Takara_QuickCut限制性内切酶

合集下载

《基因工程的基本工具》 知识清单

《基因工程的基本工具》 知识清单

《基因工程的基本工具》知识清单一、限制性内切核酸酶(限制酶)限制酶是基因工程中最重要的工具酶之一。

它就像一把精准的“分子剪刀”,能够识别特定的核苷酸序列,并在特定的位点将 DNA 分子切开。

限制酶具有特异性,不同的限制酶识别的核苷酸序列不同。

例如,EcoRⅠ限制酶识别的序列是 GAATTC,而 BamHⅠ限制酶识别的序列是 GGATCC 。

当限制酶识别到特定序列后,就会在该位点将 DNA 双链切断,形成黏性末端或平末端。

黏性末端是指被切开的 DNA 双链的末端,一条链突出几个碱基,另一条链对应位置凹进去几个碱基,就像“锯齿”一样。

而平末端则是指切开的双链末端是平齐的。

限制酶的发现和应用,为基因工程中对 DNA 进行精确的切割和操作奠定了基础。

二、DNA 连接酶有了“剪刀”将 DNA 切开,还需要“胶水”将它们连接起来,这就是DNA 连接酶的作用。

DNA 连接酶能够将两个具有相同黏性末端或平末端的 DNA 片段连接在一起,形成一个完整的 DNA 分子。

DNA 连接酶连接的是 DNA 片段之间的磷酸二酯键。

在基因工程中,常用的 DNA 连接酶有 E·coli DNA 连接酶和 T4 DNA 连接酶。

E·coli DNA 连接酶只能连接黏性末端,而 T4 DNA 连接酶既能连接黏性末端,也能连接平末端,但连接平末端的效率相对较低。

三、载体在基因工程中,要将目的基因导入受体细胞,就需要一个“运输工具”,这就是载体。

载体需要具备一些特定的条件:1、能够在受体细胞中稳定保存并自我复制。

这样才能保证目的基因在受体细胞中能够长期存在和表达。

2、具有多个限制酶切点,以便插入目的基因。

3、具有标记基因,便于筛选含有目的基因的受体细胞。

常见的载体有质粒、λ噬菌体的衍生物和动植物病毒等。

质粒是一种小型的环状DNA 分子,广泛存在于细菌等原核生物中。

它具有自主复制能力,并且通常含有一些抗生素抗性基因作为标记基因。

分子生物学实验常用工具酶总结

分子生物学实验常用工具酶总结

现代分子生物学实验手册工具酶基因工程:在人工可以控制条件下,将基因剪切或重新组合,再导入另一生物体内,使这些基因在其中表达并遗传下去的一门技术。

核心:对基因进行人工切割、连接和重新组合,构建重组DNA。

工具酶:在基因工程的重组DNA过程中,所需要用到的酶的统称。

一、限制性内切酶(restriction endonuclease)主要功能:对外源性的双链DNA进行切割、水解,不允许外源性DNA存在于细菌自身细胞内。

(这种酶能对在自身细胞内存在的DNA种类给予限制——限制性内切酶)限制-修饰系统:合成限制性内切酶的细胞,其自身的DNA不受酶的切割,这是因为细菌细胞还会合成一种修饰酶,可以对自身DNA进行修饰,即改变DNA原来具有的可以被限制性内切酶识别的核酸顺序结构,从而不被限制性内切酶识别及切割、水解。

保护自身遗传物质稳定的机制。

限制性内切酶:从原核生物中发现的,约600种,可识别108种不同的特定DNA顺序。

以内切方式水解核酸链中的磷酸二酯键,产生DNA片段的5’端为P,3’端为- OH。

命名:获得该酶的细菌属名的第一个字母(大写)+该菌种名的前两个字母(小写)+株系的字母(小写)或数字+罗马数字(同一株菌种不同内切酶的编号)例:细菌属名细菌种名菌株名称限制酶名称Arthrobacter luteus Alu IEscherichia coli RY13Eco R IBacillus amyloliquefaciens H Ham H I Haemophilus influenzae Rd Hin d III(一)三种常用内切酶1. I型限制性内切酶同时兼有切割DNA的功能和修饰酶的修饰功能。

在酶的识别位点上,若DNA两条链菌没有发生甲基化,则行使内切酶的功能,对DNA进行切割,同时转变成ATP酶。

若DNA双链中有一条链已发生甲基化,则此类酶显示修饰酶的作用,对另一条DNA进行甲基化修饰,然后在行切割功能。

限制性内切酶

限制性内切酶

限制性内切酶限制性内切酶(又称限制酶)首先是在细菌体内发现的,但后来在部分古细菌中也发现了这种成分。

通常,限制性内切酶会切割双链DNA,每个限制性内切酶会识别特定的DNA序列,根据不同的内切酶类型,可在识别序列内或距识别序列不远的位置处切割DNA,识别序列长度通常为4-8bp,酶切之后会形成粘性末端和平末端。

上世纪50年代初期,许多研究团队观测到了噬菌体对于同一物种的不同细菌宿主菌株存在感染效率差异[1,2],即:使用在一种细菌菌株(例如,大肠杆菌C)内繁殖的噬菌体λ感染同一种类的灵异菌株(例如大肠杆菌K),结果发现,相比于重新感染宿主菌株(大肠杆菌C),大肠杆菌K的感染率出现明显下降。

新的宿主(大肠杆菌K)似乎可以选择性抵御或“耐受”侵入的噬菌体。

研究人员还发现,这一现象并没有遗传性,因为经过一轮感染后,在新菌株中生长的噬菌体还可以以正常的感染率感染该菌株。

这种现象被称为“宿主控制变异”,有关其背后的机制也成为了频繁研究的领域[3]。

直到上世纪60年代,人们才发现宿主变异的机制,其与噬菌体DNA的酶切有关,进而发现并分理出了限制性内切酶。

上世纪60年代初Werner Arber观测发现,宿主范围内的决定性遗传物质都存在于噬菌体DNA中,而后续实验证明甲硫氨酸参与宿主的自我保护[4]。

这些发现最终催生了限制性修饰(R-M)体系的概念,通过该体系,来自于宿主的限制性内切酶和甲基化酶共同作用,切割外来病毒(非甲基化)DNA,同时保护宿主的DNA不受甲基化[5]。

随着DNA连接酶的发现以及位点特异性限制性内切酶的家族不断壮大,重组DNA 技术应运而生。

限制性内切酶的命名规则,考虑到内切酶来源的三种特性——属名、种名和菌株或血清型——组成了一个简短的名称,后面加上罗马数字,代表来自同一菌株的多个限制性内切酶[6]。

例如,以HindⅢ酶为代表:“H”代表Haemophilus“in”代表influenzae“d”代表血清型d“Ⅲ”用于区分来自于Haemophilusinfluenza血清型d的其它限制性内切酶限制性内切酶的分类,根据结构的复杂程度、识别序列、切割位点位置以及辅助因子要求,限制性内切酶分为四类:TypeⅠ:同时具有限制性和甲基化活性的多亚基蛋白需要ATP切割位点与识别位点间的间距不定TypeⅡ:特异性的识别序列切割位点位于识别序列内或邻近识别序列在切割位点生成5'磷酸基和3'羟基末端需要M2+TypeⅢ:由两个相反的识别序列组成切割位点与其中一个识别序列的间距恒定需要ATPTypeⅣ:仅切割甲基化的DNA切割位点大约距离识别位点30bp由于自身特殊的特点,TypeⅡ限制性内切酶已经成为分子克隆、法医学DNA分析等许多研究应用最常用的限制性内切酶。

限制性内切酶的说明

限制性内切酶的说明

限制酶使用说明一、分类目前,已被发现的限制酶,根据其反应的必须因子和切断点等特性,被分为以下三大类:类别反应必须因子切点酶例 I 型 s-腺苷基蛋氨酸、ATP、Mg2+识别部位和切点不同,切断部位不定Eco B、Eco KII 型 Mg2+切断识别部位或其附近的特定部位Eco R I、Bam H I III 型 ATP、Mg2+识别部位和切点不同,但切断特定部位Eco P I、Hin f III 应用于基因工程研究用的限制酶,一般全是II型酶,现在市场上销售的酶都属于II型酶, 这些限制酶由于其反应条件和底物DNA种类的不同,其切断状况及出现Star活性的频率等各有不同,并且其程度也根据酶的不同而千差万别。

因而在使用限制酶时,必须对这些要素充分注意,确保目标序列的切断反应能顺利进行,下面具体介绍一下使用限制酶时的一些注意点。

二、注意事项1. 甲基化的影响从带有DNA甲基化酶基因的宿主菌中制备的DNA,其碱基的一部分已经被甲基化,因此即便使用能够识别、切断被甲基化部分的序列的限制酶,也几乎无法切断被甲基化的部分。

被甲基化的部位,根据底物DNA及宿主种类的不同而不同。

例如宿主菌为大肠杆菌的情况下,根据宿主的种类有以下两种情况:在进行转化时,通常使用的菌株为C600、HB101、JM109等,因为都带有dam、dcm甲基化酶,所以使用这些菌株制备的DNA时,必须注意。

另外,动物由来的DNA,CG序列多为5m CG;植物由来的DNA,CG及CNG序列多为5m CG和5m CNG。

2. Star活性限制酶在一些特定条件下使用时,对于底物DNA的特异性可能降低。

即可以把与原来识别的特定的DNA序列不同的碱基序列切断,这个现象叫Star活性。

Star活性出现的频率,根据酶、底物DNA、反应条件的不同而不同,可以说几乎所有的限制酶都具有Star活性。

并且,它们除了识别序列的范围增大之外,还发现了在DNA的一条链上加入切口的单链切口活性,所以为了极力抑制Star活性,一般情况下,即使会降低反应性能,我们也提倡在低甘油浓度、中性pH、高盐浓度条件下进行反应。

限制性内切酶

限制性内切酶

特征和种类
1.限制与修饰现象 早在 50 年代初,有许多学者发现了限制与修饰现象,当时称作寄主 控制的专一性(host controlled specificity)。 l 噬菌体表现的现 象便具有代表性和普遍性,其在不同宿主中的转染频率可明这一问题 (表 2-1)。 l 在感染某一宿主后,再去感染其它宿主时会受到限制。 E.coli 菌株 λ噬菌体感染率 lK lB lC E.coli K 1 10-4 10-4 E.coli B 10-4 1 10-4 E.coli C 1 1 1 说明 K 和 B 菌株中存在一种限制系统,可排除外来的 DNA 。 104 的存活率是由宿主修饰系统作用的结果,此时限制系统还未起作用。 而在 C 菌株不能限制来自 K 和 B 菌株的 DNA 。限制作用实际就是限 制酶降解外源 DNA ,维护宿主遗传稳定的保护机制。甲基化是常见的 修饰作用,可使腺嘌呤 A 成为 N6 甲基-腺膘呤,胞嘧啶 C 成为 5' 甲 基胞嘧啶。通过甲基化作用达到识别自身遗传物质和外来遗传物质的目 的。
Ⅰ 型(type Ⅰ)限制与修饰系统的种类很少,只占 1% ,能识别 专一的核苷酸顺序,并在识别点附近的一些核苷酸上切割DNA分子中的 双链,但是切割的核苷酸顺序没有专一性,是随机的。如 EcoK 和 EcoB。其限制酶和甲基化酶 (即 R 亚基和 M 亚基) 各作为一个亚基 存在于酶分子中,另外还有负责识别 DNA 序列的 S 亚基,分别由 hsdR、hsdM 和 hsdS 基因编码,属于同一操纵子(转录单位)。 EcoK 编码基因的结构为 R2M2S。 EcoB 编码基因的结构为 R2M4S2 。 EcoB 酶的识别位点如下,其中两条链中的 A 为甲基化位点, N 表示任意碱基。 TGA*(N)8TGCT EcoK 酶的识别位点如下,其中两条链中的 A 为可能的甲基化位点。 AA°C(N)6GTGC 但是 EcoB 酶和 EcoK 酶的切割位点在识别位点 1000bp 以外, 且无特异性。 Ⅲ 型(type Ⅲ)限制与修饰系统的种类更少,所占比例不到 1% , 也有专一的识别顺序,但不是对称的回文顺序。它在识别顺序旁边几个 核苷酸对的固定位置上切割双链。但这几个核苷酸对则是任意的,如 EcoP1 和 EcoP15 。它们的识别位点分别是 AGACC 和 CAGCAG , 切割位点则在下游 24-26bp 处。 在基因操作中,一般所说的限制酶或修饰酶,除非特指,均指 Ⅱ 型 系统中的种类。

限制性内切酶的应用PPT课件

限制性内切酶的应用PPT课件

CHENLI
9
II型限制性内切酶的分类(一)
❖ 内切酶中最普遍的是象Hha I、Hind III和Not I
这样在识别序列中进行切割的酶。这一类酶是构成
商业化酶的主要部分。大部分这类酶都以同二聚体 的形式结合到DNA上,因而识别的是对称序列; 但有极少的酶作为单聚体结合到DNA上,识别非 对称序列。一些酶识别连续的序列(如EcoR I识别 GAATTC);而另一些识别不连续的序列(如Bgl I 识别GCCNNNNNGGC)。限制性内切酶的切割后 产生一个3‘羟基端和一个5’磷酸基团。它们的活性 要求镁离子的存在,而相应的修饰酶则需要S-甲硫
他们在N端有一个负责切开DNA的功能域,这个域又与
DNA修饰域连接;此外还有一到两个识别特异DNA序
列的功能域构成C端,或以独立的亚基形式存在。当这
些酶与底物结合时,它们或行使限制性内切酶的功能切
开底物,或作为修饰酶将其甲基化。
CHENLI
12
一些概念
❖ 粘末端和平末端 ❖ 同尾酶 ❖ 同裂酶 ❖ 同识异切酶 ❖ 消化 ❖ 星号活力
氨酸腺苷的存在。这些酶一般都比较小,亚基一般 都在200-300个氨基酸左右。
CHENLI
10
II型限制性内切酶的分类(二)

IIS型酶,比如Fok I和Alw I,它们在识别
位点之外切开DNA。这些酶的大小居中,约为
400-650个氨基酸左右;它们识别连续的非对称
序列,有一个结合识别位点的域和一个专门切
❖ 当限制性内切酶的应用在上世纪七十年代 流传开来的时候,以NEB为代表的许多公司寻 找更多的限制性内切酶
CHENLI
2
限制性内切酶的特点
❖ 限制性内切酶的形式多样,从大小上来说, 它们可以小到如Pvu II(157个氨基酸),也可 以比1250个氨基酸的Cje I更大

限制性内切酶

限制性内切酶

II型限制性内切酶
首先由H.O. Smith和K.W. Wilcox在 1970年从流感嗜血菌Rd菌株中分离出来。
作用原理:识别双链DNA上未甲基化修饰的 一 小段明确的序列(多数是回文序列),然 后在识别位点之内的特定位置切割。
• 一般性状
对热不稳定,通常是溶于含有50%甘油的缓冲 液中贮存于–20℃环境下。取出使用时必须立即置 于冰浴中。NaCl有抑制作用,能被Mg2+激活,巯 基有保护作用,
I 型:切割位点不确定,不适用于基因工程。 Ⅱ型:基因工程的工具酶。 Ⅲ型:切割位点不在识别位点,对分子克隆操作
亦无实用意义。
I型限制性内切酶
首先由M.Meselson和R.Yuan在1968年从 大肠杆菌B株和K株分离得到。
作用原理:识别双链DNA未甲基化修饰的特 异序列,与该序列相互作用,然后延DNA分 子移动,在距离特异性识别位点约10001500bp处随机切开一条单链,造成大约75 个核苷酸的切口。
不同的限制性内切酶的最适反应温度不同。大 多数是37oC,少数要求40-65oC。

Apa I Bcl I Mae II Taq I
最适 温度oC
30 50 50 65

Apy I BstE II Mae III
最适 温度oC
30 60 55

Ban I Mae I Sma I
最适温 度oC
50 45 25
ATP、 Mg2+和SAM
Mg2+
ATP、Mg2+ 和SAM
EcoB: 寄主特异性位 TGA(N)8TGCT
点识别序列 EcoK: AAC(N)6GTGC
回文序列 (IIs型除外)

限制性核酸内切酶相关知识归纳

限制性核酸内切酶相关知识归纳

限制性核酸内切酶相关知识归纳限制性核酸内切酶是基因工程中最难把握的知识点,高考中对这种酶的考察特别重视,我们有必要对其相关的知识进行归纳,才有利于解答试题。

1 限制性核酸内切酶的基本知识①来源及化学本质:主要是从原核生物中分离纯化出来的。

化学本质为蛋白质。

②作用:催化作用,可用于DNA的切割获取目的基因和载体的切割,切割的化学键为磷酸二酯键。

③作用特点:特异性,即限制酶可识别特定的脱氧核苷酸序列,切割特定位点。

④切割方式:错位切--产生两个相同的黏性末端,平切--形成平末端。

如果是错位切则将一个基因从DNA分子上切割下来,需要破坏4个磷酸二酯键,同时产生4个黏性末端,增加4个游离的磷酸基团。

2 限制性核酸内切酶的难点解析2.1 目的基因切割要点归纳①要把目的基因切割下来需要在目的基因的两边都进行切割,但绝对不可以破坏目的基因的结构。

②切割目的基因的酶可以用同一种限制酶,也可以用两种不同的限制酶。

③切割产生的末端有三种情况:都是平末端、都是粘性末端、一边是粘性末端,一边是平末端。

2.2 质粒切割要点归纳①质粒的切割可以切一个切口,也可以切两个切口。

如果是一个切口,则连接时可能会产生一些我们不需要的连接物(如自身环化等);如果是两个切口则质粒会丢失一段DNA片段,但可以控制连接物就是我们需要的目的基因和质粒的连接。

切割时注意不要破坏了载体上的标记基因(至少保留有一个标记基因)、终止子、启动子、复制原点等。

②切割质粒的酶可以用同一种限制酶,也可以用两种不同的限制酶。

③切割产生的末端有三种情况:都是平末端,都是粘性末端,一边是粘性末端,一边是平末端。

2.3 限制性核酸内切酶的说明不同的酶识别序列一般不同,但也有识别序列相同的。

如果识别序列相同,切割点也相同则切割产生的粘性末端一样。

一种酶的识别序列中可能包含另外一种酶的识别序列,切割时可以产生相同的粘性末端。

不同的酶识别的序列一般不同,但有时也可能相同,这时切割产生的粘性末端也相同。

DNA重组常见问题TaKaRa的内切酶和NEB的内切酶哪个更好一些

DNA重组常见问题TaKaRa的内切酶和NEB的内切酶哪个更好一些

DNA重组常见问题TaKaRa的内切酶和NEB的内切酶哪个更好一些?参考见解: TaKaRa的内切酶、NEB的内切酶两个公司的酶的品质都非常好。

NEB公司的酶的活性很高,切出两条小带可能是因为出现星活性,可以试试把酶量减半。

NEB的酶很多都是克隆的,所以纯度比较高。

应用磁性微球提取人全血基因组DNA,将提取出的DNA直接用于限制性酶切反应,应用Taq1酶,但发现酶切后产生的是smier片断,即切碎的状态。

不知原因是什么?在做这类实验时,一般是将PCR产物进行酶切,这与实验结果有联系吗?是不是直接提取出的DNA必须要做PCR扩增,才能应用酶切?参考见解:1. 为建立基因组文库时一般才用限制性内切酶酶切人基因组DNA.目的是为获得含有人全部DNA的随机片段的总和.然后再用载体和宿主细胞构建克隆.关于文库建立园内资料很多.lyz703lyz战友感兴趣的话可以自己搜索下.2. 电泳图,酶切后是一片弥散的带,是因为基因组中存在大量Taq1酶的酶切位点,由于操作属于随机酶切,所以得到的DNA也是随机的,而不是大量均一的.那么电泳后的出现这样的结果也很容易解释.3. 一般在PCR后采用酶切是由于酶切模板数目巨大且均一,在了解了被切DNA上有关限制性内切酶位点的信息后,我们就可以根据自己的目的来选择合适的内切酶进行酶切.做抑制差减杂交,需要回收细菌基因组酶切(Alu1酶)后的全部片段,要求回收后至少是6微升,浓度要有0.3微克\微升,按照抑制差减杂交说明书,采用酚仿抽提和无水乙醇沉淀法,只要酶切2微克基因组就能满足条件,可已经把酶切量扩大到10多微克了,回收还是达不到浓度(大约只有0.06微克\微升),又不敢切胶回收,怕EB对后续反应造成影响。

请教该怎么办?参考见解:回收酶切产物浓度低的原因可能是:苯酚/氯仿抽提时损失太多。

说明书上说苯酚/氯仿/异戊醇和氯仿各抽提两次,这样经过四次抽提DNA损失得非常多,解决办法是将50?l酶切产物加等体积的灭菌去离子水,然后再抽提,损失会减少很多;另外乙醇沉淀时可以延长,低温沉淀会提高得率;还有用80%乙醇洗涤沉淀弃上清时,要轻轻用移液枪吸出,防止将沉淀随上清倒出。

限制性内切酶及重要工具酶

限制性内切酶及重要工具酶

Nde I
Nco I
C’ATAT_G
C’CATG_G
同位酶(同裂酶、同工酶) 举例
HpaⅡ、MspⅠ:G’CG_G Afl II、BspT I C’TTAA_G
同尾酶
Xba I:T’CTAG_A
Nhe I:G’CTAG_C
Spe I:A’CTAG_T
3) 同裂酶和同尾酶:
同裂酶:
有时两种限制性内切酶的识别核苷酸顺序 和切割位置都相同,有时其差别只在于当 识别顺序中有甲基化的核苷酸时,一种限 制性内切酶可以切割,另一种则不能。例 如HpaⅡ和MspⅠ的识别顺序都是 5’……G’CG_C……3’,如果其中有5’-甲基胞 嘧啶,则只有HpaⅡ能够切割。这些有相同 切点的酶称为同裂酶(同切酶或异源同工 酶)。
2、DNA 聚合酶I 大片段(Klenow酶)
用于粘性末端缺口补平
3、逆转录酶 从信使RNA得到cDNA(Complementary DNA),以cDNA作为模板做PCR-------RT-PCR
4、碱性磷酸酶 去除DNA或RNA5’端的磷酸反应 防止DNA环化; 去除非标记的RNA5’端的磷酸
2)限制性核酸内切酶的类型及特性
按限制酶的组成、与修饰酶活性关系以及切 断核酸的情况不同,分为三类:
Ⅰ型 Ⅱ型*
Ⅲ型
第一类(I型)限制性内切酶能识别专一 的核苷酸顺序,并在识别点附近的一些核 苷酸上切割DNA分子中的双链,但是切割 的核苷酸顺序没有专一性,是随机的。这 类限制性内切酶在DNA重组技术或基因工 程中用处不大,无法用于分析DNA结构或 克隆基因。这类酶如EcoB、EcoK等。
第二类(II型)限制性内切酶能识别专一的核苷 酸顺序,并在该顺序内的固定位置上切割双链。 由于这类限制性内切酶的识别和切割的核苷酸 都是专一的。因此,这种限制性内切酶是 DNA 重组技术中最常用的工具酶之一。这种酶识别 的专一核苷酸顺序最常见的是4个或6个核苷酸, 少数也有识别5个核苷酸以及7个、8个、9个、 10个和11个核苷酸的。 II 型限制性内切酶的 识别顺序是一个回文对称顺序,即有一个中心 对称轴,从这个轴朝二个方向“读”都完全相 同。这种酶的切割可以有两种方式:

限制性内切核酸酶的酶切与鉴定实验原理及步骤、注意事项

限制性内切核酸酶的酶切与鉴定实验原理及步骤、注意事项

实验四限制性内切核酸酶的酶切与鉴定一、实验原理限制性内切酶是一类能识别双链DNA分子中特异核苷酸序列的DNA水解酶,主要存在于原核生物中。

根据限制酶的识别切割特性、催化条件及是否具有修饰酶活性可分为Ⅰ、Ⅱ、Ⅲ型三大类。

其中Ⅱ类酶在分子克隆和基因操作中最为有用,是常用的分子生物学工具酶。

限制性内切酶识别序列长度一般为4~8个呈回文序列的特异核苷酸对。

一般情况下,识别序列越长,在同一DNA分子中识别位点出现的频率就越小。

许多限制性内切酶的酶切位点已被确定。

例如EcoRl 酶的识别与切割序列为以下6个碱基对。

5′……GAATTC……3′3′……CTT AAG…… 5′这些末端为互补的,即粘性末端,并可在连接酶的催化下与由EcoR I产生的其它分子末端相连接。

限制性内切酶主要用于基因组DNA的片段化、重组DNA分子的构建与鉴定、载体中目的基因片段的分离与回收以及DNA分子物理图谱的构建等。

根据酶切目的和要求不同,可有单酶切、双酶切或部分酶切等不同方式。

根据酶切反应的体积不同,可分为小量酶切反应和大量的酶切反应。

小量酶切反应主要应用于质粒的酶切鉴定,体积为20 μl, 含0.2~1 μg DNA,大量酶切反应用于制备目的基因片段,体积为50~100 μl,DNA用量在10~30ug。

本实验为EcoR I对质粒pUC18的小量酶切。

在质粒的双链环状DNA分子上有多个限制性内切核酸酶酶切位点。

在用特定的限制性内切核酸酶对质粒进行酶切反应后,通常可采用琼脂糖凝胶电泳进行鉴定酶切效果。

二、仪器与试剂1.仪器:水浴锅、离心管、移液器、吸头、电泳设备等。

2.试剂:质粒pUC18、EcoR I限制性内切核酸酶、内切酶反应缓冲液、琼脂糖、电泳缓冲液、6×上样缓冲液、溴化乙啶染液、无菌水等。

三、操作步骤1.限制性内切酶反应一般在灭菌的0.2或0.5ml PCR薄壁离心管中进行。

2. 酶切反应体系(10ul):酶解缓冲液(10×buffer) 1 ul限制性内切酶 0.5 ul EcoR I(7.5U) 底物DNA(质粒) x ul(依质粒浓度而定)灭菌ddH2O 加至10 ul限制性内切酶最后加入,手弹混匀或用吸头轻轻上下吹吸,混匀后6000 r/min,离心15s。

EcoR I限制性内切酶

EcoR I限制性内切酶

Eco R IG A A T T CC T T A A GTaKaRa Code:D1040A包 装 量:4,000 Units附带试剂: 10×H Buffer 500 μl10×Loading Buffer 500 μl纯 度:1) Overdigestion Test:≥12 Units2) Ligation-Recutting Test:Ligation Effi.:100%,Recutting Effi.:100%3) pKF3 Cloning Test:<2%●酶贮存液:10 mM Tris-HCl, pH7.5100 mM KCl0.1 mM EDTA1 mM DTT0.01 % BSA0.15 % TritonX-10050 % Glycerol●起 源:Escherichia coli RY13●一般反应体系:Eco R I 1 μl10×H Buffer 2 μlDNA ≤1 μg灭菌水 up to 20 μl●反应温度:37℃●反应时间:在上述20 μl的反应体系中,37℃反应5分钟可以完全切断λDNA,满足各种实验需求。

针对特殊酶切底物DNA,如果得不到良好的酶切效果时,可以将反应时间延长至1小时。

●活性确认:在50 μl反应液中,37℃温度下反应1小时,将1 μg的λDNA完全分解的酶量定义为1个活性单位(U)。

●纯度检测:1) Overdigestion Test:在1 μg DNA中加入过量的该限制酶,进行长时间(24小时)酶切反应,然后进行琼脂糖电泳,确认切出的DNA片段的电泳谱带不发生变化。

2) Ligation-Recutting Test:在经过10倍量该酶切出的DNA片段中,加入 T4 DNA Ligase,使其连接,然后再使用该酶进行切断反应,判断Ligation-Recutting效率。

3) pKF3 Enforcement Cloning Test:使用10倍量的该酶,将Enforcement Cloning Vector pKF3 DNA切开,然后再进行连接后,转化至TH2感受态细胞中,判断该酶切位点受到影响的重组体所占的比率。

分子生物学实验常用工具酶总结

分子生物学实验常用工具酶总结

分子生物学实验常用工具酶总结现代分子生物学实验手册工具酶基因工程:在人工可以控制条件下,将基因剪切或重新组合,再导入另一生物体内,使这些基因在其中表达并遗传下去的一门技术。

核心:对基因进行人工切割、连接和重新组合,构建重组DNA。

工具酶:在基因工程的重组DNA过程中,所需要用到的酶的统称。

一、限制性内切酶(restriction endonuclease)主要功能:对外源性的双链DNA进行切割、水解,不允许外源性DNA存在于细菌自身细胞内。

(这种酶能对在自身细胞内存在的DNA种类给予限制——限制性内切酶)限制-修饰系统:合成限制性内切酶的细胞,其自身的DNA不受酶的切割,这是因为细菌细胞还会合成一种修饰酶,可以对自身DNA进行修饰,即改变DNA原来具有的可以被限制性内切酶识别的核酸顺序结构,从而不被限制性内切酶识别及切割、水解。

保护自身遗传物质稳定的机制。

限制性内切酶:从原核生物中发现的,约600种,可识别108种不同的特定DNA顺序。

以内切方式水解核酸链中的磷酸二酯键,产生DNA片段的5’端为P,3’端为- OH。

命名:获得该酶的细菌属名的第一个字母(大写)+该菌种名的前两个字母(小写)+株系的字母(小写)或数字+罗马数字(同一株菌种不同内切酶的编号)细菌属名细菌种名菌株名称限制酶名称Arthrobacter luteusAlu I Escherichia coli RY13Eco R IBacillus amyloliquefaciens HHam H I Haemophilus influenzae RdHin d III1. I型限制性内切酶同时兼有切割DNA的功能和修饰酶的修饰功能。

在酶的识别位点上,若DNA两条链菌没有发生甲基化,则行使内切酶的功能,对DNA进行切割,同时转变成ATP酶。

若DNA双链中有一条链已发生甲基化,则此类酶显示修饰酶的作用,对另一条DNA进行甲基化修饰,然后在行切割功能。

限制性内切酶酶切的常见问题及解决方法

限制性内切酶酶切的常见问题及解决方法

限制性内切酶酶切的常见问题及解决方法限制性内切酶酶切的常见问题及解决方法,个人觉得总结得很好,特转贴供本供大家分享。

酶切现问题,看内切酶说明书,相应试剂公司目录。

不同公司出产的内切酶,菌株来源、制备工艺、纯度活力、酶切活性优化可能不同,。

可在上面找到酶单位定义、保存条件、酶切体系[buffer及与其它酶双切的buffer等]、酶切反应温度[有些酶是在50、55或30等温度下反应的]、酶是否受甲基化影响、是否有星号活性及出现星号活可能因素、保护性碱基,同尾酶、同裂酶1. 酶切不开或不完全1.1 质粒问题纯度差或残留酶切抑制物最为常见。

杂蛋白存在会影响酶切,表现为A260/A280低于1.8;抑制物常见酚、盐、乙醇等;【重新提DNA,使用可靠试剂盒或可靠手工提取试剂,1.2 酶的问题:确认内切酶有效 [很多内切酶虽然有过期时间,但过期后只要能够有效酶切,可用。

确认酶切效果不好,做标记,更换] 。

【题外话:用内切酶注意】a. 内切酶如无特殊要求,保存-20~-30度。

并非越低越好,酶通常是保存在50%甘油缓冲液中,温度过低时,酶会发生冻结(运输过程例外,由于酶需要低温运输,所以方便的情况下是使用干冰,酶会冻结,但冻结次数有限,相对是一种比较好的选择),如果是经常使用的话,酶会被反复冻融,从而降低了活性。

当然如果温度过高,呵呵,你就自己想去吧。

b. 酶在使用时应置于冰盒中取酶。

这点大家都清楚,不过多强调也没坏处。

因为实验室有些同学,酶取出后是放在冰盒上的,但有两点忽略了:拿酶的时候,手不是抓着管子上端,而握在管子的底部,相当于用手在给酶进行加热;有些酶是放在冰盒中,但吸酶的时候,还是将酶拿出来。

偶尔一次没有大碍,反复如此,可能会影响酶活。

c. 酶使用完后应尽快旋紧盖子。

有时我们可以发现,即使是-20~-30度放置,酶仍然会冻结。

个人认为的可能原因是由于在配置酶切反应时,酶管的盖子在较长时间的开着,甘油会吸取空气中的水分,对于常用的大包装的酶有时就会出现冻结现象。

限制性核酸内切酶与核酸内切酶、外切酶

限制性核酸内切酶与核酸内切酶、外切酶

限制性核酸内切酶百科名片其3′→5′外切酶活性使双链DNA分子产生出单链区,经过这种修饰的DNA 再配合使用Klenow酶,同时加进带放射性同位素的核苷酸,便可以制备特异性的放射性探针。

核酸内切酶核酸内切酶(endonuclease)在核酸水解酶中,为可水解分子链内部磷酸二酯键生成寡核苷酸的酶,与核酸外切酶相对应。

从对底物的特异性来看,可分为DNaseⅠ、DNaseⅡ等仅分解DNA的酶;脾脏RNase、RNaseT1等仅分解RNA的酶。

如链孢霉(Neurospora)的核酸酶就是既分解DNA又分解RNA的酶。

一般来说,大都不具碱基特异性,但也有诸如脾脏RNase、RNaseT1等或限制性内切酶那种能够识别并切断特定的碱基或碱基序列的酶。

[1]寡核苷酸,是一类只有20个以下碱基对的短链核苷酸的总称(包括脱氧核糖核酸DNA或核糖核酸RNA内的核苷酸),寡核苷酸可以很容易地和它们的互补对链接,所以常用来作为探针确定DNA或RNA的结构,经常用于基因芯片、电泳、荧光原位杂交等过程中。

RNA聚合酶科技名词定义中文名称:RNA聚合酶英文名称:RNA polymerase定义1:以一条DNA链或RNA链为模板催化由核苷-5′-三磷酸合成RNA的酶。

所属学科:生物化学与分子生物学(一级学科);酶(二级学科)定义2:以一条DNA链或RNA链为模板催化由核苷-5′-三磷酸合成RNA的酶。

所属学科:细胞生物学(一级学科);细胞遗传(二级学科)定义3:以DNA或RNA为模板合成RNA的酶。

所属学科:遗传学(一级学科);分子遗传学(二级学科)本内容由全国科学技术名词审定委员会审定公布RNA聚合酶(RNA polymerase):以一条DNA链或RNA为模板催化由核苷-5′-三磷酸合成RNA的酶。

是催化以DNA为模板(template)、三磷酸核糖核苷为底物、通过磷酸二酯键而聚合的合成RNA的酶。

因为在细胞内与基因DNA的遗传信息转录为RNA有关,所以也称转录酶。

限制酶概念

限制酶概念

限制酶概念限制酶(Restrictionenzyme),也被称为切割酶或限制内切酶,是一类存在于细菌和其他生物体中的酶。

限制酶的主要作用是识别DNA 分子中特定的序列,并将该序列切割成特定的片段。

限制酶通常具有两个主要的特征:1.序列特异性:每种限制酶都能够识别并结合到特定的DNA序列,这些序列通常是四至八个碱基对长,称为限制性切割位点。

限制酶通过与目标DNA上的这些特定序列配对,形成酶-底物复合物。

2.切割活性:一旦限制酶与目标DNA结合,它会对目标DNA分子进行切割。

限制酶可以在两种方式下进行切割:a。

粘性末端切割:限制酶在目标DNA的两侧切割产生不完全断裂的片段,形成具有未配对突出的粘性末端。

b。

平坦末端切割:限制酶在目标DNA的两侧切割产生平坦末端,形成完全断裂的片段。

限制酶在分子生物学和基因工程研究中具有重要的应用价值,下面列举几个常见的应用:1.DNA切割:限制酶可以用于将DNA分子切割成特定的片段。

这在基因克隆、DNA测序和构建重组DNA等实验中非常常见。

2.DNA识别和检测:由于限制酶对特定的DNA序列具有高度选择性,因此它们可以被用来识别和检测目标DNA序列的存在与否。

例如,在PCR 实验中,限制酶可以用来验证扩增产物的存在。

3.DNA连接和重组:由于限制酶产生的粘性末端或平坦末端能够互补配对,因此可以用来连接不同DNA分子,构建重组DNA。

这在基因工程和蛋白质表达等领域具有重要的应用。

总之,限制酶是一类具有序列特异性和切割活性的酶,其在分子生物学和基因工程中扮演着重要的角色,并被广泛应用于DNA切割、识别、连接和重组等实验和技术中。

DNA限制性内切酶——酶切Buffer组分及其活性

DNA限制性内切酶——酶切Buffer组分及其活性

DNA限制性内切酶——酶切Buffer组分及其活性TaKaRa公司,为了方便限制酶的统一使用,采用了通用缓冲液(Universal Buffer) 测定限制酶活性的体系(5种通用缓冲液中,用标注的),以此时的活性值作为100%。

并把在其它通用缓冲液中的相对活性表示如下表。

有( ) 标记的是易受Star活性影响的缓冲液,为了避免Star活性的影响,希望尽量使用或标注的缓冲液。

每种限制酶都有其自身的基本缓冲液(Basal Buffer),其中AccⅢ、BalⅠ、BcnⅠ、BglⅠ、Bpu1102Ⅰ、Cfr10Ⅰ、Eam1105Ⅰ、Eco52Ⅰ、NruⅠ、Psh BⅠ、Sna BⅠ、SspⅠ、TaqⅠ、VpaK11B Ⅰ(共14种)由于没有十分合适的通用缓冲液,只能使用基本缓冲液(Basal Buffer)。

各种限制酶的基本缓冲液组成不同,相互之间不能通用。

各种限制酶在基本缓冲液中的相对活性也被列于下表,供参考。

限制酶在各种缓冲液中的相对活性附带·活性测定用Buffer 推荐使用的Buffer*1+0.01%BSA→100%:Afl II, Aor13H I, Eco O65 I, Fok I, Hin1 I, Mun I, Nco I, Pvu I, Sse8387 I, Xba I *2 +0.01%BSA+0.01%Triton X-100→100%:Not I*3不加BSA按Universal Buffer分类的限制酶各Universal Buffer的组成■ 使用注意事项10×Buffer都为10倍浓度的缓冲液。

此外,10×T溶液中不含BSA,在使用时将BSA添加进去,使最终浓度为0.01%,有些限制酶(带有*1或*2标记)的反应体系中需加BSA或Triton X-100,添附的溶液是10倍浓度(0.1%) 的液体,使用时,请在反应体系中添加1/10量进行反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档