中考专题练习-函数中因动点产生的相似三角形问题(含答案)
中考数学高频考点《动点产生的相似、全等三角形问题》专项测试卷-带答案
中考数学高频考点《动点产生的相似、全等三角形问题》专项测试卷-带答案一阶方法突破练相似三角形问题1. 如图,在平面直角坐标系中,A(-3,0),B(3,0),C(0,4),点D为x轴上一点,当△ABC∼△ACD时,求点D的坐标.2.如图,在平面直角坐标系中,直线y=−43x+8与x轴交于点A,与y轴交于点 B,已知点 C的坐标为( (−4,0),点 P 是直线 AB上的一个动点.若以A,P,C为顶点的三角形与△AOB相似,求点P的坐标.3.如图,抛物线y=−12x2+32x+2交x轴于点A,B,交y轴于点C,点M是第一象限内抛物线上一点,过点M作MN⊥x轴于点N.若△MON与△BOC相似,求点M的横坐标.● 全等三角形问题x+2与x轴,y轴分别交于A,B两点,直线AC⊥AB于点A,若点 D 是x轴上方直线AC4.如图,直线y=12上的一个动点,点E 是x轴上的一个动点,当△BOA≅△AED时,求点E的坐标.5.如图,在平面直角坐标系中,抛物线y=−x²+2x+3与 x轴交于点A,B(点A在点B的左侧),点C是第一象限内抛物线上一点,过点C作( CD⊥x轴于点 D,直线y=x与CD所在直线交于y=x点 E,若直线: y=x;上存在一点 F,使得△ODE≅△FCE,求点 C的坐标.6.如图,在平面直角坐标系中,抛物线y=−x²−2x+3与x 轴交于点A,B(点A在点B的左侧),与y轴交于点C,连接AC,BC,若在第二象限内存在一点D,使得以A,C,D为顶点的三角形与△ABC全等,求点 D 的坐标.二阶设问进阶练例如图,在平面直角坐标系中,直线y=kx+1l与x轴交于点A,与y轴交于点 C,过点 C的抛物线y=3 4x2−52x+1与直线AC交于点B(4,3).(1)已知点P是x轴上一点(点 P不与点O重合),连接CP,若△AOC∼△ACP,,求点P的坐标;(2)已知点Q(m,0)是x轴上一点,连接BQ,若以点A,B,Q为顶点的三角形与△AOC相似,求点Q的坐标;(3)已知点E(0,n)为y轴正半轴上一点,点. D(0,−1),,若以点B,C,E为顶点的三角形与△ACD相似,求点 E 的坐标;(4)若点 F 是抛物线上一点,过点 F 作FG⊥y轴于点 G,点 J是y轴上一点,要使以F,G,J为顶点的三角形与△OAC全等,求点 F的纵坐标;(5)若点S为第一象限内抛物线上一点,过点S作ST⊥x轴于点T,点Z 是x轴上一点,要使以S,T,Z 为顶点的三角形与△AOC全等,求点 Z 的坐标;(6)如图⑥,已知L为AO的中点,连接OB,点R为平面直角坐标系内一点,是否存在点R,使得以L,O,R为顶点的三角形与△COB全等?若存在,请求出点R的坐标;若不存在,请说明理由.综合强化练1. 创新题·阅读理解题定义:将抛物线y=ax²向右平移h个单位,再向上平移k个单位得到抛物线y=a(x −ℎ)²+k(h,k均大于0),则将抛物线y=ax²称为“原函数”,把由它平移得到的抛物线y=a(x−ℎ)²+k称为抛物线y=ax²的“衍生函数”,将平移路径称为“衍生路径”,平移前后对应点之间的距离√ℎ2+k2称“衍生距离”.如图,已知抛物线L y=−1x2+2x与x轴交于点A,顶点为B,连接AB,OB.2x2为抛物线L的“原函数”,则抛物线L 的“衍生路径”为,平移前后对应点的“衍生(1)若抛物线y=−12距离”为;(2)若点Q是线段AB上一点,点C为OB的中点,连接CQ,点B 关于线段CQ的对称点为B′,当△B′CO为等边三角形时,求CQ的长;(3)若将抛物线L作为“原函数”,将其向左平移n(n⟩0))个单位得到它的“衍生函数”L',L'与x轴的负半轴交于点E,与y轴交于点 D,点 P 为抛物线L'上一点,若△POE≅△POD,求两抛物线的“衍生距离”.作图区答题区2.如图,在平面直角坐标系中,已知抛物线y=ax²+bx−2与x轴交于A(1,0) B(−3,0))两点,与y轴交于点C,连接AC.(1)求该抛物线的解析式;(2)若点 P是第二象限内抛物线上的动点,PQ⊥x轴于点Q,M是x轴上的点,当以P,Q,M为顶点的三角形与△AOC全等时,求 P点与M点的坐标;(3)如图②,连接BC,过点A作. AD‖BC交抛物线于点 D,E为BC下方抛物线上的一个动点,连接DE,交线段B C于点 F,连接CE,AF,求四边形ACEF 面积的最大值.作图区答题区3.如图,在平面直角坐标系中,一次函数y=−√3x+√3的图象分别与x轴,y轴交于A,B两点,过点 B 的另一直线交x轴于点( C(−3,0).(1)求直线 BC的解析式;(2)创新题·动点求面积关系若点P从C点出发,以每秒1个单位的速度沿射线CA运动,过点 P作y轴的平行线交直线BC于点Q,连接BP.设△BPQ的面积为S,点 P的运动时间为t秒,求S与t的函数关系式,并写出自变量t的取值范围;(3)在直线BC上是否存在点 M,使得以A,B,M 为顶点的三角形与△AOB相似?若存在,请求出点M的坐标;若不存在,请说明理由.作图区答题区4. 创新题·阅读理解题定义:若抛物线y=ax²+bx+c(ac≠0)与x轴交于A,B两点,与y轴交于点 C.线段OA,OB,OC的长满足OC²=OA⋅OB,则这样的抛物线称为“黄金抛物线”.如图,“黄金抛物线y=ax²+bx+2(a ≠0)与x轴的负半轴交于点A,与x轴的正半轴交于点 B,与y轴交于点 C,且OA=4OB.(1)求抛物线的解析式;(2)点P为AC 上方抛物线上的动点,过点 P作PD⊥AC于点 D.①求 PD的最大值;②连接PC,当以点 P,C,D为顶点的三角形与△ACO相似时,求点 P 的坐标.作图区答题区5.如图①,在平面直角坐标系xOy中,直线y=−x+4与x轴,y轴分别交于点A,B,抛物线y=ax²+bx+c(a≠0)经过点A,B,( C(−2,0).(1)求抛物线的解析式;(2)连接BC,点 P 为直线AB上方抛物线上一动点,过点 P作PE‖BC交AB于点E,过点P作PF‖x轴交直线AB于点F,求△PEF周长的最大值及此时点 P的坐标;(3)如图②,将抛物线向右平移2个单位得到一个新的抛物线y′,,新抛物线与原抛物线交于点G,连接BG并延长交新抛物线y'于点 D,连接OG,作射线OD.动点M位于射线 OD下方的新抛物线上,动点 N位于射线OD上,是否存在动点M,N,使∠OMN=90°,,且以点O,M,N为顶点的三角形与△OBG相似?若存在,求出点M的坐标;若不存在,请说明理由.作图区答题区参考答案一阶方法突破练1. 解:∵A(-3,0),B(3,0),C(0,4)∴AB=6,AC=5.∵△ABC∽△ACD∴ABAC =ACAD,即65=5AD,解得AD=256.由题意得,点 D 在点A 的右侧∵OA=3,∴OD=AD−OA=76,∴点D 的坐标为(76,0).2. 解:在y=−43x+8中,令x=0,解得y=8,令y=0,解得x=6,∴A(6,0),B(0,8),∴AB=√62+82=10.分两种情况考虑,如解图所示①当△AOB ∽△ACP ₁时 ∠ACP ₁=∠AOB =90°,当x=-4时 y =−43x +8=403,∴点 P ₁的坐标为 (−4,403); ②当△AOB ∽△AP ₂C 时,设点P ₂的坐标为 (m ,−43m +8).∵点A 的坐标为(6,0),点 C 的坐标为(-4,0)∴AC=10.∵ △AOB ∽△AP ₂C∴CP 2BO =AC AB ,即 CP 28=1010,∴CP 2=8,∴√[m −(−4)]2+(−43m +8−0)2=8,整理,得 (53m −4)2=0,解得 m 1=m 2=125,∴点P ₂的坐标为 (125,245).综上所述,点P 的坐标为 (−4,403)或 (125,245). 3. 解:在 y =−12x 2+32x +2中,令x=0,得y=2,∴C(0,2),∴OC=2 令 −12x 2+32x +2=0,解得x=4或x=-1∵点B 在x 轴正半轴,∴B(4,0),∴OB=4.设 M (t ,−12t 2+32t +2),1N(t,0)∴MN =−12t 2+32t +2,ON =t. 分两种情况讨论:①当△BOC ∽△MNO 时 OC NO =BO MN ,即解得 t =−1+√172或 t =−1−√172(舍去); ②当△BOC ∽△ONM 时 OC NM =OB NO ,艮 2−12t 2+32t+2=4t , 解得 t =1+√5或 t =1−√5(舍去).综上所述,点M 的横坐标为 −1+√172或 1+√5.4. 解:如解图,∵ AC ⊥AB,∴∠BAC=∠AOB=90°∴ ∠ABO + ∠BAO = ∠CAE +∠BAO=90° 2t =4−12t 2+32t+2,∴∠ABO=∠CAE在y=1x+2中2令x=0,则y=2,令y=0,则x=-4∴OA=4,OB=2∵△BOA≌△AED,∴AE=OB=2,∴OE=AE+OA=6∴E(-6,0).5. 解:∵ CD⊥x 轴,直线 y=x 与 CD 交于点 E,∴∠OED=∠EOD=45°,OD=DE设D(m,0)如解图当点 C 在直线 y = x 上方时△ODE≌△FCE∴∠ODE=∠FCE=90°,ED=CE,∴C(m,2m),将 C 点坐标代入抛物线的解析式,得2m=−m²+2m+3,解得m=√3或m=−√3(舍去)∴C( √3,2 √3)当点 C 在直线y=x下方时,不存在满足条件的点 C.综上所述,点C的坐标为(√3,2√3).6. 解:∵抛物线y=−x²−2x+3与x轴交于点 A,B,与y轴交于点 C∴令x=0,解得y=3,令y=0,解得x=1或x=-3∴C(0,3),A(-3,0),B(1,0),∴OA=OC=3,OB=1.如解图,分两种情况讨论:①当△CD₁A≌△ABC时∵OA=OC=3,∴∠CAO=45°∵△CD₁A≌△ABC∴∠ACD₁=∠CAO=45°,∴CD₁‖AB,CD₁=AB=4,∴D₁(-4,3);②当△AD₂C≌△ABC时∠BAC=∠CAD₁=45°,AB=AD₁=4,∴∠D₂AB=90°,∴D₂(-3,4)综上所述,点D的坐标为(-4,3)或(-3,4).二阶设问进阶练例解:(1)∵直线AC经过点B(4,3),∴将点 B 的坐标代入直线 AC的解析式,得3=4k+1,解得k=1,2∴直线AC 的解析式为 y =12x +1,在 y =12x +1中,令y=0,解得x=-2 ∴ 点A 的坐标为(-2,0) ∴AO=2,CO=1∴AC =√AO 2+CO 2=√22+12=√5. 如解图①,设点 P(p,0),连接CP,∴PA=p+2.∵ △AOC ∽△ACP ∴ACAO =APAC ,即 √52=√5, p =12, ∴ 点P 的坐标为(( 12,0);(2)如解图②,分两种情况讨论:①△AOC ∽△AQ ₁B 时,∠AQ ₁B=∠AOC=90° ∴BQ ₁⊥x 轴. ∵B(4,3)∴点 Q ₁的坐标为(4,0);②△AOC ∽△ABQ ₂时,过点B 作BQ ₂⊥AB,交x 轴于点Q ₂,则点Q ₂(m,0) ∵AO AB =AC AQ 2,即 3√5=√5m+2. 解得 m =112,此时点Q ₂的坐标为 (112,0). 综上所述,点Q 的坐标为(4,0)或 (112,0);(3)∵A(-2,0),C(0,1),B(4,3),D(0,-1),E(0 n),∴AC =AD =√5,BC =2√5,CD =2,CE =|n −1| ∴分两种情况讨论:①当△ACD ∽△BCE 时 ACCD =BCCE , 即 √52=2√5|n−1|,解得n=5或n=-3(舍去);②当△ACD ∽△ECB 时AC EC=DC BC,即√5|n−1|=2√5,n=6或n=-4(舍去)综上所述,点E 的坐标为(0,5)或(0,6);(4)∵A(-2,0),C(0,1),∴OA=2,OC=1,分两种情况讨论: ①△OAC ≌△GJF 时∴OC=FG=1,∴点F 的横坐标为1或-1 将点 F 的横坐标代入 y =34x 2−52x +1,解得 y =−34或 y =174;②△OAC ≌△GFJ 时∴OA=FG=2,∴点F 的横坐标为2或-2,将点 F 的横坐标代入 y =34x 2−52x +1,解得y=-1或y=9 ∴ 点 F 的纵坐标为 −34或 174或-1或9; (5)∵OA=2,OC=1 分两种情况讨论:①如解图③,当△AOC ≌△STZ 时,ST=AO=2,OC=TZ=1,∴ys=2 在 y =34x 2−52x +1中,令y=2,得 34x 2−52x +1=2,解得 x =5+√373或 x =5−√373舍去),(1∴S (5+√373,2),T (5+√373,0), ∴Z (2+√373,0)或 (8+√373,0);②如解图④,当△AOC ≌△ZTS 时,ST=CO=1,AO=TZ=2,∴ys=1 在 y =34x 2−52x +1中,令y=1,得 34x 2−52x +1=1,解得 x =103或x=0(舍去)∴S (103,1),T (103,0),∴Z (43,0)或 (163,0),∴点Z 的坐标为 (2+√373,0)或 (8+√373,0)或 (43)0)或(( 163,0);(6)存在.∵ B(4,3)∴OB=√(4−0)2+(3−0)2=5,∴在△COB中,( CO=1,BC=2√5,OB=5∵L为AO 的中点,OA=2,CO=1∴LO=CO=1,L(-1,0)设R点坐标为(x,y)则LR²=(x+1)²+y²,OR²=x²+y²,∵ LO=CO,如解图⑤,分两种情况讨论: ①当△LOR≌△COB时,RL=BC,OR=OB.∴{(x+1)2+y2=20x2+y2=25,解得{x1=−3y1=4,{x2=−3y2=−4,即R点坐标为(-3,4)或(-3,-4);②当△OLR≌△COB时,RL=OB,OR=CB.∴{(x+1)2+y2=25x2+y2=20,解得{x3=2y3=4,{x4=2y4=−4,即R点坐标为(2,4)或(2,-4).∴综上所述,R点坐标为(-3,4)或(-3,-4)或(2,4)或(2,-4).三阶综合强化练1.解:(1)将原函数向右平移2个单位,再向上平移2个单位,2 √2; 【解法提示】∵y=−12x2+2x=−12(x−2)2+2,.将原函数y=−12x2向右平移2个单位,再向上平移2个单位即可得到y=−12x2+2x,根据公式得“衍生距离”为√22+22=√8=2√2.(2)【思路点拨】审题后,根据题意画出草图,由△AOB的三边关系可判定△AOB 为等腰直角三角形,由对称性和等边三角形的性质结合锐角三角函数求解即可.根据题意画出图象,如解图①在y=−12x2+2x中令y=0,解得x=0或x=4,∴A(4,0).∵ B 为抛物线 L 的顶点∴B(2,2),∴OB=BA=2√2.∵ C 是OB的中点∴OC=BC=√2.∵△OB'C为等边三角形,∴∠OCB'=60°.又∵点 B 与点 B'关于线段CQ 对称∴∠B'CQ=∠BCQ=60°.∵OA=4,OB=2√2,AB=2√2,∴OB²+AB²=OA²,∴∠OBA=90°在 Rt△CBQ中,∠CBQ=90°,∠BCQ=60°,BC= √2∴cos∠BCQ=BCCQ =√2CQ=12,∴CQ=2√2;(3)【思路点拨】由全等三角形对应边角关系可得OD=OE,∠POD=∠POE,由线段相等关系结合抛物线与坐标轴交点,列方程求解即可.∵将抛物线L作为“原函数”,将其向左平移n个单位得到它的“衍生函数”L'(n>0),L:y=- 12(x- 2)²+2,∴L′:y=−12(x−2+n)2+2,∵抛物线L的“衍生函数”L'与x轴的负半轴交于点E,与y轴交于点 D∴令x=0,得y=−12n2+2n,令y=0,得x=-n或x=4-n∴OD=|−12n2+2n|,OE:=n或OE=4-n∵△POE≌△POD,∴OD=OE如解图②,当−12n2+2n>0,即0<n<4时,有−12n2+2n=n,解得n=0(舍去)或n=2,或有−12n2+2n=4-n,解得n=4(舍去)或n=2∴抛物线L 的“衍生函数”L'为y=−12x2+2,∴两抛物线的“衍生距离”为√22+02=2;如解图③,当−12n2+2n<0时,即n<0(不符合题意)或n>4时,4-n<0,∴有12n2−2n=n,解得n=0(舍去)或n=6∴两抛物线的“衍生距离”为√62+02=6,综上所述,两抛物线的“衍生距离”为2或6.2. 解:(1)把A(1,0),B(-3,0)代入y=ax²+bx−2中,得{a+b−2=09a−3b−2=0,解得{a=23b=43∴抛物线的解析式为y=23x2+43x−2;(2)【思路点拨】∵以P,Q,M 为顶点的三角形与△AOC全等,由于∠AOC=∠PQM=90°,故分两种情况,①△PQ M≌△AOC,②△MQP≌△AOC,分别求解即可.在y=23x2+43x−2中,令x=0,则y=-2∴C(0,-2),∴OC=2 ∵A(1,0),∴OA=1设P(x,23x2+43x−2),分两种情况讨论:①如解图①,当△PQM≌△AOC 时,PQ=OA =1,QM=OC=2∴23x2+43x−2=1,解得x=−√222−1或x=√222−1(舍去)∴P(−√222−1,1),∴Q(−√222−1,0),∴M(−√222−3,0)或M(−√222+1,0);②如解图②,当△MQP≌△AOC时,PQ=OC=2,QM=OA=1∴23x2+43x−2=2,解得x=−√7−1或x=√7−1(舍去) ∴P(−√7−1,2),∴Q(−√7−1,0),∴M(−√7−2,0)或M(−√7,0),综上所述,点 P,M的坐标为:P(−√222−1,1),M(√222−3,0)或M(−√222+1,0);P(−√7−1,2),M(−√7−2,0)或M(−√7,0);(3)【思路点拨】分别求出BC,AD 的解析式确定点D坐标,连接DC,将四边形ACEF的面积转化为△DEC 的面积,表示出面积关系式,利用二次函数的性质即可求出最大值.∵B(-3,0),C(0,-2)∴直线 BC 的解析式为y=−23x−2,∵AD∥BC,∴设直线AD 的解析式为y=−23x+b2,将A(1,0)代入得b2=23,∴直线AD 的解析式为y=−23x+23,令−23x+23=23x2+43x−2,解得x=-4或x=1(舍去)∴D(−4,103),如解图③,连接DC∵AD∥BC∴S AFC=S DFC,∴S四边形ACEF=S DEC,∵D(-4 103),C(0,-2)∴直线 DC 的解析式为y=−43x−2.过点 E 作 EQ⊥x轴交 CD于点 Q设E(m,23m2+43m−2),则Q(m,−43m−2),∴S圆锥侧ACEF=S DEC=12×4×(−43m−2−23m2−43m+2)=−43(m2+4m)=−43(m +2)2+163,∴−43<0,∴当m=-2时,四边形 ACEF 面积的最大值为 163.3. 解:(1)∵一次函数 y =−√3x +√3的图象经过A ,B 两点,∴当x=0时,y= √3,∴B(0 √3) 设直线BC 的解析式为y=kx+b(k ≠0),将 B(0 √3),C(-3,0)两点坐标代入 得 {b =√3−3k +b =0, 解得 {k =√33.b =√3 ∴ 直线 BC 的解析式为 y =√33x +√3;(2)由题意可得CP=t,则OP=|t-3|,∴P(t-3,0),∵ PQ ∥y 轴 ∴Q 点的横坐标为t-3,将x=t-3,代入直线BC 的解析式得 y =√33t,∴Q (t −3,√33t), 当0≤t<3 时,△BPQ 在 y 轴左侧,此时 PQ =√33t,OP=3-t ∴S BPQ =12PQ ⋅OP =12×√33t ×(3−t )=−√36t 2+√32t. 当t=3时,点B,Q 重合 ∴S=0;当t>3时,△BPQ 在y 轴右侧,此时 PQ =√33t,OP =t-3∴S BPQ =12PQ ⋅OP =12×√33t ×(t −3)=√36t 2−√32t. 当t=3时同样满足上式.综上所述,S 与t 的函数关系式为 S ={√36t 2+√32t(0≤t <3)√36t 2−√32t (t ≥3);(3)存在. ∵tan ∠OBC =OC OB=√3=√3,∴∠OBC =60∘,∴∠BCO=30°,∴BC=2OB=2 √3. 令 y =−√3x +√3=0,则x=1,∴A(1,0) ∵tan ∠OBA =OAOB =√3=√33,∴∠OBA =30∘,∴∠ABC=90°,AB=2OA=2.①当点 M 在 y 轴左侧,△MBA ∽△AOB 时,则 MB AO = BA OB ,卧 MB 1=√3∴MB =2√33, 如解图,过点M ₁作M ₁H ⊥y 轴于点H ∴M 1H =M 1B ⋅sin60∘=2√33×√32=1,BH =M 1B ⋅cos60∘=2√33×12=√33, ∴HO =BO −BH =√3−√33=2√33.∵点 M 在第二象限 ,∴M 1(−1,2√33);当△ABM ∽△AOB 时,则 BM OB =ABAO , 即√3=21,∴BM =2√3,此时点 M 与点 C 重合∴M ₁(−3,0);②当点 M 在 y 轴右侧,△MBA ∽△AOB 时,则 MB AO=BAOB,即MB 1=√3∴MB =2√33, 如解图,过点M ₃作M ₃N ⊥y 轴于点 N ∴M 3N =M 3B ⋅sin60∘=2√33×√32=1,BN =M 3B ⋅cos60∘=2√33×12=√33, ∴ON =√3+√33=4√33,∴M 3(1,4√33); 当△ABM ∽△AOB 时,则 MBBO =ABAO , 即√3=21,∴MB =2√3,如解图,过点M ₄作M ₄P ⊥y 轴于点P∴PM 4=M 4B ⋅sin60∘=2√3×√32=3,PB =M 4B ⋅cos60∘=2√3×12=√3,∴OP =OB +PB =√3+√3=2√3,∴M 4(3,2√3).综上所述,符合条件的点M 的坐标为 (−1,2√33)或(-3,0)或 (1,4√33)或(3,2 √3).4.解:(1)由题意得 OC ²=OA ⋅OB, ∵抛物线 y =ax ²+bx +2与y 轴交于点 C ∴C(0,2),∴OC=2 ∵OA=4OB,∴4=4OB ·OB ∴OB=1,OA=4 ∴A(-4,0),B(1,0)将点A(-4,0),B(1,0)代入抛物线y=ax²+bx+2中,得{16a−4b+2=0a+b+2=0,解得{a=−12b=−32∴抛物线的解析式为y=12x2−32x+2;(2)①【思路点拨】过点 P作y轴的平行线与直线AC交于点E,∠PED=∠ACO,由锐角三角函数将求PD的最大值转化为求PE的最大值,利用二次函数的性质求解即可.如解图①,过点 P 作 y 轴的平行线交直线 AC 于点E易知直线AC的解析式为y=12x+2,设P(m,−12m2−32m+2),则E(m,12m+2),∴PE=−12m2−32m+2−12m−2=−12m2−2m,∵−12<0,..当m=−b2a=−2时,PE有最大值∵∠PED=∠ACO,A(-4,0),C(0,2) ∴ sin∠PED=sin∠ACO∴AC=2√5,∴PD:PE=AO:AC=4:2 √5∴PD=2√55PE=2√55(−12m²−2m),∴当m=-2时,PD 有最大值,最大值为4√55;②【思路点拨】分两种情况,(i)△CPD∽△ACO,由对应角相等关系可得,PC∥AO,将OC=2=γ代入即可,(ii)△PCD∽△ACO,构造“A”字型与△PCD 相似的三角形,再构造“一线三垂直”模型,联立直线与抛物线的解析式求解即可.∵PD⊥AC,∴∠PDC=90°=∠AOC∴当以点 P,C,D为顶点的三角形与△ACO相似时,则△CPD∽△ACO或△PCD∽△ACO(i)如解图②,若△CPD∽△ACO,则∠PCD=∠CAO,∴CP∥AO∵C(0,2),∴点P 的纵坐标为2∵点P为AC上方抛物线上的动点∴2=−12x2−32x+2,解得x₁=0(不合题意,舍去),x₁=−3,∴此时点 P的坐标为(-3,2);(ii)如解图③,过点A 作AC 的垂线,交 CP 的延长线于点 G,过点 G 作 GH ⊥x 轴于点 H,若△PCD ∽△ACO,则 ∠PCD =∠ACO,PD AO =CD CO ,∴PD CD =AO CO =42=2, ∵ PD ⊥AC,GA ⊥AC,∴GA ∥PD∴△GAC ∽△PDC∴GA PD =AC DC ,∴GA AC =PD CD =2,∵GA ⊥AC,GH ⊥x 轴∴∠GAC=∠GHA=90°∴∠AGH+∠GAH=90°,∠GAH+∠CAO=90°∴∠AGH=∠CAO又∵∠GHA=∠AOC=90°,∴△GHA ∽△AOC∴GH AO =AH CO =GA AC ,即 GH 4=AH 2=2,∴GH=8,AH=4,∴HO=AH+OA=8,∴G(-8,8)易知直线CG 的解析式为 y =−34x +2, 令 −34x +2=−12x 2−32x +2,解得 x ₁=0(不合题意,舍去), x 2=−32, 把 x =−32代入 y =−34x +2 得 y =−34×(−32)+2=258,∴此时点 P 的坐标为 (−32,258). 综上所述,符合条件的点P 的坐标为(-3,2)或 (−32,258).5. 解:(1)∵直线y=-x+4与x 轴,y 轴分别交于点A,B,∴A(4,0),B(0,4)∴抛物线的解析式为 y =ax ²+bx +4将A(4,0),C(-2,0)分别代入 y =ax ²+bx +4中,得 {16a +4b +4=04a −2b +4=0,解得 {a =−12,b =1,∴抛物线的解析式为y=−12x2+x+4;(2)由题意知,△OBC三边之比为1:2: √5,如解图①,过点 P 作PH∥y轴交AB 于点H,作EK⊥PH于点 K ∴△PEK∽△BCO∴EKPK =COBO=12,由题意可知△EHK 与△FPH为等腰直角三角形. ∴EK=KH,PF=PH,设PH=l ∴PK+HK=l,EK=13l,∴EH=√23l,EF=2√23l,PE=√53l,则C PEF=(1+2√23+√53)l,设P(m,−12m2+m+4),则H(m,-m+4)∴PH=−12m2+2m,∴C PEF=(1+2√23+√53)⋅(−12m2+2m)=(1+2√23+√53)⋅[−12(m−2)2+2].∴−12<0,0<m<4,∴当m=2时,C△PEF 取得最大值,最大值为2+ 4√23+2√53,此时,点P的坐标为(2,4);(3)【思路点拨】分两种情况,①△MON∽△BOG,旋转OG构造∠MON=∠BOG,联立直线OM与抛物线的解析式求解即可,②△MNO∽△BOG,旋转OD 构造∠MON=∠BGO,联立直线OM与抛物线的解析式求解即可.存在.将抛物线向右平移两个单位得y′=−12(x−2)2+(x−2)+4=−12x2+3x,新抛物线与原抛物线交于点G,B(0,4)∴G(2,4),D(4,4)分两种情况讨论:①当△MON∽△BOG时如解图②,将 OG绕点 O 顺时针旋转45°得到点 G',延长 OG'交抛物线于点 M,过点 M 作OM⊥MN交射线OD 于点 N,过点 G作GH⊥OD 于点 H∵G(2,4),D(4,4),B(0,4)∴OD=4 √2,GD=2,OB=4,OG=2 √5∴GH=√22GD=√2,∵∠GHO=90°,∴OH=3 √2过点 G'作 G'Q⊥x轴于点 Q,则∠GOH=∠G'OQ,∠GHO=∠G'QO=90°,OG=OG' ∴△GOH≌△G'OQ∴G′Q=GH=√2,OQ=OH=3√2,∴G′(3√2,√2),∴直线OM 的解析式为y=13x,联立{y=13xy=−12x2+3x,解得{x1=0y1=0舍去) {x2=163y2=169∴M(163,169);②当△MNO∽△BOG时,∠NOM=∠OGB,如解图③,将OD 绕点 O顺时针旋转∠BGO 的度数交抛物线于点 M,过点 M作OM⊥MN交射线OD于点N同①理可得,直线OM 的解析式为y=−13x.联立{y=−13xy=−12x2+3x,解得{x1=0y1=0舍去) {x2=203y2=−209∴M(203,−209).综上所述,点M的坐标为(163,169)或(203,−209).。
因动点产生的相似三角形问题---专题
因动点产生的相似三角形问题关键词:动点、相似三角形动点:运动的点或者说是不确定的点,有时题目中会明确指出动点,有时题目中相关点的坐标含有参数,换言之就是在不同的条件下会有不同的位置,或者满足条件的位置有多个。
相似三角形:对应角相等,对应边成比例的两个或多个三角形,两个三角形相似的判定定理一般说来有3个,定理1:两个角对应相等,两三角形相似 ‘AA ” 定理2:两边对应成比例且夹角相等 “SAS ” 定理3:三边对应成比例。
“SSS ”相似三角形的判定这3个定理,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A =∠D ,探求△ABC 与△DEF 相似,只要把夹∠A 和∠D 的两边表示出来,按照对应边成比例,分AB DE AC DF =和AB DFAC DE=两种情况列方程. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组). 两个直角三角形相似的判定方法(1)有一个锐角对应相等的两个直角三角形相似. (2)两条直角边对应成比例的两个直角三角形相似. (3)斜边和一条直角边对应成比例的两个直角三角形相似.如果要讨论相似的两个三角形中有一个是直角三角形:如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.由动点产生的相似三角形问题一般在函数和几何图中出现,其中以函数表现居多。
题型一般有是否存在点P,使得:①△PDE∽△ABC②以P、D、E为顶点的三角形与△ABC相似或者通过动点产生相似解决有关问题一般以大题为主,也有出现在填空后两题。
函数中因动点产生的相似三角形问题一般有三个解题过程:①求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
初中数学动点 相似三角形练习题(答案)
经典相似三角形1/ 4相似三角形(附答案)5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.分析:(1)因为∠BAC=∠DAE,所以∠BAE=∠CAD,又因为AB=AC,AD=AE,利用SAS可证出△BAE≌△CAD,可知BE、CD是对应边,根据全等三角形对应边上的中线相等,可证△AMN是等腰三角形.(2)利用(1)中的证明方法仍然可以得出(1)中的结论,思路不变.(3)先证出△ABM≌△ACN(SAS),可得出∠CAN=∠BAM,所以∠BAC=∠MAN(等角加等角和相等),又∵∠BAC=∠DAE,所以∠MAN=∠DAE=∠BAC,所以△AMN,△ADE和△ABC都是顶角相等的等腰三角形,所以∠PBD=∠AMN,所以△PBD∽△AMN(两个角对应相等,两三角形相似).(1)证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M、N分别是BE,CD的中点,∴BM=CN.又∵AB=AC,∴△ABM≌△ACN.∴AM=AN,即△AMN为等腰三角形.(2)解:(1)中的两个结论仍然成立.(3)证明:在图②中正确画出线段PD,由(1)同理可证△ABM≌△ACN,∴∠CAN=∠BAM∴∠BAC=∠MAN.又∵∠BAC=∠DAE,∴∠MAN=∠DAE=∠BAC.∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.∴△PBD和△AMN都为顶角相等的等腰三角形,∴∠PBD=∠AMN,∠PDB=∠ANM,∴△PBD∽△AMN.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.分析:(1)根据直角三角形中30度角所对的直角边是斜边的一半,可知CD=2ED,则可写出相等的线段;(2)两角对应相等的两个三角形相似则可判断△ADE∽△AEC;(3)要求△BEC与△BEA的面积之比,从图中可看出两三角形有一公共边可作为底边,若求得高之比可知面积之比,由此需作△BEA的边BE边上的高即可求解.解:(1)AD=DE,AE=CE=EB.∵CE⊥BD,∠BDC=60°,∴在Rt△CED中,∠ECD=30°∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.(2)图中有三角形相似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;(3)作AF⊥BD的延长线于F,设AD=DE=x,在Rt△CED中,可得CE=,故AE=.∠ECD=30°.在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s 的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.解答:∴S ABCD=(AD+BC)AB=×(2+8)×8=40.(2)①∵BP=CQ=t,∴AP=8﹣t,DQ=10﹣t,∵AP+AD+DQ=PB+BC+CQ,∴8﹣t+2+10﹣t=t+8+t.∴t=3<8.∴当t=3秒时,PQ将梯形ABCD周长平分.②第一种情况:0<t≤8若△PAD∽△QEC则∠ADP=∠C∴tan∠ADP=tan∠C==∴=,∴t=若△PAD∽△CEQ则∠APD=∠C∴tan∠APD=tan∠C==,∴=∴t=第二种情况:8<t≤10,P、A、D三点不能组成三角形;第三种情况:10<t≤12△ADP为钝角三角形与Rt△CQE不相似;∴t=或t=时,△PAD与△CQE相似.③第一种情况:当0≤t≤8时.过Q点作QE⊥BC,QH⊥AB,垂足为E、H.∵AP=8﹣t,AD=2,∴PD==.∵CE=t,QE=t,∴QH=BE=8﹣t,BH=QE=t.∴PH=t﹣t=t.∴PQ==,DQ=10﹣t.Ⅰ:DQ=DP,10﹣t=,解得t=8秒.Ⅱ:DQ=PQ,10﹣t=,化简得:3t2﹣52t+180=0解得:t=,t=>8(不合题意舍去)第二种情况:8≤t≤10时.DP=DQ=10﹣t.∴当8≤t<10时,以DQ为腰的等腰△DPQ恒成立.第三种情况:10<t≤12时.DP=DQ=t﹣10.∴当10<t≤12时,以DQ为腰的等腰△DPQ恒成立.综上所述,t=或8≤t<10或10<t≤12时,以DQ为腰的等腰△DPQ成立.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?分析:要使以P、B、Q为顶点的三角形与△BDC相似,则要分两两种情况进行分析.分别是△PBQ∽△BDC或△QBP∽△BDC,从而解得所需的时间.解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经过秒或2秒,△PBQ∽△BCD.15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B 开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.分析:设经过t秒后,△PBQ与△ABC相似,根据路程公式可得AP=2t,BQ=4t,BP=10﹣2t,然后利用相似三角形的性质对应边的比相等列出方程求解即可.解:设经过秒后t秒后,△PBQ与△ABC相似,则有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即(10﹣2t):10=4t:20,解得t=2.5(s)(6分)当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=(10﹣2t):20,解得t=1.所以,经过2.5s或1s时,△PBQ与△ABC相似(10分).解法二:设ts后,△PBQ与△ABC相似,则有,AP=2t,BQ=4t,BP=10﹣2t分两种情况:(1)当BP与AB对应时,有=,即=,解得t=2.5s(2)当BP与BC对应时,有=,即=,解得t=1s所以经过1s或2.5s时,以P、B、Q三点为顶点的三角形与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解:∵AC=,AD=2,∴CD==.要使这两个直角三角形相似,有两种情况:(1)当Rt△ABC∽Rt△ACD时,有=,∴AB==3;(2)当Rt△ACB∽Rt△CDA时,有=,∴AB==3.故当AB的长为3或3时,这两个直角三角形相似.19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.解:(1)若点A,P,D分别与点B,C,P对应,即△APD∽△BCP,∴=,∴=,∴AP2﹣7AP+6=0,∴AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.(2)若点A,P,D分别与点B,P,C对应,即△APD∽△BPC.∴=,∴=,∴AP=.检验:当AP=时,由BP=,AD=2,BC=3,∴=,又∵∠A=∠B=90°,∴△APD∽△BPC.因此,点P的位置有三处,即在线段AB距离点A的1、、6处20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.分析:因为此题是特殊的三角形,所以首先要分析等腰直角三角形的性质:可得锐角为45°,根据角之间的关系,利用如果两个三角形的三组对应边的比相等,那么这两个三角形相似可判定三角形相似;再根据性质得到比例线段,有夹角相等证得△ECN∽△MEN.证明:(1)∵△ABC是等腰直角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰直角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BEM=∠NEC,而∠MBE=∠ECN=45°,∴△BEM∽△CNE.(2)与(1)同理△BEM∽△CNE,∴.又∵BE=EC,∴,则△ECN与△MEN中有,又∠ECN=∠MEN=45°,∴△ECN∽△MEN.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA 边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.分析:若以点Q、A、P为顶点的三角形与△ABC相似,有四种情况:①△APQ∽△BAC,此时得AQ:BC=AP:AB;②△APQ∽△BCA,此时得AQ:AB=AP:BC;可根据上述四种情况所得到的不同的对应成比例线段求出t的值.解:以点Q、A、P为顶点的三角形与△ABC相似,所以△ABC∽△PAQ或△ABC∽△QAP,①当△ABC∽△PAQ时,,所以,解得:t=6;②当△ABC∽△QAP时,,所以,解得:t=;故当t=6或t=时,以点Q、A、P为顶点的三角形与△ABC相似.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.解:设直角三角形ABC的三边BC、CA、AB的长分别为a、b、c,则c2=a2+b2(1)S1=S2+S3;(2)S1=S2+S3.证明如下:显然,S1=,S2=,S3=∴S2+S3==S1;(3)当所作的三个三角形相似时,S1=S2+S3.证明如下:∵所作三个三角形相似∴∴=1 ∴S1=S2+S3;(4)分别以直角三角形ABC三边为一边向外作相似图形,其面积分别用S1、S2、S3表示,则S1=S2+S3.。
2023年中考数学压轴题专题04 二次函数与相似问题-【含答案】
专题4二次函数与相似问题函数中因动点产生的相似三角形问题一般有三个解题途径①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
相似三角形常见的判定方法:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;这是判定三角形相似的一种基本方法.相似的基本图形可分别记为“A”型和“X”型,如图所示在应用时要善于从复杂的图形中抽象出这些基本图形.(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.判定定理“两边及其夹角法”是常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分AB DEAC DF=和AB DFAC DE=两种情况列方程.应用判定定理“两角法”解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理“三边法”解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.【例1】(2022•贵港)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.(1)求该抛物线的表达式;(2)若PE∥x轴交AB于点E,求PD+PE的最大值;(3)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.【例2】.(2022•衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【例3】.(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y 轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)求CP+PQ+QB的最小值;(3)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.【例4】(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.1.(2020秋•兴城市期末)如图,抛物线y=ax2+bx+4经过A(4,0),B(﹣1,0)两点,与y轴交于点C,D为第一象限抛物线上的动点,连接AC,BC,DA,DB,DB与AC相交于点E.(1)求抛物线的解析式;(2)如图1,设△ADE的面积为S1,△BCE的面积为S2,当S1=S2+5时,求点D的坐标;(3)如图2,过点C作CF∥x轴,点M是直线CF上的一点,MN⊥CF交抛物线于点N,是否存在以C,M,N为顶点的三角形与△BCO相似?若存在,请直接写出点M的坐标,若不存在,请说明理由.2.(2020秋•郴州期末)已知抛物线y=x2﹣3x+与x轴交于A,B两点(点A在点B的左边).(1)求A,B两点的坐标;(2)如图1,若点D是抛物线上在第四象限的点,连接DA并延长,交y轴于点P,过点D作DE⊥x轴于点E.当△APO与△ADE的面积比为=时.求点D的坐标;(3)如图2,抛物线与y轴相交于点F.若点Q是线段OF上的动点,过点Q作与x轴平行的直线交抛物线于M,N两点(点M在点N的左边).请问是否存在以Q,A,M为顶点的三角形与△QNA相似?若存在,求出点Q的坐标;若不存在,请说明理由.3.(2020秋•长垣市期末)如图1,抛物线y=x2+bx+c与x轴、y轴分别交于点B(6,0)和点C(0,﹣3).(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,其横坐标为m,连接PB、PC,当△PBC的面积为时,求m 值;(3)如图2,点M是线段OB上的一个动点,过点M作x轴的垂线l分别与直线BC和抛物线交于D,E 两点,是否存在以C,D,E为顶点的三角形与△BDM相似,若存在,请直接写出点M的坐标;若不存在,请说明理由.4.(2021秋•邹城市期末)如图,已知抛物线y=x2+2x的顶点为A,直线y=x+2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.5.(2021秋•攸县期末)如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M和点N的坐标;②在抛物线的对称轴上找一点Q,使|AQ﹣BQ|的值最大,请直接写出点Q的坐标;③是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.6.(2022•禹城市模拟)如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是抛物线在第一象限上的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M 为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;=S△ABC,直接写出点D (3)若抛物线上有一点D(点D位于直线AC的上方且不与点B重合)使得S△DCA的坐标.7.(2022•祥云县模拟)如图,已知抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),交y轴于点C(0,3),点M是该抛物线上第一象限内的一个动点,ME垂直x轴于点E,交线段BC于点D,MN∥x轴,交y轴于点N.(1)求抛物线y=ax2+bx+c的表达式;(2)若四边形MNOE是正方形,求该正方形的边长;(3)连结OD,AC,抛物线上是否存在点M,使得以C,O,D为顶点的三角形与△ABC相似,若存在,请求出点M的坐标,若不存在,请说明理由.8.(2022•松江区校级模拟)如图,抛物线y=x2﹣bx+c过点B(3,0),C(0,﹣3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)连接BC,CD,DB,求∠CBD的正切值;(3)点C关于抛物线y=x2﹣bx+c对称轴的对称点为E点,连接BE,直线BE与对称轴交于点M,在(2)的条件下,点P是抛物线对称轴上的一点,是否存在点P使△CDB和△BMP相似,若存在,求点P坐标,若不存在,请说明理由.9.(2022•平江县一模)如图,抛物线y=ax2+bx+8与x轴交于A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求该抛物线的函数表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,设四边形PBOC和△AOC的面积分别为S四边形PBOC ,记S=S四边形PBOC﹣S△AOC,求S最大值点P的坐标及S的最大值;和S△AOC(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△BOC相似?若存在,求点M的坐标;若不存在,请说明理由.10.(2022•莱州市一模)如图①,在平面直角坐标系中,抛物线y=x2+c经过点A(4,3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,﹣2)且垂直于y轴的直线,连接PO.(1)求抛物线的表达式,并求出顶点B的坐标;(2)试证明:经过点O的⊙P与直线l相切;(3)如图②,已知点C的坐标为(1,2),是否存在点P,使得以点P,O及(2)中的切点为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.11.(2022•巩义市模拟)已知,二次函数y=ax2+bx﹣3的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于C点,点A的坐标为(﹣1,0),且OB=OC.(1)求二次函数的解析式;(2)当0≤x≤4时,求二次函数的最大值和最小值分别为多少?(3)设点C'与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC'与△POB相似,且PC 与PO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.12.(2022•澄迈县模拟)在平面直角坐标系中,抛物线经过点A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求该抛物线的函数表达式及顶点C的坐标;(2)设该抛物线上一动点P的横坐标为t.①在图1中,当﹣3<t<0时,求△PBO的面积S与t的函数关系式,并求S的最大值;②在图2中,若点P在该抛物线上,点E在该抛物线的对称轴上,且以A,O,P,E为顶点的四边形是平行四边形,求点P的坐标;③在图3中,若P是y轴左侧该抛物线上的动点,过点P作PM⊥x轴,垂足为M,是否存在点P使得以点P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.13.(2022•丰南区二模)如图①、②,在平面直角坐标系中,一边长为2的等边三角板CDE恰好与坐标系中的△OAB重合,现将三角板CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180°到△C′ED的位置.(1)直接写出C′的坐标,并求经过O、A、C′三点的抛物线的解析式;(2)点P在第四象限的抛物线上,求△C′OP的最大面积;(3)如图③,⊙G是以AB为直径的圆,过B点作⊙G的切线与x轴相交于点F,抛物线上是否存在一点M,使得△BOF与△AOM相似?若存在,请求出点M的坐标;若不存在,请说明理由.14.(2022•莱芜区三模)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于点B,二次函数y=x2+bx+c的图象经过A和点C(0,﹣3).(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第一象限的图象上,点C的对应点E落在直线AB上,直接写出四边形ACED的形状,并求出此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交x轴于点M,点P为直线CD下方抛物线上一个动点,过点P作PF⊥x轴,交CD于点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求出线段FP的长度;若不存在,请说明理由.15.(2022•临清市三模)如图,抛物线y=﹣x2+bx+c的顶点D坐标为(1,4),且与x轴相交于A,B两点(点A在点B的左侧,与y轴相交于点C,点E在x轴上方且在对称轴左侧的抛物线上运动,点F在抛物线上并且和点E关于抛物线的对称轴对称,作矩形EFGH,其中点G,H都在x轴上.(1)求抛物线解析式;(2)设点F横坐标为m,①用含有m的代数式表示点E的横坐标为(直接填空);②当矩形EFGH为正方形时,求点G的坐标;③连接AD,当EG与AD垂直时,求点G的坐标;(3)过顶点D作DM⊥x轴于点M,过点F作FP⊥AD于点P,直接写出△DFP与△DAM相似时,点F 的坐标.16.(2022•成都模拟)如图①,已知抛物线y=﹣(x﹣1)2+k交x轴于A,B两点,交y轴于点C,P是抛物线上的动点,且满足OB=3OA.(1)求抛物线的解析式;(2)若点P在第一象限,直线y=x+b经过点P且与直线BC交于点E,设点P的横坐标为t,当线段PE 的长度随着t的增大而减小时,求t的取值范围;(3)如图②,过点A作BC的平行线m,与抛物线交于另一点D.点P在直线m上方,点Q在线段AD 上,若△CPQ与△AOC相似,且点P与点O是对应点,求点P的坐标.17.(2022•东莞市校级一模)在平面直角坐标系xOy中,已知抛物线y=﹣x2+2kx+2k2+1与x轴的左交点为A,右交点为B,与y轴的交点为C,对称轴为直线l,对于抛物线上的两点(x1,y1),(x2,y2)(x1<k<x2),当x1+x2=2时,y1﹣y2=0恒成立.(1)求该抛物线的解析式;(2)点M是第二象限内直线AC上方的抛物线上的一点,过点M作MN⊥AC于点N,求线段MN的最大值,并求出此时点M的坐标;(3)点P是直线l右侧抛物线上的一点,PQ⊥l于点Q,AP交直线l于点F,是否存在这样的点P,使△PQF与△ACO相似?若存在,请求出点P的坐标,若不存在,请说明理由.18.(2022•碑林区校级模拟)如图,Rt△ABC中,∠ACB=90°,AB=8,AC=4,以AB所在直线为x轴建立平面直角坐标系,若C(0,2).(1)请直接写出A、B的坐标;(2)求经过A、B、C三点的抛物线表达式;(3)l为抛物线对称轴,P是直线l右侧抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△ABC全等,求满足条件的点P,点E的坐标.【例1】(2022•贵港)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.(1)求该抛物线的表达式;(2)若PE∥x轴交AB于点E,求PD+PE的最大值;(3)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.【分析】(1)直接利用待定系数法,即可求出解析式;(2)先求出点C的坐标,然后证明Rt△DPE∽Rt△AOC,再由二次函数的最值性质,求出答案;(3)根据题意,可分为两种情况进行分析:当△AOC∽△APD时;当△AOC∽△DAP时;分别求出两种情况的点的坐标,即可得到答案.【解析】(1)将A(0,3)和B(,﹣)代入y=﹣x2+bx+c,,解得,∴该抛物线的解析式为y=﹣x2+2x+3;(2)设直线AB的解析式为y=kx+n,把A(0,3)和B(,﹣)代入,,解得,∴直线AB的解析式为y=﹣x+3,当y=0时,﹣x+3=0,解得:x=2,∴C点坐标为(2,0),∵PD⊥x轴,PE∥x轴,∴∠ACO=∠DEP,∴Rt△DPE∽Rt△AOC,∴,∴PE=PD,∴PD+PE=PD,设点P的坐标为(a,﹣a2+2a+3),则D点坐标为(a,﹣a+3),∴PD=(﹣a2+2a+3)﹣(﹣a+3)=﹣(a﹣)2+,∴PD+PE=﹣(a﹣)2+,∵﹣<0,∴当a=时,PD+PE有最大值为;(3)①当△AOC∽△APD时,∵PD⊥x轴,∠DPA=90°,∴点P纵坐标是3,横坐标x>0,即﹣x2+2x+3=3,解得x=2,∴点D的坐标为(2,0);∵PD⊥x轴,∴点P的横坐标为2,∴点P的纵坐标为:y=﹣22+2×2+3=3,∴点P的坐标为(2,3),点D的坐标为(2,0);②当△AOC∽△DAP时,此时∠APG=∠ACO,过点A作AG⊥PD于点G,∴△APG∽△ACO,∴,设点P的坐标为(m,﹣m2+2m+3),则D点坐标为(m,﹣m+3),则,解得:m=,∴D点坐标为(,1),P点坐标为(,),综上,点P的坐标为(2,3),点D的坐标为(2,0)或P点坐标为(,),D点坐标为(,1).【例2】(2022•衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)令x=0和翻折的性质可得C(0,2),令y=0可得点A、B的坐标,利用待定系数法即可求出图象W的解析式;(2)利用数形结合找出当y=﹣x+b经过点C或者y=﹣x+b与y=x2﹣x﹣2相切时,直线y=﹣x+b与新图象恰好有三个不同的交点,①当直线y=﹣x+b经过点C(0,2)时,利用一次函数图象上点的坐标特征,即可求出b值;②当y=﹣x+b与y=x2﹣x﹣2相切时,联立一次函数解析式和抛物线解析式,利用根的判别式Δ=0,即可求出b值.综上即可得出结论;(3)先确定△BOC是等腰直角三角形,分三种情况:∠CNM=90°或∠MCN=90°,分别画图可得结论.【解析】(1)当x=0时,y=﹣2,∴C(0,2),当y=0时,x2﹣x﹣2=0,(x﹣2)(x+1)=0,∴x1=2,x2=﹣1,∴A(﹣1,0),B(2,0),设图象W的解析式为:y=a(x+1)(x﹣2),把C(0,2)代入得:﹣2a=2,∴a=﹣1,∴y=﹣(x+1)(x﹣2)=﹣x2+x+2,∴图象W位于线段AB上方部分对应的函数关系式为:y=﹣x2+x+2(﹣1<x<2);(2)由图象得直线y=﹣x+b与图象W有三个交点时,存在两种情况:①当直线y=﹣x+b过点C时,与图象W有三个交点,此时b=2;②当直线y=﹣x+b与图象W位于线段AB上方部分对应的函数图象相切时,如图1,﹣x+b=﹣x2+x+2,x2﹣2x+b﹣2=0,Δ=(﹣2)2﹣4×1×(b﹣2)=0,∴b=3,综上,b的值是2或3;(3)∵OB=OC=2,∠BOC=90°,∴△BOC是等腰直角三角形,如图2,CN∥OB,△CNM∽△BOC,∵PN∥y轴,∴P(1,0);如图3,CN∥OB,△CNM∽△BOC,当y=2时,x2﹣x﹣2=2,x2﹣x﹣4=0,∴x1=,x2=,∴P(,0);如图4,当∠MCN=90°时,△OBC∽△CMN,∴CN的解析式为:y=x+2,∴x+2=x2﹣x﹣2,∴x1=1+,x2=1﹣(舍),∴P(1+,0),综上,点P的坐标为(1,0)或(,0)或(1+,0).【例3】(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)求CP+PQ+QB的最小值;(3)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.【分析】(1)由y=﹣x2+3x+4可得A(﹣1,0),B(4,0),C(0,4);(2)将C(0,4)向下平移至C',使CC'=PQ,连接BC'交抛物线的对称轴l于Q,可知四边形CC'QP是平行四边形,及得CP+PQ+BQ=C'Q+PQ+BQ=BC'+PQ,而B,Q,C'共线,故此时CP+PQ+BQ最小,最小值为BC'+PQ的值,由勾股定理可得BC'=5,即得CP+PQ+BQ最小值为6;(3)由在y=﹣x2+3x+4得抛物线对称轴为直线x=﹣=,设Q(,t),则P(,t+1),M(0,t+1),N(,0),知BN=,QN=t,PM=,CM=|t﹣3|,①当=时,=,可解得Q(,)或(,);②当=时,=,得Q(,).【解析】(1)在y=﹣x2+3x+4中,令x=0得y=4,令y=0得x=﹣1或x=4,∴A(﹣1,0),B(4,0),C(0,4);(2)将C(0,4)向下平移至C',使CC'=PQ,连接BC'交抛物线的对称轴l于Q,如图:∵CC'=PQ,CC'∥PQ,∴四边形CC'QP是平行四边形,∴CP=C'Q,∴CP+PQ+BQ=C'Q+PQ+BQ=BC'+PQ,∵B,Q,C'共线,∴此时CP+PQ+BQ最小,最小值为BC'+PQ的值,∵C(0,4),CC'=PQ=1,∴C'(0,3),∵B(4,0),∴BC'==5,∴BC'+PQ=5+1=6,∴CP+PQ+BQ最小值为6;(3)如图:由在y=﹣x2+3x+4得抛物线对称轴为直线x=﹣=,设Q(,t),则P(,t+1),M(0,t+1),N(,0),∵B(4,0),C(0,4);∴BN=,QN=t,PM=,CM=|t﹣3|,∵∠CMP=∠QNB=90°,∴△CPM和△QBN相似,只需=或=,①当=时,=,解得t=或t=,∴Q(,)或(,);②当=时,=,解得t=或t=(舍去),∴Q(,),综上所述,Q的坐标是(,)或(,)或(,).【例4】(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.【分析】(1)把点B(2,0)代入y=﹣2x2+bx+c中,再由对称轴是直线x=列方程,两个方程组成方程组可解答;(2)当△POD是等边三角形时,点P在OD的垂直平分线上,所以作OD的垂直平分线与抛物线的交点即为点P,计算OD≠PD,可知△POD不可能是等边三角形;(3)分种情况:①当PC∥x轴时,△CPM∽△BHM时,根据PH的长列方程可解答;②②如图3,△PCM ∽△BHM,过点P作PE⊥y轴于E,证明△PEC∽△COB,可得结论.【解析】(1)由题意得:,解得:,∴抛物线的解析式为:y=﹣2x2+2x+4;(2)△POD不可能是等边三角形,理由如下:如图1,取OD的中点E,过点E作EP∥x轴,交抛物线于点P,连接PD,PO,∵C(0,4),D是OD的中点,∴E(0,1),当y=1时,﹣2x2+2x+4=1,2x2﹣2x﹣3=0,解得:x1=,x2=(舍),∴P(,1),∴OD≠PD,∴△POD不可能是等边三角形;(3)设点P的坐标为(t,﹣2t2+2t+4),则OH=t,BH=2﹣t,分两种情况:①如图2,△CMP∽△BMH,∴∠PCM=∠OBC,∠BHM=∠CPM=90°,∴tan∠OBC=tan∠PCM,∴====2,∴PM=2PC=2t,MH=2BH=2(2﹣t),∵PH=PM+MH,∴2t+2(2﹣t)=﹣2t2+2t+4,解得:t1=0,t2=1,∴P(1,4);②如图3,△PCM∽△BHM,则∠PCM=∠BHM=90°,过点P作PE⊥y轴于E,∴∠PEC=∠BOC=∠PCM=90°,∴∠PCE+∠EPC=∠PCE+∠BCO=90°,∴∠BCO=∠EPC,∴△PEC∽△COB,∴=,∴=,解得:t1=0(舍),t2=,∴P(,);综上,点P的坐标为(1,4)或(,).1.(2020秋•兴城市期末)如图,抛物线y=ax2+bx+4经过A(4,0),B(﹣1,0)两点,与y轴交于点C,D为第一象限抛物线上的动点,连接AC,BC,DA,DB,DB与AC相交于点E.(1)求抛物线的解析式;(2)如图1,设△ADE的面积为S1,△BCE的面积为S2,当S1=S2+5时,求点D的坐标;(3)如图2,过点C作CF∥x轴,点M是直线CF上的一点,MN⊥CF交抛物线于点N,是否存在以C,M,N为顶点的三角形与△BCO相似?若存在,请直接写出点M的坐标,若不存在,请说明理由.【分析】(1)运用待定系数法将A(4,0),B(﹣1,0)代入y=ax2+bx+4,解方程组即可求得答案;(2)根据题意,当S1=S2+5,即S△ABD=S△ABC+5,设D(x,y),表示出△ABD和△ABC的面积,列方程求解即可;(3)分情况讨论,列出三角形相似的三种情况,画出相应图形,设M(m,4),则N(m,﹣m2+3m+4),运用相似三角形性质,建立方程求解即可.【解析】(1)∵抛物线y=ax2+bx+4经过A(4,0),B(﹣1,0)两点,∴,解得:,∴y=﹣x2+3x+4;(2)∵抛物线y=﹣x2+3x+4与y轴交于点C,令x=0,则y=4,∴C(0,4),∵S1=S2+5,∴S1+S△AEB=S2+S△AEB+5,=S△ABC+5,即S△ABD∵A(4,0),B(﹣1,0),∴AB=5,设D(x,y),∴×5×y=×5×4+5,∴y=6,∴﹣x2+3x+4=6,解得:x1=1,x2=2,∴D1(1,6),D2(2,6);(3)设M(m,4),则N(m,﹣m2+3m+4),①如图2,△BOC∽△NMC,则=,∴=,解得:m=0(舍去),m=,经检验,m=是原方程的解,∴M(,4);②如图3,△BOC∽△CMN,则=,∴=,解得:m=0(舍去),m=﹣1,经检验,m=﹣1是原方程的解,∴M(﹣1,4);③如图4,△BOC∽△NMC,则=,∴=,解得:m=0(舍去),m=,经检验,m=是原方程的解,∴M(,4);④如图5,△BOC∽△CMN,则=,∴=,解得:m=0(舍去),m=7,经检验,m=7是原方程的解,∴M(7,4);综上所述,点M的坐标为(,4)或(﹣1,4)或(,4)或(7,4).2.(2020秋•郴州期末)已知抛物线y=x2﹣3x+与x轴交于A,B两点(点A在点B的左边).(1)求A,B两点的坐标;(2)如图1,若点D是抛物线上在第四象限的点,连接DA并延长,交y轴于点P,过点D作DE⊥x轴于点E.当△APO与△ADE的面积比为=时.求点D的坐标;(3)如图2,抛物线与y轴相交于点F.若点Q是线段OF上的动点,过点Q作与x轴平行的直线交抛物线于M,N两点(点M在点N的左边).请问是否存在以Q,A,M为顶点的三角形与△QNA相似?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)在抛物线解析式中,令y=0则可求得A、B的坐标;(2)证明△AOP∽△AED,根据相似三角形面积的比等于对应边的比的平方列比例式可得AE=2,从而得点D的横坐标为3,代入抛物线的解析式可得点D的坐标;(3)如图2所示,若以Q,A,M为顶点的三角形与△QNA相似,有两种情况,但是∠QAM与∠QAN不可能相等,所以最后只存在一种情况:△AQM∽△NQA,列比例式可得结论.【解析】(1)当y=0时,x2﹣3x+=0,解得:x1=1,x2=5,∴A(1,0),B(5,0);(2)∵DE⊥x轴,∴∠AED=90°,∴∠AOP=∠AED=90°,∵∠OAP=∠DAE,∴△AOP∽△AED,∴==,∴=,∵OA=1,∴AE=2,∴OE=3,当x=3时,y=﹣3×3+=﹣2,∴D(3,﹣2);(3)如图2,设Q(0,m),当x=0时,y=,∴F(0,),∵点Q是线段OF上的动点,∴0≤m≤,当y=m时,x2﹣3x+=m,x2﹣6x+5﹣2m=0,x=3,∴x1=3+,x2=3﹣,∴QM=3﹣,QN=3+,在Rt△AOQ中,由勾股定理得:AQ=,∵∠AQM=∠AQN,∴当△AQM和△AQN相似只存在一种情况:△AQM∽△NQA,∴,∴AQ2=NQ•QM,即1+m2=(3+)(3﹣),解得:m1=﹣1+,m2=﹣1﹣(舍),∴Q(0,﹣1+).3.(2020秋•长垣市期末)如图1,抛物线y=x2+bx+c与x轴、y轴分别交于点B(6,0)和点C(0,﹣3).(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,其横坐标为m,连接PB、PC,当△PBC的面积为时,求m 值;(3)如图2,点M是线段OB上的一个动点,过点M作x轴的垂线l分别与直线BC和抛物线交于D,E 两点,是否存在以C,D,E为顶点的三角形与△BDM相似,若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)根据点A、B的坐标,利用待定系数法即可求出该抛物线的函数关系式;(2)根据点P是直线BC下方抛物线上一动点,其横坐标为m,表示PH的长,根据三角形的面积列方程解出即可得出结论;(3)先根据两三角形相似判断出∠CED=∠BMD=90°或∠DCE=∠DMB=90°,进而分两种情况讨论即可得出结论.【解析】(1)把点B(6,0)和点C(0,﹣3)代入得:,解得:,∴抛物线的解析式为;(2)设直线BC的解析式为:y=ax+n,由点B(6,0)和C(0,﹣3)得:,解得:,∴直线BC的解析式为,如图1,过点P作y轴的平行线交BC于点H,∵点P的坐标为(m,),PH∥y轴,∴点H的坐标为(m,),∴PH=y H﹣y P=﹣()=﹣,x B﹣x C=6﹣0=6,=PH×6=(﹣)×6=﹣=,∵S△PBC解得:m1=1,m2=5,∴m值为1或5;(3)如图2,∵∠CDE=∠BDM,△CDE与△BDM相似,∴∠CED=∠BMD=90°或∠DCE=∠DMB=90°,设M(x,0),①当∠CED=∠BDM=90°,∴CE∥AB,∵C(0,﹣3),∴点E的纵坐标为﹣3,∵点E在抛物线上,∴x2﹣x﹣3=﹣3.∴x=0(舍)或x=5,∴M(5,0);②当∠DCE=∠DMB=90°,∵OB=6,OC=3,∴BC==3,由(2)知直线BC的关系式为y=x﹣3,∴OM=x,BM=6﹣x,DM=3﹣x,由(2)同理得ED=﹣+3x,∵DM∥OC,∴,即,∴CD=,∴BD=BC﹣CD=﹣x,∵△ECD∽△BMD,∴,即=,∴=x(3﹣x)2,x(6﹣x)(1﹣x)=0,x1=0(舍),x2=6(舍),x3=1,∴M(1,0);综上所述:点M的坐标为(5,0)或(1,0).4.(2021秋•邹城市期末)如图,已知抛物线y=x2+2x的顶点为A,直线y=x+2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.【分析】(1)将抛物线配方后可得顶点A的坐标,将抛物线和一次函数的解析式联立方程组,解出可得B 和C的坐标;(2)先根据两点的距离计算AB、BC、AC的长,根据勾股定理的逆定理可得:∠ABC=90°,最后根据两边的比相等且夹角为90度得两三角形相似;(3)存在,设M(x,0),则P(x,x2+2x),表示OM=|x|,PM=|x2+2x|,分两种情况:有=或=,根据比例式代入可得对应x的值,计算点P的坐标即可.【解答】(1)解:y=x2+2x=(x+1)2﹣1,∴顶点A(﹣1,﹣1);由,解得:或∴B(﹣2,0),C(1,3);(2)证明:∵A(﹣1,﹣1),B(﹣2,0),C(1,3),∴AB==,BC==3,AC==2,∴AB2+BC2=AC2,==,∴∠ABC=90°,∵OD=1,CD=3,∴=,∴,∠ABC=∠ODC=90°,∴△ODC∽△ABC;(3)存在这样的P点,设M(x,0),则P(x,x2+2x),∴OM=|x|,PM=|x2+2x|,当以O,P,M为顶点的三角形与△ABC相似时,有=或=,由(2)知:AB=,CB=3,①当=时,则=,当P在第二象限时,x<0,x2+2x>0,∴,解得:x1=0(舍),x2=﹣,当P在第三象限时,x<0,x2+2x<0,∴=,解得:x1=0(舍),x2=﹣,②当=时,则=3,同理代入可得:x=﹣5或x=1(舍),综上所述,存在这样的点P,坐标为(﹣,﹣)或(﹣,)或(﹣5,15).5.(2021秋•攸县期末)如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M和点N的坐标;②在抛物线的对称轴上找一点Q,使|AQ﹣BQ|的值最大,请直接写出点Q的坐标;③是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.【分析】(1)①函数的对称轴为:x=﹣=,故点M(,),即可求解;②设抛物线与x轴左侧的交点为R(﹣1,0),则点A与R关于抛物线的对称轴对称,连接RB并延长交抛物线的对称轴于点Q,则点Q为所求,即可求解;③四边形MNPD为菱形,首先PD=MN,即(﹣2x2+2x+4)﹣(﹣2x+4)=,解得:x=或(舍去),故点P(,1),而PN==≠MN,即可求解;(2)分∠DBP为直角、∠BDP为直角两种情况,分别求解即可.【解析】(1)①函数的对称轴为:x=﹣=,故点M(,),当x=时,y=﹣2x+4=3,故点N(,3);②设抛物线与x轴左侧的交点为R(﹣1,0),则点A与R关于抛物线的对称轴对称,连接RB并延长交抛物线的对称轴于点Q,则点Q为所求,将R、B的坐标代入一次函数表达式:y=kx+b并解得:直线RB的表达式为:y=4x+4,当x=时,y=6,故点Q(,6);③不存在,理由:设点P(x,﹣2x+4),则点D(x,﹣2x2+2x+4),MN=﹣3=,四边形MNPD为菱形,首先PD=MN,即(﹣2x2+2x+4)﹣(﹣2x+4)=,解得:x=或(舍去),故点P(,1),而PN==≠MN,故不存在点P,使四边形MNPD为菱形;(2)当点P的横坐标为1时,则其坐标为:(1,2),此时点A、B的坐标分别为:(2,0)、(0,4),①当∠DBP为直角时,以B、P、D为顶点的三角形与△AOB相似,则∠BAO=∠BDP=α,tan∠BAO==2=tanα,则sinα=,PA=,PB=AB﹣PA=2﹣=,则PD==,故点D(1,);②当∠BDP为直角时,以B、P、D为顶点的三角形与△AOB相似,则BD∥x轴,则点B、D关于抛物线的对称轴对称,故点D(1,4),综上,点D的坐标为:(1,4)或(1,),将点A、B、D的坐标代入抛物线表达式:y=ax2+bx+c并解得:y=﹣2x2+2x+4或y=﹣x2+3x+4.6.(2022•禹城市模拟)如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是抛物线在第一象限上的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M 为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;=S△ABC,直接写出点D (3)若抛物线上有一点D(点D位于直线AC的上方且不与点B重合)使得S△DCA的坐标.。
因动点产生的相似三角形问题答案20200404
因动点产生的相似三角形问题答案例1 2018上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).图2由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图5例2 2017年武汉市中考第24题如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.图1 图2动感体验请打开几何画板文件名“14武汉24”,拖动点P运动,可以体验到,若△BPQ可以两次成为直角三角形,与△ABC相似.当AQ⊥CP时,△ACQ∽△CDP.PQ的中点H在△ABC的中位线EF上.思路点拨1.△BPQ与△ABC有公共角,按照夹角相等,对应边成比例,分两种情况列方程.2.作PD⊥BC于D,动点P、Q的速度,暗含了BD=CQ.3.PQ的中点H在哪条中位线上?画两个不同时刻P、Q、H的位置,一目了然.满分解答(1)Rt△ABC中,AC=6,BC=8,所以AB=10.△BPQ与△ABC相似,存在两种情况:①如果BP BABQ BC=,那么510848tt=-.解得t=1.②如果BP BCBQ BA=,那么588410tt=-.解得3241t=.图3 图4 (2)作PD⊥BC,垂足为D.在Rt△BPD中,BP=5t,cos B=45,所以BD=BP cos B=4t,PD=3t.当AQ⊥CP时,△ACQ∽△CDP.所以AC CDQC PD=,即68443tt t-=.解得78t=.图5 图6 (3)如图4,过PQ的中点H作BC的垂线,垂足为F,交AB于E.由于H是PQ的中点,HF//PD,所以F是QD的中点.又因为BD=CQ=4t,所以BF=CF.因此F是BC的中点,E是AB的中点.所以PQ的中点H在△ABC的中位线EF上.考点伸展本题情景下,如果以PQ为直径的⊙H与△ABC的边相切,求t的值.如图7,当⊙H与AB相切时,QP⊥AB,就是BP BCBQ BA=,3241t=.如图8,当⊙H与BC相切时,PQ⊥BC,就是BP BABQ BC=,t=1.如图9,当⊙H与AC相切时,直径2222(3)(88)PQ PD QD t t++-半径等于FC=422(3)(88)8t t+-=.解得12873t=,或t=0(如图10,但是与已知0<t<2矛盾).图7 图 8 图9 图10例3 2017年苏州市中考第29题如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1动感体验请打开几何画板文件名“12苏州29”,拖动点B 在x 轴的正半轴上运动,可以体验到,点P 到两坐标轴的距离相等,存在四边形PCOB 的面积等于2b 的时刻.双击按钮“第(3)题”,拖动点B ,可以体验到,存在∠OQA =∠B 的时刻,也存在∠OQ ′A =∠B 的时刻.思路点拨1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等.2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示.3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q 最大的可能在经过点A 与x 轴垂直的直线上.满分解答(1)B 的坐标为(b , 0),点C 的坐标为(0, 4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC . 因此PD =PE .设点P 的坐标为(x, x).如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b . 解得165x =.所以点P 的坐标为(1616,55).图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1, 0),OA =1. ①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA .当BA QA QA OA =,即2QA BA OA =⋅时,△BQA ∽△QOA . 所以2()14b b =-.解得843b =±.所以符合题意的点Q 为(1,23+). ②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。
中考数学压轴题---因动点产生的相似三角形问题[含答案]
因动点产生的相似三角形问题例1(2011年上海市闸北区中考模拟第25题)直线113y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点.(1) 写出点A 、B 、C 、D 的坐标;(2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标;(3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.图1满分解答(1)A (3,0),B (0,1),C (0,3),D (-1,0).(2)因为抛物线y =ax 2+bx +c 经过A (3,0)、C (0,3)、D (-1,0) 三点,所以930,3,0.a b c c a b c ++=⎧⎪=⎨⎪-+=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,顶点G 的坐标为(1,4).(3)如图2,直线BG 的解析式为y =3x +1,直线CD 的解析式为y =3x +3,因此CD //BG .因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB ⊥CD .因此AB ⊥BG ,即∠ABQ =90°. 因为点Q 在直线BG 上,设点Q 的坐标为(x ,3x +1),那么22(3)10BQ x x x =+=±.Rt △COD 的两条直角边的比为1∶3,如果Rt △ABQ 与Rt △COD 相似,存在两种情况: ①当3B Q B A =时,10310x ±=.解得3x =±.所以1(3,10)Q ,2(3,8)Q --.②当13B Q B A=时,101310x ±=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.图2 图3考点伸展第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是22(3)10BQ x x x =+=±.我们换个思路解答第(3)题:如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH 中,1sin 110∠=,3cos 110∠=.①当3B Q B A=时,310B Q =.在Rt △BQN 中,sin 13QN BQ =⋅∠=,cos 19BN BQ =⋅∠=. 当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --. ②当13B Q B A=时,1103B Q =.同理得到31(,2)3Q ,41(,0)3Q -.例2(2011年上海市杨浦区中考模拟第24题)Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x =≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系; (2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式;(3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.图1满分解答(1)如图1,因为点D (4,m )、E (2,n )在反比例函数ky x =的图像上,所以4,2.m k n k =⎧⎨=⎩ 整理,得n =2m .(2)如图2,过点E 作EH ⊥BC ,垂足为H .在Rt △BEH 中,tan ∠BEH =tan ∠A =12,EH =2,所以BH =1.因此D (4,m ),E (2,2m ),B (4,2m +1).已知△BDE 的面积为2,所以11(1)2222B D E H m ⋅=+⨯=.解得m =1.因此D (4,1),E (2,2),B (4,3).因为点D (4,1)在反比例函数k y x=的图像上,所以k =4.因此反比例函数的解析式为4y x=.设直线AB 的解析式为y =kx +b ,代入B (4,3)、E (2,2),得34,22.k b k b =+⎧⎨=+⎩ 解得12k =,1b =.因此直线AB 的函数解析式为112y x =+.图2 图3 图4(3)如图3,因为直线112y x =+与y 轴交于点F(0,1),点D 的坐标为(4,1),所以FD // x 轴,∠EFP =∠EAO .因此△AEO 与△EFP 相似存在两种情况:①如图3,当E A EF A O F P =时,2552FP =.解得FP =1.此时点P 的坐标为(1,1).②如图4,当E A F P A OE F=时,2525F P =.解得FP =5.此时点P 的坐标为(5,1).考点伸展本题的题设部分有条件“Rt △ABC 在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:第(1)题的结论m 与n 的数量关系不变.第(2)题反比例函数的解析式为12y x=-,直线AB 为172y x =-.第(3)题FD 不再与x 轴平行,△AEO 与△EFP 也不可能相似.图5例3(2010年义乌市中考第24题)如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示x 2-x 1,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1 图2(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-).(2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=. 当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3).(3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD . 由于3tan 4G A F ∠=,tan 5DQ t PQD QPt∠==-,所以345t t=-.解得207t =.图3 图4考点伸展第(3)题是否存在点G 在x 轴上方的情况?如图4,假如存在,说理过程相同,求得的t 的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.例4(2010年上海市宝山区中考模拟第24题)如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y m x m x n =++上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.图1满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线22y m x m x n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =.(2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所以A A ′=B ′B = AB =5.因为438342+--=x x y ()2416133x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4.因此平移后的抛物线的解析式为()3164342,+--=x y .图2(3) 由点A (-2,4) 和点B ′ (6,0),可得A B ′=45. 如图2,由AM //CN ,可得''''B N B C B MB A=,即2'845B C =.解得'5B C =.所以35AC =.根据菱形的性质,在△ABC 与△B ′CD 中,∠BAC =∠CB ′D .①如图3,当''A B B C A C B D =时,55'35B D=,解得'3B D =.此时OD =3,点D 的坐标为(3,0).②如图4,当''A B B D A CB C=时,5'355B D =,解得5'3B D =.此时OD =133,点D 的坐标为(133,0).图3 图4考点伸展在本题情境下,我们还可以探求△B ′CD 与△ABB ′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.我们也可以讨论△B ′CD 与△C B B ′相似,这两个三角形有一组公共角∠B ,根据对应边成比例,分两种情况计算.例5(2009年临沂市中考第26题)如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.图1满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4.如果2==CO AO PM AM ,那么24)4)(1(21=----xx x .解得5=x 不合题意.如果21==COAO PMAM ,那么214)4)(1(21=----xx x .解得2=x .此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM .解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---xx x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y .设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m mm ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m mDE m m2212+-=.因此4)221(212⨯+-=∆m mS DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6考点伸展第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S .由于225212-+-=m mn ,所以m m S 42+-=.例6(2009年上海市闸北区中考模拟第25题)如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域;(2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图备用图满分解答(1)如图2,作BH⊥AC,垂足为点H.在Rt△ABH中,AB=5,cosA=310A HA B=,所以AH=32=12AC.所以BH垂直平分AC,△ABC 为等腰三角形,AB=CB=5.因为DE//BC,所以A B A CD BE C=,即53y x=.于是得到53y x=,(0x>).(2)如图3,图4,因为DE//BC,所以D E A EB C A C=,M N A NB C A C=,即|3|53D E x-=,1|3|253xM N-=.因此5|3|3xD E-=,圆心距5|6|6xM N-=.图2 图3 图4在⊙M中,115226Mr B D y x===,在⊙N中,1122Nr C E x==.①当两圆外切时,5162x x+5|6|6x-=.解得3013x=或者10x=-.如图5,符合题意的解为3013x=,此时5(3)15313xD E-==.②当两圆内切时,5162x x-5|6|6x-=.当x<6时,解得307x=,如图6,此时E在CA的延长线上,5(3)1537xD E-==;当x>6时,解得10x=,如图7,此时E在CA的延长线上,5(3)3533xD E-==.图5 图6 图7(3)因为△ABC 是等腰三角形,因此当△ABC 与△DEF 相似时,△DEF 也是等腰三角形.如图8,当D 、E 、F 为△ABC 的三边的中点时,DE 为等腰三角形DEF 的腰,符合题意,此时BF =2.5.根据对称性,当F 在BC 边上的高的垂足时,也符合题意,此时BF =4.1.如图9,当DE 为等腰三角形DEF 的底边时,四边形DECF 是平行四边形,此时12534B F =.图8 图9 图10 图11考点伸展第(3)题的情景是一道典型题,如图10,如图11,AH 是△ABC 的高,D 、E 、F 为△ABC 的三边的中点,那么四边形DEHF 是等腰梯形.例7(2008年杭州市中考第24题)如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA ⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.满分解答(1)因为平移2tx y -=的图象得到的抛物线F 的顶点为Q (t ,b ),所以抛物线F 对应的解析式为b t x t y +--=2)(.因为抛物线与x 轴有两个交点,因此0>b t .令0=y ,得-=t OB tb ,+=t OC tb .所以-=⋅t OC OB (|||||tb )( +t tb )|-=2|t22|OA ttb ==.即22b t t t-=±.所以当32t b =时,存在抛物线F 使得||||||2OC OB OA ⋅=.(2)因为AQ //BC ,所以t =b ,于是抛物线F 为t t x t y +--=2)(.解得1,121+=-=t x t x . ①当0>t 时,由||||OC OB <,得)0,1(-t B .如图2,当01>-t 时,由=∠ABO tan 23=||||OB OA =1-t t ,解得3=t .此时二次函数的解析式为241832-+-=x x y .如图3,当01<-t 时,由=∠ABO tan 23=||||OB OA =1+-t t ,解得=t 53.此时二次函数的解析式为-=y 532x +2518x +12548.图2 图3②如图4,如图5,当0<t 时,由||||OC OB <,将t -代t ,可得=t 53-,3-=t .此时二次函数的解析式为=y 532x+2518x -12548或241832++=x x y .图4 图5考点伸展第(2)题还可以这样分类讨论:因为AQ //BC ,所以t =b ,于是抛物线F 为2()y t x t t =--+.由3tan 2O A A B O O B∠==,得23O B O A =.①把2(,0)3B t 代入2()y t x t t =--+,得3t =±(如图2,图5).②把2(,0)3B t -代入2()y t x t t =--+,得35t =±(如图3,图4).。
中考数学总复习《二次函数与相似三角形问题》专项训练题(附有答案)
中考数学总复习《二次函数与相似三角形问题》专项训练题(附有答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角坐标系xOy 中,矩形OABC 的边3OA =,AB=4,点A 在x 轴的正半轴上,点C 在y 轴的负半轴上,抛物线243y x bx c =++经过A ,C 两点,连接AC .(1)请直接写出b ,c 的值;(2)若动点(),0E m 在边OA (不与O ,A 两点重合)上,过点E 作x 轴的垂线l 交BC 于点F ,交AC 于点M ,交抛物线于点P ,连接PC . ①设线段PM 的长为h ,求h 与m 的函数关系式;①当点P 在BC 下方的抛物线上时,以P ,C ,F 为顶点的三角形与AEM △是否相似?若相似,请求出此时点E 的坐标;若不相似,请说明理由.2.如图,在平面直角坐标系中,抛物线22y ax b =++过点()1,3,且交x 轴于点()1,0A -,B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)点P 是直线BC 上方抛物线上的一动点,过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,求PD 的最大值及此时点P 的坐标;(3)将该抛物线沿射线CB 方向平移5个单位长度,点M 为平移后的抛物线的对称轴上一点.是否存在M 使得M ,B 关于PD 对称,若存在直接写出M 的坐标,若不存在,请说明理由.3.综合与探究:如图,抛物线2134y x x =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A ,B ,C 的坐标;(2)点P 在直线BC 上方的抛物线上,过点P 作x 轴的垂线l ,连接AP 交BC 于点D .当PD AD最大时,求点P 的坐标及PDAD的最大值; (3)在(2)的条件下,在l 上是否存在点Q ,使BCQ △是直角三角形.若存在,请直接写出点Q 的坐标;若不存在,请说明理由.4.如图,抛物线2122y x bx =-++交x 轴于A (1-,0),B (4,0)两点,交y 轴于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点.(1)求抛物线解析式;(2)过点P 作y 轴的垂线与射线BC 交于点Q ,设线段PQ 的长度为d ,点P 的横坐标为m ,求d 与m 的函数关系式;(3)若点P 在y 轴右侧,过点P 作直线CD 的垂线,垂足为Q ,若将①CPQ 沿CP 翻折,点Q 的对应点为Q ′.是否存在点P ,使Q ′恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.5.综合与探究如图,直线243y x =-+与x 轴,y 轴分别交于B ,C 两点,抛物线243y ax x c =++经过B ,C 两点,与x 轴的另一个交点为A (点A 在点B 的左侧),抛物线的顶点为点D .抛物线的对称轴与x 轴交于点E .(1)求抛物线的表达式及顶点D 的坐标;(2)点M 是线段BC 上一动点,连接DM 并延长交x 轴交于点F ,当:1:4FM FD =时,求点M 的坐标;(3)点P 是该抛物线上的一动点,设点P 的横坐标为m ,试判断是否存在这样的点P ,使90PAB BCO ∠+∠=︒,若存在,请直接写出m 的值;若不存在,请说明理由.6.如图,抛物线与x 轴交于点A ,B ,与y 轴交于点C ,且点()1,0A -,点()0,2C ,抛物线的对称轴为直线32x =,连接AC ,BC .(1)求抛物线的解析式;(2)将ABC 沿直线BC 折叠,得到DBC △,请问:点A 的对应点D 是否落在抛物线的对称轴上?若点D 落在对称轴上,请求出点D 的坐标;若点D 没有落在对称轴上,请说明理由;(3)若点E 是抛物线位于第一象限内的一个动点,连接AE 交直线BC 于点F ,设EFn AF=,求n 的最大值并求出此时点E 的坐标.7.如图,抛物线22y ax bx =++与x 轴交于A ,B 两点,点()2,0A 且2OA OB =,与y 轴交于点C ,连接BC ,D 为第一象限内抛物线上一动点,过点D 作DE OA ⊥于点E ,与AC 交于点F ,设点D 的横坐标为m .(1)求抛物线的表达式;(2)求ACD 面积的最大值及此时D 点的坐标;(3)抛物线上是否存在点D ,使得以点O 、D 、E 为顶点的三角形与BOC 相似?若存在,求出m 的值;若不存在,请说明理由.8.如图,在平面直角坐标系中,抛物线214y x bx c =++与x 轴交于()8,0A 和()2,0B -两点,与y 轴交于点C ,连接AC .(1)求抛物线的表达式;(2)如图1,直线CD 交x 轴于点()2,0D ,点P 为线段AC 下方抛物线上的一点,过点P 作PH y ∥轴交直线CD 于点H ,在直线CD 上取点Q ,连接PQ ,使得HQ PQ =,求524PQ PH -的最大值及此时P 点的坐标; (3)连接BC ,把原抛物线214y x bx c =++沿射线BC 方向平移25个单位长度,点M是平移后新抛物线上的一点,过点M 作MN 垂直x 轴于点N ,连接AM ,直接写出所有使得AMN ABC ∽的点M 的横坐标.9.已知抛物线223y x x =--与x 轴相交于A ,B 两点,与y 轴交于点C .若点(),0N n 为x 轴上的动点,过点N 作x 轴的垂线交抛物线于点P .(1)直接写出A ,B ,C 三点的坐标;(2)①如图1,直线PN 交直线BC 于点G ,若点G 恰好在线段PB 的垂直平分线上,且3n <时,求n 的值;①如图2,连接AC ,AP ,抛物线上存在一点P ,使得以P ,A ,N 为顶点的三角形与CAO △相似,求点P 的坐标.10.已知抛物线:2616(0)y ax ax a a =-->与x 轴交点为A ,B (A 在B 的左侧),与y 轴交于点C ,点G 是AC 的中点.(1)求点A ,B 的坐标及抛物线的对称轴;(2)直线32y x =-与抛物线交于点M ,N 且MO NO =,求抛物线解析式.*提示:如果一元二次方程20(0)ax bx c a ++=≠的两个根是1x 和2x ,那么12b x x a+=-和12cx x a⋅=;(3)已知点P 是(2)中抛物线上第四象限内的动点,过点P 作x 轴的垂线交BC 于点E ,交x 轴于点F .若以点C ,P ,E 为顶点的三角形与AOG 相似,求点P 的坐标.11.抛物线22230yx mx m m 与x 轴交于A ,B 两点,A 点在B 点左边,与y 轴交于C 点,顶点为M .(1)当1m =时,求点A ,B ,M 的坐标;(2)如图1,在(1)的条件下,若P 为抛物线对称轴上一个动点,且PAC △为等腰三角形,求P 点坐标;(3)如图2,若一次函数y kx b =+的图象过A 点且与抛物线交于另一点F ,交对称轴于E ,MG x 轴,FG MG ⊥和AM AF ⊥.若45AMEF ,求MG AB的值.12.如图1,在平面直角坐标系中,抛物线233322y x x =-++与x 轴交于点A 和点B (点A 在点B 左侧),与y 轴交于点C .(1)求直线BC 的解析式;(2)点P 是直线BC 上方抛物线上的一动点,过点P 作y 轴的平行线交BC 于点D ,过点P 作x 轴的平行线交BC 于点E ,求3PE PD +的最大值及此时点P 的坐标; (3)如图2,在(2)中3PE PD +取得最大值的条件下,将抛物线233322y x x =-++沿着射线CB 方向平移得到新抛物线y ',且新抛物线y '经过线段BC 的中点F ,新抛物线y '与y 轴交于点M ,点N 为新抛物线y '对称轴上一点,点Q 为坐标平面内一点,若以点P ,Q ,M ,N 为顶点的四边形是以PN 为边的菱形,写出所有符合条件的点Q 的坐标,并写出求解点Q 的坐标的其中一种情况的过程.13.直线33y x =-+与x 轴交于点B ,与y 轴交于点C ,抛物线2y x bx c =-++经过B ,C 两点,与x 轴的另一交点为A ,连接AC ,点P 为AC 上方的抛物线上一动点.(1)求抛物线的解析式;(2)如图①,连接BP ,交线段AC 于点D ,若:5:16PD BD =,求此时点P 的坐标; (3)如图①,连接PC ,过点P 作PE y 轴,交线段AC 于点E ,若PCE 与ABC 相似,求出点P 的横坐标及线段PE 长.14.如图,已知二次函数2y x bx c =-++的图像交x 轴于点()1,0A -和()5,0B ,交y 轴于点C .(1)求这个二次函数的表达式;(2)如图1,点M 从点B 出发,以每秒2个单位长度的速度沿线段BC 向点C 运动,点N 从点O 出发,以每秒1个单位长度的速度沿线段OB 向点B 运动,点M ,N 同时出发.设运动时间为t 秒(0<t <5).当t 为何值时,BMN 的面积最大?最大面积是多少? (3)求t 为何值时,BMN 是等腰三角形?15.如图1,抛物线 ²2y ax x c =++, 交x 轴于A 、B 两点,交y 轴于点C .当0y ≥时13x -≤≤.(1)求抛物线的表达式;(2)若点D 是抛物线上第一象限的点.①如图1,连接AD ,交线段BC 于点G ,若12DG AG =时,求D 点的坐标; ①如图2,在①条件下,当点D 靠近抛物线对称轴时,过点D 作DP x ⊥轴,点H 是DP 上一点,连接AH ,求1010AH DH +的最小值; (3)如图3,F 为抛物线顶点,直线EF 垂直于x 轴于点E ,直线AD BD ,分别与抛物线对称轴交于M 、N 两点.试问,EM EN +是否为定值?如果是,请直接写出这个定值:如果不是,请说明理由.参考答案: 1.(1)83b =- 4c =- (2)①2443h m m =-+,①相似,()1,0或23,016⎛⎫ ⎪⎝⎭2.(1)213222y x x =-++ (2)PD 有最大值,最大值为455,此时点P 的坐标为(2,3) (3)不存在3.(1)()()()2,0,6,0,0,3A B C - (2)153,4P ⎛⎫ ⎪⎝⎭,PD AD的最大值为916 (3)存在,()3,6-或353,2⎛⎫+ ⎪ ⎪⎝⎭或353,2⎛⎫- ⎪ ⎪⎝⎭或()3,94.(1)213222y x x =-++ (2)当P 在y 轴右侧时,24d m m =-+;当P 在y 轴左侧时24d m m =-(3)存在 931313,2P ⎛⎫-+ ⎪ ⎪⎝⎭5.(1)214-433y x x =++ 16(2,)3;(2)44,3⎛⎫ ⎪⎝⎭;(3)存在,m 的值为4或8 6.(1)213222y x x =-++ (2)D 点不在对称轴32x =上 (3)45 ()2,3E7.(1)22y x x =-++(2)ACD 面积的最大值1 ()1,2D(3)1334m +=或1m =. 8.(1)213442y x x =-- (2)524PQ PH -取得最大值49516 97,4P ⎛⎫- ⎪⎝⎭ (3)12或0或443-或443+9.(1)()1,0A -,()3,0B 和()0,3C -(2)①2n =±;①点P 的坐标为()6,21,1013,39⎛⎫ ⎪⎝⎭和811,39⎛⎫- ⎪⎝⎭10.(1)()20A -,和()80B ,,对称轴为直线3x =; (2)213442y x x =--; (3)P 点坐标为()46-,或2534⎛⎫- ⎪⎝⎭,.11.(1)()1,0A -,()3,0B 和()1,4M -(2)1,1或()1,6或()1,6-或()1,0 (3)54m12.(1)332y x =-+ (2)3PE PD +的最大任为52,此时()1,3P (3)11173,236Q ⎛⎫- ⎪⎝⎭,21330,22Q ⎛⎫-+ ⎪⎝⎭和31330,22Q ⎛⎫-- ⎪⎝⎭13.(1)223y x x =--+(2)点P 的坐标为1(2-,15)4或5(2-,7)4).(3)P 的横坐标为32-或53-,PE 的长为94或209.14.(1)二次函数的表达式为245y x x =-++(2)当52t =时,BMN 的面积最大,最大面积是258(3)t 的值为53,525-或5215.(1)223y x x =-++(2)①()14,,()23,①10(3)是定值,定值为8。
中考复习:二次函数和相似三角形问题(含答案)
综合题讲解 函数中因动点产生的相似三角形问题例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。
⑴求抛物线的解析式;(用顶点式...求得抛物线的解析式为x x 41y 2+-=) ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。
分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况2. 函数中因动点产生的相似三角形问题一般有三个解题途径① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
y xEQ PC B OA 例题2:如图,已知抛物线y=ax 2+4ax+t (a >0)交x 轴于A 、B 两点,交y 轴于点C ,抛物线的对称轴交x 轴于点E ,点B 的坐标为(-1,0). (1)求抛物线的对称轴及点A 的坐标;(2)过点C 作x 轴的平行线交抛物线的对称轴于点P ,你能判断四边形ABCP 是什么四边形?并证明你的结论;(3)连接CA 与抛物线的对称轴交于点D ,当∠APD=∠ACP 时,求抛物线的解析式.练习1、已知抛物线2y ax bx c =++经过5330P E ⎫⎪⎪⎝⎭,,,及原点(00)O ,.(1)求抛物线的解析式.(由一般式...得抛物线的解析式为225333y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由.(3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?练习2、如图,四边形OABC 是一张放在平面直角坐标系中的矩形纸片,点A 在x 轴上,点C 在y 轴上,将边BC 折叠,使点B 落在边OA 的点D处。
初三中考数学专题复习:二次函数综合题(相似三角形问题)含答案
中考数学专题复习:二次函数综合题(相似三角形问题)1.如图①,二次函数y =﹣x 2+bx +c 的图象与x 轴交于点A (﹣1,0)、B (3,0),与y 轴交于点C ,连接BC ,点P 是抛物线上一动点.(1)求二次函数的表达式.(2)当点P 不与点A 、B 重合时,作直线AP ,交直线BC 于点Q ,若①ABQ 的面积是①BPQ 面积的4倍,求点P 的横坐标.(3)如图①,当点P 在第一象限时,连接AP ,交线段BC 于点M ,以AM 为斜边向①ABM 外作等腰直角三角形AMN ,连接BN ,①ABN 的面积是否变化?如果不变,请求出①ABN 的面积;如果变化,请说明理由.2.如图,二次函数2314y x bx =++的图像经过点()8,3A ,交x 轴于点B ,C (点B 在点C 的左侧),与y 轴交于点D .(1)填空:b = ______;(2)点P 是第一象限内抛物线上一点,直线PO 交直线CD 于点Q ,过点P 作x 轴的垂线交直线CD 于点T ,若PQ QT =,求点P 的坐标;(3)在x 轴的正半轴上找一点E ,过点E 作AE 的垂线EF 交y 轴于F ,若AEF 与EFO △相似,求OE 的长.3.如图,已知抛物线2y ax bx c =++与x 轴相交于点()1,0A -,()3,0B ,与y 轴的交点()0,6C .(1)求抛物线的解析式;(2)点(),P m n 在平面直角坐标系第一象限内的抛物线上运动,设PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得①CMN =90°,且∆CMN 与OBC ∆相似,如果存在,请求出点M 和点N 的坐标.4.如图,抛物线L 1:y =ax 2﹣2x +c (a ≠0)与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,﹣3),抛物线的顶点为D .抛物线L 2与L 1关于x 轴对称.(1)求抛物线L 1与L 2的函数表达式;(2)已知点E 是抛物线L 2的顶点,点M 是抛物线L 2上的动点,且位于其对称轴的右侧,过M 向其对称轴作垂线交对称轴于P ,是否存在这样的点M ,使得以P 、M 、E 为顶点的三角形与△BCD 相似,若存在请求出点M 的坐标,若不存在,请说明理由.5.如图,在平面直角坐标系中,已知直线4y x =+与x 轴、y 轴分别相交于点A 和点C ,抛物线21y x kx k =++-的图象经过点A 和点C ,与x 轴的另一个交点是点B .(1)求出此抛物线的解析式; (2)求出点B 的坐标;(3)若在y 轴的负半轴上存在点D .能使得以A ,C ,D 为顶点的三角形与①ABC 相似,请求出点D 的坐标.6.如图1,已知抛物线23y ax bx =++经过点()1,5D ,且交x 轴于A ,B 两点,交y 轴于点C ,已知点()1,0A -,(),P m n 是抛物线在第一象限内的一个动点,PQ BC ⊥于点Q .(1)求抛物线的解析式;(2)当PQ =m 的值;(3)是否存在点P ,使BPQ 与BOC 相似?若存在,请求出P 点的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx +c的对称轴是x=-32且经过A、C两点,与x轴的另一交点为点B.(1)求二次函数y=ax2+bx+c的表达式;(2)点P为线段AB上的动点,求AP+2PC的最小值;(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与①ABC 相似?若存在,求出点M的坐标;若不存在,请说明理由.8.如图,抛物线y=−x2+bx+c与x轴相交于A(−1,0),B(3,0)两点,与y轴交于点C,顶点为点D,抛物线的对称轴与BC相交于点E,与x轴相交于点F.(1)求抛物线的函数关系式;(2)连结DA,求sin A的值;(3)若点H线段BC上,BOC与BFH△相似,请直接写出点H的坐标.9.如图,抛物线y=1-2x2+bx+c与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =720S △ABC 时,求点P 的坐标; (3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与①OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.10.如图,抛物线23y ax bx =++与x 轴交于1,0A 、()3,0B -两点,与y 轴交于点C ,设抛物线的顶点为D .(1)求该抛物线的表达式与顶点D 的坐标; (2)试判断BCD △的形状,并说明理由;(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与BCD △相似?若存在,请求出点P 的坐标;若不存在,请说明理由.11.如图,抛物线y =ax 2﹣2ax ﹣3a (a ≠0)与x 轴交于点A ,B .与y 轴交于点C .连接AC ,BC .已知ABC 的面积为2.(1)求抛物线的解析式;(2)平行于x 轴的直线与抛物线从左到右依次交于P ,Q 两点.过P ,Q 向x 轴作垂线,垂足分别为G ,H .若四边形PGHQ 为正方形,求正方形的边长;(3)抛物线上是否存在一点N ,使得①BCN =①CAB ﹣①CBA ,若存在,请求出满足条件N 点的横坐标,若不存在请说明理由.12.如图,二次函数2y x bx c =-++的图像与x 轴交于点A (-1,0),B (2,0),与y 轴相交于点C .(1)求这个二次函数的解析式;(2)若点M 在此抛物线上,且在y 轴的右侧.①M 与y 轴相切,过点M 作MD ①y 轴,垂足为点D .以C ,D ,M 为顶点的三角形与①AOC 相似,求点M 的坐标及①M 的半径长.13.如图,在平面直角坐标系中,抛物线2()0y ax bx c ac =++≠与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C .若线段OA OB OC 、、的长满足2OC OA OB =⋅,则这样的抛物线称为“黄金”抛物线.如图,抛物线22(0)y ax bx a =++≠为“黄金”抛物线,其与x 轴交点为A ,B (其中B 在A 的右侧),与y 轴交于点C .且4OA OB =(1)求抛物线的解析式;(2)若P 为AC 上方抛物线上的动点,过点P 作PD AC ⊥,垂足为D . ①求PD 的最大值;①连接PC ,当PCD 与ACO △相似时,求点P 的坐标.14.如图,在平面直角坐标系xOy 中,已知抛物线2y x bx c =++与x 轴交于点A 、B 两点,其中1,0A ,与y 轴交于点()0,3C .(1)求抛物线解析式;(2)如图1,过点B 作x 轴垂线,在该垂线上取点P ,使得①PBC 与①ABC 相似,请求出点P 坐标;(3)如图2,在线段OB 上取一点M ,连接CM ,请求出12CM BM +最小值.15.如图,抛物线y =ax 2+k (a >0,k <0)与x 轴交于A ,B 两点(点B 在点A 的右侧),其顶点为C ,点P 为线段OC 上一点,且PC =14OC .过点P 作DE ①AB ,分别交抛物线于D ,E 两点(点E 在点D 的右侧),连接OD ,DC .(1)直接写出A ,B ,C 三点的坐标;(用含a ,k 的式子表示) (2)猜想线段DE 与AB 之间的数量关系,并证明你的猜想;(3)若①ODC =90°,k =﹣4,求a 的值.16.如图,抛物线223y x bx c =++与x 轴交于A ,B 两点,与y 轴交于C 点,连接AC ,已知B (﹣1,0),且抛物线经过点D (2,﹣2).(1)求抛物线的表达式;(2)若点E 是抛物线上第四象限内的一点,且2ABES=,求点E 的坐标;(3)若点P 是y 轴上一点,以P ,A ,C 三点为顶点的三角形是等腰三角形,求P 点的坐标.17.如图,在直角坐标系xOy 中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于点A (﹣1,0)和B (4,0),与y 轴交于点C ,点P 是抛物线上的动点(不与点A ,B ,C 重合).(1)求抛物线的解析式;(2)当点P 在第一象限时,设①ACP 的面积为S 1,①ABP 的面积为S 2,当S 1=S 2时,求点P 的坐标; (3)过点O 作直线l ①BC ,点Q 是直线l 上的动点,当BQ ①PQ ,且①BPQ =①CAB 时,请直接写出点P 的坐标.18.如图,在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴交于A、B两点,抛物线y=x2+bx+c 过点A和点B,并与x轴交于另一点C,顶点为D.点E在对称轴右侧的抛物线上.(1)求抛物线的函数表达式和顶点D的坐标;(2)若点F在抛物线的对称轴上,且EF①x轴,若以点D,E,F为顶点的三角形与①ABD相似,求出此时点E的坐标;(3)若点P为坐标平面内一动点,满足tan①APB=3,请直接写出①P AB面积最大时点P的坐标及该三角形面积的最大值.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,与y轴交于点C,且OC=2OB=6OA=6,点P是第一象限内抛物线上的动点.(1)求抛物线的解析式;(2)连接BC与OP,交于点D,当S△PCD:S△ODC的值最大时,求点P的坐标;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N.使①CMN=90°,且①CMN与①BOC 相似,若存在,请求出点M、点N的坐标.20.如图,抛物线y=x2+bx+12(b<0)与x轴交于A,B两点(A点在B点左侧),且OB=3OA.(1)请直接写出b=,A点的坐标是,B点的坐标是;(2)如图(1),D点从原点出发,向y轴正方向运动,速度为2个单位长度/秒,直线BD交抛物线于点E,若BE=5DE,求D点运动时间;(3)如图(2),F点是抛物线顶点,过点F作x轴平行线MN,点C是对称轴右侧的抛物线上的一定点,P 点在直线MN上运动.若恰好存在3个P点使得①P AC为直角三角形,请求出C点坐标,并直接写出P点的坐标.答案1.(1)y =﹣x 2+2x +3.(2)P 352或 (3)①ABN 的面积不变,为4.2.(1)2-(2)5⎛ ⎝⎭或5⎛ ⎝⎭(3)4或493.(1)2246y x x =-++(2)S 关于m 的函数表达式为239(03)S m m m =-+<<,S 的最大值是274 (3)存在,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,﹣32)4.(1)抛物线L 1:223y x x =--,抛物线L 2:2y x 2x 3=-++;(2)435(,)39M 或(4,5)M -.5.(1)254y x x =++(2)点B 的坐标为(-1,0)(3)点D 的坐标是(0,-203) 6.(1)215322y x x =-++ (2)1或5(3)存在;P (53,529)7.(1)抛物线表达式为:213222y x x =--+;(2)AP +2PC 的最小值是4;(3)存在M(0,2)或(-3,2)或(2,-3)或(5,-18),使得以点A 、M 、N 为顶点的三角形与ABC 相似.8.(1)y =-x 2+2x +3(3)点H 的坐标为(1,2)或(2,1)9.(1)21382y x x =++ (2)P 1(1,10.5),P 2(7,4.5)(3)存在,(3,8)或(3,5或(3,11)30.(1)y =﹣x 2﹣2x +3,(﹣1,4);(2)直角三角形,理由见解析;(3)存在,(0,0)或(0,﹣13)或(-9,0)11.(1)y =﹣13x 2+23x +1(2)﹣6﹣(3)存在,5或11712.(1)22y x x =-++; (2)M 的坐标为(12,94),(32, 54 ),(3,-4),①M 的半径长为12或32或313.(1)213222y x x =--+(2)①PD ①P 坐标为(3,2)-或325()28,-14.(1)243y x x =-+(2)P 点坐标为()3,9或()3,215.(1)点A 、B 、C 的坐标分别为(、、(0,k ) (2)DE =12AB(3)a =1316.(1)224233y x x =--(2)E ,-1)(3)P 点的坐标(0,2)或(02)或(0,﹣2或(0,54)17.(1)213222y x x =-++ (2)点P 的坐标为(103,139)(3)点P 的坐标为(32,﹣2)或(32,﹣2)或(173,﹣509)18.(1)y =x 2﹣4x +3,(2,﹣1)(2)(5,8)或(73,89-)(3)①P AB ,此时P )19.(1)y =﹣2x 2+4x +6 (2)点P 的坐标为(32,152) (3)存在,M 、N 的坐标分别为(3,0)、(0,﹣32)或(94,398)、(0,38)或(1,8)、(0,172)或(74,558)、(0,838)20.(1)﹣8,(2,0),(6,0)(2)3秒或212秒 (3)C 点坐标为(143,﹣329),P 点的坐标为(103,﹣4)或(﹣103,﹣4)或(11027,﹣4)。
相似三角形与动点问题练习题(带答案
∵将
沿直线 翻折后,顶点 恰好落在 边上的点 处,
∴
,且
,
∴
,
∵
,
∴
,
∴
,
∴
,
∵在
中,
,
∴
∴
∴ 四边形 故选: .
,
,
, ,
.
2
【标注】【知识点】相似A字型
3. 如图,矩形 ,
中, 是 的中点,将 ,则 的长为( ).
沿 折叠后得到
.延长 交 于 点.若
A.
B.
C.
D.
【答案】 B 【解析】 方法一:连接 ,
.④
沿 折叠,点 恰落在边 上的点 处,有下列结论:①
.其中正确的是( ).
A. 个
B. 个
C. 个
6
D. 个
【答案】 C
【解析】 ①∵ 将 ∴ ∴ ②在 ∴ 设 在 ∴ ∴ ∴ ③∵ ∴ ∴ 而 ∴ ∴ ∴ ∴ 而 ∴ ∴ ④∵ ∴
沿 折叠,点 恰落在边 上的点 处.点 在
沿 折叠,点 恰落在线段 上的点 处,
4. 如图,将正方形
折叠,使顶点 与 边上的一点 重合( 不与端点 , 重合),折痕交
于点 ,交 于点 ,边 折叠后与边 交于点 .设正方形
的周长为 ,
的周长为
,则 的值为( ).
A.
B.
C.
D. 随 点位置的变化而变化
【答案】 B
【解析】 方法一:设
,
,
则
,
,
∵
,
∴
.
∵
,
∴
,
又∵
,
,
∴
,
即
,
∴
中考—动点产生的相似三角形、等腰三角形、直角三角形、平行四边形问题-含答案
一、动点产生的相似三角形问题1、 满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM,x AM -=4.如果2==CO AOPM AM ,那么24)4)(1(21=----x x x .解得5=x 不合题意.如果21==COAOPM AM ,那么214)4)(1(21=----x x x .解得2=x . 此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM,4-=x AM . 解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6,2、 满分解答(1)将M (2, 2)代入1(2)()y x x m m =-+-,得124(2)m m =-⨯-.解得m =4. (2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.所以C (4, 0),E (0, 2).所以S △BCE =1162622BC OE ⋅=⨯⨯=.(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小. 设对称轴与x 轴的交点为P ,那么HP EOCP CO=. 因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2. (4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′.由于∠BCE =∠FBC ,所以当CE BC CB BF=,即2BC CE BF =⋅时,△BCE ∽△FBC . 设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+.解得x =m +2.所以F ′(m +2, 0).由'CO BF CE BF =4m BF +=.所以BF =. 由2BC CE BF =⋅,得2(2)m +=整理,得0=16.此方程无解.图2 图3 图4②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,由于∠EBC =∠CBF ,所以BE BC BC BF=,即2BC BE BF =⋅时,△BCE ∽△BFC . 在Rt △BFF ′中,由FF ′=BF ′,得1(2)()2x x m x m+-=+.解得x =2m .所以F ′(2,0)m .所以BF ′=2m +2,2)BF m =+.由2BCBE BF =⋅,得2(2)2)m m +=+.解得2m =±综合①、②,符合题意的m为2+考点伸展第(4)题也可以这样求BF 的长:在求得点F ′、F 的坐标后,根据两点间的距离公式求BF 的长.二、因动点产生的等腰三角形问题 满分解答(1)因为抛物线与x 轴交于A (-1,0)、B (3, 0)两点,设y =a (x +1)(x -3), 代入点C (0 ,3),得-3a =3.解得a =-1.所以抛物线的函数关系式是y =-(x +1)(x -3)=-x 2+2x +3. (2)如图2,抛物线的对称轴是直线x =1.当点P 落在线段BC 上时,P A +PC 最小,△P AC 的周长最小. 设抛物线的对称轴与x 轴的交点为H . 由BH PHBO CO=,BO =CO ,得PH =BH =2. 所以点P 的坐标为(1, 2).(3)点M 的坐标为(1, 1)、、(1,)或(1,0).设点M 的坐标为(1,m ).在△MAC 中,AC 2=10,MC 2=1+(m -3)2,MA 2=4+m 2.①如图3,当MA =MC 时,MA 2=MC 2.解方程4+m 2=1+(m -3)2,得m =1. 此时点M 的坐标为(1, 1).②如图4,当AM =AC 时,AM 2=AC 2.解方程4+m 2=10,得m =此时点M 的坐标为或(1,.③如图5,当CM =CA 时,CM 2=CA 2.解方程1+(m -3)2=10,得m =0或6. 当M (1, 6)时,M 、A 、C 三点共线,所以此时符合条件的点M 的坐标为(1,0).图3 图4 图54.思路点拨1.用含m 的代数式表示表示△APD 的三边长,为解等腰三角形做好准备. 2.探求△APD 是等腰三角形,分三种情况列方程求解.3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C . 满分解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-.①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3).②当P A =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H . 三、①因动点产生的直角三角形问题5、满分解答(1)设抛物线的函数表达式为2(1)y x n =-+,代入点C (0,-3),得4n =-.所以抛物线的函数表达式为22(1)423y x x x =--=--.(2)由223(1)(3)y x x x x =--=+-,知A (-1,0),B (3,0).设直线BC 的函数表达式为y kx b =+,代入点B (3,0)和点C (0,-3),得30,3.k b b +=⎧⎨=-⎩ 解得1k =,3b =-.所以直线BC 的函数表达式为3y x =-.(3)①因为AB =4,所以334PQ AB ==.因为P 、Q 关于直线x =1对称,所以点P 的横坐标为12-.于是得到点P 的坐标为17,24⎛⎫-- ⎪⎝⎭,点F 的坐标为70,4⎛⎫- ⎪⎝⎭.所以75344FC OC OF =-=-=,522EC FC ==.进而得到51322OE OC EC =-=-=,点E 的坐标为10,2⎛⎫- ⎪⎝⎭.直线BC:3y x =-与抛物线的对称轴x =1的交点D 的坐标为(1,-2).过点D 作DH ⊥y 轴,垂足为H .在Rt △EDH 中,DH =1,13222EH OH OE =-=-=,所以tan ∠CED 23DH EH ==.②1(12)P -,25(1)2P -.图2 图3 图4②动点产生的平行四边形问题 2 满分解答(1) 因为抛物线与x 轴交于A (-4,0)、C (2,0)两点,设y =a (x +4)(x -2).代入点B (0,-4),求得12a =.所以抛物线的解析式为211(4)(2)422y x x x x =+-=+-. (2)如图2,直线AB 的解析式为y =-x -4.过点M 作x 轴的垂线交AB 于D ,那么2211(4)(4)222MD m m m m m =---+-=--.所以2142MDA MDB S S S MD OA m m ∆∆=+=⋅=--2(2)4m =-++.因此当2m =-时,S 取得最大值,最大值为4.(3) 如果以点P 、Q 、B 、O 为顶点的四边形是平行四边形,那么PQ //OB ,PQ =OB =4. 设点Q 的坐标为(,)x x -,点P 的坐标为21(,4)2x x x +-.①当点P 在点Q 上方时,21(4)()42x x x +---=.解得2x =-±此时点Q 的坐标为(2-+-(如图3),或(2--+(如图4). ②当点Q 在点P 上方时,21()(4)42x x x --+-=. 解得4x=-或0x =(与点O 重合,舍去).此时点Q 的坐标为(-4,4) (如图5).。
因动点产生的相似三角形问题)
1.2 因动点产生的等腰三角形问题例1 2011年湖州市中考第24题如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2思路点拨1.用含m 的代数式表示表示△APD 的三边长,为解等腰三角形做好准备.2.探求△APD 是等腰三角形,分三种情况列方程求解.3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C .满分解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-.①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3).②当P A =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H 所经过的路径长为54π. 考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单:①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以12PC MB CM BA ==.因此12PC =,32m =.②如图4,当P A =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43m =.第(2)题的思路是这样的:如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.图6 图7例2 2011年盐城市中考第28题如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标; (2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR 的面积等于8,按照点P 的位置分两种情况讨论.事实上,P 在CA 上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ ,按照点P 的位置分两种情况讨论,点P 的每一种位置又要讨论三种情况.满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4). 令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8A P R A C P P O RC O R A S S S S =--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =,所以OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠P AQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1. 我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418t =.如图6,当QP =QA 时,点Q 在P A 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当P A =PQ 时,那么12cos AQ A AP∠=.因此2c o s A Q A P A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图7考点伸展当P 在CA 上,QP =QA 时,也可以用2cos AP AQ A =⋅∠来求解.例3 2010年南通市中考第27题如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1思路点拨1.证明△DCE ∽△EBF ,根据相似三角形的对应边成比例可以得到y 关于x 的函数关系式.2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF 为等腰三角形,那么得到x =y ;一段是计算,化简消去m ,得到关于x 的一元二次方程,解出x 的值;第三段是把前两段结合,代入求出对应的m 的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EBCE BF=,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m=-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2.(3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如: 由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性. 例4 2009年重庆市中考第26题已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1思路点拨1.用待定系数法求抛物线的解析式,这个解析式在第(2)、(3)题的计算中要用到. 2.过点M 作MN ⊥AB ,根据对应线段成比例可以求F A 的长. 3.将∠EDC 绕点D 旋转的过程中,△DCG 与△DEF 保持全等.4.第(3)题反客为主,分三种情况讨论△PCG 为等腰三角形,根据点P 的位置确定点Q 的位置,再计算点Q 的坐标.满分解答(1)由于OD 平分∠AOC ,所以点D 的坐标为(2,2),因此BC =AD =1. 由于△BCD ≌△ADE ,所以BD =AE =1,因此点E 的坐标为(0,1).设过E 、D 、C 三点的抛物线的解析式为c bx ax y ++=2,那么⎪⎩⎪⎨⎧=++=++=.039,224,1c b a c b a c 解得65-=a ,613=b 1=c .因此过E 、D 、C 三点的抛物线的解析式为1613652++-=x x y .(2)把56=x 代入1613652++-=x x y ,求得512=y .所以点M 的坐标为⎪⎭⎫⎝⎛512,56.如图2,过点M 作MN ⊥AB ,垂足为N ,那么DADNFA MN =,即25622512-=-FA .解得1=FA . 因为∠EDC 绕点D 旋转的过程中,△DCG ≌△DEF ,所以CG =EF =2.因此GO =1,EF =2GO .(3)在第(2)中,GC =2.设点Q 的坐标为⎪⎭⎫ ⎝⎛++-161365,2x x x . ①如图3,当CP =CG =2时,点P 与点B (3,2)重合,△PCG 是等腰直角三角形.此时G Q Q x x y -=,因此11613652-=++-x x x 。
2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)(含简单答案)
2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)1.如图,二次函数216y x bx c =++的图象交坐标轴于点()4,0A ,()0,2B -,点P 为x 轴上一动点.(1)求二次函数216y x bx c =++的表达式; (2)将线段PB 绕点P 逆时针旋转90︒得到线段PD ,若D 恰好在抛物线上,求点D 的坐标; (3)过点P 作PQ x ⊥轴分别交直线AB ,抛物线于点Q ,C ,连接AC .若以点B 、Q 、C 为顶点的三角形与APQ △相似,直接写出点P 的坐标. 2.抛物线25y ax bx =++经过点1,0A 和点()5,0B .(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线25y x =+相交于C 、D 两点,点P 是抛物线上的动点且位于x 轴下方,直线PM y ∥轴,分别与x 轴和直线CD 交于点M 、N .①连结PC PD 、,如图1,在点P 运动过程中,PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;①连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图2,是否存在点P ,使得CNQ 与PBM 相似?若存在,直接写出满足条件的点P 的坐标;若不存在,说明理由.3.已知抛物线24y ax ax b =-+与x 轴交于A ,B 两点,(A 在B 的左侧),与y 轴交于C ,若OB OC =,且03C (,).(1)求抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标; (3)在抛物线上是否存在一点M ,过M 作MN x ⊥轴于N ,以A 、M 、N 为顶点的三角形与AOC ∆相似,若存在,求出所有符合条件的M 点坐标,若不存在,请说明理由. 4.如图.在平面直角坐标系中.抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C .点A 的坐标为()1,0-,点C 的坐标为()0,2-.已知点(),0E m 是线段AB 上的动点(点E 不与点A ,B 重合).过点E 作PE x ⊥轴交抛物线于点P ,交BC 于点F .(1)求该抛物线的表达式;(2)若:1:2EF PF =,请求出m 的值;(3)是否存在这样的m ,使得BEP △与ABC 相似?若存在,求出此时m 的值;若不存在,请说明理由;(4)当点E 运动到抛物线对称轴上时,点M 是x 轴上一动点,点N 是抛物线上的动点,在运动过程中,是否存在以C 、B 、M 、N 为顶点的四边形是平行四边形?若不存在,请说明理由;若存在,请直接写出点M 的坐标.5.如图,二次函数212y x bx c =-++图像交x 轴于点A ,B (A 在B 的左侧),与y 轴交于点(0,3)C ,CD y ⊥轴,交抛物线于另一点D ,且5CD =,P 为抛物线上一点,PE y轴,与x 轴交于E ,与BC ,CD 分别交于点F ,G .(1)求二次函数解析式;(2)当P 在CD 上方时,是否存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,若存在,求出CPG △与FBE 的相似比,若不存在,说明理由.(3)点D 关于直线PC 的对称点为D ,当点D 落在抛物线的对称轴上时,此时点P 的坐标为________.6.如图,抛物线22y ax bx =++与x 轴交于点A ,B ,与y 轴交于点C ,已知A ,B 两点坐标分别是(1,0)A ,(4,0)B -,连接,AC BC .(1)求抛物线的表达式;(2)将ABC ∆沿BC 所在直线折叠,得到DBC ∆,点A 的对应点D 是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D 的坐标;若点D 不在对称轴上,请说明理由;(3)若点P 是抛物线位于第二象限图象上的一动点,连接AP 交BC 于点Q ,连接BP ,BPQ ∆的面积记为1S ,ABQ ∆的面积记为2S ,求12S S 的值最大时点P 的坐标. 7.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.8.已知菱形OABC 的边长为5,且点(34)A ,,点E 是线段BC 的中点,过点A ,E 的抛物线2y ax bx c =++与边AB 交于点D ,(1)求点E 的坐标;(2)连接DE ,将BDE △沿着DE 翻折痕.①当B 点的对应点B '恰好落在线段AC 上时,求点D 的坐标;①连接OB ,BB ',若BB D '△与BOC 相似,请直接写出此时抛物线二次项系数=a ______. 9.如图,抛物线22(0)y ax x c a =-+≠与x 轴交于A 、()3,0B 两点,与y 轴交于点()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式;(2)已知点M 是x 轴上的动点,过点M 作x 轴的垂线交抛物线于点G ,是否存在这样的点M ,使得以点A 、M 、G 为顶点的三角形与BCD △相似,若存在,请求出点M 的坐标;若不存在,请说明理由.(3)在直线BC 下方抛物线上一点P ,作PQ 垂直BC 于点Q ,连接CP ,当CPQ 中有一个角等于ACO ∠时,求点P 的坐标.10.如图,抛物线顶点D 在x 轴上,且经过(0,3)-和(4,3)-两点,抛物线与直线l 交于A 、B 两点.(1)直接写出抛物线解析式和D 点坐标;(2)如图1,若()03A ,-,且 94ABDS =,求直线l 解析式; (3)如图2,若90ADB ∠=︒,求证:直线l 经过定点,并求出定点坐标.11.如图1,已知抛物线2=23y x x --与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接BC ,点P 是线段BC 下方抛物线上一动点,过点P 作∥PE BC ,交x 轴于点E ,连接OP 交BC 于点F .(1)直接写出点A ,B ,C 的坐标以及抛物线的对称轴; (2)当点P 在线段BC 下方抛物线上运动时,求BFPE取到最小值时点P 的坐标; (3)当点P 在y 轴右边抛物线上运动时,过点P 作PE 的垂线交抛物线对称轴于点G ,是否存在点P ,使以P 、E 、G 为顶点的三角形与①AOC 相似?若存在,来出点P 的坐标;若不存在,请说明理由.12.如图,抛物线212ax ax b =-+y 经过()1,0A -,32,2C ⎛⎫⎪⎝⎭两点,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点(不与点B 重合),点Q 在线段MB 上移动,且2PM MQ MB =⋅,设线段OP x =,2MQ y =,求2y 与x 的函数关系式,并直接写出自变量x 的取值范围;并直接写出PM APPQ BQ-的值;(3)在同一平面直角坐标系中,两条直线x m =,x n =分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,.H 问四边形EFHG 能否为平行四边形?若能,求m ,n 之间的数量关系;若不能,请说明理由.13.已知抛物线213222y x x =-++交x 轴于A 、B 两点,A 在B 的左边,交y 轴于点C .(1)求抛物线顶点的坐标;(2)如图1,若10,2E ⎛⎫- ⎪⎝⎭,P 在抛物线上且在直线AE 上方,PQ AE ⊥于O ,求PQ 的最大值;(3)如图2,点(),3D a (32a <)在抛物线上,过A 作直线交抛物线于第四象限另一点F ,点M 在x 轴上,以M 、B 、D 为顶角的三角形与AFB △相似,求点M 的坐标. 14.如图,抛物线23y ax bx =+-与x 轴交于点()1,0A 、()3,0B ,与y 轴交于点C ,联结AC 、BC .(1)求该抛物线的表达式及顶点D 的坐标;(2)如果点P 在抛物线上,CB 平分ACP ∠,求点P 的坐标:(3)如果点Q 在抛物线的对称轴上,DBQ 与ABC 相似.求点Q 的坐标.15.如图,抛物线23y ax x c =-+与x 轴交于(4,0)A -,B 两点,与y 轴交于点(0,4)C ,点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45︒得到射线OP ,OP 交直线AC 于点F ,连接DF .(1)求抛物线的解析式; (2)当点D 在第二象限且34DE EO =时,求点D 的坐标; (3)当ODF △为直角三角形时,请直接写出点D 的坐标.16.如图①,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,3),顶点为D (4,-1),对称轴与直线BC 交于点E ,与x 轴交于点F .(1)求二次函数的解析式;(2)点M 在第一象限抛物线的对称轴上,若点C 在BM 的垂直平分线上,求点M 的坐标; (3)如图①,过点E 作对称轴的垂线在对称轴的右侧与抛物线交于点H ,x 轴上方的对称轴上是否存在一点P ,使以E ,H ,P 为顶点的三角形与EFB △相似,若存在,求出P点坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy 中,已知抛物线2y ax x c =++经过()2,0A -,()0,4B 两点,直线3x =与x 轴交于点C .(1)求a ,c 的值;(2)经过点O 的直线分别与线段AB ,直线3x =交于点D ,E ,且BDO △与OCE △的面积相等,求直线DE 的解析式;(3)P 是抛物线上位于第一象限的一个动点,在线段OC 和直线3x =上是否分别存在点F ,G ,使B ,F ,G ,P 为顶点的四边形是以BF 为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.18.如图1,抛物线2y ax bx c =++与x 轴交于A ,B (点A 在点B 左侧),与y 轴负半轴交于C ,且满足2OA OB OC ===.(1)求抛物线的解析式;(2)如图2,D 为y 轴负半轴上一点,过D 作直线l 垂直于直线BC ,直线l 交抛物线于E ,F 两点(点E 在点F 右侧),若3DF DE =,求D 点坐标; (3)如图3,点M 为抛物线第二象限部分上一点,点M ,N 关于y 轴对称,连接MB ,P 为线段MB 上一点(不与M 、B 重合),过P 点作直线x t =(t 为常数)交x 轴于S ,交直线NB 于Q ,求QS PS -的值(用含t 的代数式表示).参考答案:1.(1)211266y x x =-- (2)()3,1D -或()8,10D -(3)点P 的坐标为()011-,或()10,.2.(1)265y x x =-+ (2)37,24⎛⎫- ⎪⎝⎭或()3,4-3.(1)243y x x =-+ (2)()2,2P 或()2,2-(3)存在符合条件的M 点,且坐标为:110(3M ,7)9-,()26,15M ,38(3M ,5)9-4.(1)213222y x x =--; (2)2m =;(3)存在,m 的值为0或3;(4)存在,M 点的坐标为()7,0或()1,0M 或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭.5.(1)215322y x x =-++;(2)存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,CPG △与FBE 的相似比为2或25;(3)P 点横坐标55.6.(1)213222y x x =--+(2)点D 不在抛物线的对称轴上, (3)(2,3)-7.(1)2=23y x x --(2)函数的最大值为5,最小值为4- (3)存在,(0,9)P -或9(0,)5P -8.(1)13(2)2E , (2)①11(4)2D ,或23(4)6D ,;①47-9.(1)2=23y x x --(2)()0,0,()6,0,8,03⎛⎫ ⎪⎝⎭,10,03⎛⎫⎪⎝⎭(3)57,24⎛⎫- ⎪⎝⎭或者315,24⎛⎫- ⎪⎝⎭10.(1)()2324y x =--,()2,0D (2)334y x =-或1534y x =- (3)证明见解析,定点坐标为423⎛⎫- ⎪⎝⎭,11.(1)A (﹣1,0),B (3,0),C (0,﹣3),对称轴为直线x =1(2)当t =32时,BF PE 最小,最小值为47,此时P (32,﹣154).(3)存在,点P 的坐标为(2,﹣3)12.(1)211322y x x =-++(2)22150322y x x x =-+≤<(),PM AP PQ BQ -的值为0 (3)m 、n 之间的数量关系是2(1)m n m +=≠13.(1)(32,258)答案第3页,共3页(3)(2,0)或(-5,0)或13,07⎛⎫ ⎪⎝⎭或2205⎛⎫- ⎪⎝⎭,14.(1)2=+43y x x --,(21)D , (2)111639⎛⎫ ⎪⎝⎭,- (3)(2,−2)或12,3⎛⎫ ⎪⎝⎭15.(1)234y x x =--+(2)(1,6)D -或(3,4)D -(3)(3,4)-或(0,4)或2⎫⎪⎪⎝⎭或2⎫⎪⎪⎝⎭16.(1)21234y x x =-+(2)(4,3(3)存在P 1)或(4,1),使以E ,H ,P 为顶点的三角形与EFB △相似,17.(1)12a =-,4c = (2)23y x =- (3)存在这样的点F ,点F 的坐标为(2,0)或18.(1)2122y x =- (2)()0,1D -或190,8D ⎛⎫- ⎪⎝⎭, (3)24QS PS t -=-+。
中考专题操练_函数中因动点产生的相似三角形问题(含答案)
例题: 如图 1,已知抛物线的顶点为 A(2,1),且经过原点 O,与 x 轴的另一个交点为 B。
⑴求抛物线的解析式;(用顶点式求得抛物线的解析式为 y 1 x2 x ) 4
⑵若点 C 在抛物线的对称轴上,点 D 在抛物线上,且以 O、C、D、B 四点为顶点的四边形为平行四边形, 求 D 点的坐标;
⑶连接 OA、AB,如图 2,在 x 轴下方的抛物线上是否存在点 P ,使得△ OBP 与△ OAB 相似?若存在,求 出 P 点的坐标;若不存在,说明理由。
O
y A
图1
B
x
例 1 题图
分析: 1.当给出四边形的两个顶点时应以两个顶点的连线为四边形的边和对角线来考虑问题以 O、C、D、B 四点
为顶点的四边形为平行四边形要分类讨论:按 OB 为边和对角线两种情况 2. 函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为
特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边
的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后
利理论对探索怎样建设3.社19会57主年义2月具,有毛重在要《的关实于践正意确义处。理社人会民主内义2.社部本科会矛质学主盾理的义的论1本本问的.邓质质题提小是的》出平创科讲,提新学话为出,内中我“创涵提们邓社新。出寻始小会的邓(找终平主关小1一代坚义)键平种表持的我2在对能.1中把科本国人社9够国发学质社5才会从4先展社,会年,主更进作会是主,人义深生为主解义毛才本层产执义放制在的质次1力政理生度《成所.认社1的兴论产还论长作.识发会发国和力刚十靠的社展主展的实,刚大教概会才义要第践发建关坚育括主是本求一的展立系2持。,义硬质、,要基生,》以人一,道理发大务本产还重发才方从理论展力是成力没要展资面而,把才促由果,有讲社的源强为把我是进中,消完话会办是调四中发们(硬先国抓灭全中主法第必、国展对2道进共住剥建提三义解一)须科的生社理生产“削立出、经决资采解学社产会,产党什,(代济前源取放技会力主是力的么消还1表基进。从和术主作义)对的执是除不中础科低发是义1为的吧社3发政社两完9国基的学级展.第建发社认二国5会展地会极全先本问技到6生一设展会识、内主,年位主分巩进建题术高产生在才主提发外义是底所义化固生立,实级力产改是义高1展一时中我决,的邓产的是力9,力革硬建到是切间5国定怎最思小力同实和国另3开道设了党积经共对的样终想年平的时行国家一放理的一执极验产农,建达。1一发,改民资方中2,根个政因教党业是设到(月再展我革教本面探是本新兴素训站、对社共2,强要国开育主指索)适任的国都的在手一执会同毛调求的放水义出出第创应务科在的调深时工、政主富1泽,政以平的4了一三造.时,学社第动刻坚代.业发规义裕东中一治来,过2解条节性代符水会一起总持前.和展律”。关社 国个领我始度放发、地主合平阶要来结社列资才认这”于会 社公域们终形和展社提题马。级务为。会,本是识个1总主 会有也党是式发更会9出变克社二关中主保硬的根8路义 主制发的衡。展快主了化思会6、系国义持道深本3线基 义占生一年量所生、义社.的主社发解用工现理化问的本 基主了条,综谓产人的会需义会生决和业金商,题1完制 本体重主邓合国力民根主要基本.主变事所平化向业也,1整度 制,大要小国家的享本9义。本质义化业有方建的是深5的度一变经平力资手受社任原理6本的服问法设根社对刻表确 的个化验年提和本段到会 1务理论第质同务题进与本会党揭一.述立 确共,。出社主社和社主基,的二理时的行社体主实示、:, 立同确苏“会义会目会3义本是提节论,基关改会现义了社.从为 ,富立共社文,社主的主一改矛巩出、的我本键造主和改其社会中当 使裕了二会明就会义。义、造盾固,对重国方是。义根造所会之华代 占,中十主程是主基建中的和和为第社要针这改本基承主一人中 世这国大义度在义本设国基两发进一会意。靠不造要本担义本民国 界是共以财的国基制内成特本类展一节主义的(自仅同求完的本质共一 人我产后富重家本度涵果色完矛社步、义主2己保时。成历质理和切 口们党毛属要直)制的包最伴社成盾会推中本要的证并,史论国发 四必领泽于标接正度确括大随会,的主进国质矛发了举标第的这成展 分须导东人志控确的立(,着主是学义改特理盾展2社。志五需是提立进 之坚的提民。制处确是1.能社义我说采制革色论也。会实着章要对)出,步 一持人出,和理立中够会建国,取度开社的发的践中。马把到奠 的民要社支经,国社充经设强积的放会提生稳证国克解社定 东民“会配济是历会分济道调极必和主出了定明历思放会了 方主以下建4广史主体制路要引然社义变,.史主和主把制 大专苏义的设大上义现度初严导要会二建化而党上义发义对度 国政为的资和劳最的出和步经格、求主设。且坚长的展改企基 进党的鉴致本社动深本对社探济区逐。义确道人极持达重生造业础 入在根社”富主会人刻质资会索结分步现立路民大社数产基的。 了过本会,是义发民最和本经的构过代社的对的会千发力逐本改社渡原主探全经展真伟根主济理发正渡化会初于促主年展概步完造会时则义索民济中正大本义结论生确的建新主步经进义的,括实成和主期。基自共的成任优构成了处方设中义探济了改阶对为现,对义总本己同国一为社务越的果根理式提国基索文社造级于国这人制 社路政的致家系国会性根本两。供的本化会与剥建家是的度 会线治道富资列家变一的本变类中了成制迅主社削设的一改的 ,第制路。本重的革、道变化不国强立度速义会制中社个造建 这三主度。社大主,社路化,同这大,的发事主度国的会过结立 是节要。会义关人也会,1社性场的标重展业义的特本主.渡合极 世、内人主有系解和是主奠我会质巨思志大的的工结(色质义时起大 界社容民义初。决社2义定国主的大想着意需发业束3社0。工期来地 社(会被民原级了会基)世了社义矛而武我义要展化,会(业。,提 会2主概则和3在生本把纪理会经盾深器国同),同实主2化党把高 主对义括专,高一产制资中)论的济,刻。新经遵改总时现义新是在对了 义手制为政第级个资度本国强基阶成在特的通民济循革之并了具民党这资工 运二七度“实一形以料的主又调础级分新别社过主文自4过,举由有主在个本人 动、届 业在一质是式农的.(初义一消,关已民是它会(没主化愿于和的新重主过过主阶 史新社二 的中化上发之民主1步工次灭开系占主要是变4收义不互集平方民(大)义渡渡义级 上民会中 社国三已展)分为人确商划剥阔也绝主正中革官能利中改针主3的用社时时工和 又主全 会的改成生坚。主立)业时削了发对义确国,僚命满、的造,主理和会期期商广 一主义会确”为产持初题正者代,广2生优革处革不资阶足典计解对义论平的.的业大 个义改提立。无,积级资的确改的消阔了势命理命仅√本段人型划决于向和赎五总总搞劳 历革造出 改“产第极形本、分造历除前根,理人的没中而民示体了在社3实买种路路糟动 史命的使 造一阶二领式主落(.析成史两景本社论民具有国形基需党范制诸深会践的经线线成人 性理历中 ,化级是导的义后√ 1农为巨极。的会内体对革成本要的和如刻主意)方济的和为民 的论史国 党”专共、工的中村自变分邓主指部实生命的结建国初实的义积法成主总自的 伟是经“ 和即政同稳家商半国的食。化小义导矛际产在走社束状设家步现社的。极改分体任食积 大以验稳 政社;致步资业殖社革阶其们平。公下盾出力一农会和况。帮构社会转引造—。务其极 胜一毛步 府会人富前本的民会命级力吐对1有,。发的个村主社之加助想会变导资—要.,力性 利、泽地 采主民。进农社地第的必和出社制中(,发以包义会间强的,变革农本社从是的和 。适东由 取义代”的业会半二阶须社了会已国3不展农围的主党原要革中社民主会根)要社创合为农 了工表这方是、主封节级走层会最主成共拘造民城国义矛的则求与保会组义主本从在会造中主业 积大段针国手义建、构农状主终义为产泥成为市营改盾建,2中经持主织工义上全一主性国要极化会话,家工改的.社成村况义达本我党武于破主、经造,设以央济社义起商性改体个义。特代转 领,制成采对业造东会主包,劳到质国领装已坏体武济阶成,互向发会基来业中质变人相劳点表变 导�
中考数学压轴题因动点产生的相似三角形问题专项练习(含答案)
中考数学压轴题因动点产生的相似三角形问题专项练习1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45° 后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q 为顶点的三角形与△PAT相似时,求所有满足条件的t的值.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC 交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.3.如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB 时,求k1的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、OF,当△OEF∽△OBE时,请直接写出满足条件的所有k2的值.4.如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=7,点D是边CA延长线的一点,AE⊥BD,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB 于点G.(1)当点E是BD的中点时,求tan∠AFB的值;(2)CE•AF的值是否随线段AD长度的改变而变化?如果不变,求出CE•AF的值;如果变化,请说明理由;(3)当△BGE和△BAF相似时,求线段AF的长参考答案一.解答题(共36小题)【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠ PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q为顶点的三角形与△PAT相似也有两种情况:△Q″PB∽△PAT、△Q″BP∽△PAT.【解答】解:(1)如图①,设直线AB与x轴的交点为M.∵∠OPA=45°,∴OM=OP=2,即M(﹣2,0).设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P(0,2)两点坐标代入,得解得.,故直线AB的解析式为y=x+2;22(2)如图①,过点Q 作x 轴的垂线QC ,交AB 于点C ,再过点Q 作直线AB 的垂线,垂足为D ,根据条件可知△QDC 为等腰直角三角形,则QD=QC .设Q (m ,m 2),则C (m ,m+2).∴QC=m+2﹣m 2=﹣(m﹣ )+ ,QD= QC= [﹣(m﹣ )+ ].故当m= 时,点Q 到直线AB的距离最大,最大值为;(3)∵∠APT=45°,∴△PBQ 中必有一个内角为45°,由图知,∠BPQ=45°不合题意.①如图②,若∠PBQ=45°,过点B 作x 轴的平行线,与抛物线和y 轴分别交于点Q′、F .此时满足∠PBQ′=45°.∵Q′(﹣2,4),F (0,4),∴此时△BPQ′是等腰直角三角形,由题意知△PAT 也是等腰直角三角形.(i )当∠PTA=90°时,得到:PT=AT=1,此时t=1;(ii )当∠PAT=90°时,得到:PT=2,此时t=0.②如图③,若∠PQB=45°,①中是情况之一,答案同上;先以点F 为圆心,FB 为半径作圆,则P 、B 、Q′都在圆F 上,设圆F 与y 轴左侧的抛物线交于另一点Q″.则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要求.设Q″(n ,n 2)(﹣2<n <0),由FQ″=2,得n 2+(4﹣n 2)2=22,即n 4﹣7n 2+12=0.解得n 2=3或n 2=4,而﹣2<n <0,故n=﹣,即Q″(﹣,3).可证△PFQ″为等边三角形,所以∠PFQ″=60°,又PQ″=PQ″,所以∠PBQ″=∠PFQ″=30°.则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.(i)若△Q″PB∽△PAT,则过点A作y轴的垂线,垂足为E.则ET= AE= ,OE=1,所以OT=﹣1,解得t=1﹣;(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.设TG=a,则PG=TG=a,AG= TG= a,AP=,∴ a+a= ,解得PT= a=﹣1,∴OT=OP﹣PT=3﹣,∴t=3﹣.综上所述,所求的t的值为t=1或t=0或t=1﹣或t=3﹣.2.【分析】(1)由AD⊥BC,BH⊥AO,利用垂直的定义得到一对直角相等,再由一对公共角,且半径相等,利用AAS得到三角形ADO与三角形BHO全等,利用全等三角形对应边相等得到OH=OD,利用等式的性质化简即可得证;(2)连接AB,AF,如图1所示,利用HL得到直角三角形ADB与直角三角形BHA全等,利用全等三角形对应角相等得到一对角相等,再由公共角相等得到三角形ABE与三角形AFB相似,由相似得比例即可确定出y与x的函数解析式;(3)连接OF,如图2所示,利用两对角相等的三角形相似得到三角形AFO与三角形FOG相似,由相似得比例求出BD的长即可.【解答】(1)证明:∵AD⊥BC,BH⊥AO,∴∠ADO=∠BHO=90°,在△ADO与△BHO中,,∴△ADO≌△BHO(AAS),∴OH=OD,又∵OA=OB,∴AH=BD;(2)解:连接AB、AF,如图1所示,∵AO是半径,AO⊥弦BF,∴∴AB=AF,∴∠ABF=∠AFB,在Rt△ADB与Rt△BHA中,,∴Rt△ADB≌Rt△BHA(HL),∴∠ABF=∠BAD,∴∠BAD=∠AFB,又∵∠ABF=∠EBA,∴△BEA∽△BAF,∴= ,∴BA2=BE•BF,∵BE•BF=y,∴y=BA2,∵∠ADO=∠ADB=90°,∴AD2=AO2﹣DO2,AD2=AB2﹣BD2,∴AO2﹣DO2=AB2﹣BD2,∵直径BC=8,BD=x,∴AB2=8x,则y=8x(0<x<4);方法二:∵BE•BF=y,BF=2BH,∴BE•BH=y,∵△BED∽△BOH,∴= ,∴OB•BD=BE•BH,∴4x=y,∴y=8x(0<x<4);(3)解:连接OF,如图2所示,∵∠GFB是公共角,∠FAE>∠G,∴当△FAE∽△FBG时,∠AEF=∠G,∵∠BHA=∠ADO=90°,∴∠AEF+∠DAO=90°,∠AOD+∠DAO=90°,∴∠AEF=∠AOD,∴∠G=∠AOD,∴AG=AO=4,∵∴∠AOD=∠AOF,∴∠G=∠AOF,又∵∠GFO是公共角,∴△FAO∽△FOG,∴= ,∵AB 2=8x ,AB=AF ,∴,∴AF=2x,=解得:x=3±,∵3+>4,舍去,∴BD=3﹣.3.【分析】(1)先通过解直角三角形求得A 的坐标,然后根据待定系数法即可求得直线AB 的解析式;(2)作DE ∥OA ,根据题意得出= = ,求得DE ,即D 的横坐标,代入AB 的解析式求得纵坐标,然后根据反比例函数图象上点的坐标特征即可求得k 1;(3)根据勾股定理求得AB 、OE ,进一步求得BE ,然后根据相似三角形的性质求得EF 的长,从而求得FM 的长,得出F 的坐标,然后根据反比例函数图象上点的坐标特征即可求得k 2.【解答】解:(1)∵A (3,0)、B (0,m )(m >0),∴OA=3,OB=m ,∵tan ∠BAO==2,∴m=6,设直线AB 的解析式为y=kx+b ,代入A (3,0)、B (0,6)得:解得:b=6,k=﹣2∴直线AB的解析式为y=﹣2x+6;(2)如图1,∵AD=2DB,∴= ,作DE∥OA,∴==,∴DE=OA=1,∴D的横坐标为1,代入y=﹣2x+6得,y=4,∴D(1,4),∴k1=1×4=4;(3)如图2,∵A(3,0),B(0,6),∴E(,3),AB==3,∵OE是Rt△OAB斜边上的中线,∴OE= AB=,BE=,∵EM⊥x轴,∴F的横坐标为,∵△OEF∽△OBE,∴=,∴,∴EF=,∴FM=3﹣=.∴F(,),∴k2=×=.。
中考数学专题复习《二次函数中的相似三角形问题》测试卷-附带答案
中考数学专题复习《二次函数中的相似三角形问题》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________1.如题 在平面直角坐标系xOy 中 抛物线22y ax bx =++与x 轴交于点()1,0A - 点()4,0B 与y 轴交于点C 连接AC BC .(1)求抛物线的解析式.(2)点D 为抛物线的对称轴上一动点 当ACD 周长最小时 求点D 的坐标.(3)点E 是OC 的中点 射线AE 交抛物线于点F P 是抛物线上一动点 过点P 作y 轴的平行线 交射线AF 与点G 是否存在点P 使得PFG △与AOE △相似?若存在 求出点P 的坐标 若不存在 请说明理由.2.如图 二次函数()220y ax bx a =+-≠的图象经过点()()2010A B -,,, 与y 轴交于点C 点P 为第四象限内抛物线上一点 连接BP AC 、 交于点Q .(1)求二次函数的表达式(2)连接BC 线段BC 的垂直平分线交x 轴于点M 求点M 的坐标 (3)探究:PQQB是否有最大值 如有请求出最大值 如没有请说明理由.3.如图 已知抛物线2y ax c =+过点(2,2)A -- 其顶点为D 过点A 作x 轴的平行线l 点12(,)(,)P p y Q q y 、是抛物线上位于点A 右侧和l 两侧的动点 直线l 始终平分∠P AQ .(1)若点(0,2)D 求抛物线的函数表达式 (2)在(1)的条件下 若1P = 求q 的值(3)在点P Q 、的运动过程中 试判断p q +的值是否变化 并说明理由.4.已知抛物线212y x bx c =++.经过()2,0A - ()0,4B - 与x 轴交于另一个点C 连接BC .(1)求抛物线的函数表达式(2)若点Q在抛物线上的对称轴上那么在抛物线上是否存在一点N使得A B Q N为顶点的四边形为平行四边形?若存在请求出N点的坐标∥交BC于点E过点D作(3)点D为直线BC下方抛物线上一动点过点D作DE AB∥轴交BC于点F求EF的最大值DF y(4)在抛物线上是否存在点P直线BP交x轴于点M使ABM与以A B C M中三点为顶点的三角形相似(不重合)?若存在请直接写出点P的坐标若不存在请说明理由.5.如图抛物线223=-++交x轴于A B两点交y轴于点C连接AC BC.y x x(1)求ABC 的面积(2)点M 为y 轴上一点 是否存在点M 使得MBC 与ABC 相似?若存在 请求出点M 的坐标 若不存在 请说明理由(3)点P 为抛物线上一点(点P 与点B 不重合) 且使得PAC △中有一个角是45︒ 请直接写出点P 的坐标.6.如图所示 已知抛物线21y ax bx =+-与x 轴交于()1,0A - ()1,0B 两点 与y 轴交于点C .(1)求此二次函数得解析式(2)过点A 作AP CB ∥交抛物线于点P 求四边形ACBP 的面积(3)在x 轴上方的抛物线上是否存在一点M 过M 作MG x ⊥轴于点G 使以A M G 三点为顶点的三角形与PCA 相似?若存在 请求出M 点的坐标 否则 请说明理由.7.如图1 平面直角坐标系xOy 中 抛物线2y ax bx c =++过点()1,0A - ()2,0B 和()0,2C 连接BC 点()(),02P m n m <<为抛物线上一动点 过点P 作PN x ⊥轴交直线BC 于点M 交x 轴于点N .(1)求抛物线和直线BC 的解析式(2)如图2 连接OM 当OCM 为等腰三角形时 求m 的值(3)当P 点在运动过程中 在y 轴上是否存在点Q 使得以O P Q 、、为顶点的三角形与以B C N 、、为顶点的三角形相似(其中点P 与点C 相对应) 若存在 直接写出点P 的坐标若不存在 请说明理由.8.抛物线2y x bx c =++与x 轴交于 ()1,0B (30)C ,-两点 与y 轴交于A 点.(1)求抛物线的表达式(2)如图1 连接AC 在y 轴的负半轴是否存在点Q 使得12OQC OAC ∠∠=?若存在 求Q 点的坐标 若不存在 请说明理由.(3)如图2 点P 是抛物线上的一个动点 且点P 在第三象限内. ∠连接PO 与直线AC 交于点D 求PDOD的最大值 ∠过点P 作y 轴的垂线交y 轴于点M 若ABO PAM △△ 求此时点P 的横坐标.9.如图 抛物线223(0)y ax ax a a =-->与x 轴交于A B 两点(点A 在点B 的左侧) 与y 轴交于点C 且OB OC =.(1)求抛物线的解析式(2)若P 是线段BC 上一动点(不与点B C 重合) 过点P 作垂直于x 轴的垂线交抛物线于点M 连接CM 当PCM △与ABC 相似时 求此时点P 的坐标.10.如图 已知直线24y x =-+分别交x 轴 y 轴于点A B 抛物线过A B 两点 点P 是线段AB 上一动点 过点P 作PC x ⊥轴于点C 交抛物线于点D .(1)若抛物线的解析式为2224y x x =-++ 设其顶点为M 其对称轴交AB 于点N . ∠求点M 和点N 的坐标∠在抛物线的对称轴上找一点Q 使AQ BQ -的值最大 请直接写出点Q 的坐标 ∠是否存在点P 使四边形MNPD 为菱形?并说明理由(2) 当点P 的横坐标为1时 是否存在这样的抛物线 使得以B P D 为顶点的三角形与AOB 相似?若存在 求出满足条件的抛物线的解析式 若不存在 请说明理由.11.如图 直线22y x =+与x 轴交于点A 与y 轴交于点B .把AOB 沿y 轴翻折 点A 落到点C 过点B 的抛物线2y x bx c =-++与直线BC 交于点(34)D -,.(1)求直线BD 和抛物线的解析式(2)在第一象限内的抛物线上 是否存在一点M 作MN 垂直于x 轴 垂足为点N 使得以M O N 为顶点的三角形与BOC 相似?若存在 求出点M 的坐标. 若不存在 请说明理由.12.抛物线223y x x =--+与x 轴交于A B 两点 与y 轴交于C 点.(1)直接写出A B C 三点的坐标(2)如图1 连接BC 点P 在抛物线上 且PAB BCO ∠=∠ 求P 点坐标.(3)如图2 点D 为抛物线顶点.点H 为AD 中点 过点H 作直线MN (异于直线AD )交抛物线于M N 两点 直线AM 与直线DN 交于点P .问点P 是否在一条定直线上?若是 求该直线的解析式 若不是 请说明理由.13.如图 在平面直角坐标系中 已知抛物线2y x bx c =++与x 轴交于点A B 两点 其中()0A 1, 与y 轴交于点()03C ,.(1)求抛物线解析式(2)如图 连接AC BC 、 过点B 作x 轴垂线 在该垂线上取点P 使得PBC 与ABC 相似(包括全等) 请求出点P 坐标.14.如图 在平面直角坐标系中 O 为坐标原点 抛物线26y ax ax a =--交x 轴负半轴于点A 交x 轴正半轴于点B 交y 轴正半轴于点C 且OB OC =.(1)如图1 求抛物线的解析式(2)如图2 点P 为第四象限的抛物线上一点 其横坐标为t 设OD d = 求d 于t 之间的函数关系(3)如图3 在(2)的条件下 过D 作DE AP ⊥ 过点A 作AF AB ⊥交ED 于F 延长PB 交DE 于点E 连接BF 并延长 连接PG 使EF PG = 若EFB PGB =∠∠ 求:点F 的坐标.15.如图 抛物线()222y x nx n =-+>与x 轴正半轴交于点A 点P 为线段OA 上一点 过P作PB x ⊥轴交抛物线()222y x nx n =-+>于点B 过B 作BC x ∥轴交抛物线()222y x nx n =-+>于点C 连接AC 交PB 于点D(1)如图1 若点A 的横坐标为92∠求抛物线的解析式:∠当45BCA ∠=︒时 求点P 的坐标:(2)若1AP = 点Q 为线段CD 上一点 点N 为x 轴上一点 且90PQN ∠=︒ 将AQP △沿直线PQ 翻折得到,A QP A Q ''所在的直线交x 轴于点M 且17PM MN = 求点Q 的纵坐标 参考答案: 1.(1)213222y x x =-++ (2)35,24D ⎛⎫ ⎪⎝⎭(3)存在 点P 的坐标为()1,32.(1)二次函数的表达式2y x x 2=--(2)M 的坐标302⎛⎫ ⎪⎝⎭,(3)PQQB 有最大值 最大值为133.(1)22y x =-+(2)3q =(3)p q +的值不变化 是定值44.(1)2142y x x =--(2)存在 53,2N ⎛⎫- ⎪⎝⎭(4)存在 ()8,205.(1)6(2)存在 点M 的坐标为30,2⎛⎫- ⎪⎝⎭(3)点P 坐标为(2,3) 57(,)246.(1)21y x =-(2)4(3)存在 ()2,3- 47,39⎛⎫⎪⎝⎭ ()4,157.(1)2y x =-+(2)1m =(3)P8.(1)223y x x =+-(2)(0,3--(3)∠912∠73- 9.(1)2=23y x x --(2)P 的坐标为5433⎛⎫- ⎪⎝⎭,10.(1)∠19,22M ⎛⎫ ⎪⎝⎭ 1,32N ⎛⎫ ⎪⎝⎭∠1,62Q ⎛⎫ ⎪⎝⎭ ∠不存在 (2)存在 2224y x x =-++或25342y x x =-++.11.(1)直线BD 的解析式为:22y x =-+ 抛物线解析式为:22y x x =-++.(2)存在 1(12)M , 2133133(M ++,.12.(1)()()()3,0,1,0,0,3A B C - (2)211,39⎛⎫ ⎪⎝⎭(3)点P 在一条定直线上 该直线的解析式为28y x =+13.(1)243y x x =-+(2)()39,14.(1)211322y x x =-++ (2)3d t =-(3)(29),F --15.(1)∠292y x x =-+ ∠7,02⎛⎫ ⎪⎝⎭(2)22+。
专题四 函数中因动点产生的相似三角形问题
专题四函数中因动点产生的相似三角形问题例题如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B。
⑴求抛物线的解析式;(用顶点式求得抛物线的解析式为xx41y2+-=)⑵若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;⑶连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由。
分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......为四边形的边和对角线来考虑问题以O、C、D、B四点为顶点的四边形为平行四边形要分类讨论:按OB为边和对角线两种情况2. 函数中因动点产生的相似三角形问题一般有三个解题途径①求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
y xEQ PC B OA 练习1、已知抛物线2y ax bx c =++经过53(33)02P E ⎛⎫⎪ ⎪⎝⎭,,,及原点(00)O ,.(1)求抛物线的解析式.(由一般式...得抛物线的解析式为225333y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由.(3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?练习2、如图,四边形OABC 是一张放在平面直角坐标系中的矩形纸片,点A在x 轴上,点C 在y 轴上,将边BC 折叠,使点B 落在边OA 的点D 处。
中考数学专题训练:相似三角形(附参考答案)
中考数学专题训练:相似三角形(附参考答案)1.若a3=b2,则a+bb的值为( )A.32B.53C.52D.232.如图,在△ABC中,DE∥BC,AD=2,BD=3,AC=10,则AE的长为( )A.3 B.4C.5 D.63.如图,AD∥BE∥FC,直线l1,l2分别与三条平行线交于点A,B,C和点D,E,F.若AB=3,BC=5,DF=12,则EF的长为( )A.4.5 B.6C.7.5 D.84.如图,小雅同学在利用标杆BE测量建筑物的高度时,测得标杆BE高1.2 m,又知AB∶BC=1∶8,则建筑物CD的高是( )A.9.6 m B.10.8 mC.12 m D.14 m5.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(1,2),B(2,1),C(3,2).现以原点O为位似中心,在第一象限内作与△ABC的相似比为2的位似图形△A′B′C′,则顶点C′的坐标是( )A.(2,4) B.(4,2)C.(6,4) D.(5,4)6.如图(单位:mm),小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5 m时,标准视力表中最大的“E”字高度为72.7 mm,当测试距离为3 m时,最大的“E”字高度为( )A.121.17 mm B.43.62 mmC.29.08 mm D.4.36 mm7.如图,AC是□ABCD的对角线,点E在CD的延长线上,连接BE分别交AC,AD 于点F,G,则下列式子一定正确的是( )A.AFCF =AGDGB.ABCE=CFAFC.BFFG =EFBFD.ADDG=ABDE8.如图,在△ABC中,D,E分别为边AB,AC上的点,试添加一个条件:________________________,使得△ADE与△ABC相似.(任意写出一个满足的条件即可)9.如图,已知在梯形ABCD中,AD∥BC,S△ABDS△BCD =12,则S△BOCS△BCD=______.10.如图,在矩形ABCD中,若AB=3,AC=5,AFFC =14,则AE的长为_____.11.如图,为了测量山坡的护坡石坝高,把一根长为4.5 m 的竹竿AC斜靠在石坝旁,量出竿上AD长为1 m时,它离地面的高度DE为0.6 m,则坝高CF为________m.12.已知在平面直12角坐标系中,△AOB的顶点分别为A(2,1),B(2,0),O(0,0).若以原点O为位似中心,相似比为2,将△AOB放大,则点A的对应点的坐标为__________________________.13.如图,在△ABC中,点D,E分别是AB,AC的中点.若S△ADE=2,则S△ABC=_____.14.如图,在平面直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是____________.15.如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.(1)求证:△ABC∽△DEC;(2)若S△ABC∶S△DEC=4∶9,BC=6,求EC的长.16.如图,在△ABC中,AB=4,BC=5,点D,E分别在BC,AC上,CD=2BD,CE =2AE,BE交AD于点F,则△AFE面积的最大值是______.17.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布前形成倒立的实像CD(点A,B的对应点分别是C,D).若物体AB的高为6 cm,小孔O到物体和实像的水平距离BE,CE分别为8 cm,6 cm,则实像CD的高度为________cm.18.如图,在正方形ABCD中,点E是边CD上一点,连接BE,以BE为对角线作正方形BGEF,边EF与正方形ABCD的对角线BD相交于点H,连接AF,有以下五个结论:①∠ABF=∠DBE;②△ABF∽△DBE;③AF⊥BD;④2BG2=BH·BD;⑤若CE∶DE=1∶3,则BH∶DH=17∶16.你认为其中正确的是____________.(填写序号)19.已知,如图1,若AD是△ABC中∠BAC的内角平分线,通过证明可得ABAC =BDCD,同理,若AE是△ABC中∠BAC的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:如图2,在△ABC中,BD=2,CD=3,AD是△ABC的内角平分线,则△ABC的BC边上的中线长l的取值范围是_____________.20.如图,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB 上,且CF=BE,AE2=AQ·AB.求证:(1)∠CAE=∠BAF;(2)CF·FQ=AF·BQ.21.在等腰三角形ABC中,AB=AC,点D是边BC上一点(不与点B,C重合),连接AD.(1)如图1,若∠C=60°,点D关于直线AB的对称点为点E,连接AE,DE,则∠BDE=________.(2)若∠C=60°,将线段AD绕点A顺时针旋转60°得到线段AE,连接BE.①在图2中补全图形;②探究CD与BE的数量关系,并证明.(3)如图3,若ABBC =ADDE=k,且∠ADE=∠C,试探究BE,BD,AC之间满足的数量关系,并证明.参考答案1.C 2.B 3.C 4.B 5.C 6.B 7.C8.ADAB =AEAC(答案不唯一) 9.2310.1 11.2.712.(4,2)或(-4,-2)13.8 14.(4,2) 15.(1)证明略(2)EC=916.43 17.4.5 18.①②③④ 19.12<l<25220.(1)证明略(2)证明略21.(1)30°(2)①图略②CD与BE的数量关系为CD=BE,证明略(3)AC=k(BD+BE),证明略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合题讲解 函数中因动点产生的相似三角形问题例题 如图1,已知抛物线的顶点为A(2,1),且经过原点O ,与x 轴的另一个交点为B 。
⑴求抛物线的解析式;(用顶点式...求得抛物线的解析式为x x 41y 2+-=) ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O、C、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;⑶连接OA 、A B,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△O AB 相似?若存在,求出P 点的坐标;若不存在,说明理由。
分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况 2. 函数中因动点产生的相似三角形问题一般有三个解题途径① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
练习1、已知抛物线2y ax bx c =++经过02P E ⎛⎫⎪ ⎪⎝⎭及原点(00)O ,.(1)求抛物线的解析式.(由一般式...得抛物线的解析式为2233y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由.(3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?练习2、如图,四边形OA BC 上,将边BC 折叠,使点B落在边OA 的点D处。
已知折叠CE =,且3tan 4EDA ∠=。
(1)判断OCD △与ADE △是否相似?请说明理由; (2)求直线CE 与x 轴交点P的坐标;(3)是否存在过点D 的直线l,使直线l、直线CE 与x 轴所围成的三角形和直线l、直线C E与y 轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由。
练习3、在平面直角坐标系xOy 中,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标为1,且过点(23),和(312)--,. (1)求此二次函数的表达式;(由一般式...得抛物线的解析式为223y x x =-++)(2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(10)(30),(03)A B C -,,,,(3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.练习4 (2008广东湛江市) 如图所示,已知抛物线21y x =-与x 轴交于A 、B两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标.(2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积.(3)在x 轴上方的抛物线上是否存在一点M,过M 作MG ⊥x 轴于点G,使以A、M 、G 三点为顶点的三角形与∆PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由.练习5、已知:如图,在平面直角坐标系中,ABC △是直角三角形,90ACB ∠=,点A C ,的坐标分别为(30)A -,,(10)C ,,3tan 4BAC ∠=. (1)求过点A B ,的直线的函数表达式;点(30)A -,,(10)C ,,B (13),,3944y x =+ (2)在x 轴上找一点D ,连接DB ,使得ADB △与ABC △相似(不包括全等),并求点D 的坐标; (3)在(2)的条件下,如P Q ,分别是AB 和AD 上的动点,连接PQ ,设AP DQ m ==,问是否存在这样的m 使得APQ △与ADB △相似,如存在,请求出m 的值;如不存在,请说明理由.O练习3图练习4图x参考答案例题、解:⑴由题意可设抛物线的解析式为1)2x (a y 2+-= ∵抛物线过原点, ∴1)20(a 02+-= ∴41a -=. 抛物线的解析式为1)2x (41y 2+--=,即x x 41y 2+-=⑵如图1,当O B为边即四边形OCDB是平行四边形时,C D错误!OB ,由1)2x (4102+--=得4x ,0x 21==, ∴B(4,0),OB =4. ∴D 点的横坐标为6将x=6代入1)2x (41y 2+--=,得y=-3,∴D(6,-3);根据抛物线的对称性可知,在对称轴的左侧抛物线上存在点D,使得四边形O DCB 是平行四边形,此时D点的坐标为(-2,-3),当OB 为对角线即四边形OCB D是平行四边形时,D点即为A 点,此时D点的坐标为(2,1) ⑶如图2,由抛物线的对称性可知:AO=A B,∠A OB =∠ABO. 若△BOP 与△A OB 相似,必须有∠POB =∠BOA=∠BPO 设OP 交抛物线的对称轴于A′点,显然A′(2,-1)∴直线O P的解析式为x 21y -=由x x 41x 212+-=-,得6x ,0x 21==.∴P(6,-3)过P 作PE ⊥x轴,在Rt △BEP 中,BE =2,PE=3, ∴PB=13≠4.∴PB≠OB,∴∠BOP≠∠BPO, ∴△PBO 与△B AO 不相似,同理可说明在对称轴左边的抛物线上也不存在符合条件的P点. 所以在该抛物线上不存在点P ,使得△BO P与△A OB相似.练习1、解:(1)由已知可得:33750420a a b c ⎧+=⎪⎪+=⎨⎪=⎪⎩解之得,2033a b c =-==,,.因而得,抛物线的解析式为:223y x x =-. (2)存在.设Q 点的坐标为()m n ,,则2233n m m =-+, 要使,BQ PB OCP PBQ CP OC =△∽△,=2233m m +=解之得,12m m ==当1m =2n =,即为Q 点,所以得2)Q 要使,BQ PB OCP QBP OC CP =△∽△,则有33n -=即223333m +-=解之得,12m m ==,当m =,即为P 点,当1m =3n =-,所以得3)Q -. 故存在两个Q 点使得OCP △与PBQ △相似.Q点的坐标为3)-. (3)在Rt OCP △中,因为tan CP COP OC ∠==30COP ∠=. 当Q点的坐标为2)时,30BPQ COP ∠=∠=. 所以90OPQ OCP B QAO ∠=∠=∠=∠=.因此,OPC PQB OPQ OAQ ,,,△△△△都是直角三角形. 又在Rt OAQ △中,因为tan 3QA QOA AO ∠==.所以30QOA ∠=.即有30POQ QOA QPB COP ∠=∠=∠=∠=. 所以OPC PQB OQP OQA △∽△∽△∽△, 又因为QP OP QA OA ,⊥⊥30POQ AOQ ∠=∠=, 所以OQA OQP △≌△.练习2 解:(1)OCD △与ADE △相似。
理由如下:由折叠知,90CDE B ∠=∠=°,1290∠+∠=∴°,13902 3.∠+∠=∴∠=∠,又90COD DAE ∠=∠=∵°,OCD ADE ∴△∽△。
(2)3tan 4AE EDA AD ∠==∵,∴设AE=3t, 则AD=4t 。
由勾股定理得DE=5t。
358OC AB AE EB AE DE t t t ==+=+=+=∴。
由(1)OCD ADE △∽△,得OC CDAD DE=, 845t CDt t=∴, 10CD t =∴。
在DCE △中,222CD DE CE +=∵,222(10)(5)t t +=∴,解得t=1。
∴OC=8,AE =3,点C 的坐标为(0,8),点E的坐标为(10,3),设直线CE 的解析式为y =kx +b,图1图21038k b b +=⎧⎨=⎩,∴,解得128k b ⎧=-⎪⎨⎪=⎩,,182y x =-+∴,则点P 的坐标为(16,0)。
(3)满足条件的直线l 有2条:y =-2x+12, y =2x -12。
如图2:准确画出两条直线。
练习3 解:(1)二次函数图象顶点的横坐标为1,且过点(23),和(312)--,,∴由1242393212.ba abc a b ⎧-=⎪⎪++=⎨⎪-+=-⎪⎩,, 解得123.a b c =-⎧⎪=⎨⎪=⎩,,∴此二次函数的表达式为 223y x x =-++.(2)假设存在直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似.在223y x x =-++中,令0y =,则由2230x x -++=,解得1213x x =-=,(10)(30)A B ∴-,,,.令0x =,得3y =.(03)C ∴,.设过点O 的直线l 交BC 于点D ,过点D 作DE x ⊥轴于点E .点B 的坐标为(30),,点C 的坐标为(03),,点A 的坐标为(10)-,4345.AB OB OC OBC ∴===∠=,, BC ∴==.要使BOD BAC △∽△或BDO BAC △∽△, 已有B B ∠=∠,则只需BD BOBC BA=, ①或.BO BDBC BA= ﻩﻩ②成立.若是①,则有344BO BC BD BA⨯===. 而45OBC BE DE ∠=∴=,.∴在Rt BDE △中,由勾股定理,得222222BE DE BE BD +===⎝⎭.解得94BE DE ==ﻩ(负值舍去).93344OE OB BE ∴=-=-=.∴点D 的坐标为3944⎛⎫⎪⎝⎭,.将点D 的坐标代入(0)y kx k =≠中,求得3k =.∴满足条件的直线l 的函数表达式为3y x =.[或求出直线AC 的函数表达式为33y x =+,则与直线AC 平行的直线l 的函数表达式为3y x =.此时易知BOD BAC △∽△,再求出直线BC 的函数表达式为3y x =-+.联立33y x y x ==-+,求得点D 的坐标为3944⎛⎫ ⎪⎝⎭,.]若是②,则有32BO BA BD BC ===而45OBC BE DE ∠=∴=,.∴在Rt BDE △中,由勾股定理,得222222BE DE BE BD +===.解得2BE DE ==ﻩ(负值舍去).321OE OB BE ∴=-=-=.∴点D 的坐标为(12),.将点D 的坐标代入(0)y kx k =≠中,求得2k =.∴满足条件的直线l 的函数表达式为2y x =.∴存在直线:3l y x =或2y x =与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似,且点D 的坐标分别为3944⎛⎫⎪⎝⎭,或(12),.(3)设过点(03)(10)C E ,,,的直线3(0)y kx k =+≠与该二次函数的图象交于点P . 将点(10)E ,的坐标代入3y kx =+中,求得3k =-.∴此直线的函数表达式为33y x =-+.设点P 的坐标为(33)x x -+,,并代入223y x x =-++,得250x x -=. 解得1250x x ==,(不合题意,舍去).512x y ∴==-,. ∴点P 的坐标为(512)-,.此时,锐角PCO ACO ∠=∠. 又二次函数的对称轴为1x =,∴点C 关于对称轴对称的点C '的坐标为(23),. ∴当5p x >时,锐角PCO ACO ∠<∠;当5p x =时,锐角PCO ACO ∠=∠; 当25p x <<时,锐角PCO ACO ∠>∠.练习四解:(1)令0y =,得210x -= 解得1x =± 令0x =,得1y =-∴ A (1,0)- B(1,0) C (0,1)-(2)∵O A =O B =OC =1 ∴∠BAC =∠AC O=∠BC O=45 ∵A P ∥CB, ∴∠P AB=45过点P 作P E ⊥x 轴于E ,则∆AP E为等腰直角三角形 令O E =a ,则P E =1a + ∴P(,1)a a +∵点P 在抛物线21y x =-上 ∴211a a +=-解得12a =,21a =-(不合题意,舍去) ∴P E =3∴四边形A CBP 的面积S =12AB •OC+12AB •P E =112123422⨯⨯+⨯⨯=(3). 假设存在∵∠P AB =∠BA C =45 ∴P A ⊥A C∵M G⊥x 轴于点G , ∴∠MG A =∠P AC =90 在R t△A O C中,OA =O C =1 ∴AC在Rt △P A E中,A E=P E=3 ∴A P =设M点的横坐标为m ,则M 2(,1)m m - ①点M在y 轴左侧时,则1m <- (ⅰ) 当∆AMG ∽∆PC A时,有AG PA =MGCA∵A G=1m --,M G=21m -2= 解得11m =-(舍去) 223m =(舍去) (ⅱ) 当∆M A G ∽∆P CA 时有AG CA =MGPA即2=解得:1m =-(舍去) 22m =- ∴M (2,3)-② 点M 在y 轴右侧时,则1m > (ⅰ) 当∆A MG ∽∆PC A时有AG PA =MGCA∵AG=1m +,MG=21m -∴2= 解得11m =-(舍去) 243m =∴M 47(,)39(ⅱ) 当∆MA G ∽∆PCA 时有AG CA =MGPA即2=---- 解得:11m =-(舍去) 24m = ﻫ∴M (4,15)∴存在点M,使以A 、M、G 三点为顶点的三角形与∆P CA 相似M点的坐标为(2,3)-,47(,)39,(4,15)练习5、解:(1)点(30)A -,,(10)C , 4AC ∴=,3tan 434BC BAC AC =⨯=⨯=∠,B 点坐标为(13), 设过点A B ,的直线的函数表达式为y kx b =+,由0(3)3k b k b =⨯-+⎧⎨=+⎩ 得34k =,94b =∴直线AB39(2)如图1,过点B 作BD AB ⊥,交x 轴于点D, 在Rt ABC △和Rt ADB △中,BAC DAB =∠∠ Rt Rt ABC ADB ∴△∽△,D ∴点为所求又4tan tan 3ADB ABC ==∠∠, 49tan 334CD BC ADB ∴=÷=÷=∠134OD OC CD ∴=+=,1304D ⎛⎫∴ ⎪⎝⎭, (3)这样的m 存在 在Rt ABC △中,由勾股定理得5AB =如图1,当PQ BD ∥时,APQ ABD △∽△ 则133413534m m +-=+,解得259m = 如图2,当PQ AD ⊥时,APQ ADB △∽△ 则133413534m m +-=+,解得12536m =图1图2。