化工原理课程设计煤油冷却列管式放热器.

合集下载

《化工原理》课程设计--煤油冷却器的设计

《化工原理》课程设计--煤油冷却器的设计

《化工原理》课程设计任务书一、设计题目:煤油冷却器的设计二、原始数据及操作条件1、处理能力8万吨/年2、设备形式列管式3、煤油T入= 140℃,T出= 40℃4、冷水T入= 25℃,T出= 40℃5、⊿P<=105Pa6、煤油ρ=825Kg/m3,η=7.15×10-4Pa.S C V=2.22K J/Kg.℃7、λ= 0.14W/(m.℃)8、每年按330天计,24小时/天连续进行。

三、设计要求选择适宜的列管式换热器并进行核算,绘制设备条件图(1号)一份,编制一份设计说明书(打印稿),其主要内容包括:1、前言2、生产条件的确定3、换热器的设计计算4、设计结果列表5、设计结果的讨论与说明6、注明参考和使用的设计资料7、结束语《化工原理》课程设计说明书一、前言在化工、石油、动力、制冷、食品等行业中广泛使用各换热器,且它们是这些行业的通用设备,并占有十分重要的地位。

随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。

换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。

随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。

在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器大的机构尺寸。

列管式换热器的应用已有很悠久的历史。

在化工、石油、能源设备等部门,列管式换热器仍是主要的换热设备。

列管换热器的设计资料已较为完善,已有系列化标准。

目前我国列管换热器的设计、制造、检验、验收按“钢制管壳式(即列管式)换热器”(GB151)标准执行。

列管式换热器主要有固定管板式换热器、浮头式换热器、U型管换热器和填料函式换热器等。

固定管板式换热器有结构简单、排管多等优点。

但由于结构紧凑,固定管板式换热器的壳侧不易清洗,而且当管束和壳体之间的温差太大时,管子和管板易发生脱离,故不适用与温差大的场合。

煤油冷却器的设计—化工原理课程设计

煤油冷却器的设计—化工原理课程设计

化工原理课程设计煤油冷却器的设计姓名:学号:学院:专业班级:指导教师:xx年xx月本设计的任务就是完成一满足生产要求的列管式换热器的设计和选型。

本设计的核心是计算换热器的传热面积,进而确定换热器的其他尺寸或选择换热器的型号。

由总传热速率方程可知,要计算换热面积,得确定总传热系数和平均温差。

由于总传热系数与换热器的类型、尺寸、流体流到等诸多因素有关,----而平均温差与两流体的流向、辅助物料终温的选择有关,因此管壳式换热器设计和选型需考虑许多问题。

通过多次核算和比较,设计结果如下:带膨胀节的固定管板式换热器,选用φ25Χ2.5的碳钢管,换热面积为131.4 m²,且为双管程单壳程结构,传热管排列采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。

管数为300,管长为6m,管间距为32mm,折流板形式采用上下结构,其间距为150mm,切口高度为25%,壳体内径为700mm,该换热器可满足生产需求。

The task of this design is to complete a meet the production requirements of shell and tube heat exchanger design and type selection. The total heat transfer rate equation shows that to calculate heat transfer area, you must determine the total heat transfer coefficient and the mean temperature difference. Through the repeated calculation and comparison, design results are as follows. Fixed tube plate heat exchanger with expansion joint, Select phi2525 carbon steel pipe, heat transfer area of 131.4 square meters, And for the tube side shell side of the single structure, the pipe arrangement method, namely each way are sorted by regular triangle, diaphragm use square is arranged on both sides. Pipe number is 300, the length is 6 meters, tube spacing is 32 mm, baffle plate form adopts up and down structure, the spacing is 150 mm, incision height was 25%, the shell inside diameter is 700 mm, the heat exchanger can meet the production requirements.前言 (4)第1章文献综述 (5)1.1 换热器分类 (7)1.2 列管式换热器的类型 (8)1.3 列管式换热器的结构 (9)1.3.1 管程结构 (9)1.3.2 壳程结构 (10)第2章设计方案确定 (14)2.1设计任务及操作条件 (15)2.1.1 设计方案的确定 (17)2.2 设计步骤 (17)2.2.1 非系列标准换热器的一般步骤 (17)第3章设计计算 (18)3.1 确定设计方案 (18)3.2 确定物性数据 (18)3.3 计算总传热系数 (18)3.4 计算传热面积 (23)3.5 工艺结构和尺寸 (23)3.6 换热器核算 (25)第4章设计全部参数 (30)设计小结 (31)参考文献 (32)附表 (33)附录 (34)热交换器,简称换热器,是在不同温度的流体间,进行传递热能的装置。

化工原理课程设计--用水冷却煤油产品的列管式换热器的工艺设计

化工原理课程设计--用水冷却煤油产品的列管式换热器的工艺设计

化工原理课程设计题目:用水冷却煤油产品的列管式换热器的工艺设计系别:班级:学号:姓名:指导教师:日期:2015年6月26日任务书一、设计题目:用水冷却煤油产品的列管式换热器的工艺设计二、设计任务:1、处理能力:45t/年煤油2、设备型号:列管式换热器3、操作条件:煤油:入口温度140℃,出口温度40℃冷却介质:循环水,入口温度20℃,出口温度30℃允许压降:不大于105Pa每年按330天计建厂地址:新乡三、设计要求1、选择适宜的列管式换热器并进行核算2、要进行工艺计算3、要进行主体设备的设计(主要设备尺寸、横算结果等)4、编写设计任务书5、进行设备结构图的绘制(设备技术要求、主要参数、接管表、部件明细表、标题栏。

)目录一、设计方案 (4)1.1换热器的选择 (4)1.2流动空间及流速的确定 (4)二、物性数据 (5)三、计算总传热系数: (5)3.3、估算传热面积 (5)3.3.1热流量 (5)3.3.2平均传热温差 (5)3.3.3传热面积 (5)3.3.4冷却水用量 (5)3.4、工艺结构尺寸 (6)3.4.1管径和管内流速 (6)3.4.2管程数和传热管数 (6)3.4.3平均传热温差校正及壳程数 (6)3.4.4传热管排列和分程方法 (7)3.4.5壳体内径 (7)3.4.6折流板 (7)3.4.7接管 (7)3.5换热器核算 (8)3.5.1热流量核算 (8)3.5.2换热器内流体的流动阻力 (10)四、设计结果设计一览表 (12)五、设计自我评价 (12)六、参考文献 (13)七、主要符号说明 (13)八、主体设备条件图及生产工艺流程图(附图) (13)一、设计方案1.1 换热器类型的选择列管式换热器有以下几种:1、固定管板式固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈,(或膨胀节)。

当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。

煤油冷却器的设计 化工原理课程设计

煤油冷却器的设计 化工原理课程设计

课程设计课程名称化工原理课程设计题目名称煤油冷却器的设计专业班级食品营养与检测学生姓名学号指导教师二O O年12 月31 日目录1.设计任务 ----------------- 12. 设计计算 ----------------- 2(1)确定设计方案 ---------------------- 2(2)确定物性系数-------------------------- 2(3)计算总传热系数 ------------------- 3 (4)计算传热面积--------------------------- 4(5)工艺结构尺寸--------------------------- 4(6)换热器核算 ------------------------ 53. 换热器主要结构尺寸和计算结果表1 9煤油冷却器的设计列管式换热器【设计任务】一、设计题目列管式换热器的设计二、设计任务及操作条件(1)处理能力: M*103 t/Y(其中:M=30+学号后两位)煤油(2)设备型式: 列管式换热器(3)操作条件①煤油:入口温度110℃,出口温度60℃。

②冷却介质:循环水,入口温度29℃,出口温度39℃。

③允许压降:不大于105 Pa。

④煤油定性温度下的物性数据:定压比热容=3.297kJ/(kg.℃)导热系数=0.0279 W/(m.0C)⑤每年按330天计,每天24小时连续运行。

(4)建厂地址蚌埠地区三、设计要求试设计一台适宜的列管式换热器完成该生产任务。

【设计计算】一、确定设计方案1.选择换热器的类型两流体温度变化情况:热流体进口为温度110℃,出口温度60℃;冷流体(循环水)进口温度29℃,出口温度39℃。

该换热器用循环水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用带膨胀节的固定管板式换热器。

2.流动空间及流速的确定由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,油品走壳程。

化工课程设计--用水冷却煤油产品的多程列管式换热器设计

化工课程设计--用水冷却煤油产品的多程列管式换热器设计

化工课程设计--用水冷却煤油产品的多程列管式换热器设计化工原理课程设计设计书专业年级 2011级应用化学小组成员指导教师日期 2014-5-27目录目录…………………………………………………第一章设计任务书 (1)第二章概述 (2)第三章结构设计与说明 (4)第四章换热器的设计计算 (5)第五章总结 (16)第六章参考文献 (18)第一章设计任务书一、设计名称用水冷却煤油产品的多程列管式换热器设计二、设计任务使煤油从140℃冷却到40℃,压力1bar(100kpa) ,冷却剂为水,水压力为3bar(300kpa),处理量为10t/h。

三、设计任务1 合理的参数选择和结构设计2 传热计算和压降计算:设计计算和校核计算四、设计说明书内容1 传热面积2 管程设计包括:总管数、程数、管程总体阻力校核3 壳体直径4 结构设计包括流体壁厚5 主要进出口管径的确定包括:冷热流体的进出口管五、设计进度1 设计动员,下达设计任务书 0.5天2 搜集资料,阅读教材,拟定设计进度 1.5天3 设计计算(包括电算,编写说明书草稿) 5-6天4 绘图 3-4天5 整理,抄写说明书 2天第二章概述化工生产中,无论是化学过程还是物理过程,几乎都需要热量的引入和导出.例如在绝大多数化学反应过程和物理过程都是在一定温度下进行的,为了使物系达到并保持指定的温度,就要预先对物料进行加热或冷却,并在很多过程进行时,也要及时取走过程放出的热量或补充过程吸收的热量.工业上用于传热过程的基本设备称为换热器.在化工生产中,最常见的是两流体间的热交换.而且多是间壁式换热,两流体不接触,不混合.冷热两流体在传热是被固体壁面(传热面)所隔开,两流体分别在壁画两侧流动.典型的换热器有套管式换热器和列管式换热器. 列管式换热器是目前化工及酒精生产上应用最广的一种换热器。

它主要由壳体、管板、换热管、封头、折流挡板等组成。

所需材质,可分别采用普通碳钢、紫铜、或不锈钢制作。

化工原理课程设计——列管式换热器的设计

化工原理课程设计——列管式换热器的设计

XX大学XX学院化工原理课程设计班级姓名学号指导教师 ____二零一X年X月X日化工原理课程设计任务书皖西学院生物与制药工程学院课程设计说明书题目:水冷却煤油列管式换热器的设计课程:化工原理系(部):专业:班级:学生姓名:学号:指导教师:完成日期:课程设计说明书目录第一章设计资料一、设计简介 (5)二、设计任务、参数和质量标准 (7)第二章工艺设计与说明一、工艺流程图 (8)二、工艺说明 (8)第三章物料衡算、能量衡算与设备选型一、物料衡算 (9)二、能量衡算 (11)三、主要设备选型 (13)第四章结论与分析结论与分析 (15)第五章设计总结设计总结 (17)参考文献 (17)第一章设计资料一、设计简介换热器是许多工业生产部门的通用工艺设备,尤其是石油、化工生产应用更为广泛。

在化工厂中换热器可用作加热器、冷却器、冷凝器、蒸发器和再沸器等。

进行换热器的设计,首先是根据工艺要求选用适当的类型,同时计算完成给定生产任务所需的传热面积,并确定换热器的工艺尺寸。

根据操作条件设计出符合条件的换热器,设计方案的确定包括换热器形式的选择,加热剂或冷却剂的选择,流体流入换热器的空间以及流体速度的选择。

本课程设计是根据任务给出的操作目的及条件、任务,合理设计适当的换热器类型,以满足生产要求。

1、固定板式换热器(代号G)设备型号内容有:壳体公称直径(mm),管程数,公称压力(×9.81×104 Pa),公称换热面积(m2),如G800I-6-100型换热器,G表示固定板式列管换热器,壳体公称直径为800mm,管程数为1,公称压力为6×9.81×104 Pa,换热面积为100m22、浮头式列管换热器(代号F)设备型号内容有:壳体公称直径(mm),传热面积(m2),承受压力(×9.81×104 Pa),管程数,如F A600-13-16-2型换热器,F代表浮头是列管换热器,B表示换热器为管径错误!未找到引用源。

化工原理课程设计任务书-用水冷却煤油产品的列管式换热器的设计

化工原理课程设计任务书-用水冷却煤油产品的列管式换热器的设计

化工原理课程设计设计题目:用水冷却煤油产品的列管式换热器的设计实用文档目录(一)综述 (2)1.换热器类型 (2)2.换热器的主要用途........................ (2)(二)课程任务设计书 (3)1.设计题目 (3)2.设计条件 (3)(三)设计方案简介 (4)1.流动空间的确定 (4)2.定性温度 (4)3.水和煤油的物理性质 (4)(四)计算总的传热系数 (4)1.热流量及温度计算 (4)2.平均温度校正 (5) (5)3.确定总的传热系数K估4.选择换热器类型 (5)(五)换热总传热系数核算 (6)1.壳程对流传热系数 (6)实用文档2. 管程对流传热系数 (7)3. 污垢热阻 (8)4.传热系数K (8)(六)计算传热面积裕度 (8)1.换热器实际面积 (8)2.面积裕度 (8)(七)核算压强降 (8)1.管程压力降的核算 (8)2.壳程压力降核算 (9)(八)设计结果总览 (11)(九)实验心得 (11)(十)参考文献 (12)(一)综述实用文档换热器的分类与比较,根据冷、热流体热量交换的原理和方式,器基本上可分为三大类即间壁式混合式和蓄热式,其中间壁式换热器应用最多,所以主要讨论此类换热器。

1.换热器的主要类型表面式换热器表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。

表面式换热器有管壳式、套管式和其他型式的换热器。

蓄热式换热器蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。

蓄热式换热器有旋转式、阀门切换式等。

流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。

列管式煤油冷却器的设计说明书

列管式煤油冷却器的设计说明书

合肥工业大学化工原理课程设计说明书设计题目列管式煤油冷却器的设计学生姓名谢继强学生学号同组学生祝尚宋响亮邓威指导老师陈亚中学院医学工程学院专业班级制药工程12—2班完成时间2014年3月27日设计任务书一设计题目:列管式煤油冷却器的设计二设计任务及操作条件1.处理能力:10万吨/年煤油2. 设备形式:列管式换热器3.操作条件(1)煤油:入口温度140℃.出口温度40℃(2)冷却介质:自来水。

入口温度30℃.出口温度40℃(3)允许压强降:不大于1000kPa(4)煤油定性温度下的物性数据:密度 825kg/m3。

黏度7.15*10-4Pa。

s 。

比热容 2。

22kJ/(kg.℃) .导热系数0.14W/(m.℃)(5)每年按330天计.每天按24小时连续运行4。

提交文件(1)设计说明书一份(2)A3工艺流程图一张(3)A1换热器装配图一张《化工原理》课程设计成绩评定表说明:评定成绩分为优秀(90-100).良好(80—89).中等(70—79)。

及格(60-69)和不及格(〈60)。

第一章绪论1.1换热器的概述换热器是许多工业生产中常用的设备。

尤其是石油、化工、制药生产应用更为广泛。

在化工厂中换热器可用做加热器、冷却器、冷凝器、蒸发器、和再沸器等。

换热器类型众多.性能各异.各具特点。

可以适应绝大多数工艺过程对换热器的要求.进行换热器的设计。

首先是根据工艺要求选用适当的类型。

同时计算完成给定生产任务所需的传热面积.并确定换热器的工艺尺寸.1。

2换热器的分类换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式.其中间壁式换热器应用最广泛。

其中管壳式换热器的分类见表1-1[1].表1-1 管壳式换热器的结构分类1。

3列管式换热器列管式换热器(tubular exchanger)是目前化工及酒精生产上应用最广的一种换热器.它主要由壳体、管板、换热管、封头、折流挡板等组成。

所需材质。

可分别采用普通碳钢、紫铜、或不锈钢制作.在进行换热时.一种流体由封头的连结管处进入。

管式换热器(煤油冷却器)的设计

管式换热器(煤油冷却器)的设计

课程设计课程名称化工原理课程设计题目名称煤油冷却器的设计专业班级09级生物工程(2)班学生姓名学号指导教师孙兰萍二O一一年十二月二十日1 设计任务书1.1 设计题目煤油冷却器的设计1.2 设计任务及操作条件(1)处理能力: M ⨯104 t/Y 煤油(2)设备型式: 列管式换热器(3)操作条件①煤油:入口温度140℃,出口温度40℃。

②冷却介质:循环水,入口温度30℃,出口温度40℃。

③允许压降:不大于105 Pa 。

④煤油定性温度下的物性数据:3/825m kg C =ρ;s Pa C ⋅⨯=-41015.7μ;pC c =2.22kJ/(kg.℃);C λ=0.14 W/(m.℃)⑤每年按330天计,每天24小时连续运行。

(4)建厂地址 天津地区1.3 设计要求试设计一台适宜的列管式换热器完成该生产任务。

1.4 工作计划1、领取设计任务书,查阅相关资料(1天);2、确定设计方案,进行相关的设计计算(2天);3、校核验算,获取最终的设计结果(1天);4、编写课程设计说明书(论文),绘制草图等(1天)。

1.5 设计成果要求1、通过查阅资料、设计计算等最终提供课程设计说明书(论文)电子稿及打印稿1份,并附简单的设备草图。

2、课程设计结束时,将按以下顺序装订的设计成果材料装订后交给指导教师:(1)封面(具体格式见附件1)(2)目录(3)课程设计任务书(4)课程设计说明书(论文)(具体格式见附件2)(5)参考文献(6)课程设计图纸(程序)1.6 几点说明1、本设计任务适用班级:09生物工程(本)2班(其中:学号1-15号,M=15;学号16-30号,M=25;学号31-46号,M=40);2、课程设计说明书(论文)格式也可参阅《蚌埠学院本科生毕业设计(论文)成果撰写规范》中的相关内容。

指导教师:教研室主任:系主任:2 确定设计方案2.1 选择换热器的类型两流体的温度变化情况:热流体即煤油的进口温度140℃,出口温度40℃;冷流体即循环水进口温度30℃,出口温度40℃。

化工原理课程设计-换热器设计任务书

化工原理课程设计-换热器设计任务书

题目一:用水冷却煤油产品的列管式换热器设计任务书《处理量为XXX吨/年XXXXXXXX的工艺设计》设计任务书一、设计名称用水冷却煤油产品的多程列管式换热器设计二、设计条件使煤油从140℃冷却到40℃,压力1bar ,冷却剂为水,水压力为3bar,处理量为10t/h,进口温度20 ℃,出口温度40 ℃三、设计任务1 合理的参数选择和结构设计2 传热计算和压降计算:设计计算和校核计算四、设计说明书内容1 传热面积2 管程设计包括:总管数、程数、管程总体阻力校核3 壳体直径4 结构设计包括壁厚5 主要进出口管径的确定包括:冷热流体的进出口管6流程图(以图的形式,并给出各部分尺寸)及结构尺寸汇总(以表的形式)7评价之8参考文献一、设计的目的通过对煤油产品冷却的列管式换热器设计,达到让学生了解该换热器的结构特点,并能根据工艺要求选择适当的类型,同时还能根据传热的基本原理,选择流程,确定换热器的基本尺寸,计算传热面积以及计算流体阻力。

总之,通过设计达到让学生自己动手进行设计的实践,获取从事工程技术工作的能力。

二、设计的指导思想1 结构设计应满足工艺要求2 结构简单合理,操作调节方便,运行安全可靠3 设计符合现行国家标准等4 安装、维修方便三、设计要求1 计算正确,分析认证充分,准确2 条理清晰,文字流畅,语言简炼,字迹工整3 图纸要求,图纸、尺寸标准,图框,图签字规范4 独立完成四、设计课题工程背景在石油化工生产过程中,常常需要将各种石油产品(如汽油、煤油、柴油等)进行冷却,本设计以某厂冷却煤油产品为例,让学生熟悉列管式换热器的设计过程。

五、参考文献1 化工过程及设备设计,华南工学院,19862 传热设备及工业炉,化学工程手册第8篇,19873 化工设备设计手册编写组. 金属设备,19754 尾范英郎(日)等,徐忠权译,热交换设计物册,19815 谭天恩等. 化工原理(上、下册)化学工业出版社.六、设计思考题1设计列管式换热器时,通常都应选用标准型号的换热器,为什么?2 为什么在化工厂使用列管式换热最广泛?3 在列管式换热器中,壳程有挡板和没有挡板时,其对流传热系数的计算方法有何不同?4 说明列管式换热器的选型计算步骤?5 在换热过程中,冷却剂的进出口温度是按什么原则确定的?6 说明常用换热管的标准规格(批管径和管长)。

化工原理课程设计任务书列管式换热器

化工原理课程设计任务书列管式换热器

化工原理课程设计任务书换热器的设计塔里木大学生命科学学院化学化工系二O一三年十二月塔里木大学生命科学学院化工原理课程设计任务书专业班级学生姓名发题时刻: 2012 年 12 月 2 日一、设计题目:煤油冷却器的设计1.处置能力:年处置煤油xy万吨(x是学号的十位数+1,y是学号的个位数,比如学号25,确实是35)2.设备形式:列管式换热器3.设计参数(1)煤油:入口温度155℃,出口温度45℃(2)冷却介质:自来水,入口温度35℃,出口温度45℃(3)许诺压强降:不大于100kPa(4)煤油定性温度下的物性数据:密度825kg/m3,黏度×,比热容(kg.℃),导热系数(m.℃)(5)每一年按335天计,天天24小时持续运行(6)建厂地域:大气压为760mmHg、自来水年平均温度为20℃的库车县。

三、设计要求和工作量一、完成设计说明书一份;二、绘制换热器装配图(A3图纸)四、设计说明书要紧内容(参考)化工原理课程设计任务书摘要第一章前言第二章换热器设计简介换热器概述换热器的分类换热器选型及其依据管程和壳程数的确信流动空间的选择流体流速的选择流动方式的选择第三章列管式换热器的设计计算传热系数K平均温度差对流传热系数污垢热阻流体流动阻力(压强降)的计算第四章换热器设计确信物性数据传热面积初值计算管侧传热系数管内给热系数传热核算壳侧压力降管侧压降计算裕度计算第五章零件计算封头缓冲挡板放气孔、排液孔接管假管拉杆和定距管膨胀节第六章设计结果汇总要紧结构参数表第七章设计小结参考文献附录换热器装配图(A3图纸)五、要紧参考文献[1] 谭天恩,等.化工原理(第三版).北京:化学工业出版社,2020[2]大连理工大学化工原理教研室.化工原理课程设计.大连:大连理工大学出版社,1994[3] 贾绍义,柴诚敬.化工原理课程设计.天津:天津大学出版社,2002[4] 时钧主编.化学工程手册(第二版).北京:化学工业出版社,1996[5] 魏崇光,郑晓梅. 化工工程制图[M]. 北京:化学工业出版社,1998[6] 娄爱娟,吴志泉. 化工设计[M].上海:华东理工大学出版社,2002[7] 华东理工大学机械制图教研组. 化工制图[M]. 北京:高等教育出版社,1993[8] 王静康. 化工设计[M]. 北京:化学工业出版,1998[9] 傅启民. 化工设计[M]. 合肥:中国科学技术大学出版社,2000[10] 董大勤. 化工设备机械设计基础[M]. 北京:化学工业出版社,1999[11] GB 151-1999管壳式换热器[12] JB/T 4715-92 固定管板式换热器与大体参数[13] 靳明聪. 换热器[M]. 重庆:重庆大学出版社,1990参考文献并非局限于上述所列。

化工原理课程设计---用水冷却煤油产品的列管式换热器的设计

化工原理课程设计---用水冷却煤油产品的列管式换热器的设计

用水冷却煤油产品的列管式换热器的设计:一、设计任务及条件(1)使煤油从140℃冷却到40℃,压力1bar;(2)冷却剂为水,水压力为3bar,处理量为10t/h。

二、设计内容(1)合理的参数选择和结构设计:传热面积;管程设计包括:总管数、程数、管程总体阻力校核;壳体直径;结构设计包括流体壁厚;主要进出口管径的确定包括:冷热流体的进出口管(2)传热计算和压降计算:设计计算和校核计算。

三、设计成果(1)设计说明书一份;(2)A4设计图纸包括:换热器的设备尺寸图。

目录第一章绪论 (1)1.1 概述 (1)1.2 换热器设计依据 (1)1.3 换热器选型 (1)1.3.1 固定管板式换热器 (2)1.3.2 浮头式换热器 (2)1.3.3 U型管式换热器 (2)1.3.4 填料函式换热器 (3)第二章确定设计方案 (4)2.1换热器类型的选型 (4)2.1.1 换热器内冷热流体通道的选择 (4)2.1.2 换热管的选择 (5)第三章确定物性参数 (6)第四章估算传热面积 (7)4.1 热流量 (7)4.2 平均传热温差 (7)4.3 冷却水用量 (7)4.4 总传热系数K (7)4.4.1管程传热系数 (7)4.5 传热面积 (8)第五章工艺结构尺寸 (9)5.1 管径和管内流速 (9)5.2 管程数和传热管数 (9)5.3 平均传热温差校正及壳程数 (9)5.4 传热管排列和分程方法 (10)5.5 壳体内径 (10)5.6 折流板 (10)5.7 接管 (10)第六章换热器核算 (12)6.1 热量核算 (12)6.1.1壳程对流传热系数 (12)6.1.2 管程对流给热系数 (13)6.1.3 传热系数K (13)6.2 换热器内流体的流动阻力 (14)6.2.1.管程流动阻力 (14)6.2.2.壳程流动阻力 (14)第七章结构设计 (16)7.1 壳体直径、长度、厚度设计 (16)7.2 换热器封头尺寸设计 (16)7.3 法兰及各连接材料的选择 (17)7.3.1选定法兰结构 (17)7.3.2选定垫片结构 (18)7.4 流体进、出口接管直径的计算 (18)7.5 开孔补强 (19)7.6 支座选用 (20)第八章汇总 (22)第一章绪论1.1 概述随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。

列管式换热器-煤油换热器-化工原理课设

列管式换热器-煤油换热器-化工原理课设

设计题目:煤油冷却器的设计设计者:班级:学号:日期:指导教师:设计成绩:目录一、设计任务书····························································二、设计方案简介··························································1.换热器的选择························································2.流体流动空间的选择··················································三、主要物性参数··························································四、计算传热面积··························································1.热流量·······························································2.平均传热温度差·······················································3.冷却水用量···························································4.估算传热面积·························································五、换热器工艺结构尺寸·····················································1.管径和径内流速·······················································2.管程数和传热管数·····················································3.传热管排列方式和分程方法·············································4.壳内径·······························································5.折流板·······························································六、换热器核算·····························································1.总传热系数核算·······················································2.传热面积核算·························································3.裕量计算·····························································七、设计结果概要···························································八、设计的评述·····························································九、主要参考资料···························································十、换热器总装配图·························································一、设计任务书在某生产过程中,用循环冷却水将煤油油由120℃冷却至40℃。

化工原理课程设计煤油冷却器的设计

化工原理课程设计煤油冷却器的设计

中南大学化工原理课程设计说明书设计题目列管式换热器的设计指导老师:孔江榕学院:化学化工学院专业班级:化工1202姓名:刘亮学号:1505120711设计日期:2014-9-17目录一、概述 (2)二、设计题目及原始数据 (13)三、换热器的类型和特点 (14)四、论述本换热流程结构的选择和材料选择 (15)五、有关换热器计算 (15)六、设计结果一览表 (21)七、后记 (23)八、参考资料 (24)九、主要符号说明 (25)一、概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。

35%~40%。

随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。

换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。

随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。

在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。

换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。

换热器按传热方式的不同可分为:混合式、蓄热式和间壁式。

其中间壁式换热器应用最广泛,按照传热面的形状和结构特点又可分为管壳式换热器、板面式换热器和扩展表面式换热器(板翅式、管翅式等),如表2-1所示。

表2-1 传热器的结构分类完善的换热器在设计或选型时应满足以下各项基本要求。

(1)合理地实现所规定的工艺条件传热量、流体的热力学参数(温度、压力、流量、相态等)与物理化学性质(密度、粘度、腐蚀性等)是工艺过程所规定的条件。

设计者应根据这些条件进行热力学和流体力学的计算,经过反复比较,使所设计的换热器具有尽可能小的传热面积,在单位时间内传递尽可能多的热量。

化工原理课程设计煤油列管式换热器

化工原理课程设计煤油列管式换热器

南京工业大学食品与轻工学院学院《食品机械基础课程设计》设计题目列管式换热器专业名称食品科学与工程设计小组食品1001班19,24,25号指导教师仲兆祥设计日期:2013 年11 月1 日至2013 年11月14日目录1、前言 (1)2、正文………………………………………2.1、题目………………………………………2.2、2.1题目: 设计一列管式换热器2.2前言:在油化工生产过程中,常常需要将各种油产品(如汽油、煤油、柴油等)进行冷却,本设计以某炼油厂冷却油产品为例,让学生熟悉列管式换热器的设计过程。

其目的是通过对油产品冷却的列管式换热器设计,达到让学生了解该换热器的结构特点,并能根据工艺要求选择适当的类型,同时还能根据传热的基本原理,选择流程,确定换热器的基本尺寸,计算传热面积以及计算流体阻力。

随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。

在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。

2.3设计论述本设计任务是利用冷流体(水)给油降温。

利用热传递过程中对流传热原则,制成换热器,以供生产需要。

下图(图1)是工业生产中用到的列管式换热器.选择换热器时,要遵循经济,传热效果优,方便清洗,复合实际需要等原则。

换热器分为几大类:夹套式换热器,沉浸式蛇管换热器,喷淋式换热器,套管式换热器,螺旋板式换热器,板翅式换热器,热管式换热器,列管式换热器等。

不同的换热器适用于不同的场合。

而列管式换热器在生产中被广泛利用。

它的结构简单、坚固、制造较容易、处理能力大、适应性大、操作弹性较大。

尤其在高压、高温和大型装置中使用更为普遍。

所以首选列管式换热器作为设计基础。

2.4讨论分析2.4.1设计任务与条件1、设计任务处理能力:5000Kg/小时设备型式:固定管板式换热器2、操作条件(1)煤油:入口温度120℃出口温度60℃(2)冷却介质:循环水入口温度20℃出口温度50℃(3)操作压强:煤油: 0.3MPa循环水: 0.4MPa该交换器为煤油—水换热器,估计热交换器的管壁温度和壳体温度之差不是较大,因此初步确定选用带有“膨胀节”的固定管板式热交换器。

煤油冷却器课程设计

煤油冷却器课程设计

煤油冷却器课程设计长沙学院课程设计说明书题目煤油冷却器的设计系(部) 生环系专业(班级) 09应化2班姓名学号指导教师宋勇起止日期2021.5.28——2021.6.16化工原理课程设计任务书系主任___________ 指导教师____________ 学生__戴 姣______ 2班 编号:2.2.7一、设计题目名称:煤油冷却器的设计 二、设计条件:1.煤油:入口温度:130℃,出口温度:50℃;2.冷却介质,循环水〔P 为0.3MPa ,进口温度28℃,出口温度40℃〕 3.承诺压强降,不超过105Pa ;4.每年按300天计;每天24 h 连续运转。

5.处理能力65000吨/年; 6.设备型式:列管式换热器。

7.煤油定性温度下的物性数据:34c c p,c c 825kg /m ,7.1510Pa s, c 2.22kJ/kg C 0.14W /m C -==⨯⋅=⋅︒=⋅︒(),()ρμλ三、设计内容1.热量衡算及初步估算换热面积; 2. 冷却器的选型及流淌空间的选择; 3. 冷却器的校核运算; 4. 结构及附件设计运算;5.绘制带操纵点的工艺流程图〔A3〕及冷却器的工艺条件图〔A3〕; 6.编写设计说明书。

四、厂址:长沙地区五、设计任务完成卧式列管冷却器的工艺设计并进行校核运算,对冷却器的有关附属设备的进行设计和选用,绘制换热器系统带操纵点的工艺流程图及设备的工艺条件图,编写设计说明书。

六、设计时刻安排三周:2021年5月28日-2021年6月16第一章长沙学院课程设计鉴定表目录第1章设计方案简介 (1)1.1 换热器概述 (1)1.2列管式换热器 (1)1.2.1 固定管板式 (1)1.2.3U形管式 (2)1.3设计方案的拟定 (3)1.4工艺流程简图〔见附图〕 (3)第二章工艺运算和主体设备设计 (4)2.1 初选换热器类型 (4)2.2 管程安排及流速确定 (4)2.3确定物性数据 (5)2.4运算总传热系数 (5)第三章工艺结构设计 (9)3.1.管径和管内流速 (9)3.2.管程数和传热管数 (9)3.3.平均传热温差校正及壳程数 (9)第四章换热器核算 (14)第五章辅助设备的运算和选型 (20)第六章设计结果表汇 (22)参考文献 (23)化工原理课程设计之心得体会 (24)第1章设计方案简介1.1 换热器概述换热器是化工,炼油工业中普遍应用的典型的工艺设备。

煤油冷却器的课程设计

煤油冷却器的课程设计

目录一.列管式换热器设计任务书二.列管式换热器设计书1.概述2.设计原则(1)流体通道的选择(2)流体流速的选择(3)流体两端温度的确定(4)管径、管子排列方式和壳体直径的确定(5)管程、壳程数的确定(6)折流板(7)换热器中传热与流体流动阻力计算3.列管式换热器的选用和设计的一般步骤4.初步设计方案5.工艺结构尺寸的计算(1)管径和管流速 (2) 管程数和传热管数(3)传热管的排列和分程方法(4) 壳体径(5) 折流板(6) 折流板6.换热器核算(1)热流量核算(2)核算压强降(3)管板厚度计算(4)膨胀节计算(5)零部件结构的选取三.附表表一:固定管板式换热器的基本参数表二:常用固定管板式换热器的传热系数的围表三:常用体流的污垢热阻四.参考文献五.心得体会列管式换热器设计任务书一设计题目:煤油冷却器的设计二设计任务及操作条件1.处理能力:15万吨/年煤油2设备形式:列管式换热器3.操作条件(1)煤油:入口温度130℃,出口温度50℃(2)冷却介质:自来水,入口温度25℃,出口温度45℃(3)允许压强降:不大于100kPa(4)煤油定性温度下的物性数据:密度825kg/m3,黏度7.15×10-4Pa.s,比热容2.22kJ/(kg.℃),导热系数0.14W/(m.℃) (5)每年按330天计,每天24小时连续运行三选择适宜的列管式换热器并进行核算3.1 传热计算3.2 管、壳程流体阻力计算3.3管板厚度计算3.4 U形膨胀节计算(浮头式换热器除外)3.5 管束振动3.6 管壳式换热器零部件结构四绘制换热器装配图(A1图纸)五.参考文献[1] 夏清,玉英,常贵,等. 化工原理[M]. 天津:天津大学,2001[2] 华南理工大学化工原理教研组. 化工过程及设备设计[M]. :华南理工大学,1996[3] 刁玉玮,王立业. 化工设备机械基础(第五版)[M]. :理工大学,2000[4] 理工大学化工原理教研室.化工原理课程设计[M]. :理工大学,1996[5] 崇光,晓梅. 化工工程制图[M]. :化学工业,1998[6] 娄爱娟,吴志泉. 化工设计[M].:华东理工大学,2002[7] 华东理工大学机械制图教研组. 化工制图[M]. :高等教育,1993[8] 王静康. 化工设计[M]. :化学工业出版,1998[9] 傅启民. 化工设计[M]. :中国科学技术大学,2000[10] 董大勤. 化工设备机械设计基础[M]. :化学工业,1999[11] GB 151-1999管壳式换热器[12] JB/T 4715-92 固定管板式换热器与基本参数[13] 靳明聪. 换热器[M]. :大学,1990[14] 石油机械研究所. 换热器[M]. :烃加工,1986列管式换热器设计书一.概述在不同温度的流体间传递热能的装置称为热交换器,简称热换器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理课程设计煤油冷却列管式放热器目录概述1.1换热器设计任务书1.2换热器的结构形式1.3换热器材质的选择1.4列管式换热器的优点1.5列管式换热器的结构1.6管板式换热器的类型及工作原理1.7确定设计方案2.1设计参数2.2计算总传热系数2.3工艺结构尺寸2.4换热器核算3.换热器主要结构尺寸和计算结果汇总表4.结束语参考文献设计简图化工原理课程设计,是将所学的化工原理理论知识联系实际生产的重要环节。

一方面,它要求综合运用物理,化学,化工原理,工程制图的理论知识,确定生产工艺流程和计算设备的尺寸;另一方面,又要求根据设计对象的具体特征,凭借设计者的经验(或借鉴前人的经验),灵活运用设计的诀窍,对所选设备,工艺过程以及各种参数进行合理的筛选,校正和优化,达到经济合理的生产要求。

工业生产过程,两种物料之间的热交换一般是通过热交换器完成的,所以换热器的设计就显的尤为重要。

换热器的设计,首先应根据工艺要求确定换热系统的流程方案并选用适当类型的换热器,确定所选换热器中流体的流动空间及流速等参数,同时计算完成给定生产任务所在地需的传热面积,并确定换热器的工艺尺寸且根据实际流体的腐蚀性确定换热器的材料,根据换热器内的压力来确定其壁厚。

随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。

在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。

换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。

换热器按传热方式的不同可分为:混合式、蓄热式和间壁式。

其中间壁式换热器应用最广泛,按照传热面的形状和结构特点又可分为管壳式换热器、板面式换热器和扩展表面式换热器(板翅式、管翅式等)。

1.1 换热器设计任务书1.设计题目煤油冷却列管式换热器的设计。

设计课题工程背景:在石油化工生产过程中,常常需要将各种石油产品(如汽油、煤油、柴油等)进行冷却,本设计以某炼油厂冷却煤油产品为例,熟悉列管式换热器的设计过程。

设计的目的:通过对煤油产品冷却的列管式换热器设计,达到让学生了解该换热器的结构特点,并能根据工艺要求选择适当的类型,同时还能根据传热的基本原理,选择流程,确定换热器的基本尺寸,计算传热面积以及计算流体阻力。

2.设计任务及操作条件(1)处理能力 3×105吨/年煤油(2)设备型式列管式换热器(3)操作条件①煤油:入口温度 150℃,出口温度 50℃②冷却介质:循环水,入口温度 20℃,出口温度 30℃③允许压强降:不大于一个大气压④每年按 300 天计,每天 24 小时连续运行(4)设计项目①设计方案简介:对确定的工艺流程及换热器型式进行简要论述。

②换热器的工艺计算:确定换热器的传热面积。

③换热器的主要结构尺寸设计。

④主要辅助设备选型。

⑤绘制换热器总装配图。

3.设计说明书的内容(1)目录;(2)设计题目及原始数据(任务书);(3)论述换热器总体结构(换热器型式、主要结构)的选择;(4)换热器加热过程有关计算(物料衡算、热量衡算、传热面积、换热管型号、壳体直径等);(5)设计结果概要(主要设备尺寸、衡算结果等);(6)主体设备设计计算及说明;(7)主要零件的强度计算(选做);(8)附属设备的选择(选做);(9)参考文献;(10)后记及其它。

4.设计图要求用 594×841 图纸绘制换热器一张:一主视图,一俯视图,一剖面图,两个局部放大图。

5.设计思考题(1)设计列管式换热器时,通常都应选用标准型号的换热器,为什么?(2)为什么在化工厂使用列管式换热最广泛?(3)在列管式换热器中,壳程有挡板和没有挡板时,其对流传热系数的计算方法有何不同?(4)说明列管式换热器的选型计算步骤?(5)在换热过程中,冷却剂的进出口温度是按什么原则确定的?(6)说明常用换热管的标准规格(批管径和管长)。

(7)列管式换热器中,两流体的流动方向是如何确定的?比较其优缺点?6. 部分设计问题指导(1)列管式换热器基本型式的选择(2)冷却剂的进出口温度的确定原则(3)流体流向的选择(4)流体流速的选择(5)管子的规格及排列方法(6)管程数和壳程数的确定(7)挡板的型式1.2 换热器的结构形式1.管壳式换热器管壳式换热器又称列管式换热器,是一种通用的标准换热设备,它具有结构简单,坚固耐用,造价低廉,用材广泛,清洗方便,适应性强等优点,应用最为广泛。

管壳式换热器根据结构特点分为以下几种:(1)固定管板式换热器固定管板式换热器两端的管板与壳体连在一起,这类换热器结构简单,价格低廉,但管外清洗困难,宜处理两流体温差小于 50℃且壳方流体较清洁及不易结垢的物料。

带有膨胀节的固定管板式换热器,其膨胀节的弹性变形可减小温差应力,这种补偿方法适用于两流体温差小于70℃且壳方流体压强不高于600Kpa 的情况。

(2)浮头式换热器浮头式换热器的管板有一个不与外壳连接,该端被称为浮头,管束连同浮头可以自由伸缩,而与外壳的膨胀无关。

浮头式换热器的管束可以拉出,便于清洗和检修,适用于两流体温差较大的各种物料的换热,应用极为普遍,但结构复杂,造价高。

(3)填料涵式换热器填料涵式换热器管束一端可以自由膨胀,与浮头式换热器相比,结构简单,造价低,但壳程流体有外漏的可能性,因此壳程不能处理易燃,易爆的流体。

2.蛇管式换热器蛇管式换热器是管式换热器中结构最简单,操作最方便的一种换热设备,通常按照换热方式不同,将蛇管式换热器分为沉浸式和喷淋式两类。

3.套管式换热器套管式换热器是由两种不同直径的直管套在一起组成同心套管,其内管用 U 型时管顺次连接,外管与外管互相连接而成,其优点是结构简单,能耐高压,传热面积可根据需要增减,适当地选择管内、外径,可使流体的流速增大,两种流体呈逆流流动,有利于传热。

此换热器适用于高温,高压及小流量流体间的换热。

1.3 换热器材质的选择在进行换热器设计时,换热器各种零、部件的材料,应根据设备的操作压力、操作温度。

流体的腐蚀性能以及对材料的制造工艺性能等的要求来选取。

当然,最后还要考虑材料的经济合理性。

一般为了满足设备的操作压力和操作温度,即从设备的强度或刚度的角度来考虑,是比较容易达到的,但材料的耐腐蚀性能,有时往往成为一个复杂的问题。

在这方面考虑不周,选材不妥,不仅会影响换热器的使用寿命,而且也大大提高设备的成本。

至于材料的制造工艺性能,是与换热器的具体结构有着密切关系。

一般换热器常用的材料,有碳钢和不锈钢。

(1)碳钢价格低,强度较高,对碱性介质的化学腐蚀比较稳定,很容易被酸腐蚀,在无耐腐蚀性要求的环境中应用是合理的。

如一般换热器用的普通无缝钢管,其常用的材料为 10 号和 20号碳钢。

(2)不锈钢奥氏体系不锈钢以 1Crl8Ni9Ti 为代表,它是标准的 18-8 奥氏体不锈钢,有稳定的奥氏体组织,具有良好的耐腐蚀性和冷加工性能。

正三角形排列结构紧凑;正方形排列便于机械清洗;同心圆排列用于小壳径换热器,外圆管布管均匀,结构更为紧凑。

我国换热器系列中,固定管板式多采用正三角形排列;浮头式则以正方形错列排列居多,也有正三角形排列。

(3)管板管板的作用是将受热管束连接在一起,并将管程和壳程的流体分隔开来。

管板与管子的连接可胀接或焊接。

胀接法是利用胀管器将管子扩胀,产生显著的塑性变形,靠管子与管板间的挤压力达到密封紧固的目的。

胀接法一般用在管子为碳素钢,管板为碳素钢或低合金钢,设计压力不超过 4 MPa,设计温度不超过350℃的场合。

(4)封头和管箱封头和管箱位于壳体两端,其作用是控制及分配管程流体。

①封头当壳体直径较小时常采用封头。

接管和封头可用法兰或螺纹连接,封头与壳体之间用螺纹连接,以便卸下封头,检查和清洗管子。

②管箱换热器管内流体进出口的空间称为管箱,壳径较大的换热器大多采用管箱结构。

由于清洗、检修管子时需拆下管箱,因此管箱结构应便于装拆。

③分程隔板当需要的换热面很大时,可采用多管程换热器。

对于多管程换热器,在管箱内应设分程隔板,将管束分为顺次串接的若干组,各组管子数目大致相等。

这样可提高介质流速,增强传热。

管程多者可达 16 程,常用的有 2、4、6 程。

在布置时应尽量使管程流体与壳程流体成逆流布置,以增强传热,同时应严防分程隔板的泄漏,以防止流体的短路。

1.4 列管式换热器的优点(1) 换热效率高,热损失小在最好的工况条件下,换热系数可以达到6000W/m2K,在一般的工况条件下,换热系数也可以在 3000~4000W/m2K 左右,是管壳式换热器的 3~5 倍。

设备本身不存在旁路,所有通过设备的流体都能在板片波纹的作用下形成湍流,进行充分的换热。

完成同一项换热过程,板式换热器的换热面积仅为管壳式的 1/3~1/4。

(2) 占地面积小重量轻除设备本身体积外,不需要预留额外的检修和安装空间。

换热所用板片的厚度仅为 0.6~0.8mm。

同样的换热效果,板式换热器比管壳式换热器的占地面积和重量要少五分之四。

(3) 污垢系数低流体在板片间剧烈翻腾形成湍流,优秀的板片设计避免了死区的存在,使得杂质不易在通道中沉积堵塞,保证了良好的换热效果。

(4) 检修、清洗方便换热板片通过夹紧螺柱的夹紧力组装在一起,当检修、清洗时,仅需松开夹紧螺柱即可卸下板片进行冲刷清洗。

(5) 产品适用面广设备最高耐温可达 180℃,耐压2特别适应各种工艺过程中的加热、冷却、热回收、冷凝以及单元设备食品消毒等方面, 在低品位热能回收方面, 具有明显的经济效益。

各类材料的换热板片也可适应工况对腐蚀性的要求。

当然板式换热器也存在一定的缺点,比如工作压力和工作温度不是很高,限制了其在较为复杂工况中的使用。

同时由于板片通道较小,也不适宜用于杂质较多,颗粒较大的介质。

1.5 列管式换热器的结构介质流经传热管内的通道部分称为管程。

(1)换热管布置和排列间距常用换热管规格有ф19×2 mm、ф25×2 mm(1Crl8Ni9Ti)、ф25×2.5 mm(碳钢 10)。

小直径的管子可以承受更大的压力,而且管壁较薄;同时,对于相同的壳径,可排列较多的管子,因此单位体积的传热面积更大,单位传热面积的金属耗量更少。

换热管管板上的排列方式有正方形直列、正方形错列、三角形直列、三角形错列和同心圆排列。

正三角形排列结构紧凑;正方形排列便于机械清洗;同心圆排列用于小壳径换热器,外圆管布管均匀,结构更为紧凑。

我国换热器系列中,固定管板式多采用正三角形排列;浮头式则以正方形错列排列居多,也有正三角形排列。

(2)管板管板的作用是将受热管束连接在一起,并将管程和壳程的流体分隔开来。

管板与管子的连接可胀接或焊接。

相关文档
最新文档