

五、调和数列求和调和数列是指一个数列中的每一项的倒数都与它的序号之比都相等。

求和调和数列的公式为:Sn=Hn/a,其中Sn是数列的和,Hn是调和数列的第n项,a是常数。

六、几何级数求和几何级数是指一个数列中的每个数都与前一项的比值都相等。

求和几何级数的公式为:Sn=a*(1-q^n)/(1-q),其中Sn是数列的和,a是第一个数,q是比值,n是项数。

七、级数求和级数是无穷多个数连加的结果,求和级数的公式为:Sn=a/(1-r),其中Sn是级数的和,a是第一个数,r是比值。

这七种基本的数列求和方法能够解决大部分数列求和问题。

高中数学-数列求和及数列通项公式的基本方法和技巧

高中数学-数列求和及数列通项公式的基本方法和技巧

数列求和通项分式法 错位相减法 反序相加法 分组法 分组法 合并法数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、 等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn自然数方幂和公式:3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0) 解: ∵x≠0∴该数列是首项为1,公比为x 2的等比数列而且有n+3项 当x 2=1 即x =±1时 和为n+3评注:(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项. 对应高考考题:设数列1,(1+2),…,(1+2+1222-⋯+n ),……的前顶和为ns,则ns的值。

二、错位相减法求和错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。

需要我们的学生认真掌握好这种方法。

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。

高考数列求和方法总结

高考数列求和方法总结

数列求和的常用方法1.公式法直接利用等差数列、等比数列的前n 项和公式求和 (1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -2d ;(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.2.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的. 4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 5.分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减. 6.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求。

考点、热点回顾课前热身1.(人教A 版教材习题改编)等比数列{a n }的公比q =12,a 8=1,则S 8=( ).A .254B .255C .256D .2572.(2011·潍坊模拟)设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n =( ).A.n 24+7n 4B.n 23+5n 3C.n 22+3n4D .n 2+n 3.(2011·北京海淀模拟)等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( ).A .120B .70C .75D .1004.(2011·沈阳六校模考)设数列{(-1)n}的前n 项和为S n ,则对任意正整数n ,S n =( ). A.n -n-1]2B.-n -1+12C.-n+12D.-n-12考向一 公式法求和【例1】►已知数列{a n }是首项a 1=4,公比q ≠1的等比数列,S n 是其前n 项和,且4a 1,a 5,-2a 3成等差数列. (1)求公比q 的值;(2)求T n =a 2+a 4+a 6+…+a 2n 的值.【训练1】 在等比数列{a n }中,a 3=9,a 6=243,求数列{a n }的通项公式a n 及前n 项和公式高考链接S n ,并求a 9和S 8的值.考向二 分组转化求和【例2】►(2012·包头模拟)已知数列{x n }的首项x 1=3,通项x n =2np +nq (n ∈N *,p ,q 为常数),且x 1,x 4,x 5成等差数列.求:(1)p ,q 的值;(2)数列{x n }前n 项和S n 的公式.【训练2】 求和S n =1+⎝ ⎛⎭⎪⎫1+12+⎝ ⎛⎭⎪⎫1+12+14+…+⎝ ⎛⎭⎪⎫1+12+14+…+12n -1.考向三 裂项相消法求和【例3】►在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝ ⎛⎭⎪⎫S n -12.(1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .【训练3】 在数列{a n }中,a n =1n +1+2n +1+…+n n +1,又b n =2a n ·a n +1,求数列{b n }的前n 项和S n .考向四 错位相减法求和【例4】►(2011·辽宁)已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.【训练4】 设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =n a n,求数列{b n }的前n 项和S n .。

高中数列求和方法大全

高中数列求和方法大全

数列的求和1.直接法:即直接用等差、等比数列的求和公式求和。

(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。

常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。

6.合并求和法:如求22222212979899100-++-+-Λ的和。

7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①321ΛΛ个n n S 111111111++++=②22222)1()1()1(n n n xx x x x x S ++++++=Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。

解:①)110(9110101011112-=++++==kkk k a Λ321Λ个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ8110910]9)110(10[911--=--=+n n n n②)21()21()21(224422+++++++++=nnn x x x x x x S Λ n xx x x x x n n 2)111()(242242++++++++=ΛΛ(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=Λ2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n ΛΛΛ)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。

高中数学:求数列前n项和的七种方法和技巧

高中数学:求数列前n项和的七种方法和技巧

高中数学:求数列前n项和的七种方法和技巧我们不要关心求数列n项和的问题会不会在高考题或有关考试题中出现,当然出现的机会确是很高的。

关键的是通过学习和探讨求数列前n项和的方法去领悟学习和思考的方法。

几种求和的方法把数学变形和分析、归纳总结、化繁为简、化难为易等思想融合在一起,使思维得到一次系统的训练和提高。

头脑的开化和思维的提升才是学习的主要目的。

求数列前n项的和,通常有下列七种方法和技巧。

一、利用等差数列和等比数列的求和公式例1、求数列例2、求数列5, 55,555,5555,…,,……的前项和。

解:∵∴二、用倒序相加法推导等差数列的前n项和公式的方法是倒序相加法。

这个方法可以类推到一般,只要前n项具有与两端等距离项的和相等的数列这种特征都可用这种方法求和。

例3、已知是等差数列,求和。

解:∵①即②由①+②,得:∵∴由等差数列的性质,易得:故于是三、利用错位相减法错位相减法是一种常用的数列求和方法,主要应用于等比数列与等差数列相乘的形式。

形如,其中为等差数列,为等比数列,公比为q;列出,再把所有式子同时乘以等比数列的公比,即;然后错一位,两式相减即可。

例4、求数列的前n求和(x≠0,x≠1)。

解:设①则②由①-②,得:于是四、用化差相减法适用于分式形式的通项公式,基本原理是把一项拆成两个或多个的差的形式,即,然后累加时中间的许多项可以抵消。

裂项凑错位相加特征,注意前后式子相等,如果不相等就要乘以一个系数。

常用公式:,,,(a≠0),例5、求数列的前n求和。

解:例6、求数列。

解:∵∴基本原理点拨:代数式变形凑相消特征:,由此可联想求更高次方幂的n项和。

如:至此,一般规律就出现了,通过变形整理便可求出的n 项的和,以此类推,求n次方幂的问题就能彻底解决。

从而五、利用组合数求和公式法利用这个组合数公式,求某些特殊数列的前n和颇为方便。

因为,则。

例7、求数列解:∵,∴例8、求数列。

解:∵。

∴,六、用数学归纳法例9、求数列的前n项和。

数列求和7种方法(方法全-例子多)精选全文

数列求和7种方法(方法全-例子多)精选全文

可编辑修改精选全文完整版数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。

数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。

数列求和方法总结

数列求和方法总结

数列求和方法总结数列求和是数学中一个非常常见且重要的问题,它出现在各个领域的数学问题中,并且在高中数学及以上的学习中经常遇到。

在解决数列求和问题时,我们可以通过多种方法,其中包括代入法、消元法、几何法、差分法、数学归纳法等等。

下面我将对这些方法进行详细的总结与说明。

1. 代入法:代入法是一种常见的求和方法。

我们可以通过代入来求和项的个数和具体数值。

首先,我们需要确定数列的通项公式,然后将要求和的项数具体代入到通项公式中,求出每一项的数值,最后再将这些数值相加即可得到所求的数列的和。

例如,要求等差数列1、3、5、7、9的前n项和,我们可以先找到通项公式为an=2n-1,然后代入每一项的数值,得到1、3、5、7、9,最后相加得到的和为(1+9)*5/2=25。

2. 消元法:消元法是一种常用的数学方法,在求和问题中也有广泛应用。

通过对求和式进行变形,我们可以通过消除多项式的常数项、控制变量项或者引入新的变量来简化求和的步骤,从而得到更简单的表达式。

例如,要求等差数列1、2、3、4、5的前n项和,我们可以通过对求和式进行变形,得到Sn=(n+1)*n/2。

3. 几何法:几何法是一种求解数列求和的常见方法,它通常适用于等比数列求和问题。

当数列的各项之间的比值存在规律时,我们可以通过将数列的各项代入到几何模型中来计算求和的方法。

例如,要求等比数列1、2、4、8、16的前n项和,我们可以将这些数列代入等比数列的几何模型中,即1、2、2^2、2^3、2^4,可见,这是一个以2为公比的等比数列。

根据等比数列的求和公式Sn=a1*(r^n-1)/(r-1),代入数值可得到所求的和。

4. 差分法:差分法是一种通过对数列进行差分来求和的方法。

它通常适用于数列之间的差为常数或规律的数列,通过对数列进行差分可以简化求和的过程。

例如,要求等差数列1、3、5、7、9的前n项和,我们可以通过差分法来解决,即将数列进行差分得到2、2、2、2,可以发现这是一个公差为2的等差数列。

数列求和公式方法总结

数列求和公式方法总结

数列求和公式方法总结数列求和是高中数学中的重要内容之一,也是许多学生难以消化的内容。

不同的数列有不同的求和公式,本文将总结数列求和的常见方法和公式,助力学生更好地掌握数列求和的技巧。

一、等差数列的求和公式:等差数列是最常见的数列之一,其特点是每个项之间的差值是相等的。

设首项为a₁,公差为d,末项为aₙ,则等差数列的求和公式为:Sₙ=(a₁+aₙ)×n÷2Sₙ=(a₁+aₙ)×(n+1)÷2其中,Sₙ表示前n项和。

二、等比数列的求和公式:等比数列是指数列中任意两个相邻项之间的比值相等的数列。

设首项为a₁,公比为q,末项为aₙ,则等比数列的求和公式为:Sₙ=(a₁×(qₙ-1))÷(q-1)其中,Sₙ表示前n项和。

三、二次数列的求和公式:二次数列是指每个项与前一个项之间的关系满足一次方程的数列。

设首项为a₁,公差为d,末项为aₙ,则二次数列的求和公式为:Sₙ=(2a₁+(n-1)d)×n÷2Sₙ=(2a₁+d(n-1))×n÷2其中,Sₙ表示前n项和。

四、调和数列的求和公式:调和数列是指数列的倒数数列,每个项与前一个项之间的差异与常数成反比的数列。

设首项为a₁,公差为d,末项为aₙ,则调和数列的求和公式为:Sₙ=(n×(2a₁+(n-1)d))÷2其中,Sₙ表示前n项和。

五、费波纳西数列的求和公式:费波纳西数列是指数列中每个项都是前两个相邻项之和的数列。

设首项为a₁,公差为d,末项为aₙ,则费波纳西数列的求和公式为:Sₙ=(a₁+a₂)×(aₙ+aₙ₊₁)÷2Sₙ=(a₁+a₃)×(aₙ+aₙ₋₂)÷2其中,Sₙ表示前n项和。

六、其他数列的求和公式:除了上述常见的数列类型外,还存在其他特殊的数列,其求和公式需要通过推导和递推等方法得到。

比如,输出数列、幂和数列、等差几何数列等。

数列求和(讲)9种方法分类将

数列求和(讲)9种方法分类将
(1)求a1,a2的值;
(2)求数列{an}的通项公式an;
1 式(S3n)>设1数列loga(1a-naan)+对2任的意前的n正项整和数为nS恒n,成不立等, 求实数a3的取值范围.
五. 分组求和法
项的特征
cn=an+bn
({an}、{bn}为等差或等比数列。)
例5.求下面数列的前n项和
21,41,6 1 , 4 8 16
来加以分析,根据数列的通项的结构特点去选择适 当的方法.
2.等价转换思想是解决数列问题的基本思想方 法,它可将复杂的数列转化为等差、等比数列问题 来解决.
3.数列求和是数列的一个重要内容,其实质是 将多项式化简,等差、等比数列及可以转化为等差、 等比数列的求和问题应掌握,还应掌握一些特殊数 列的求和.
S21=-1+3+(-5)+7+(-9)+……+39+(-41)
=-21
七.奇偶法
通过分组,对n分奇偶讨论求和
例7.数列an 中, an
2n
3n
3(n为奇数) 1(n为偶数) ,
求an的前n项和Sn。
练习:求和
(1).Sn 1 2 3 4 (1)n1 n (2).S 1 32 52 72 ..... (1)n1(2n 1)2
=121+12-n+1 1-n+1 2=34-2(n+2n1+)(n3+2).
1.特别是对于 anacn+1,其中{an}
是各项均不为0的等差数列,通常用裂项
相消法,即利用 anacn+1=dca1n-an1+1
(其中d=an+1-an).
常见的拆项公式有:
1. 1 1 1 n(n 1) n n 1
变式探究2

数列求和常见的7种方法

数列求和常见的7种方法

.
1、 等差数列求和公式: Sn
n (a1 an)
n(n 1)
na1
d
2
2
2、等比数列求和公式: Sn
na1 a1 (1 qn )
1q
( q 1)
a1 an q 1q
(q 1)
3、 Sn
n
k
k1
1n(n 1) 2
4、 Sn
n
k2
k1
1n(n 1)(2n 1) 6
5、 Sn
n
k3
1 [ n( n
1)] 2
数列求和常见的 7 种方法
数列求和的基本方法和技巧
一、总论:数列求和 7 种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和
二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减 法,
三、逆序相加法、错位相减法是数列求和的二个基本方法。
[ 例 12] 求 cos1° + cos2° + cos3° +··· + cos178° + cos179°的值 . 解:设 Sn= cos1° + cos2° + cos3° +···+ cos178° + cos179°
∵ cos n cos(180 n )
(找特殊性质项)
∴ Sn= ( cos1° + cos179°) +( cos2°+ cos178°) + ( cos3°+ cos177°) +···
4
数列求和常见的 7 种方法
( 2)利用第( 1 )小题已经证明的结论可知,

数列求和常见的7种方法

数列求和常见的7种方法

数列求和常见的7种方法数列求和是数学中比较常见的问题之一,它在各个领域中都有广泛的应用。

在数学中,我们常常使用不同的方法来求解数列求和问题,以下将介绍一些常见的数列求和方法。

一、公式法:公式法是求解数列求和中最常用的方法之一、对于一些特定的数列,我们可以通过找到它们的通项公式,从而直接计算出数列的和。

例如,对于等差数列an = a1 + (n-1)d,其前n项和Sn =[n(a1+an)]/2,其中a1为首项,an为末项,d为公差。

同样地,对于等比数列an = a1 * r^(n-1),其前n项和Sn = a1 *(1 - r^n)/(1 - r),其中a1为首项,r为公比。

二、递推法:递推法是另一种求解数列求和问题的常用方法。

通过推导出数列的递推关系式,我们可以通过逐项求和的方式来求解数列求和问题。

例如,对于斐波那契数列Fn=Fn-1+Fn-2(其中n>2),我们可以通过递推的方式来求得前n项和。

三、画图法:画图法是一种直观的方法,通过画图可以更清楚地理解数列求和问题,并帮助我们找到解题思路。

例如,对于等差数列Sn = a1 + (a1+d) + (a1+2d) + ... +(a1+nd),我们可以将其表示为一个由等差数列首项、末项组成的矩形,然后通过计算矩形的面积来求解数列的和。

四、换元法:换元法是将数列中的变量进行换元,从而将原始数列转化为另一种形式,从而更容易求出数列的和。

例如,对于等差数列Sn = a1 + (a1+d) + (a1+2d) + ... +(a1+nd),我们可以将其表示为Sn = (n+1)a1 + d(1+2+3+...+n),然后再利用等差数列的求和公式来求解。

五、差分法:差分法是一种将数列进行相邻项之间的差分操作,从而得到一个新的数列,通过对新数列进行求和的方式来求解原始数列的和。

例如,对于等差数列an = a1 + (n-1)d,我们可以计算得到数列bn = a2 - a1,然后求出bn的和,再通过一些变换得到原始数列的和。

数列求和常见的7种方法

数列求和常见的7种方法

数列求和常见的7种方法数列求和是数学中常见的问题之一、在数学中,数列是按照一定规律排列的一组数,求和则是将数列中的所有数相加得到一个结果。

在实际问题中,数列求和涉及到很多应用,比如计算排列组合、概率统计、几何等。

本文将介绍常见的七种求和方法,包括等差数列求和、等比数列求和、递推数列求和、特殊数列求和、级数求和、积性函数求和和递归求和。

一、等差数列求和方法等差数列指的是数列中的每一项与下一项之间的差值都相等的数列。

等差数列求和的方法有两种:公式法和递推法。

公式法:设等差数列的首项为a1,公差为d,求等差数列的前n项和Sn,则有下面的公式:Sn = (a1+an) * n / 2,其中an是数列的末项。

递推法:通过递推方法,可以依次计算等差数列的每一项,将它们相加得到数列的和。

递推公式为:an = a1 + (n-1) * d。

使用递推法时要注意,计算的次数需要与指定的项数相等。

二、等比数列求和方法等比数列是指数列中的每一项与前一项之比都相等的数列。

等比数列求和的方法有两种:公式法和递推法。

公式法:设等比数列的首项为a1,公比为q,求等比数列的前n项和Sn,则有下面的公式:当q≠1时:Sn=a1*(1-q^n)/(1-q)。

当q=1时:Sn=a1*n。

递推法:通过递推方法,可以依次计算等比数列的每一项,将它们相加得到数列的和。

递推公式为:an = a1 * q^(n-1)。

同样,使用递推法时要注意计算的次数与指定的项数相等。

三、递推数列求和方法递推数列是指数列中的每一项都由前面的项经过其中一种规律计算得到的数列。

递推数列求和的方法有两种:递推法和公式法。

递推法:通过递推方法,依次计算数列的每一项,将它们相加得到数列的和。

递推公式由数列的规律决定。

公式法:有些递推数列可以找到与之对应的公式,从而可以直接通过公式计算数列的和。

四、特殊数列求和方法特殊数列是指具有特殊性质的数列,比如斐波那契数列、Lucas数列等。

高考数列求和的基本方法和技巧必过

高考数列求和的基本方法和技巧必过

数列求和的基本技巧和方法一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习:求:S n =1+5x+9x 2+······+(4n-3)x n-1 解:S n =1+5x+9x 2+······+(4n-3)x n-1 ① ①两边同乘以x ,得 x S n =x+5 x 2+9x 3+······+(4n-3)x n ② ①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+n x )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n当x ≠1时,S n = 1 1-x [ 4x(1-x n )1-x +1-(4n-3)x n ]三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5 练习:已知lg(xy)=a ,求S ,其中S=nn n n y y x y x x lg )lg()lg(lg 221+•••+++--解: 将和式S 中各项反序排列,得n n n n x y x y x y s lg )lg()lg(lg 221+•••+++=--将此和式与原和式两边对应相加,得 2S=n xy )lg(+n xy )lg(+ · · · +n xy )lg( (n+1)项 =n(n+1)lg(xy)∵ lg(xy)=a ∴ S=21n(n+1)a四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n-+---[例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n练习:求数列•••+•••),21(,,813,412,211n n 的前n 项和。

课程资料:数列求和的基本方法和技巧

课程资料:数列求和的基本方法和技巧
又因为 sin x cos(90 x), sin2 x cos2 x 1 ①+②得 2S (sin 2 1 cos2 1 ) (sin 2 2 cos2 2 ) (sin 2 89 cos2 89 )=89
∴ S=44.5
变式
1.求值:S
12
12 102
22 22 92
1
.
1 2 2 3 3 4
n n1
例11已知数列{an}是等差数列,前n项和
为Sn,S3 12, a3 6.
(1)求数列{an}的通项公式;
(2)求证:1 1 1 1 1
S1 S2 S3
SN
[例12]在数列{an}中,an
1 n 1
2 n 1
n
n
1
,又
bn
an
2 an1
和对数的运算性质log a M log a N log a M N 得
Sn (log 3 a1 log 3 a10 ) (log 3 a2 log 3 a9 ) (log 3 a5 log 3 a6 )
(合并求和)
(log 3 a1 a10 ) (log 3 a2 a9 ) (log 3 a5 a6 )
[例8] 求和 : Sn 1 3x 5x 2 7x3 (2n 1)x n1
(x≠0,且x ≠…1)……①
解:由题可知,{(2n 1)xn1}的通项是等差数 列{2n-1}的通项与等比数列{xn1}的通项之积,
Sn
(2n
1) x n 1
(2n 1)xn (1 x)2
(1
x)
[例7]] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.

数列求和各种方法总结归纳

数列求和各种方法总结归纳

1 1 1 = 2n-1-2n+1, 2
1 1 1 1 1 1 + - +…+ ∴Sn= 1-3 2n-1-2n+1 2 3 5
1 1 n = 1-2n+1= . 2 2n+1
[理](2012· 西南大学附中月考)已知函数f(x)=2x+1,g(x)=x,x∈ R,数列{an},{bn}满足条件:a1=1,an=f(bn)=g(bn+1),n∈N*. (1)求证:数列{bn+1}为等比数列; 2n 2 011 (2)令Cn= ,Tn是数列{Cn}的前n项和,求使Tn>2 012成立的 an·n+1 a 最小的n值.
解:(1)证明:由题意得2bn+1=bn+1, ∴bn+1+1=2bn+2=2(bn+1). 又∵a1=2b1+1=1, ∴b1=0,b1+1=1≠0.
故数列{bn+1}是以1为首项,2为公比的等比数列.
(2)由(1)可知,bn+1=2n-1,∴an=2bn+1=2n-1. 2n 2n 1 1 故Cn= = n = n - n+1 . an·n+1 2 -12n+1-1 2 -1 2 -1 a ∴Tn=C1+C2+…+Cn 1 1 1 1 1 =(1-3)+(3-7)+…+( n - ) 2 -1 2n+1-1 1 2 011 =1- n+1 .由Tn>2 012,得2n+1>2 013,解得n≥10. 2 -1 ∴满足条件的n的最小值为10.
②不能转化为等差或等比数列的数列,往往通过裂项
相消法、错位相减法、倒序相加法等来求和.
[例1] (2011· 山东高考)等比数列{an}中,a1,a2,a3分别是下表 第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不 在下表的同一列. 第一行 第二行 第一列 第二列 第三列 3 6 9 2 4 8 10 14 18

高中数学中的数列求和知识点总结

高中数学中的数列求和知识点总结

高中数学中的数列求和知识点总结数列求和是高中数学中的重要概念和技巧之一,它涉及到数列的性质和求和方法的应用。

本文将对高中数学中的数列求和知识点进行总结,包括求和公式、数列性质与求和、递推数列求和和常用数列求和等内容。

1. 求和公式求和公式是数列求和的基础,它们可以帮助我们简化求和过程并得到准确的结果。

常见的求和公式包括等差数列求和公式和等比数列求和公式。

(1)等差数列求和公式对于等差数列 {an},其通项公式为 an = a1 + (n-1)d,其中 a1 为首项,d 为公差,n 为项数。

等差数列的求和公式为 Sn = (a1 + an) * n / 2。

其中 Sn 表示前 n 项的和。

(2)等比数列求和公式对于等比数列 {an},其通项公式为 an = a1 * q^(n-1),其中 a1 为首项,q 为公比,n 为项数。

等比数列的求和公式分为两种情况:当 |q| < 1 时,等比数列的求和公式为 Sn = a1 / (1-q)。

当 |q| > 1 时,等比数列的求和公式为 Sn = (a1 - anq) / (1-q)。

2. 数列性质与求和数列性质与求和是数列求和中较为重要的内容之一。

在求解数列求和问题时,熟练掌握数列的性质对于简化计算和解题过程非常有帮助。

(1)数列的首项与末项一个数列 {an} 的首项为 a1,末项为 an。

在使用求和公式时,需要准确确定数列的首项和末项。

(2)逆序求和对于满足一定条件的数列,其求和式可以通过逆序求和的方式得到更简洁的结果。

例如,等差数列 {an} 的求和式为 Sn = (a1 + an) * n / 2,而逆序求和的方式是 Sn = (an + a1) * n / 2。

(3)奇数项和与偶数项和有些数列的求和问题可以通过分别求解奇数项和与偶数项和来得到最终结果。

例如,等差数列 {an} 的奇数项和为 So = (a1 + an) * (n/2),偶数项和为 Se = an * (n/2)。

数列求和的七种方法总结

数列求和的七种方法总结

数列求和的七种方法总结嘿,朋友们!今天咱就来好好唠唠数列求和的七种超厉害的方法。

先来说说第一个方法,那就是公式法呀!这就好比是一把万能钥匙,专门开那些有固定公式的数列求和大门。

等差数列、等比数列啥的,都有它们自己的公式,直接套用,那答案不就乖乖出来啦!就像你知道了开门的密码,轻轻一转,门就开啦,神奇吧!然后呢,是分组求和法。

这就好像把一堆杂乱的东西分成几类,然后分别去处理。

把数列拆分成几个容易求和的部分,然后各自相加,最后再汇总起来。

就像是把不同颜色的糖果分开,然后数清楚每种有多少颗,加起来就知道总数啦!接着是裂项相消法。

哇哦,这个方法可有意思啦!就像是把一个整体拆成很多小块,然后通过巧妙的计算,让一些项相互抵消掉。

就好比你要把一堵墙拆了,然后有些砖头之间的缝隙刚好可以让它们相互抵消,最后剩下的就是你要的结果啦。

还有错位相减法。

这就像是一场精彩的舞蹈,两个数列在那里跳来跳去,通过错位相乘再相减,得出求和的结果。

是不是很神奇呀?倒序相加法也不能落下呀!想象一下,你从前往后走,再从后往前走,然后把两次走的过程加起来,是不是会有不一样的发现呢?这就是倒序相加法的奇妙之处呀!并项求和法呢,就像是把一些相似的东西合并在一起算。

把相邻的几项合并成一项,然后再去求和,是不是很有创意呀?最后说说归纳猜想法。

有时候啊,我们可以先通过计算前面几项,然后大胆地去猜测后面的结果,再去验证。

这就像是摸着石头过河,虽然有点冒险,但有时候会有意外的惊喜哦!哎呀呀,这七种方法各有各的妙处,就看你怎么去运用啦!在数学的世界里,它们就像是七种不同的武器,帮助我们攻克数列求和这个难关。

大家可得好好掌握呀,说不定哪天就派上大用场啦!总之,数列求和的方法多种多样,只要我们用心去学,就一定能把它们玩转得团团转!加油吧,朋友们!。

数列求和7种方法(方法全_例子多)

数列求和7种方法(方法全_例子多)

一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n-+---[例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。

高中数列七种求和+9大方法全总结高考知识点大全

高中数列七种求和+9大方法全总结高考知识点大全

学以致用1、如:等差数列a n,S n18,a n a n 1 a n 23,S31,那么 n2、数列a满足S S 5 a, a4,求 an n n 13n 11n3、例如:数列a n中, a13,an 1n,求 a n a n n14、数列a n, a11, a n3n 1 a n 1n 2 ,求 a n5、数列a n满足 a19, 3a n 1a n4,求 a n6、例如:a11, a n 12a n,求 a na n27求和:111⋯⋯11 2 1 2 3 1 2 3 ⋯⋯ n8、如:S n1 2x 3x24x3⋯⋯ nx n 11求 Snx 2111 9、f ( x)2,那么 f (1) f ( 2) f f (3) f f (4) f1 x23410、设 { a n} 是等差数列,假设 a2=3, a 7=13,那么数列 { a n} 前 8 项的和为〔〕A.128B. 80C.64D.5611、等比数列{ a n } 满足 a1a23,a2a3 6 ,那么a7〔〕A. 64B. 81C. 128D. 24312、等差数列a n中, a2 6 , a515 ,假设 b n a2n,那么数列b n的前 5 项和等于A.30B.45C. 90D.18613、记等差数列的前n 项和为 S n,假设 S24, S420 ,那么该数列的公差 d 〔〕A . 2B. 3C. 6D. 714.在数列{ a n}中,a n4n5, a1a2a n an2bn ,a, b为常数,那么ab21 ),那么a n15、在数列{ a n}中,a1 2 ,a n 1a n ln(1〔〕nA.2 ln n B .2 ( n 1)ln n C .2 n ln n D .1 n ln n16、设数列a中, a12, a n1a n n1,那么通项 a n___________ .n17、假设( x+1) n的展开式中前三项的系数成等差数列,那么展开式中x4项的系数为()2xA. 6B. 7C. 8D. 918.{ a n}是正数组成的数列,a1=1 ,且点〔a n , a n 1〕〔nN* 〕在函数 y=x2+1 的图象上. ( Ⅰ )求数列{ a n}的通项公式; (Ⅱ )假设数列{b n}满足 b1=1,b n+1=b n+ 2a n,求证: b n·b n+2<b2n+1.19、在数列na na n中, a11, a n 1 2a n 2 .〔Ⅰ〕设b n2n 1 .证明:数列b n是等差数列;〔Ⅱ〕求数列 a n的前 n 项和 S n.11 等差数列 { a n }{ b n } 的前 N 项和为 Sn、 Tn,满足Sn7n1,求b7 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学以致用
1、{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123
2、{}数列满足,,求a S S a a a n n n n n +==++1115
3
4
3、{}例如:数列中,,,求a a a a n
n a n n n n 1131
==++
4、{}()数列,,,求a a a a n a n n n n n 11
1132==+≥--
5、{}数列满足,,求a a a a a n n n n 11934=+=+
6、例如:,,求a a a a a n n
n n 11122
==++
7求和:…………111211231123+++++++++++n
8、如:……S x x x nx n n =+++++<>-123412
3
1
求Sn
9、已知,则f x x x
f f f f f f f ()()()()()=+++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫
⎭⎪=22
11212313414
10、设{a n }是等差数列,若a 2=3,a 7=13,则数列{a n }前8项的和为( )
A .128
B .80
C .64
D .56
11、已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( )
A .64
B .81
C .128
D .243
12、 已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于
A .30
B .45
C .90
D .186
13、 记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( )
A .2
B .3
C .6
D .7
14.在数列{}n a 中,542n a n =-,212n a a a an bn +++=+,,a b 为常数,则ab =
15、在数列{}n a 中,12a =, 11ln(1)n n a a n +=++,则n a =( )
A .2ln n +
B .2(1)ln n n +-
C .2ln n n +
D .1ln n n ++
16、设数列{}n a 中,112,1n n a a a n +==++,则通项n a = ___________.
17、 若(x +12x
)n 的展开式中前三项的系数成等差数列,则展开式中x 4项的系数为( ) A .6
B .7
C .8
D .9
18.已知{a n }是正数组成的数列,a 1=11n a +)(n ∈N*)在函数y =x 2+1的图象上. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)若数列{b n }满足b 1=1,b n +1=b n +2n a ,求证:b n ·b n +2<b 2n +1.
19、在数列{}n a 中,11a =,122n n n a a +=+.(Ⅰ)设1
2n n n a b -=.证明:数列{}n b 是等差数列;(Ⅱ)求数列{}n a 的前n 项和n S .
11 等差数列{n a }{n b }的前N 项和为Sn 、Tn ,满足27417++=n n Tn S n ,求77a b 。

相关文档
最新文档