课件-汽蚀余量和水泵安装高度计算教学内容
泵的汽蚀余量和安装高度计算
一、气蚀的发生过程液体汽化时的压力称为汽化压力(饱和蒸汽压力),液体汽化压力的大小和温度有关,温度越高,由于分子运动更剧烈,其汽化压力越大。
20℃清水的汽化压力为233.8Pa,而100℃水的汽化压力为101296Pa(一个大气压)。
可见,一定温度下的压力是促成液体汽化的外界因素。
液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生气泡,把这种产生气泡的现象称为气蚀。
气蚀时产生的气泡,流动到高压处时,其体积减小以至破灭。
这种压力上升,气泡消失在液体中的现象称为气蚀的溃灭。
为保证泵不汽蚀,泵叶轮进口处单位重量的液体所必须具有的超过汽化压力的富余能量。
浅释如下:当离心泵的吸入高度过大和液体温度较高时,以致使吸入口压强小于或等于液体饱和蒸汽压,则液体会在泵进口处沸腾汽化,在泵壳内形成一个充满蒸汽的空间,随着泵旋转,气泡进入高压区,由于压差的作用,气泡受压破裂而重新凝结,在凝结的一瞬间,质点互相撞击,产生了很高的局部压力,如果这些气泡在金属表面附近破裂而凝结,则液体质点就象无数小弹头一样,连续击打在金属表面,使金属表面产生裂纹,甚至局部产生剥落现象,使叶轮表面呈蜂窝状,同时气泡中的某些活泼气体如氧气等进入到金属表面的裂纹中,借助气泡凝结时放出的热量,使金属受到化学腐蚀作用,上述现象即为汽蚀。
汽蚀现象产生时,泵将产生噪音和振动,使泵的扬程、流量、效率的性能急剧下降,同时加速了材料的损坏,缩短了机件的使用寿命,因此,必须限制泵的吸入高度,防止液体大量汽化,以免发生汽蚀现象。
一台泵在运转中发生了气蚀,但在完全相同的条件下换上另一台泵可能就不会发生气蚀,这说明是否发生气蚀和泵本身的抗气蚀性能有关。
反之,同一台泵在某一条件下(如吸上高度7米)使用发生气蚀,改变使用条件(如吸上高度5米)则不会发生气蚀,这说明是否发生气蚀还与使用条件有关。
这就是泵汽蚀余量或必需气蚀余量NPSHr(又称必需的净正压头)和装置气蚀余量或有效气蚀余量NPSHa(又称有效的净正压头).二、泵安装高度的计算:泵之所以吸上液体,是因为叶轮旋转在叶轮进口造成真空,吸入液面的压力P0把液体压入泵的结果。
泵的汽蚀余量和安装高度计算
泵的汽蚀余量和安装高度的计算一、气蚀的发生过程液体汽化时的压力称为汽化压力〔饱和蒸汽压力〕,液体汽化压力的大小和温度有关,温度越高,由于分子运动更剧烈,其汽化压力越大.20℃清水的汽化压力为233.8Pa,而100℃水的汽化压力为101296Pa<一个大气压>.可见,一定温度下的压力是促成液体汽化的外界因素.液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生气泡,把这种产生气泡的现象称为气蚀.气蚀时产生的气泡,流动到高压处时,其体积减小以至破灭.这种压力上升,气泡消失在液体中的现象称为气蚀的溃灭.为保证泵不汽蚀,泵叶轮进口处单位重量的液体所必须具有的超过汽化压力的富余能量.浅释如下:当离心泵的吸入高度过大和液体温度较高时,以致使吸入口压强小于或等于液体饱和蒸汽压,则液体会在泵进口处沸腾汽化,在泵壳内形成一个充满蒸汽的空间,随着泵旋转,气泡进入高压区,由于压差的作用,气泡受压破裂而重新凝结,在凝结的一瞬间,质点互相撞击,产生了很高的局部压力,如果这些气泡在金属表面附近破裂而凝结,则液体质点就象无数小弹头一样,连续击打在金属表面,使金属表面产生裂纹,甚至局部产生剥落现象,使叶轮表面呈蜂窝状,同时气泡中的某些活泼气体如氧气等进入到金属表面的裂纹中,借助气泡凝结时放出的热量,使金属受到化学腐蚀作用,上述现象即为汽蚀.汽蚀现象产生时,泵将产生噪音和振动,使泵的扬程、流量、效率的性能急剧下降,同时加速了材料的损坏,缩短了机件的使用寿命,因此,必须限制泵的吸入高度,防止液体大量汽化,以免发生汽蚀现象.一台泵在运转中发生了气蚀,但在完全相同的条件下换上另一台泵可能就不会发生气蚀,这说明是否发生气蚀和泵本身的抗气蚀性能有关.反之,同一台泵在某一条件下〔如吸上高度7米〕使用发生气蚀,改变使用条件〔如吸上高度5米〕则不会发生气蚀,这说明是否发生气蚀还与使用条件有关.这就是泵汽蚀余量或必需气蚀余量NPSHr〔又称必需的净正压头〕和装置气蚀余量或有效气蚀余量NPSHa〔又称有效的净正压头〕.二、泵安装高度的计算:泵之所以吸上液体,是因为叶轮旋转在叶轮进口造成真空,吸入液面的压力P0把液体压入泵的结果.即外因P0通过内因〔真空〕而起作用,二者缺一不可.最理想的情况是在叶轮造成真空,不计流动过程的损失,泵在标准大气压下只能吸上10.33米,实际泵的吸上高度均在10米以下.叶片入口处的压强P2和被输送液体在操作温度下的饱和蒸汽压Pv可用下面的等式表示:----------1ρ—被输送液体在操作温度下的密度,kg/m3g—重力加速度,=9.81m/s2△ha—气蚀安全量,一般取0.3米在泵入口1和叶片2间作能量恒算:移项得左边3项为NPSHa, 有效气蚀余量,即NPSHa=右边2项为NPSHr, 必需气蚀余量,即NPSHr=把公式1代入:移项得:-----------2在液面0和泵入口1间作能量恒算:Hg-------安装高度,mHf--------0-1之间的管道阻力损失移项得安装高度的计算公式:把2代入,得在实验条件下,P0为一个工程大气压,即P0=9.81*10000Pa,并以20℃清水为介质进行实验,密度为998.2kg/m3,饱和蒸汽压力Pv=2334.6Pa.若条件改变时这些参数均须改变.代入上面公式:=9.46-NPSHr-Hf为了确保离心泵正常操作,将所测得〔NSPH〕c值加上一定的安全量作为必需汽蚀余量〔NSPH〕r,并列入泵产品样本,或绘于泵的特性曲线上.1、根据装置的布置、地形条件、水位条件、运转条件、经济方案比较等多方面因素2、考虑选择卧式、立式和其它型式〔管道式、直角式、变角式、转角式、平行式、垂直式、直立式、潜水式、便拆式、液下式、无堵塞式、自吸式、齿轮式、充油式、充水温式〕.卧式泵拆卸装配方便,3、易管理、但体积大,4、需很大占地面积;立式泵,5、很多情况下叶轮淹没在水中,6、任何时候可以启动,7、便于自动盍或远程控制,8、并且紧凑,9、安装面积小,10、价格较便宜.3 、根据液体介质性质,确定清水泵,热水泵还油泵、化工泵或耐腐蚀泵或杂质泵,或者采用不堵塞泵.安装在爆炸区域的泵,应根据爆炸区域等级,采用防爆电动机.4.振动量分为:气动、电动〔电动分为220v电压和380v电压〕.5、根据流量大小,选单吸泵还是双吸泵:根据扬程高低,选单吸泵还是多吸泵,高转速泵还是低转速泵〔空调泵〕、多级泵效率比单级泵低,当选单级泵和多级泵同样都能用时,宜选用单级泵.6、确定泵的具体型号,采用什么系列的泵选用后,就可按最大流量,放大5%——10%余量后的扬程这两个性能主要参数,在型谱图或系列特性曲线上确定具体型号.利用泵特性曲线,在横坐标上找到所需流量值,在纵坐标上找到所需扬程值,从两值分别向上和向右引垂线或水平线,两线交点正好落在特性曲线上,则该泵就是要选的泵,但是这种理想情况一般不会很少,通常会碰上下列几种情况:A、第一种:交点在特性曲线上方,这说明流量满足要求,但扬程不够,此时,若扬程相差不多,或相差5%左右,仍可选用,若扬程相差很多,则选扬程较大的泵.或设法减小管路阻力损失.B、第二种:交点在特性曲线下方,在泵特性曲线扇状梯形X围内,就初步定下此型号,然后根据扬程相差多少,来决定是否切割叶轮直径,若扬程相差很小,就不切割,若扬程相差很大,就按所需Q、H、,根据其ns和切割公式,切割叶轮直径,若交点不落在扇状梯形X围内,应选扬程较小的泵.选泵时,有时须考虑生产工艺要求,选用不同形状Q-H特性曲线.通常把表示主要性能参数之间关系的曲线称为离心泵的性能曲线或特性曲线,实质上,离心泵性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得.特性曲线包括:流量-扬程曲线〔Q-H〕,流量-效率曲线〔Q-η〕,流量-功率曲线〔Q-N〕,流量-汽蚀余量曲线〔Q-〔NPSH〕r〕,性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程,功率,效率和汽蚀余量值,这一组参数称为工作状态,简称工况或工况点,离心泵最高效率点的工况称为最佳工况点,最佳工况点一般为设计工况点.一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近.在实践选效率区间运行,即节能,又能保证泵正常工作,因此了解泵的性能参数相当重要.。
水泵的汽蚀余量和安装高度
水泵的汽蚀余量和安装高度一、气蚀的发生过程:液体汽化时的压力称为汽化压力(饱和蒸汽压力),液体汽化压力的大小和温度有关,温度越高,由于分子运动更剧烈,其汽化压力越大。
20℃清水的汽化压力为233.8Pa,而100℃水的汽化压力为101296Pa(一个大气压)。
可见,一定温度下的压力是促成液体汽化的外界因素。
液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生气泡,把这种产生气泡的现象称为气蚀。
气蚀时产生的气泡,流动到高压处时,其体积减小以至破灭。
这种压力上升,气泡消失在液体中的现象称为气蚀的溃灭。
为保证泵不汽蚀,泵叶轮进口处单位重量的液体所必须具有的超过汽化压力的富余能量。
浅释如下:当离心泵的吸入高度过大和液体温度较高时,以致使吸入口压强小于或等于液体饱和蒸汽压,则液体会在泵进口处沸腾汽化,在泵壳内形成一个充满蒸汽的空间,随着泵旋转,气泡进入高压区,由于压差的作用,气泡受压破裂而重新凝结,在凝结的一瞬间,质点互相撞击,产生了很高的局部压力,如果这些气泡在金属表面附近破裂而凝结,则液体质点就象无数小弹头一样,连续击打在金属表面,使金属表面产生裂纹,甚至局部产生剥落现象,使叶轮表面呈蜂窝状,同时气泡中的某些活泼气体如氧气等进入到金属表面的裂纹中,借助气泡凝结时放出的热量,使金属受到化学腐蚀作用,上述现象即为汽蚀。
汽蚀现象产生时,泵将产生噪音和振动,使泵的扬程、流量、效率的性能急剧下降,同时加速了材料的损坏,缩短了机件的使用寿命,因此,必须限制泵的吸入高度,防止液体大量汽化,以免发生汽蚀现象。
一台泵在运转中发生了气蚀,但在完全相同的条件下换上另一台泵可能就不会发生气蚀,这说明是否发生气蚀和泵本身的抗气蚀性能有关。
反之,同一台泵在某一条件下(如吸上高度7米)使用发生气蚀,改变使用条件(如吸上高度5米)则不会发生气蚀,这说明是否发生气蚀还与使用条件有关。
这就是泵汽蚀余量或必需气蚀余量NPSHr(又称必需的净正压头)和装置气蚀余量或有效气蚀余量NPSHa(又称有效的净正压头).二、泵安装高度的计算:泵之所以吸上液体,是因为叶轮旋转在叶轮进口造成真空,吸入液面的压力P0把液体压入泵的结果。
(五)泵的气蚀余量及安装高度
450-600 0.12
10
20
30
6.5
6.0
5.0
H安裕=0.6m
(4)压力单位 1标大气压 =17K6g0fm/mcHmg2==71306.m m1Hmgm=H1g0=mH20=98 =11m3H.2O6=m7m3H.2O6=m1m3H g1=KPa=7.5mmHg =10磅.1/0时1MH2O= 21=时6.895KPa H1g口=3.尺386KPa =30、.3泵05扬m程=H 吸入高+H排出
(五)泵的气蚀余量及安装高度
泵出厂时,一般标明:扬程、流量、允许吸入高度和必须汽蚀余量。必须气蚀余量是泵转速流量比转数的函数:
h 20
(n
Vd S
)
(米)
#DIV/0!
n=1450RPM
允许吸入高度 6-8M
必须汽蚀余量1-3.2m
1、泵选型时 注(意1):物料性 质:腐蚀性, 固(2体)流悬量浮:物最,大 流量=泵额定 流正量常×流0量.8=m泵3/h 额定流量× 0最.7小m流3/h量(=高流效 量×扬程× 1.86×10(3)扬程=吸入 高差+吸入阻 力+出口阻力+ 出口高差+出 口压=
0.080 33
0.600 57
0.100 35
0.700 59
0.125 37
0.800 61
0.150 39
1.000 64
0.2 43 1.200 66
0.25 46
1.400 67
D=
1.600
C=
69
1.800 70
2.000 71
实际设计安装
高度应小于计 H安裕=
=
2.1 1.2
泵的汽蚀余量和安装高度计算
泵的汽蚀余量和安装高度的计算一、气蚀的发生过程液体汽化时的压力称为汽化压力(饱和蒸汽压力),液体汽化压力的大小和温度有关,温度越高,由于分子运动更剧烈,其汽化压力越大。
20℃清水的汽化压力为233.8Pa,而100℃水的汽化压力为101296Pa(一个大气压)。
可见,一定温度下的压力是促成液体汽化的外界因素。
液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生气泡,把这种产生气泡的现象称为气蚀。
气蚀时产生的气泡,流动到高压处时,其体积减小以至破灭。
这种压力上升,气泡消失在液体中的现象称为气蚀的溃灭。
为保证泵不汽蚀,泵叶轮进口处单位重量的液体所必须具有的超过汽化压力的富余能量。
浅释如下:当离心泵的吸入高度过大和液体温度较高时,以致使吸入口压强小于或等于液体饱和蒸汽压,则液体会在泵进口处沸腾汽化,在泵壳内形成一个充满蒸汽的空间,随着泵旋转,气泡进入高压区,由于压差的作用,气泡受压破裂而重新凝结,在凝结的一瞬间,质点互相撞击,产生了很高的局部压力,如果这些气泡在金属表面附近破裂而凝结,则液体质点就象无数小弹头一样,连续击打在金属表面,使金属表面产生裂纹,甚至局部产生剥落现象,使叶轮表面呈蜂窝状,同时气泡中的某些活泼气体如氧气等进入到金属表面的裂纹中,借助气泡凝结时放出的热量,使金属受到化学腐蚀作用,上述现象即为汽蚀。
汽蚀现象产生时,泵将产生噪音和振动,使泵的扬程、流量、效率的性能急剧下降,同时加速了材料的损坏,缩短了机件的使用寿命,因此,必须限制泵的吸入高度,防止液体大量汽化,以免发生汽蚀现象。
一台泵在运转中发生了气蚀,但在完全相同的条件下换上另一台泵可能就不会发生气蚀,这说明是否发生气蚀和泵本身的抗气蚀性能有关。
反之,同一台泵在某一条件下(如吸上高度7米)使用发生气蚀,改变使用条件(如吸上高度5米)则不会发生气蚀,这说明是否发生气蚀还与使用条件有关。
这就是泵汽蚀余量或必需气蚀余量NPSHr(又称必需的净正压头)和装置气蚀余量或有效气蚀余量NPSHa(又称有效的净正压头).二、泵安装高度的计算:泵之所以吸上液体,是因为叶轮旋转在叶轮进口造成真空,吸入液面的压力P0把液体压入泵的结果。
ppt课件-汽蚀余量和水泵安装高度计算
∴ 由上式可以看出,装置汽蚀余量NPSHa是由吸 入装置提的,与装置参数〔Pc、hg、hc〕及液体性 质〔 ρ、pV〕有关.
4
3、泵汽蚀余量NPSHr量 定义:NPSHr表征泵进口部分的压力降,其物理 意义表示液体在泵进口部分压力下降的程度. 泵汽蚀余量与装置参数无关,只与泵进口部分 的运动参数V0、W0、WK有关.其中 V0 ——叶轮叶片进口稍前的点的液体的绝对速 W0——叶轮叶片稍前的点的液体的相对速度 WK——叶轮内压力最低点的相对速度
2
这些汽蚀余量有以下关系: NPSHc ≤ NPSHr ≤[NPSH] ≤ NPSHa
2、装置汽蚀余量NPSHa 定义:泵进口处单位重量液体具有的能量超过 汽化压力水头的剩余的值.即
式中: ——介质的汽化压力水头 ——泵进口处单位重量液体的压力水头 ——泵进口处单位重量液体的速度水头
3
式中: ——吸入液面的绝对压力水头;一般吸水 液面与大气连通,为泵使用地的大气 压力水头〔m〕
心线至吸入液面的几何高度. 2、泵安装高度hg的计算公式 ∵ ∴
8
其中:
——大气压力,与使用地海拔高度有关. 详见附件"全国主要城市的海拔高度 和大气压力".在闭式系统中,为系 统压力.
——汽蚀余量〔净正吸头〕与泵运行时的 流量有关,计算时应按最大允许流 量的数据计算,可从泵性能表或性 能曲线中查明.
5
运动参数在一定转速和流量下由几
何参数决定的.这就是说NPSHr是由泵 本身决定的.对既定的泵,不论何种液 体,在一定转速和流量下流过泵进口, 因速度大小相同故均有相同的压力降, NPSHr相同.所以NPSHr和液体的性质无 关.NPSHr越小,表示压力降小,要求 装置必须提供的NPSHa小,因而泵的抗 汽蚀性能越好.
离心泵的安装高度课件
心,
10/16/2023
化学化工学院 迪丽努尔
5
一 、 汽蚀现象
. 造成冲击和振动。尤其当气泡的凝聚发生在叶片 表面附近时,众多液体质点尤如细小的高频水锤 撞击着叶片;另外气泡中可能带有些氧气等对金 属材料发生化学腐蚀作用。泵在这种状态下长期 运转将导致叶片的过早损坏。这种现象称为泵的
25
10/16/2023
化学化工学院 迪丽努尔
26
一、 离心泵的类型
耐腐蚀泵
. 输送腐蚀性液体时,必须用耐 腐蚀泵,耐腐蚀泵中所有与腐 蚀性液体接触的各种部件都需 用耐腐蚀材料制造,其系列代 号为 “F”。但是,用玻璃、陶 瓷、橡胶等材料制造的耐腐蚀 泵,多为小型泵,不属于 “F”
系列。
10/16/2023
象将发生。
. 此极限高度称为泵的最大安装高度Hg,max,
10/16/2023
化学化工学院 迪丽努尔
14
三最大安装高度Hg,max与最大允许安装高度Hg
. 从吸人液面0-0至叶轮人口截面K-K之间列机 械能衡算式,可求得最大安装高度
. p0/ρg = Hg,max + pV/ρg + uK2/2g + ∑Hf (0-K) . Hg,max = p0/ρg -pV/ρg- ∑Hf (0-1)-{uK2/2g + ∑Hf (0-K)}
即
或:
10/16/2023
化学化工学院 迪丽努尔
9
二、临界汽蚀余量 (NPSH) c与必需汽蚀余量 ( NPSH) r
水泵的汽蚀余量和安装高度
水泵的汽蚀余量和安装高度一、气蚀的发生过程:液体汽化时的压力称为汽化压力(饱和蒸汽压力),液体汽化压力的大小和温度有关,温度越高,由于分子运动更剧烈,其汽化压力越大。
20℃清水的汽化压力为233.8Pa,而100℃水的汽化压力为101296Pa(一个大气压)。
可见,一定温度下的压力是促成液体汽化的外界因素。
液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生气泡,把这种产生气泡的现象称为气蚀。
气蚀时产生的气泡,流动到高压处时,其体积减小以至破灭。
这种压力上升,气泡消失在液体中的现象称为气蚀的溃灭。
为保证泵不汽蚀,泵叶轮进口处单位重量的液体所必须具有的超过汽化压力的富余能量。
浅释如下:当离心泵的吸入高度过大和液体温度较高时,以致使吸入口压强小于或等于液体饱和蒸汽压,则液体会在泵进口处沸腾汽化,在泵壳内形成一个充满蒸汽的空间,随着泵旋转,气泡进入高压区,由于压差的作用,气泡受压破裂而重新凝结,在凝结的一瞬间,质点互相撞击,产生了很高的局部压力,如果这些气泡在金属表面附近破裂而凝结,则液体质点就象无数小弹头一样,连续击打在金属表面,使金属表面产生裂纹,甚至局部产生剥落现象,使叶轮表面呈蜂窝状,同时气泡中的某些活泼气体如氧气等进入到金属表面的裂纹中,借助气泡凝结时放出的热量,使金属受到化学腐蚀作用,上述现象即为汽蚀。
汽蚀现象产生时,泵将产生噪音和振动,使泵的扬程、流量、效率的性能急剧下降,同时加速了材料的损坏,缩短了机件的使用寿命,因此,必须限制泵的吸入高度,防止液体大量汽化,以免发生汽蚀现象。
一台泵在运转中发生了气蚀,但在完全相同的条件下换上另一台泵可能就不会发生气蚀,这说明是否发生气蚀和泵本身的抗气蚀性能有关。
反之,同一台泵在某一条件下(如吸上高度7米)使用发生气蚀,改变使用条件(如吸上高度5米)则不会发生气蚀,这说明是否发生气蚀还与使用条件有关。
这就是泵汽蚀余量或必需气蚀余量NPSHr(又称必需的净正压头)和装置气蚀余量或有效气蚀余量NPSHa(又称有效的净正压头).。
泵的汽蚀余量和安装高度计算
泵的汽蚀余量和安装高度的计算一、气蚀的发生过程液体汽化时的压力称为汽化压力(饱和蒸汽压力),液体汽化压力的大小和温度有关,温度越高,由于分子运动更剧烈,其汽化压力越大。
20℃清水的汽化压力为233.8Pa,而100℃水的汽化压力为101296Pa(一个大气压)。
可见,一定温度下的压力是促成液体汽化的外界因素。
液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生气泡,把这种产生气泡的现象称为气蚀。
气蚀时产生的气泡,流动到高压处时,其体积减小以至破灭。
这种压力上升,气泡消失在液体中的现象称为气蚀的溃灭。
为保证泵不汽蚀,泵叶轮进口处单位重量的液体所必须具有的超过汽化压力的富余能量。
浅释如下:当离心泵的吸入高度过大和液体温度较高时,以致使吸入口压强小于或等于液体饱和蒸汽压,则液体会在泵进口处沸腾汽化,在泵壳形成一个充满蒸汽的空间,随着泵旋转,气泡进入高压区,由于压差的作用,气泡受压破裂而重新凝结,在凝结的一瞬间,质点互相撞击,产生了很高的局部压力,如果这些气泡在金属表面附近破裂而凝结,则液体质点就象无数小弹头一样,连续击打在金属表面,使金属表面产生裂纹,甚至局部产生剥落现象,使叶轮表面呈蜂窝状,同时气泡中的某些活泼气体如氧气等进入到金属表面的裂纹中,借助气泡凝结时放出的热量,使金属受到化学腐蚀作用,上述现象即为汽蚀。
汽蚀现象产生时,泵将产生噪音和振动,使泵的扬程、流量、效率的性能急剧下降,同时加速了材料的损坏,缩短了机件的使用寿命,因此,必须限制泵的吸入高度,防止液体大量汽化,以免发生汽蚀现象。
一台泵在运转中发生了气蚀,但在完全相同的条件下换上另一台泵可能就不会发生气蚀,这说明是否发生气蚀和泵本身的抗气蚀性能有关。
反之,同一台泵在某一条件下(如吸上高度7米)使用发生气蚀,改变使用条件(如吸上高度5米)则不会发生气蚀,这说明是否发生气蚀还与使用条件有关。
这就是泵汽蚀余量或必需气蚀余量NPSHr(又称必需的净正压头)和装置气蚀余量或有效气蚀余量NPSHa(又称有效的净正压头).二、泵安装高度的计算:泵之所以吸上液体,是因为叶轮旋转在叶轮进口造成真空,吸入液面的压力P0把液体压入泵的结果。
汽蚀余量和泵的安装高度的关系.doc
先说一下各种汽蚀余量的概念:NPSH,汽蚀余量,是水泵进口的水流能量相对汽化压力的富余水头。
要谈允许汽蚀余量的由来,首先讲NPSH的一种:有效汽蚀余量NPSHa(NPSH available,也有以Δha表示),取决于进水池水面的大气压强、泵的吸水高度、进水管水头损失和水流的工作温度,这些因素均取决于水泵的装置条件,与水泵本身性能无关,所以也有叫装置汽蚀余量的。
NPSHr(NPSH required,Δhr),必需汽蚀余量。
由上所述,在一定装置条件下,有效汽蚀余量Δha为定值,此时对于不同的泵,有些泵发生了汽蚀,有些泵则没有,说明是否汽蚀还与泵的性能有关。
因为Δha仅说明泵进口处有超过汽化压力的富余能量,并不能保证泵内压力最低点(与泵性能有关)的压力仍高于汽化压力。
将泵内的水力损失和流速变化引起的压力降低值定义为必须汽蚀余量Δhr,也就是说要保证泵不发生汽蚀,必要条件是Δha>Δhr。
Δhr与泵的进水室、叶轮几何形状、转速和流量有关,也就是与泵性能相关,而与上述装置条件无关。
一般来讲Δhr不能准确计算,所以通常通过试验方法确定。
这时就引入临界汽蚀余量NPSHc (NPSH critical,Δhc),即试验过程泵刚好开始汽蚀时的汽蚀余量,此时Δha=Δhc=Δhr,这样即可确认Δhr。
而由于临界状况很难判断(因为此时性能可能并无大变化),按GB7021-86规定,临界Δhc这样确定:在给定流量情况下,引起扬程或效率(多级泵则为第一级叶轮)下降(2+k/2)%时的Δha值;或在给定扬程情况下,引起流量或效率下降(2+k/2)%时的Δha值。
k为水泵的型式数。
而以上均为理论值。
要保证水泵不发生汽蚀,引入允许汽蚀余量([NPSH],[Δh]),是根据经验人为规定的汽蚀余量,对于小泵[Δh]=Δhc+0.3m,大型水泵[Δh]=(1.1~1.3)Δhc。
最后水泵运行不产生汽蚀的必要条件是:装置有效汽蚀余量不得小于允许汽蚀余量,即Δha>=[Δh]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规定泵要达到的汽蚀性能参数,NPSHr
越小,泵的抗汽蚀性能越好;
1
NPSHt——试验汽蚀余量,是汽蚀试验时算出的 值,试验汽蚀余量有任意多个,但对 应泵性能下降一定值的试验汽蚀余量 中只有一个,称为临界汽蚀余量,用 NPSHc表示。
[NPSH]——许用汽蚀余量,这是确定泵使用条件 (如安装高度)用的汽蚀余量,它应大于 临界汽蚀余量,以保证泵运行时不发生 汽蚀。通常取[NPSH]=(1.1~1.5)NPSHc 或[NPSH]=NPSHc+k ,k是安全值。
9
——入口管路损失,与入口管路长度及管 路附件多少有关,可按附件“钢管的 磨擦损失”及附表“管附属管件的相 当直管长度”计算。
——汽化压力,与介质温度有关,可从附 图及“水的饱和压力表”查得。
10
11
K——安全余量, K=(0.1~0.5)NPSHr 应用以上计算公式, 计算所得的hg值为: 正值,泵可在最大吸 上高度hg情况下运行; 负值,必须有一最小进 口压力hg水头。
2
这些汽蚀余量有以下关系: NPSHc ≤ NPSHr ≤[NPSH] ≤ NPSHa
2、装置汽蚀余量NPSHa 定义:泵进口处单位重量液体具有的能量超过 汽化压力水头的剩余的值。即
式中: ——介质的汽化压力水头 ——泵进口处单位重量液体的压力水头 ——泵进口处单位重量液体的速度水头
3
式中: ——吸入液面的绝对压力水头;一般吸水 液面与大气连通,为泵使用地的大气
泵中心线至吸入液面的几何高度。 2、泵安装高度hg的计算公式 ∵
∴
8
其中:
——大气压力,与使用地海拔高度有关。 详见附件“全国主要Байду номын сангаас市的海拔高度 和大气压力”。在闭式系统中,为系 统压力。
——汽蚀余量(净正吸头)与泵运行时的 流量有关,计算时应按最大允许流 量的数据计算,可从泵性能表或性 能曲线中查明。
6
4、泵运行不产生汽蚀的条件如图所 示,泵运行不产生汽蚀,必须 NPSHa > NPSHr或 NPSHa=[NPSH]=NPSHc+k ∵NPSHc ≤NPSHr ∴NPSHr+k ≈NPSHc+k 则NPSHa=NPSHr+k
7
二、水泵安装高度及其计算: 1、水泵安装高度(几何吸上高度)hg:
12
13
压力水头(m) ——泵的安装高度(几何吸上高度)(m) ——吸水管路阻力损失(m)
∴ 由上式可以看出,装置汽蚀余量NPSHa是由吸 入装置提的,与装置参数(Pc、hg、hc)及液体性 质( ρ、pV)有关。
4
运动参数在一定转速和流量下由几 何参数决定的。这就是说NPSHr是由泵 本身决定的。对既定的泵,不论何种液 体,在一定转速和流量下流过泵进口, 因速度大小相同故均有相同的压力降, NPSHr相同。所以NPSHr和液体的性质无 关。NPSHr越小,表示压力降小,要求 装置必须提供的NPSHa小,因而泵的抗 汽蚀性能越好。
汽蚀余量和水泵安装高度计算
一、汽蚀余量
汽蚀余量又叫净正吸头,是表示汽蚀性能的主
要参数。汽蚀余量国内曾用△h表示。
1、为了深入理解汽蚀的概念,应区分以下几种汽
蚀余量:
NPSHa——装置汽蚀余量又叫有效的汽蚀余量, 是由吸入装置提供的,NPSHa越大泵 越不容易发生汽蚀;
NPSHr——泵汽蚀余量又叫必需的汽蚀余量,是