徐州数学三角形填空选择专题练习(解析版)

合集下载

江苏徐州2024年上学期期中检测九年级数学试题(解析版)

江苏徐州2024年上学期期中检测九年级数学试题(解析版)

2024~2025学年度第一学期期中检测九年级数学试题答案一、选择题1.【答案】A【详解】根据圆周角定理可知,∠AOB =2∠ACB =72°,则∠ACB =36°,故选A .2. 【答案】B【详解】解:A 、该图形不存在绕某点旋转180°后,与原图形重合,故该选项不符合题意; B 、该图形绕某点旋转180°,旋转后的图形与原图形重合,故该选项符合题意;C 、该图形不存在绕某点旋转180°后,与原图形重合,故该选项不符合题意;D 、该图形不存在绕某点旋转180°后,旋与原图形重合,故该选项不符合题意;故选:B .3. 【答案】B【详解】解:∵4,4,1a b c ==−=, ∴()22444410b ac ∆=−=−−××=,∴方程有两个相等的实数根.故选:B4. 【答案】C【详解】解:2660x x −−=,266x x −=,26915x x −+=, 即()2315x −=. 故选:C5. 【答案】A【详解】解:∵1x ,2x 是一元二次方程2230x x −−=的两个根,∴213x x ⋅=−. 故选:A6. 【答案】D【解析】【详解】解:根据抛物线平移的规律:左加右减(横坐标),上加下减(纵坐标),把抛物线22y x =向右平移3个单位长度可得()223y x =−, 再再向下平移5个单位长度可得()2235y x =−−.故选:D .7. 【答案】D【详解】解:A 、不在同一直线上的三点确定一个圆,故A 选项错误;B 、三角形的内心到三边的距离相等,是三条角平分线的交点,故B 选项错误;C 、在同圆或等圆中,能完全重合弧才是等弧,故C 选项错误;D 、等弧所对的圆心角相等,故D 选项正确.故选:D .8. 【答案】D【详解】解:∵()()2,3,0,3−−−, ∴抛物线的对称轴为直线2012x −+==−, ∴抛物线的顶点坐标为()1,4−−,即函数有最小值,∴抛物线开口向上,∴0a >,故①②正确;∵函数图象与x 轴的一个交点坐标是()1,0,∴函数图象与x 轴的另一个交点坐标是()3,0−,即函数图象与x 轴的交点坐标是()()1,03,0−、故③正确;∵()()15 2.51−−−>−−,()15,y −,()22.5,y 是函数图象上两点,∴12y y >,故④正确.故选:D二、填空题9.【答案】内【详解】解:∵O 的半径为5,4OP =,∴OP 小于O 的半径,∴点P 在O 内.的故答案为:内10. 【答案】1202x x ==, 【详解】解:∵220x x −=,∴()20x x −=, ∴0x =或20x −=,解得1202x x ==,, 故答案为:1202x x ==,. 11.【答案】24π【详解】解:由题意圆锥底面圆直径是8,圆锥的母线长为6, ∴这个圆锥的侧面积18π624π2=××=; 故答案为:24π. 12. 【答案】(1,﹣4)【详解】解:∵原抛物线可化为:y =(x ﹣1)2﹣4,∴其顶点坐标为(1,﹣4).故答案为(1,﹣4).13. 【答案】8【详解】解:∵PA 、PB 分别与O 相切于点A 、B ,4,PA PB ∴==∵过点C 的切线分别交PA 、PB 于点D 、E ,,DC DA EC EB ∴==,∴PED 的周长PD DE PE PD DC CE PE =++=+++PD DA EB PE =+++448PA PB =+=+=,故答案为:8.14. 【答案】18【详解】解:∵m 是一元二次方程220x x −−=的一个根,∴220m m −−=,∴22m m −=,∴()22202020218m m m m −+=−−=−=. 故答案为:1815. 【答案】36°##36度【详解】如图,连接AD .∵AB 是直径,∴∠ADB =90°.∴90=905436DAB ABD ∠=°−∠°−°=°.∴∠C =∠DAB =36°.故答案为:36°.16. 【答案】50%【详解】解:设该店销售额平均每月的增长率为x ,则二月份销售额为()21x +万元,三月份销售额为()221x +万元,由题意可得:()221 4.5x +=, 解得:10.550%x ==,2 2.5x =−, 答:该店销售额平均每月的增长率为50%;故答案是:50%.17. 【答案】2【详解】解:如图,90C ∠=°,6BC =,8AC =,AC ∴=10,11112222AC r BC r AC r AC BC ∴⋅+⋅+⋅=⋅, 11118610862222r r r ∴×+×+×=××, 解得:2r =;故答案为:2.18. 【答案】2−【详解】解:如图,延长BA ,CD 交于点F ,连接FE ,分别过点F ,E 作FG BC ⊥,EG BC ⊥于点H ,G ,60ABC ∠=° ,,90BFC ∴∠=°,E 为AD 的中点,2AD =,112EF AE DE AD ∴====,30DCB ∠=° ,122BF BC ∴==,60ABC ∠=° ,30BFH ∴∠=°,112BH BF ∴==,FH ∴==BEC △面积122BC EG EG =⋅=,EG 最小,BEC 面积最小,此时1EG =,BEC ∴ 面积的最小值为 2.−故答案为:2−.三、解答题19. 【答案】(1)121,12x x ==(2)121,4x x ==【解析】【小问1详解】解:22310x x −+=,()()2110x x −−=,210,10x x −=−=, 所以该方程的解为:121,12x x ==.【小问2详解】解:()2133x x −=−,()21330x x −−+=,()()21310x x −−−=,()()1130x x −−−=,()()140x x −−=,10,40x x −=−=,所以该方程的解为:121,4x x ==.20. 【答案】(1)3;2 (2)10【解析】【小问1详解】解:如图,连接ODAB 是O 的直径,E 是CD 的中点,AB CD ∴⊥,8CD = ,4DE ∴=,5OD =,3OE ∴,532BE OB OE ∴=−=−=【小问2详解】解:AB 是O 的直径,E 是CD 的中点,AB CD ∴⊥,16CD = ,8CE DE ∴==,AB CD ⊥ ,222OD OE DE ∴=+,4BE =,()22248OD OD −+,10OD ∴=故O 的半径为1021 【答案】(1)223y x x =−++ (2)见解析 (3)①04y <≤;②2x ≥或0x ≤ 【小问1详解】解:将点()1,4A 和点()0,3C 代入2y ax 2x c =++得,243a c c ++= = ,解得:13a c =− =, ∴二次函数的解析式为223y x x =−++; 【小问2详解】解:当0y =时,2230x x −++=,解得:123,1x x ==−,∴二次函数与x 轴的交点为()()3,0,1,0−,画出函数图象,如下:.【小问3详解】解:① ∵()222314y x x x =−++=−−+,∴二次函数的对称轴为直线1x =,顶点坐标为(1,4), ∵抛物线开口向上,∴函数的最大值为4,此时1x =,∵2x =,3y =,∴当12x −<<时,y 的取值范围是04y <≤;故答案为:04y <≤②观察图象得:当3y ≤时,x 的取值范围是2x ≥或0x ≤. 故答案为:2x ≥或0x ≤22. 【答案】(1)每件衬衫应降价20元(2)每件衬衫降价151250元【解析】【小问1详解】解:设每天利润为w 元,每件衬衫降价x 元,根据题意得2(40)(202)260w x x x x =−+=−+28002(15)1250x +=−−+ 当1200w =时,22608001200x x −++=,解之得1210,20x x ==. 根据题意要尽快减少库存,所以应降价20元.答:每件衬衫应降价20元.【小问2详解】解:商场每天盈利()()40202w x x =−+22(15)1250x =−−+. 所以当每件衬衫应降价15元时,商场盈利最多,共1250元. 答:每件衬衫降价15元时,商场平均每天盈利最多共1250元.23. 【答案】(1)见解析 (2)23S π=−阴影. 【解析】【小问1详解】证明:连接OC ,∵CE AB ⊥,∴90ACE CAE ∠+∠=°, ∵OA OC =,∴OCA CAE ∠=∠, ∵ACD ACE ∠=∠, ∴90OCA ACD ∠+∠=°, ∴OC CD ⊥,∵OC 是O 的半径, ∴DC 是O 的切线;【小问2详解】解:在Rt OCD △中,点A 为OD 的中点, ∴CD OA OC ==,∴AOC △为等边三角形, ∴60DOC ∠=°,∵O 的半径为2,∴4OD =,∴C D =,∴216022223603DOC AOCS S S ππ×=−=×−=−阴影扇形△. 24. 【答案】(1)()4,0,()0,4(2)()1,6或()3,4 (3)()2,6【解析】【小问1详解】 解:当0y =时,2340x x −++=, 解得:124,1x x ==−, ∴()()4,0,1,0B A −, 当0x =时,4y =, ∴点()0,4C ; 故答案为:()4,0;()0,4;【小问2详解】解:设直线BC 的解析式为y kx b =+, 把点()4,0,()0,4代入得:404k b b += = ,解得:14k b =− =, ∴直线BC 的解析式为4y x =−+, 设点P 的坐标为()2,34m m m −++,则点G 的坐标为(),4m m −+, ∴()()224443m P m G m m m =−+=−−−+++,∵6PCB S = , ∴162PG OB ×=, 即()214462m m −+×=, 解得:1m =或3, ∴点P 的坐标为()1,6或()3,4;【小问3详解】 解:∵点()4,0B ,点()0,4C ,∴4OB OC ==,∴OBC OCB ∠=∠,∵90BOC ∠=°,∴45OBC OCB ∠=∠=°,∵PE x ⊥轴,PF BC ⊥,∴90BEG PFG ∠=∠=°, ∴45PGF BGE ∠=∠=°,∴PFG △是等腰直角三角形,∴PF FG ==, 设点P 的坐标为()2,34n n n −++,则点G 的坐标为(),4n n −+, ∴()()224443n P n G n n n =−+=−−−+++,∴PFG △的周长PG PF FG =++))222444n n n n n n =−++−+−+ )()241n n −++ )()2124n =+−−+,∴当2n =时,PFG △的周长最大,最大值为4+,此时点P 的坐标为()2,6.25. 【答案】(1)见解析;(2m <<;(3)3m ≤<. 【解析】【详解】解:如图:点,P P ′即为所求.(2)①如图:以AB 为边作等边三角形MAB ,分别作AM AB 、的中垂线交于点O ,圆O 交CD 于点P 、P ′,则P 、P ′为所求点.②如图,设点P 是CD 的中点,当等边三角形PAB 的外接圆与CD 相切时,AAAA 的值最小;②∵ABP 为等边三角形,则60PAB ∠=°,∴906030DAP DAB PAB ∠=∠−∠=°−°=°,∴tan 4tan30PD AD PAD ⋅∠=⋅= ∵矩形ABCD 中,点P 是CD 的中点,∵2AB CD PD m === ∴111222PD CD AB m ===,2m =∴m =如图4,当圆为矩形ABCD 的外接圆时,m 值最大,此时点P P ′()与点D C ()重合, 如图:连接BD ,则60ADB∠=°,∴28BD AD ==∴AB即m = 综上,mm <<. (3)如图,在x 轴上方作OKC ,使得OKC 是以OC 为斜边的等腰直角三角形,作KE AB ⊥于E ,交OC 于F .∵点B 坐标为()3,m ,∴3OC =∴OK KC ==当OK KC ==K 为圆心,KC 为半径的圆与AB相切,即23,KE AB KE KC AE EB ⊥==, ∴32OFOC ==, ∴1322KF OC ==,∴此时32m BC EF EK KF ===+==AAAA 上只有一个点P满足,1452OPC OKC ∠=∠=°;当BK KC ==时,在AB 上恰好有两个点P 满足1452OPC OKC ∠=∠=°,∴32EK =, ∴33322m BC EF EK KF ===+=+=,综上所述,要使得45OPC ∠=°的位置有两个满足条件的m 的值的范围为3m ≤<.故答案为3m ≤<.。

三角函数、解三角形 选择填空题(江苏高考版)含答案

三角函数、解三角形 选择填空题(江苏高考版)含答案
A. B. C. D.
7、已知 , ,其中 ,则 ()
A. B. C. D.
【答案】D
8、若 的外接圆半径为2,且 ,则 的取值范围是()
A. B. C. D.
【答案】A
9、已知函数 , ,则下列结论正确的是()
A. 的图象关于点 对称B. 的图象的一条对称轴是
C. 在 上递减D. 在 值域为
【答案】BC
10.已知sin( ﹣ )= ,则sin(2 + )=
A. =2B.
C. 在( ,0)上单调递增D. 在(0,2 )上有3个极小值点
答案:AC
解析:因为 , ,所以 ,故B错;因为 在[0,2 ]上有且仅有4个零点,故A对;易知 ,画出草图可知,在( ,0)上单调递增,故C正确;在(0,2 )上有2个极小值点,故D错.综上选AC.
13.已知cos( )= ,a∈(0, ),则sina =______________
答案:
14.在平面直角坐标系xOy中,设A(1,0),B(3,4),向量 =x +y ,x+y=6,则| |的最小值为()
A. 1B. 2C. D. 2
答案:D
15.已知α+β= (α>0,β>0),则tanα+tanβ的最小值为( )
A. B. 1C.-2-2 D.-2+2
答案:D
16.若函数f(x) =cos2x+sinx,则关于f(x)的性质说法正确的有( )
31.若向量 , 满足| - |= ,则 的最小值为.
【答案】-
【考点】平面向量的综合应用
【解析】法一:由题意,| - |2= 2+ 2-2 ≥-2 -2 =-4 ,即3≥-4 ,则 ≥- .
法二:由题意, = ≥- | - |2=- ,所以 的最小值为- .

2019年中考数学真题分类汇编:三角形的边与角(含解析)

2019年中考数学真题分类汇编:三角形的边与角(含解析)

中考数学复习三角形的边与角中考真题专项练习一.选择题(共16小题)1.(2019•徐州)下列长度的三条线段,能组成三角形的是( )A.2,2,4B.5,6,12C.5,7,2D.6,8,10【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.2.(2019•淮安)下列长度的3根小木棒不能搭成三角形的是( )A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,5cm,6cm【分析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、2+3>4,能构成三角形,不合题意;B、1+2=3,不能构成三角形,符合题意;C、4+3>5,能构成三角形,不合题意;D、4+5>6,能构成三角形,不合题意.故选:B.3.(2019•毕节市)在下列长度的三条线段中,不能组成三角形的是( )A.2cm,3cm,4cm B.3cm,6cm,6cmC.2cm,2cm,6cm D.5cm,6cm,7cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、2+3>4,能组成三角形;B、3+6>6,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.4.(2019•扬州)已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有( )A.4个B.5个C.6个D.7个【分析】分两种情况讨论::①若n+2<n+8≤3n,②若n+2<3n≤n+8,分别依据三角形三边关系进行求解即可.【解答】解:①若n+2<n+8≤3n,则,解得,即4≤n<10,∴正整数n有6个:4,5,6,7,8,9;②若n+2<3n≤n+8,则,解得,即2<n≤4,∴正整数n有2个:3和4;综上所述,满足条件的n的值有7个,故选:D.5.(2019•台州)下列长度的三条线段,能组成三角形的是( )A.3,4,8B.5,6,10C.5,5,11D.5,6,11【分析】根据三角形的三边关系即可求【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.6.(2019•自贡)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为( )A.7B.8C.9D.10【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【解答】解:设第三边为x,根据三角形的三边关系,得:4﹣1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选:C.7.(2019•金华)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是( )A.1B.2C.3D.8【分析】根据三角形三边关系定理得出5﹣3<a<5+3,求出即可.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.8.(2019•大庆)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是( )A.15°B.30°C.45°D.60°【分析】根据角平分线的定义得到∠EBM=∠ABC、∠ECM=∠ACM,根据三角形的外角性质计算即可.【解答】解:∵BE是∠ABC的平分线,∴∠EBM=∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=∠ACM,则∠BEC=∠ECM﹣∠EBM=×(∠ACM﹣∠ABC)=∠A=30°,故选:B.9.(2019•百色)三角形的内角和等于( )A.90°B.180°C.270°D.360°【分析】根据三角形的内角和定理进行解答便可.【解答】解:因为三角形的内角和等于180度,故选:B.10.(2019•赤峰)如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A =35°,∠D=15°,则∠ACB的度数为( )A.65°B.70°C.75°D.85°【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【解答】解:∵DE⊥AB,∠A=35°∴∠AFE=∠CFD=55°,∴∠ACB=∠D+∠CFD=15°+55°=70°.故选:B.11.(2019•广西)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为( )A.60°B.65°C.75°D.85°【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.12.(2019•眉山)如图,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠C的度数是( )A.50°B.60°C.70°D.80°【分析】由∠B=30°,∠ADC=70°,利用外角的性质求出∠BAD,再利用AD平分∠BAC,求出∠BAC,再利用三角形的内角和,即可求出∠C的度数.【解答】解:∵∠B=30°,∠ADC=70°∴∠BAD=∠ADC﹣∠B=70°﹣30°=40°∵AD平分∠BAC∴∠BAC=2∠BAD=80°∴∠C=180°﹣∠B﹣∠BAC=180°﹣30°﹣80°=70°故选:C.13.(2019•绍兴)如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是( )A.5°B.10°C.30°D.70°【分析】根据对顶角相等求出∠3,根据三角形内角和定理计算,得到答案.【解答】解:∠3=∠2=100°,∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°,故选:B.14.(2019•杭州)在△ABC中,若一个内角等于另外两个内角的差,则( )A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可.【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.15.(2019•青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为( )A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C.16.(2019•枣庄)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A.45°B.60°C.75°D.85°【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB 可得答案.【解答】解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.二.填空题(共2小题)17.(2019•南京)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是 4<BC≤ .【分析】作△ABC的外接圆,求出当∠BAC=90°时,BC是直径最长=;当∠BAC =∠ABC时,△ABC是等边三角形,BC=AC=AB=4,而∠BAC>∠ABC,即可得出答案.【解答】解:作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB=AC=4,∴AC=,∴BC=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC≤;故答案为:4<BC≤.18.(2019•哈尔滨)在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为 60°或10 度.【分析】当△ACD为直角三角形时,存在两种情况:∠ADC=90°或∠ACD=90°,根据三角形的内角和定理可得结论.【解答】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60°或10;。

八年级上册数学 三角形填空选择(篇)(Word版 含解析)

八年级上册数学 三角形填空选择(篇)(Word版 含解析)

八年级上册数学 三角形填空选择(篇)(Word 版 含解析)一、八年级数学三角形填空题(难)1.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.【答案】4【解析】【分析】连接111,,AC B A C B ,根据两个三角形等底同高可得111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020……直至第四次操作4443334772401A B C A B C S S ∆∆===>2020,即可得出结论.【详解】解:连接111,,AC B A C B∵111,,A B AB B C BC C A CA ===根据等底同高可得:111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S SS S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======∴第一次操作:11177A B C ABC S S ∆∆==<2020同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020第三次操作333222377343A B C A B C S S ∆∆===<2020第四次操作4443334772401A B C A B C S S ∆∆===>2020故要使得到的三角形的面积超过2020,最少需经过4次操作,故答案为:4.【点睛】此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键.2.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________.【答案】1980【解析】【详解】解:设多边形的边数为n ,多加的角度为α,则(n-2)×180°=2005°-α,当n=13时,α=25°,此时(13-2)×180°=1980°,α=25°故答案为1980.3.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.【答案】105°.【解析】【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD =45°,∠BDC =60°,∴∠COB =∠ECD +∠BDC =45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.4.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是_________【答案】10【解析】【分析】【详解】解:本题根据题意可得:(n-2)×180°=4×360°,解得:n=10.故答案为:10 .考点:多边形的内角和定理.5.若正多边形的一个外角是45°,则该正多边形的边数是_________.【答案】8;【解析】【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.【详解】∵多边形外角和是360度,正多边形的一个外角是45°,∴360°÷45°=8即该正多边形的边数是8.【点睛】本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等).6.一个多边形的内角和与外角和的差是180°,则这个多边形的边数为_____.【答案】5【解析】【分析】根据多边形的内角和公式(n﹣2)•180°与外角和定理列式求解即可【详解】解:设这个多边形的边数是n,则(n﹣2)•180°﹣360°=180°,解得n=5.故答案为5.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.7.若(a ﹣4)2+|b ﹣9|=0,则以a 、b 为边长的等腰三角形的周长为_______.【答案】22【解析】 【分析】先根据非负数的性质列式求出a 、b 再根据等腰三角形和三角形三边关系分情况讨论求解即可.【详解】解:根据题意得,a -4=0,b -9=0,解得a =4,b =9,① 若a =4是腰长,则底边为9,三角形的三边分别为4、4、9,不能组成三角形, ② 若b =9是腰长,则底边为4,三角形的三边分别为9、9、4,能组成三角形, 周长=9+9+4=22.【点睛】本题主要考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,解决本题的关键是要熟练掌握非负数的非负性质和三角形三边关系.8.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.【答案】30【解析】【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .【详解】1∠、2∠、3∠、4∠的外角的角度和为210,12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=.故答案为:30【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.9.如果一个n边形的内角和是1440°,那么n=__.【答案】10【解析】∵n边形的内角和是1440°,∴(n−2)×180°=1440°,解得:n=10.故答案为:10.10.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为4cm,△OBC的面积_____cm2.cm.【答案】242【解析】【分析】由BE=EO可证得EF∥BC,从而可得∠FOC=∠OCF,即得OF=CF;可知△AEF等于AB+AC,所以根据题中的条件可得出BC及O到BC的距离,从而能求出△OBC的面积.【详解】∵BE=EO,∴∠EBO=∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;△AEF等于AB+AC,又∵△ABC的周长比△AEF的周长大12cm,∴可得BC=12cm,根据角平分线的性质可得O到BC的距离为4cm,∴S△OBC=1×12×4=24cm2.2考点:1.三角形的面积;2.三角形三边关系.二、八年级数学三角形选择题(难)11.如图,在△ABC中,点D是BC边上的一点,E,F分别是AD,BE的中点,连结CE,CF,若S△CEF=5,则△ABC的面积为()A.15 B.20 C.25 D.30【答案】B【解析】【分析】根据题意,利用中线分的三角形的两个图形面积相等,便可找到答案【详解】解:根据等底同高的三角形面积相等,可得∵F是BE的中点,S△CFE=S△CFB=5,∴S△CEB=S△CEF+S△CBF=10,∵E是AD的中点,∴S△AEB=S△DBE,S△AEC=S△DEC,∵S△CEB=S△BDE+S△CDE∴S△BDE+S△CDE=10∴S△AEB+S△AEC=10∴S△ABC=S△BDE+S△CDE+S△AEB+S△AEC=20故选:B.【点睛】熟悉三角形中线的拓展性质:分其两个三角形的面积是相等的,这样便可在实际问题当中家以应用.12.已知:如图,ABC∆三条内角平分线交于点D,CE⊥BD交BD的延长线于E,则∠DCE=( )A.12BAC∠B.12CBA∠C.12ACB∠D.CDE∠【答案】A 【解析】【分析】根据角平分线的性质以及三角形的外角性质可推导出DCE ∠与BAC ∠的关系.【详解】由题意知,ECD BDC 90∠∠=-︒由三角形内角和定理得,BAC 180ABC ACB ∠∠∠=︒-+DBC DCB 180BDC ∠∠∠+=︒-∵点D 是ΔABC 三条内角平分线的交点∴ABC 2DBC ∠∠= ACB 2DCB ∠∠=()BAC 180ABC ACB ∠∠∠=︒-+()1802DBC DCB ∠∠=︒-+()1802180BDC ∠=︒-︒-2BDC 180∠=-︒1BAC BDC 902∠∠=-︒ ∴1ECD BAC 2∠∠=故答案选A.【点睛】本题考查角平分线的性质以及三角形的外角性质.13.已知△ABC 的两条高分别为4和12,第三条高也为整数,则第三条高所有可能值为( )A .3和4B .1和2C .2和3D .4和5 【答案】D【解析】【分析】先设长度为4、12的高分别是a 、b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求a=24S ;b=212S ;c=2S h,结合三角形三边的不等关系,可得关于h 的不等式,解不等式即可.【详解】设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么a=24S ;b=212S ;c=2S h∵a-b <c <a+b , ∴24S -212S <c <24S +212S ,即3S <2S h <23S , 解得3<h <6,∴h=4或h=5,故选D.【点睛】 主要考查三角形三边关系;利用三角形面积的表示方法得到相关等式是解决本题的关键.14.已知如图,△ABC 中,∠ABC=50°,∠BAC=60°,BO 、AO 分别平分∠ABC 和∠BAC ,求∠BCO 的大小()A .35°B .40°C .55°D .60°【答案】A【解析】 分析:先根据三角内角和可求出∠ACB =180°-50°-60°=70°,根据角平分线的性质:角平分线上的点到角两边的距离相等可得:点O 到AB 和BC 的距离相等,同理可得:点O 到AC 和BC 的距离相等,然后可得: 点O 到AC 和BC 的距离相等,再根据角平分线的判定可得:OC 平分∠ACB ,所以∠BCO =12∠ACB=35°. 详解: 因为∠ABC =50°,∠BAC =60°,所以∠ACB =180°-50°-60°=70°,,因为BO ,AO 分别平分∠ABC 和∠BAC ,所以点O 到AB 和BC 的距离相等,同理可得:点O 到AC 和BC 的距离相等,所以点O 到AC 和BC 的距离相等,所以OC 平分∠ACB ,所以∠BCO =12∠ACB=35°. 点睛:本题主要考查三角形内角和和角平分线的性质和判定,解决本题的关键是要熟练掌握三角形内角和性质和角平分线的性质和判定.15.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是( )① △ABE 的面积与△BCE 的面积相等;② ∠AFG =∠AGF ;③ ∠FAG =2∠ACF ;④ BH =CHA.①②③B.②③④C.①③④D.①②③④【答案】A【解析】根据三角形中线的性质可得:△ABE的面积和△BCE的面积相等,故①正确,因为∠BAC=90°,所以∠AFG+∠ACF=90°,因为AD是高,所以∠DGC+∠DCG=90°,因为CF是角平分线,所以∠ACF=∠DCG,所以∠AFG=∠DGC,又因为∠DGC=∠AGF,所以∠AFG=∠AGF,故②正确,因为∠FAG+∠ABC=90°,∠ACB+∠ABC=90°,所以∠FAG=∠ACB,又因为CF是角平分线,所以∠ACB=2∠ACF,所以∠FAG=2∠ACF,故③正确,④假设BH=CH,∠ACB=30°,则∠HBC=∠HCB =15°,∠ABC=60°,所以∠ABE=60°-15°=45°,因为∠BAC=90°,所以AB=AE,因为AE=EC,所以AB=12AC,这与在直角三角形中30°所对直角边等于斜边的一半相矛盾,所以假设不成立,故④不一定正确,故选A.16.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35°B.40°C.45°D.55°【答案】C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【详解】解:如图,根据三角形外角性质,可得∠3=∠1+∠4,∴∠4=∠3-∠1=95°-50°=45°,∵a∥b,∴∠2=∠4=45°.故选C.【点睛】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.17.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4 B.5 C.6 D.7【答案】C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.18.下列长度的三根小木棒能构成三角形的是( )A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【答案】D【解析】【详解】A.因为2+3=5,所以不能构成三角形,故A错误;B.因为2+4<6,所以不能构成三角形,故B错误;C.因为3+4<8,所以不能构成三角形,故C错误;D.因为3+3>4,所以能构成三角形,故D正确.故选D.19.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°【答案】D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.20.如图,在△ABC中,过点A作射线AD∥BC,点D不与点A重合,且AD≠BC,连结BD 交AC于点O,连结CD,设△ABO、△ADO、△CDO和△BCO的面积分别为和,则下列说法不正确的是()A.B.C.D.【答案】D【解析】【分析】根据同底等高判断△ABD和△ACD的面积相等,即可得到,即,同理可得△ABC和△BCD的面积相等,即.【详解】∵△ABD和△ACD同底等高,,,即△ABC和△DBC同底等高,∴∴故A,B,C正确,D错误.故选:D.【点睛】考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.。

江苏省徐州市2023-2024学年九年级上学期期末数学试题(含答案)

江苏省徐州市2023-2024学年九年级上学期期末数学试题(含答案)

2023-2024学年度第一学期期末抽测九年级数学试题一、选择题(每题3分,共24分)1.若⊙O的半径为8cm,点P到圆心的距离为7cm,则点P与⊙O的位置关系()A.P在⊙O内B.P在⊙O上C.P在⊙O外D.无法确定2.若△ABC∽△A’B’C’,且相似比为1:2,则△ABC与△A’B’C’的面积比为()A.1:2 B.1:4 C.2:1 D.4:13.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据为A样本的每个数据都加2,则A,B两个样本具有相同的()A.平均数B.众数C.中位数D.方差4.若关于x的一元二次方程x²-3x+c=0有两个相等的实数根,则实数c的值为()A.―94B.94C.-9 D.95.在Rt△ABC中,∠C=90°,AC=4,BC=5,那么sinB的值是()A.43B.34C.45D.356.将函数y=x²的图象向右平移1个单位长度,所得抛物线对应的函数表达式为()A.y=(x-1)² B.y=x²-1 C.y=(x+1)² D.y=x²+17.二次函数y=ax²+bx+c的图象如图所示,下列结论错误的是()A.y有最小值B.当-1<x<2时,y<0 C.a+b+c>0 D.当x<-1时,y随x的增大而减小8.如图,A,B,C为圆形纸片圆周上的点,AC为直径,将该纸片沿AB折叠,使AB与AC交于点D,若BC 的度数为35°,则AD的度数为()A.108° B.110° C.120° D.145°二、填空题:(每题4分,共32分)9.若x2=y3,则xy=.10.两次抛掷同一枚质地均匀的硬币,均出现正面向上的概率是.11.二次函数y=(x-2)²+1的图象的顶点坐标是.12.《周髀算经》中记载了“偃矩以望高”的方法.“矩”指两条边呈直角的曲尺ABC,“偃矩以望高”的意思是用仰立放的“矩”可测量物体的高度,如图点A,B,Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC交于点D,若AB=40cm,BD=20cm,AQ=12m,则树高PQ= m.13.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若母线长l为3cm,扇形的圆心角θ为120°,则圆锥的底面半径r为cm.14.某招聘考试分笔试和面试两种,小明笔试成绩90分,面试成绩为80分,若笔试成绩、面试成绩按3:2计算,则小明的平均成绩为分.15.如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD= °.16.如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC于点M,交边AB 的延长线于点G,若AF=2,FB=1,则MG= .三、解答题:(本大题共9小题,共84分)17.(10分)(1)计算:20230―(―1)2024+12―tan60°(2)解方程:3x2―2x―1=0 18.(8分)如图,将下列4张扑克牌洗匀后数字朝下放在桌面上.(1)从中随机抽取1张,抽得扑克牌上的数字为2的概率为;(2)从中随机抽取2张,用列表或画树状图的方法,求抽得2张扑克牌上的数字相同的概率.19.(8分)某校舞蹈队共16名学生,将其身高(单位:cm)数据统计如下:A.16名学生身高:162,163,163,165,166,166,166,167,167,168,169,169,171,173,173,176;B.16名学生身高的平均数、中位数、众数:平均数中位数众数167.75m n(1)m= ,n= ;(2)对于不同组的学生,如果一组学生身高的方差越小,则认为改组舞台呈现效果越好,据此推断,下列两组学生中,舞台呈现效果更好的是;(填“甲组”后“乙组”)甲组身高163166166167167乙组身高162163165166176(3)该舞蹈队计划选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为169,169,173,他们身高的方差为32.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生身高的方差9,其次要求所选的两名学生与已确定的三名学生所组成的五名学生身高的平均数尽可能大,则选出的另小于329外两名学生身高分别为和.20.(10分)已知函数y=―x2+bx+c的图象经过点A(-1,0),B(0,3).(1)求该函数的表达式;(2)在所给的方格纸中,画该函数的图象;(3)该函数图象上到x轴距离等于3的点,共有个.21.(10分)如图,学校计划围一个矩形花园,它的一边是墙(长度大于10m),其余三边利用长为10m的围栏,试确定其余三边的长度,使其分别满足下列条件:(1)花园的面积为12㎡;(2)花园的面积最大.22.(8分)如图,在△ABC中,AC=4,∠B=66°,以AC为直径的⊙O与BC交于点D,E为ACD上一点,且∠EDC=40°.(1)求CE的长;(2)若∠DCE=74°,判断直线AB与⊙O的位置关系,并说明理由.23.(10分)如图,位于大同街的钟鼓楼曾是民国时期徐州的最高建筑,某校综合实践小组利用测角仪测量钟鼓楼的高度AO,测角仪的目镜距离地面1m,他们在地面B处测得钟鼓楼顶部A的仰角为30°,然后沿地面前进28m至点D处,测得点A的仰角为75°,已知BC=DE=OH=1m.(1)求AC的长(结果保留根号);(2)求钟鼓楼的高度AO(结果精确到1m).(参考数据:2≈1.41,3≈1.73)24.(8分)如图,P是⊙O外一点,用两种不同的方法过P作⊙O的一条切线.要求:(1)用无刻度的直尺和圆规作图;(2)保留作图痕迹,不写作法.25.(12分)如图,在平面直角坐标系中,抛物线y=ax²+bx经过点A(3,-3),对称轴是直线x=2.(1)求a,b的值;(2)已知点B,C在抛物线上,点B的横坐标为t,点C的横坐标为t+1,过点B作x轴的垂线交直线OA于点D,过点C作x轴的垂线交直线OA于点E,在抛物线对称轴右侧,是否存在点B,使以B,C,D,E为顶点的四边形面积为3若存在,求出t的值;若不存在,请说明理由.22023~2024学年度第一学期期末抽测九年级数学参考答案题号12345678答案A B D B C A C B 9. 10. 11. 12.613.1 14.86 15.36 1617.(1)原式(4分). 5分(2)法一:..6分(7分)(8分).即. 10分法二:,(7分)或,(8分).10分18.(1); 3分(2)列表或画树状图(略). 6分共有12种等可能的结果(7分),其中2种符合题意.. 8分19.(1)167,166;(4分)(2)甲组;(6分)(3)171,173. 8分20.(1)将和代入,得 2分解得.(3分)∴函数表达式为. 4分(2)列表(略),(6分) 函数图象如图; 8分(3)4. 10分21.(1)设其余三边的长度分别为. 1分2314(2,1)11=-+-=3,2,1a b c ==-=-224(2)43(1)16b ac -=--⨯⨯-=x =246±==1211,3x x ==-(1)(31)0x x -+=(1)0x -=(31)0x +=1211,3x x ==-1221126P ∴==()1,0-()0,32y x bx c =-++10,3.b c c --+=⎧⎨=⎩2b =223y x x =-++m,m,(102)m x x x -由题意,得.3分解得. 4分答:其余三边的长度分别为或. 5分(2)设其余三边的长度分别为.花园的面积为. 6分由题意,得. 7分整理,得. 8分∴当时,y有最大值. 9分答:其余三边的长度分别为时,花园的面积最大. 10分22.(1)连接.. 1分∵直径,∴半径. 2分∴弧的长为. 3分(2)与相切. 4分.,. 5分,. 6分,. 7分,即.与相切. 8分23.(1)如图,过点E 作于点F . 1分在中,,..(102)12x x -=121,3x x ==2m,2m,6m 3m,3m,4m m,m,(102)m x x x -2m y (102)y x x =-2525222y x ⎛⎫=--+ ⎪⎝⎭52x =25255m,m,5m 22OE 280COE EDC ∠=∠=︒4AC =2OC OE ==CE 808223609ππ⨯⨯=AB O ,OC OE OCE OEC =∴∠=∠ 80COE ∠=︒ 50OCE ∴∠=︒74DCE ∠=︒ 24ACB DCE OCE ∴∠=∠-∠=︒66B ∠=︒ 90B ACB ∴∠+∠=︒90BAC ∴∠=︒OA AB ⊥AB ∴O EF AC ⊥Rt CFE △30FCE ∠=︒28CE BD ==sin 30,cos30EFCFCE CE ︒=︒=(2分),.3分在中,. 4分. 5分. 6分(2)在中,.. 7分(8分).9分答:钟鼓楼的高度为.10分24.(两种方法,各4分)参考解法:法一:如图①,利用“直径所对的圆周角等于”法二:如图②,利用“三角形全等的性质”法三:如图③,利用“三角形中位线的性质” 图① 图② 图③25.(1)由题意,得(2分) 解得 4分(2)由(1)得抛物线为.当时,;当时,.∴点. 5分设对应的函数表达式为,把代入得;对应的函数表达式为,∴点. 6分①当时,如图①,过点D 作于点F ,则.此时. 8分sin 3014EF CE ∴=⋅︒=cos30CF CE =⋅︒=Rt AFE △753045FAE AEH ACE ∠=∠-∠=︒-︒=︒45,14ACB DCE AF EF ∴∠=∠=︒∴==14AC CF AF ∴=+=Rt ACH△30,14ACH AC ∠=︒=sin 30,sin 307AH AH AC AC︒=∴=⋅︒=+8AO AH OH ∴=+=20≈20m 90︒933,2.2a b b a+=-⎧⎪⎨-=⎪⎩1,4.a b =⎧⎨=-⎩24y x x =-x t =24y t t =-1x t =+22(1)4(1)23y t t t t =+-+=--()()22,4,1,23B t t t C t t t -+--OA y kx =(3,3)-33,1k k -=∴=-OA ∴y x =-(,),(1,1)D t t E t t -+--23t <<DF CE ⊥1DF =()()2222()43,23[(1)]2BD t t t t t CE t t t t t =---=-+=----+=--由.解得. 9分②当时,点B 与D 重合,四点B 、C 、D 、E 不构成四边形.③当时,如图②,过点D 作于点H ,则.此时.. 10分解得(舍),(舍). 11分综上所述,. 12分 图① 图②注:以上各题如有另解,请参照本评分标准给分.()22113()321222DBEC S BD CE DF t t t t =+⋅=-++--⋅=四边形52t =3t =3t >DH CE ⊥1DH =()()22224()3,23[(1)]2BD t t t t t CE t t t t t =---=-=----+=--()22113()321222BDEC S BD CE DH t t t t =+⋅=-+--⋅=四边形113t =+<213t =<52t =。

三角形填空选择专题练习(解析版)

三角形填空选择专题练习(解析版)

三角形填空选择专题练习(解析版) 一、八年级数学三角形填空题(难) 1.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.【答案】(2m ) (1024m ) 【解析】【分析】 根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.【详解】解:∵∠A 1=∠A 1CE-∠A 1BC=12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:()2m ;()1024m . 【点睛】此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.2.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.【答案】80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA ,即∠E=2∠F=2×40°=80°.故答案为80.3.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。

【答案】45︒【解析】【分析】根据三角形内角与外角的关系可得2M MAB ∠∠∠=+ 由角平分线的性质可得MAB MAO ∠∠=根据三角形内角和定理可得OBA OAB BOA 180∠∠∠++=︒易得∠M 的度数。

数学八年级上册 三角形填空选择专题练习(解析版)

数学八年级上册 三角形填空选择专题练习(解析版)
【答案】12
【解析】
试题解析:根据题意,得
(n-2)•180-360=1260,
解得:n=11.
那么这个多边形是十一边形.
考点:多边形内角与外角.
8.如果一个n边形的内角和是1440°,那么n=__.
【答案】10
【解析】∵n边形的内角和是1440°,
∴(n−2)×180°=1440°,
解得:n=10.
13.如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是( )
A.∠1=∠2+∠AB.∠1=2∠A+∠2
C.∠1=2∠2+2∠AD.2∠1=∠2+∠A
【答案】B
【解析】
试题分析:如图在 ABC中,∠A+∠B+∠C=180°,折叠之后在 ADF中,∠A+∠2+∠3=180°,∴∠B+∠C=∠2+∠3,∠3=180°-∠A-∠2,又 在四边形BCFE中∠B+∠C+∠1+∠3=360°,∴∠2+∠3+∠1+∠3=360°∴∠2+∠1+2∠3=∠2+∠1+2(180°-∠A-∠2)=360°,∴∠2+∠1-2∠A-2∠2=0,∴∠1=2∠A+∠2.故选B
在△ACM中:8-2<2x<8+2,
解得:3<x<5.
故答案为:3<x<5.
【点睛】
本题考查了三角形的三边关系,解答的关键在于画出图形,数形结合完成解答.
5.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.
【答案】160.
【解析】

2023年江苏省徐州市中考数学真题练习试卷B卷附解析

2023年江苏省徐州市中考数学真题练习试卷B卷附解析

2023年江苏省徐州市中考数学真题练习试卷B 卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,王华晚上由路灯A 下的B 处走到C处时,测得影子CD 的长为1米,继续往前走3米到达E处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于( )A .4.5米B .6米C .7.2米D .8米 2.下列成语所描述的事件是必然事件的是( ) A .水中捞月 B .拔苗助长 C .守株待兔D .瓮中捉鳖 3.己如图,点 D .E 、F 分别是△ABC (AB>AC )各边的中点,下列说法中,错误的是( ) A . AD 平分∠BAC B .EF=12BC C . EF 与 AD 互相平分 D .△DFE 是△ABC 的位似图形4.函数1y x =-中,自变量x 的取值范围是( )A .1x <B .1x >C .1x ≥D .1x ≠ 5.如果点A (-3,a )是点B (-3,4)关于x 轴的对称点,那么a 的值为( ) A .4B .-4C .±4D .±3 6.代数式34x +的值不小于 0,则据此可列不等式为( ) A .340x +< B .340x +>C .340x +≤D .340x +≥ 7.下列方程中,是二元一次方程组的是( ) A .111213542...1133412(2)332x x y x y x y xy y B C D xy x y y x y y x ⎧⎧+=-=⎪⎪+=-+=⎧⎧⎪⎪⎨⎨⎨⎨=-=⎩⎩⎪⎪-=--=⎪⎪⎩⎩ 8.下列选项中的两个图形成轴对称的是 ( )9.将方程2x 472312x ---=-去分母,得( ) A .22(2x 4)(7)x --=--B .24(2x 4)7x --=--C .244(2x 4)(7)x --=--D .24447x x -+=-+10.在数轴上,到原点的距离是3的点共有( )A . 1个B . 2个C .3个D .4个11.你吃过“拉面”吗?如果把一个面团拉开,然后对折,再拉开再对折,如此往复下去,对折 10 次能拉出面条的根数为( )A .2×lO 根B . 10 根C . 102 = 100 根D .210= 1024 根二、填空题12.在阳光明媚的上午,小波上午 9:30 出去时测量了自已的影子,出去一段时间后,回来时,他发现这时的影长和上午出去时的影长一样长,则小波出去的时间约为 小时.13.如图,点 A .B 、C 把⊙O 三等分,那么△ABC 是 三角形.14.函数7y x=-的图象在第每一象限内,y 的值随x 的增大而_____________. 15.关于x 的方程2(1)10x k x +--=的一个根为2,那么k 的值为 .16.若平行四边形的周长为40cm ,对角线AC 、BD•相交于点O ,△BOC•的周长比△AOB 的周长大2cm ,则AB=________cm .解答题17.如图,在□ABCD 中,对角线AC 和BD 相交于点O ,OE ⊥AB ,E 为垂足,已知AC=8cm ,∠CAB=30°,则OE= cm.18.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下(单位:岁):甲群:13,13,14,15,15,15,l5,l6,17,17;乙群:3,4,4,5,5,6,6,6,54,57.解答下列各题:(1)甲群游客的平均年龄是 岁,中位数是 岁,众数是 岁,其中能较好反映甲群游客年龄特征的是 ;(2)乙群游客的平均年龄是 岁,中位数是 岁,众数是 岁,其中能较好反映甲群游客年龄特征的是 .19.计算2211366a a a ÷--的结果是 . 20.在方程组⎩⎨⎧⋯⋯-=-⋯⋯=+②y x ①y x 13646中,可用①一②得到一元一次方程为 .21.如图是悉尼奥运会金牌分布的扇形统计图,由图可知,美国的金牌数约占总数的 %,已知中国获得金牌28枚,由此估计美国的金牌数是 枚.22.已知24a b -=,则22(2)3(2)1b a b a ---+= .三、解答题23.小明正在操场上放风筝(如图所示),风筝线拉出长度为200m ,风筝线与水平地面所成的角度为62°,他的风筝飞得有多高? (精确到lm)24.已知:如图AB BC AC AD DE AE==,求证:∠1 =∠2.25.如图,∠A=30°,BC =12 cm ,求⊙O 的半径.26.如图,已知OA 、OB 为⊙O 的半径,C 、D 分别是OA 、OB 的中点.求证:(1)∠A=∠B ;(2)AE=BE .27.如图,已知AOB OA OB ∠=,,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画出AOB ∠的平分线(请保留画图痕迹).28.如图,已知AB=CD ,AE ⊥BC ,DF ⊥BC ,CF=BE,则∠A=∠D,为什么?29.如图所示,铁路上A、B两站相距25 km,C.D为村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15 km,CB=10 km,现在要在铁路的A、B两站间建一个土产品收购站E,使得C、D两村到E站的距离相等,则E站应建在离A站多远处?30.某同学买了 6 枚邮票,其中有 x枚 1 元的邮票与y枚2元的邮票,共用了 10 元钱,求1 元的邮票与 2 元的邮票各买了多少枚?列出关于x、y 的方程组,并用列表尝试的方法求出两种邮票的数量.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.A4.C5.B6.D7.D8.C9.C10.B11.D二、填空题12.513.等边14.增大15.12-16. 917.218.(1)15,l5,15,平均数、中位数、众数都可以;(2)15,5.5,6,众数19.6a a -+20. 4y=521.12.95,3922.45三、解答题23.如图,Rt △ABC 中,00sin 62200sin 62177BC AB =⋅=⋅≈(m) 24.在△ABC 和△ADE 中,AB BC AC AD DE AE==,∴△ABC ∽△ADE. ∴∠BAC=∠DAE,∴∠BAD=∠CAE .在△ABD 和△ACE 中,AB AC AD AE=,∠BAD=∠CAE,∴△ABC ∽△CAE,∴∠1=∠2 25.⊙O 的半径为 12 cm.26.(1)∵OA、OB为⊙O的半径,∴OA=OB,∵C、D分别为OA、OB的中点,∴OC=12OA ,OD=12OB,∴OC=OD.又∵∠AOB=∠AOB,∴△OAD≌△OBC(SAS),∴∠A=∠B,∠ODA= ∠OCB.(2)∴∠ACE=∠BDE,∵∠A=∠A ,AC=DB,∴△ACE≌△BDE(ASA),∴AE=BE.27.连结AB、EF相交于点P,连结OP,OP就是所求的AOB∠的平分线(图略).28.说明Rt△ABE≌Rt△DCF29.10 km30.由题意得6210x yx y+=⎧⎨+=⎩,解得24xy=⎧⎨=⎩。

八年级上册数学 三角形填空选择单元测试与练习(word解析版)

八年级上册数学 三角形填空选择单元测试与练习(word解析版)

八年级上册数学三角形填空选择单元测试与练习(word解析版)一、八年级数学三角形填空题(难)1.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那么∠ 3的度数等于______________.【答案】12°【解析】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是108°,则∠3=360°-60°-90°-108°-∠1-∠2=12°.点睛:本题考查的是多边形的内角,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.2.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________度.【答案】360 °【解析】如图所示,根据三角形外角的性质可得,∠1+∠5=∠8,∠4+∠6=∠7,根据四边形的内角和为360°,可得∠2+∠3+∠7+∠8=360°,即可得∠1+∠2+∠3+∠4+∠5+∠6=360°.点睛:本题考查的知识点:(1)三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和;(2)四边形内角和定理:四边形内角和为360°.3.一个多边形的内角和是外角和的72倍,那么这个多边形的边数为_______.【答案】9【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n边形,根据题意得,(n-2)•180°=72×360°,解得:n=9.故答案为:9.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.4.已知a、b、c为△ABC的三边,化简:|a+b﹣c|-|a﹣b﹣c|+|a﹣b+c|=______.【答案】3a b c--【解析】【分析】根据三角形的三边关系判断绝对值内式子的正负,然后利用绝对值的性质去掉绝对值,再去括号合并同类项即可.【详解】解:∵a、b、c为△ABC的三边,∴a+b>c,a-b<c,a+c>b,∴a+b-c>0,a-b-c<0,a-b+c>0,∴|a+b-c|-|a-b-c|+|a-b+c|=(a+b-c)+(a-b- c)+(a-b+c)=a+b-c+a-b- c+a-b+c=3a-b-c.故答案为:3a-b-c.【点睛】本题主要考查了三角形的三边关系定理和利用绝对值的性质进行化简,利用三角形的三边关系得出绝对值内式子的正负是解决此题的关键.5.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.【答案】7【解析】【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1, ∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.6.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.【答案】2【解析】由D 是AC 的中点且S △ABC =12,可得1112622ABD ABC S S ∆∆==⨯=;同理EC=2BE 即EC=13BC ,可得11243ABE S ∆=⨯=,又,ABE ABF BEF ABD ABF ADF S S S S S S ∆∆∆∆∆∆-=-=等量代换可知S △ADF -S △BEF =27.三角形的三个内角度数比为1:2:3,则三个外角的度数比为_____.【答案】5:4:3【解析】试题解析:设此三角形三个内角的比为x ,2x ,3x ,则x+2x+3x=180,6x=180,x=30,∴三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°,则三个外角的度数比为:150°:120°:90°=5:4:3,故答案为5:4:3.8.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.【答案】360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.9.如图,小亮从A点出发前进5m,向右转15°,再前进5m,又向右转15°…,这样一直走下去,他第一次回到出发点A时,一共走了______m.【答案】120.【解析】【分析】由题意可知小亮所走的路线为正多边形,根据多边形的外角和定理即可求出答案.【详解】解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴该正多边形的边数为n=360°÷15°=24,则一共走了24×5=120米,故答案为:120.【点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接用360°除以一个外角度数.10.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BOC=______°.【答案】110【解析】已知∠A=50°,∠ABO=28°,∠ACO=32°,根据三角形外角的性质可得∠BDC=∠A+∠ABO=78°,∠BOC=∠BDC+∠ACO=110°.二、八年级数学三角形选择题(难)11.若△ABC内有一个点P1,当P1、A、B、C没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC内有两个点P1、P2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC内有n个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°【答案】D【解析】【分析】当△ABC内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180°【详解】】解:图1中,当△ABC内只有1个点时,可分割成3个互不重叠的小三角形;图2中,当△ABC内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC内有n个点(P1,P2,…,P n)时,可以把△ABC分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°.【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.12.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F,∠F的度数为()A.120°B.135°C.150°D.不能确定【答案】B【解析】【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【详解】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=12×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°.故选B.【点睛】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.13.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm【答案】D【解析】试题分析:①当A ,B ,C 三点在一条直线上时,分点B 在A 、C 之间和点C 在A 、B 之间两种情况讨论;②当A ,B ,C 三点不在一条直线上时,根据三角形三边关系讨论.解:当点A 、B 、C 在同一条直线上时,①点B 在A 、C 之间时:AC =AB +BC =3+1=4;②点C 在A 、B 之间时:AC =AB -BC =3-1=2,当点A 、B 、C 不在同一条直线上时,A 、B 、C 三点组成三角形,根据三角形的三边关系AB -BC <AC <AB +BC ,即2<AC <4,综上所述,选D.故选D.点睛:本题主要考查点与线段的位置关系..利用分类思想得出所有情况的图形是解题的关键,14.已知△ABC 的两条高分别为4和12,第三条高也为整数,则第三条高所有可能值为( )A .3和4B .1和2C .2和3D .4和5 【答案】D【解析】【分析】先设长度为4、12的高分别是a 、b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求a=24S ;b=212S ;c=2S h,结合三角形三边的不等关系,可得关于h 的不等式,解不等式即可.【详解】设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么a=24S ;b=212S ;c=2S h∵a-b <c <a+b , ∴24S -212S <c <24S +212S , 即 3S <2S h <23S , 解得3<h <6,∴h=4或h=5,故选D.【点睛】主要考查三角形三边关系;利用三角形面积的表示方法得到相关等式是解决本题的关键.15.已知△ABC 的两条高的长分别为5和20,若第三条高的长也是整数,则第三条高的长的最大值为( ) A .5 B .6 C .7 D .8【答案】B【解析】设△ABC 的面积为S ,所求的第三条高线的长为h ,则三边长分别为,,,根据三角形的三边关系为 ,解得 ,所以h 的最大整数值为6,即第三条高线的长的最大值为6.故选B .点睛:本题主要考查了三角形的面积公式,三角形三边关系定理及不等式组的解法,有一定难度.利用三角形的面积公式,表示出△ABC 三边的长度,从而运用三角形三边关系定理,列出不等式组是解题的关键,难点是解不等式组.16.一个多边形的内角和是1260°,这个多边形的边数是( )A .6B .7C .8D .9【答案】D【解析】试题解析:设这个多边形的边数为n ,由题意可得:(n-2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选D .17.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--【答案】A【解析】【分析】【详解】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',代入已知可得结论. 详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.18.已知直线m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )A .60︒B .65︒C .70︒D .75︒【答案】C【解析】【分析】 先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.【详解】设直线n 与AB 的交点为E 。

2023年江苏省徐州市中考数学真题试卷(解析版)

2023年江苏省徐州市中考数学真题试卷(解析版)

2023年江苏省徐州市中考数学真题试卷及答案注意事项1.本试卷共6页,考试时间120分钟.2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写在本卷和答题卡的指定位置.3.答案全部涂、写在答题卡上,写在本卷上无效.考试结束后,将本卷和答题卡一并交回.一、选择题(本大题共有8小题,在每小题所给出的四个选项中,只有一项符合题意,请将正确选项前的字母代号填涂在答题卡相应位置)1.下列事件中的必然事件是()A.地球绕着太阳转B.射击运动员射击一次,命中靶心C.天空出现三个太阳D.经过有交通信号灯的路口,遇到红灯2.下列图案是中心对称图形但不是轴对称图形的是()A.B.C.D.3.如图,数轴上点分别对应实数,下列各式的值最小的是()A.B.C.D.4.下列运算正确的是()A.B.C.D.5.徐州云龙山共九节,蜿蜒起伏,形似游龙,每节山的海拔如图所示.其中,海拔为中位数的是()A.第五节山B.第六节山C.第八节山D.第九节山6.的值介于()A.25与30之间B.30与35之间C.35与40之间D.40与45之间7.在平面直角坐标系中,将二次函数的图象向右平移2个单位长度,再向下平移1个单位长度,所得拋物线对应的函数表达式为()A.B.C.D.8.如图,在中,为的中点.若点在边上,且,则的长为()A.1B.2C.1或D.1或2二、填空题(本大题共有10小题,不需要写出解答过程,请将答案直接填写在答题卡相应位置)9.若一个三角形的边长均为整数,且两边长分别为3和5,则第三边的长可以为________(写出一个即可).10.“五一”假期我市共接待游客约4370000人次,将4370000用科学记数法表示为________.11.若代数式有意义,则x的取值范围是_____.12.正五边形的一个外角的大小为__________度.13.关于x的方程有两个相等的实数根,则m的值是______.14.如图,在中,若,则________°.15.如图,在中,直径与弦交于点.连接,过点的切线与的延长线交于点.若,则________°.16.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥母线l=6,扇形的圆心角,则该圆锥的底面圆的半径r长为______.17.如图,点在反比例函数的图象上,轴于点轴于点.一次函数与交于点,若为的中点,则的值为_______.18.如图,在中,,点在边上.将沿折叠,使点落在点处,连接,则的最小值为_______.三、解答题(本大题共有10小题,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1);(2).20.(1)解方程组(2)解不等式组21.为了解某地区九年级学生的视力情况,从该地区九年级学生中抽查了部分学生,根据调查结果,绘制了如下两幅不完整的统计图.根据以上信息,解决下列问题:(1)此次调查的样本容量为;(2)扇形统计图中对应圆心角的度数为°;(3)请补全条形统计图;(4)若该地区九年级学生共有人,请估计其中视力正常的人数.22.甲,乙、丙三人到淮海战役烈士纪念塔园林游览,若每人分别从纪念塔、纪念馆这两个景点中选择一个参观,且选择每个景点的机会相等,则三人选择相同景点的概率为多少?23.随着2022年底城东快速路的全线通车,徐州主城区与东区之间的交通得以有效改善,长度均为,甲路线的平均速度为乙路线的倍,甲路线的行驶时间比乙路线少,24.如图,正方形纸片的边长为4,将它剪去4个全等的直角三角形,得到四边形.设的长为,四边形的面积为.(1)求关于的函数表达式;(2)当取何值时,四边形的面积为(3)四边形的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.25.徐州电视塔为我市的标志性建筑之一,如图,为了测量其高度,小明在云龙公园的点处,用测角仪测得塔顶的仰角,他在平地上沿正对电视塔的方向后退至点处,测得塔顶的仰角.若测角仪距地面的高度,求电视塔的高度(精确到.)26.两汉文化看徐州,桐桐在徐州博物馆“天工汉玉”展厅参观时了解到的传统玉器,通常为正中带圆孔的扇圆型器物,据《尔雅肉好若一,调之环.”如图1,“肉”指边(阴影部分),“古发现看,这两种玉器的“肉”与“好”未必符合该比例关系.(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.27.【阅读理解】如图1,在矩形中,若,由勾股定理,得,同理,故.【探究发现】如图2,四边形为平行四边形,若,则上述结论是否依然成立?请加以判断,并说明理由.【拓展提升】如图3,已知为的一条中线,.求证:.【尝试应用】如图4,在矩形中,若,点P在边上,则的最小值为_______.28.如图,在平而直角坐标系中,二次函数的图象与轴分别交于点,顶点为.连接,将线段绕点按顺时针方向旋转得到线段,连接.点分别在线段上,连接与交于点.(1)求点的坐标;(2)随着点在线段上运动.①的大小是否发生变化?请说明理由;②线段的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;当线段的中点在该二次函数的因象的对称轴上时,的面积为参考答案1.A【解析】根据必然事件、不可能事件、随机事件的概念,可得答案.解∶ A.地球绕着太阳转是必然事件,故A正确;B.射击运动员射击一次,命中靶心是随机事件,故B错误;C.天空出现三个太阳是不可能事件,故C错误;D.经过有交通信号灯的路口,遇到红灯是随机事件,故D错误;故选∶A.【点拨】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.A【解析】根据轴对称图形:一个图形如果沿一条直线折叠,直线两旁部分能够完全重合的图形;中心对称图形:一个图形绕某个点旋转180度后能与原图完全重合的图形;由此问题可求解.解:A.是中心对称图形但不是轴对称图形,故符合题意;B.是轴对称图形,但不是中心对称图形,故不符合题意;C.既是轴对称图形也是中心对称图形,故不符合题意;D.既不是轴对称图形也不是中心对称图形,故不符合题意;故选A.【点拨】本题主要考查轴对称图形与中心对称图形的识别,熟练掌握轴对称图形与中心对称图形的概念是解题的关键.3.C【解析】根据数轴可直接进行求解.解:由数轴可知点C离原点最近,所以在、、、中最小的是;故选C.【点拨】本题主要考查数轴上实数的表示、有理数的大小比较及绝对值,熟练掌握数轴上有理数的表示、有理数的大小比较及绝对值是解题的关键.4.B【解析】根据同底数幂的乘除法、幂的乘方及合并同类项可进行求解.解:A.,原计算错误,故不符合题意;B.,原计算正确,故符合题意;C.,原计算错误,故不符合题意;D.,原计算错误,故不符合题意;故选B.【点拨】本题主要考查同底数幂的乘除法、幂的乘方及合并同类项,熟练掌握同底数幂的除法、幂的乘方及同底数幂的乘法是解题的关键.5.C【解析】根据折线统计图把数据按从小到大排列,然后根据中位数可进行求解.解:由折线统计图可按从小到大排列为90.7.99.2.104.1.119.2.131.8.133.5.136.6.139.6.141.6,所以海拔为中位数的是第5个数据,即为第八节山;故选C.【点拨】本题主要考查折线统计图及中位数,熟练掌握中位数的求法是解题的关键.6.D【解析】直接利用二次根式的性质得出的取值范围进而得出答案.解∶∵.∴即,∴的值介于40与45之间.故选D.【点拨】本题主要考查了估算无理数的大小,正确估算无理数的取值范围是解题关键.7.B【解析】根据二次函数图象的平移“左加右减,上加下减”可进行求解.解:由二次函数的图象向右平移2个单位长度,再向下平移1个单位长度,所得拋物线对应的函数表达式为;故选B.【点拨】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键.8.D【解析】根据题意易得,然后根据题意可进行求解.解:∵,∴,∵点D为的中点,∴,∵,∴,①当点E为的中点时,如图,∴,②当点E为的四等分点时,如图所示:∴,综上所述:或2;故选D.【点拨】本题主要考查含30度直角三角形的性质及三角形中位线,熟练掌握含30度直角三角形的性质及三角形中位线是解题的关键.9.4【解析】根据三角形三边关系可进行求解.解:设第三边的长为x,则有,即,∵该三角形的边长均为整数,∴第三边的长可以为3.4.5.6.7,故答案为4(答案不唯一).【点拨】本题主要考查三角形三边关系,熟练掌握三角形三边关系是解题的关键.10.【解析】科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n是正整数;当原数的绝对值小于1时,n是负整数.解:将4370000用科学记数法表示为;故答案为.【点拨】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.11.##【解析】根据有意义得出,再求出答案即可.解:∵代数式有意义,∴,解得:,故答案为:.【点拨】本题考查了二次根式有意义的条件,能根据有意义得出是解此题的关键.12.72【解析】根据多边形的外角和是360°,依此即可求解.解:正五边形的一个外角的度数为:,故答案为:72.【点拨】本题考查了多边形的内角与外角,正确理解多边形的外角和为360°是解题的关键.13.【解析】根据一元二次方程根与判别式的关系可得,,求解即可.解:关于x的方程有两个相等的实数根,则,解得,故答案为:【点拨】此题考查了一元二次方程根与判别式的关系,解题的关键是熟练掌握一元二次方程根与判别式的关系.14.##55度【解析】先由邻补角求得,,进而由平行线的性质求得,,最后利用三角形的内角和定理即可得解.解:∵,,,∴,,∵,∴,,∵,∴,故答案为:.【点拨】本题主要考查了邻补角,平行线的性质以及三角形的内角和定理,熟练掌握平行线的性质是解题的关键.15.66【解析】连接,则有,然后可得,则,进而问题可求解.解:连接,如图所示:∵是的直径,且是的切线,∴,∵,∴,∴,∵,∴,∴,∴;故答案为:66.【点拨】本题主要考查切线的性质、圆周角、弧之间的关系,熟练掌握切线的性质、圆周角、弧之间的关系是解题的关键.16.2【解析】结合题意,根据弧长公式,可求得圆锥的底面圆周长.再根据圆的周长的公式即可求得底面圆的半径长.∵母线l长为6,扇形的圆心角,∴圆锥的底面圆周长,∴圆锥的底面圆半径.故答案为:2.【点拨】本题考查圆锥的侧面展开图的相关计算,弧长公式等知识.掌握圆锥侧面展开图的弧长等于圆锥底面圆的周长是求解本题的关键.17.4【解析】根据题意可设点P的坐标为,则,把代入一次函数解析式中求出m的值进而求出点P的坐标,再求出k的值即可.解:∵轴于点轴于点,∴点P的横纵坐标相同,∴可设点P的坐标为,∵为的中点,∴,∵在直线上,∴,∴,∴,∵点在反比例函数的图象上,∴,故答案为:4.【点拨】本题主要考查了一次函数与反比例函数综合,正确求出点P的坐标是解题的关键.18.【解析】由折叠性质可知,然后根据三角不等关系可进行求解.解:∵,∴,由折叠的性质可知,∵,∴当、、B三点在同一条直线时,取最小值,最小值即为;故答案为.【点拨】本题主要考查勾股定理、折叠的性质及三角不等关系,熟练掌握勾股定理、折叠的性质及三角不等关系是解题的关键.19.(1)2022(2)【解析】(1)根据零次幂、负指数幂及算术平方根可进行求解;(2)根据分式的运算可进行求解.(1)解:原式;(2)解:原式.【点拨】本题主要考查零次幂、负指数幂、分式的运算及算术平方根,熟练掌握各个运算是解题的关键.20.(1);(2)【解析】(1)利用代入法解二元一次方程组即可;(2)求出每个不等式的解集,取每个不等式解集的公共部分即可.解:(1)把①代入②得,,解得,把代入①得,,∴;(2)解不等式①得,,解不等式②得,,∴不等式组的解集是.【点拨】此题考查了二元一次方程组的解法和一元一次不等式组的解法,熟练掌握相关解法是解题的关键.21.(1)450(2)(3)见解析(4)人【解析】(1)根据的人数是人,所占的比例是,据此即可求得此次调查的样本容量;(2)用类学生数除以,再乘以即可得解;(3)利用总人数减去、、三类的人数即可求得的人数,从而补全直方图;(4)利用总人数乘以对应的百分比即可求得.(1)解:,答:此次调查的样本容量为是,故答案为.(2)解:,故答案为;(3)解:补全图形如下:(4)解:(人)答:九年级学生共有人,请估计其中视力正常的人数共有人.【点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.【解析】根据树状图可进行求解概率.解:由题意可得如下树状图:∴甲、乙、丙三人分别从纪念塔、纪念馆这两个景点中选择一个参观,则共有8种情况,其中三人选择相同景点参观共有2种,所以三人选择相同景点的概率为.【点拨】本题主要考查概率,熟练掌握利用树状图求解概率是解题的关键.23.甲路线的行驶时间为.【解析】设甲路线的行驶时间为,则乙路线的行驶事件为,根据“甲路线的平均速度为乙路线的倍”列分式方程求解即可.解:甲路线的行驶时间为,则乙路线的行驶事件为,由题意可得,,解得,经检验是原方程的解,∴甲路线的行驶时间为,答:甲路线的行驶时间为.【点拨】本题考查分式方程的应用,解题的关键是明确题意,找出等量关系列出相应的分式方程.24.(1)(2)当取1或3时,四边形的面积为10;(3)存在,最小值为8.【解析】(1)先证出四边形为正方形,用未知数x表示其任一边长,根据正方形面积公式即可解决问题;(2)代入y值,解一元二次方程即可;(3)把二次函数配方化为顶点式,结合其性质即可求出最小值.(1)解:在正方形纸片上剪去4个全等的直角三角形,,,四边形为正方形,在中,,,正方形的面积;不能为负,,故关于的函数表达式为(2)解:令,得,整理,得,解得,故当取1或3时,四边形的面积为10;(3)解:存在.正方形的面积;当时,y有最小值8,即四边形的面积最小为8.【点拨】本题考查二次函数的应用.解题的关键是找准数量关系,对于第三问,只需把二次函数表达式配方化为顶点式,即可求解.25.【解析】先证四边形是矩形,四边形是平行四边形,得,然后在和中,解直角三角形以及由构造方程求解即可得解.解:∵,,,,∴四边形是矩形,,∴,,,∴四边形是平行四边形,∴,在中,,,∴,在中,,,∴,∴,∴,解得,∴电视塔的高度.【点拨】本题考查解直角三角形的应用仰角俯角问题,坡度坡角问题等知识,解题的关键是熟练解直角三角形,属于中考常考题型.26.(1)(2)①符合,图见详解;②图见详解【解析】(1)根据圆环面积可进行求解;(2)①先确定该圆环的圆心,然后利用圆规确定其比例关系即可;②先确定好圆的圆心,然后根据平行线所截线段成比例可进行作图.(1)解:由图1可知:璧的“肉”的面积为;环的“肉”的面积为,∴它们的面积之比为;故答案为;(2)解:①在该圆环任意画两条相交的线,且交点在外圆的圆上,且与外圆的交点分别为A.B.C,则分别以A.B为圆心,大于长为半径画弧,交于两点,连接这两点,同理可画出线段的垂直平分线,线段的垂直平分线的交点即为圆心O,过圆心O画一条直径,以O为圆心,内圆半径为半径画弧,看是否满足“肉好若一”的比例关系即可由作图可知满足比例关系为的关系;②按照①中作出圆的圆心O,过圆心画一条直径,过点A作一条射线,然后以A为圆心,适当长为半径画弧,把射线三等分,交点分别为C.D.E,连接,然后分别过点C,D作的平行线,交于点F,G,进而以为直径画圆,则问题得解;如图所示:【点拨】本题主要考查圆的基本性质及平行线所截线段成比例,熟练掌握圆的基本性质及平行线所截线段成比例是解题的关键.27.探究发现:结论依然成立,理由见解析;拓展提升:证明见解析;尝试应用:【解析】探究发现:作于点E,作交的延长线于点F,则,证明,,利用勾股定理进行计算即可得到答案;拓展提升:延长到点C,使,证明四边形是平行四边形,由【探究发现】可知,,则,得到,即可得到结论;尝试应用:由四边形是矩形,,得到,,设,,由勾股定理得到,根据二次函数的性质即可得到答案.探究发现:结论依然成立,理由如下:作于点E,作交的延长线于点F,则,∵四边形为平行四边形,若,∴,∵,,∴,∴,∴,∴;拓展提升:延长到点C,使,∵为的一条中线,∴,∴四边形是平行四边形,∵.∴由【探究发现】可知,,∴,∴,∴;尝试应用:∵四边形是矩形,,∴,,设,则,∴,∵,∴抛物线开口向上,∴当时,的最小值是故答案为:【点拨】此题考查了二次函数的应用、勾股定理、平行四边形的判定和性质、矩形的性质等知识,熟练掌握勾股定理和数形结合是解题的关键.28.(1),;(2)①的大小不变,理由见解析;②线段的长度存在最大值为;(3)【解析】(1)得,解方程即可求得的坐标,把化为顶点式即可求得点的坐标;(2)①在上取点,使得,连接,证明是等边三角形即可得出结论;②由,得当最小时,的长最大,即当时,的长最大,进而解直角三角形即可求解;(3)设的中点为点,连接,过点作于点,证四边形是菱形,得,进而证明得,再证,得即,结合三角形的面积公式即可求解.(1)解:∵,∴顶点为,令,,解得或,∴;(2)解:①的大小不变,理由如下:在上取点,使得,连接,∵,∴抛物线对称轴为,即,∵将线段绕点按顺时针方向旋转得到线段,∴,,∴是等边三角形,∴,,∵,,,,∴,,,∴,∴是等边三角形,,∴,∵,,∴是等边三角形,∴,,∴,,∵,∴,∵,∴,∴,∴,∴,又,∴是等边三角形,∴,即的大小不变;②,∵,∴当最小时,的长最大,即当时,的长最大,∵是等边三角形,∴∴,∴,∴,∴,∴,即线段的长度存在最大值为;(3)解:设的中点为点,连接,过点作于点,∵,∴四边形是菱形,∴,∵,,∴,∴,,∵的中点为点,∴,∴,∴,∵,∴,,∵的中点为点,是等边三角形,∴,∴,∴,∴,∴,∴即,∴,∴,∴,∴,故答案为.【点拨】本题主要考查了二次函数的图像及性质,菱形的判定及性质,全等三角形的判定及性质,相似三角形的判定及性质,等边三角形的判定及性质以及解直角三角形,题目综合性较强,熟练掌握各知识点是解题的关键.。

专题13 结构不良题(三角函数与解三角形)(解析版)

专题13 结构不良题(三角函数与解三角形)(解析版)

专题13 结构不良题(三角函数与解三角形)结构不良题型是新课改地区新增加的题型,所谓结构不良题型就是给出一些条件,另外的条件题目中给出三个,学生可以从中选择1个或者2个作为条件,进行解题。

一、题型选讲题型一 、研究三角形是否存在的问题例1、【2020年新高考全国Ⅰ卷】在①ac =sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C π=,________? 注:如果选择多个条件分别解答,按第一个解答计分. 【解析】方案一:选条件①.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =.由①ac =1a b c ==.因此,选条件①时问题中的三角形存在,此时1c =. 方案二:选条件②.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =,6B C π==,23A π=.由②sin 3c A =,所以6c b a ===.因此,选条件②时问题中的三角形存在,此时c = 方案三:选条件③.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =.由③c =,与b c =矛盾.因此,选条件③时问题中的三角形不存在.例2、(2021年徐州联考)在①cos cos 2c B b C +=,②πcos()cos 2b Cc B -=,③sin cos B B +条件中任选一个,补充在下面问题中,若问题中的三角形存在,求ABC △的面积;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角A ,B ,C 的对边分别为a ,b ,c ,且π6A =,______________,4b =?注:如果选择多个条件分别解答,按第一个解答计分. 【解析】选择①:由余弦定理可知,222222cos cos 222a c b a b c c B b B c b a ac ab+-+-+=⋅+⋅==,……4分由正弦定理得,sin sin 1b A B a ==,又(0,π)B ∈,所以π2B =,…………………6分所以ABC △是直角三角形,则c =ABC △的面积12S ac ==…10分 选择②:由正弦定理得,πsin cos()sin cos 2B C C B -=,即sin sin sin cos B C C B =, 又(0,π)C ∈,所以sin 0C ≠,所以sin cos B B =,即tan 1B =, 又(0,π)B ∈,所以π4B =.……………………………………………………………4分由正弦定理得,sin sin b Aa B==,…………………………………………………6分所以ABC △的面积1ππsin )sin()2246S ab C A B ==+=+=+.…10分 选择③:因为πsin cos )4B B B ++=πsin()14B +=, 又(0,π)B ∈,所以ππ5π(,)444B +∈,所以ππ42B +=,即π4B =.…………………4分由正弦定理得,sin sin b Aa B==,…………………………………………………6分所以ABC △的面积1ππsin )sin()2246S ab C A B ==+=+=+.…10分 题型二、运用正余弦定理研究边、角及面积例3、【2020年高考北京】在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分. 【解析】选择条件①(Ⅰ)17,cos 7c A ==-,11a b +=22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅-8a ∴=(Ⅱ)1cos (0,)sin 77A A A π=-∈∴==,由正弦定理得:7sin sin sin sin 7a c C A C C ==∴=11sin (118)8222S ba C ==-⨯⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,sin 816A B ∴====由正弦定理得:6sin sin a b a A B === (Ⅱ)91sin sin()sin cos sin cos 8161684C A B A B B A =+=+=+⨯=11sin (116)622S ba C ==-⨯=例4、(2020届山东省日照市高三上期末联考)在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC . 如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .【解析】 选择①:113sin 2sin 2224ABC S AB BC ABC BC π∆=⋅⋅⋅∠=⋅⋅⋅=所以BC = 由余弦定理可得2222cos AC AB BC AB BC ABC =+-⋅⋅∠482220⎛=+-⨯⨯= ⎝⎭所以AC ==选择②设BAC CAD θ∠=∠=,则04πθ<<,4BCA πθ∠=-,在ABC ∆中sin sin AC ABABC BCA =∠∠,即23sin sin 44AC ππθ=⎛⎫- ⎪⎝⎭所以sin 4AC πθ=⎛⎫- ⎪⎝⎭在ACD ∆中,sin sin AC CD ADC CAD=∠∠,即4sin sin 6AC πθ=所以2sin AC θ=.所以2sin sin 4πθθ=⎛⎫- ⎪⎝⎭,解得2sin cos θθ=, 又04πθ<<,所以sin 5θ=,所以2sin AC θ==例5、(湖北黄冈高三联考)在①,②,③这三个条件中任选一个,补充在下面的横线上,并加以解答.已知的内角,,所对的边分别是,,,若______.(1)求角;(2)若,求周长的最小值,并求出此时的面积.【解析】(1)选①,由正弦定理得,∵,即,∵,∴,∴,∴. ··········································5分选②,∵,,由正弦定理可得,∵,∴,∵,∴. ·················································5分 选③,∵,由已知结合正弦定理可得, ∴,∴,∵,∴. ·················································5分 (2)∵,即,∴,解得,当且仅当时取等号,b a =2sin tan b A a B =()()sin sin sin ac A c A B b B -++=ABC A B C a b c B 4a c +=ABC ABC sin sin B A =sin 0A ≠cos 1B B -=π1sin 62B ⎛⎫-= ⎪⎝⎭0πB <<ππ5π666B -<-<ππ66B -=π3B =2sin tan b A a B =sin 2sin cos a Bb A B =sin 2sin sin sin cos BB A A B=⋅sin 0A ≠1cos 2B =()0,πB ∈π3B =()()sin sin πsin A BC C +=-=()22a c a cb -+=222a cb ac +-=2221cos 222a cb ac B ac ac +-===()0,πB ∈π3B =()22222cos 3163ba c ac B a c ac ac =+-=+-=-2316acb =-221632a c b +⎛⎫-≤ ⎪⎝⎭2b ≥2a c ==∴,周长的最小值为6,此时的面积. ··········10分 例6、(2021年南京金陵中学联考)现给出两个条件:①2c -3b =2a cos B ,②(2b -3c )cos A =3a cos C ,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,________. (1)求A ;(2)若a =3-1,求△ABC 周长的最大值.【解析】若选择条件①2c -3b =2a cos B .(1)由余弦定理可得2c -3b =2a cos B =2a ·a 2+c 2-b 22ac ,整理得c 2+b 2-a 2=3bc ,………2分可得cos A =b 2+c 2-a 22bc =3bc 2bc =32.…………………………………………………3分 因为A ∈(0,π),所以A =π6. …………………………………………………………5分 (2)由余弦定理a 2=b 2+c 2-2bc cos A ,得(3-1)2=b 2+c 2-2bc ·32,………6分即4-23=b 2+c 2-3bc =(b +c )2-(2+3)bc ,亦即(2+3)bc =(b +c )2-(4-23), 因为bc ≤(b +c )24,当且仅当b =c 时取等号, 所以(b +c )2-(4-23)≤(2+3)×(b +c )24,解得b +c ≤22,…………………………………………………………8分 当且仅当b =c =2时取等号. 所以a +b +c ≤22+3-1,即△ABC周长的最大值为22+3-1.…………………………………………………10分 若选择条件②(2b -3c )cos A =3a cos C . (1)由条件得2b cos A =3a cos C +3c cos A ,由正弦定理得2sin B cos A =3(sin A cos C +sin C cos A )=3sin(A +C )=3sin B .………2分 因为sin B ≠0,所以cos A =32,…………………………………………………3分 因为A ∈(0,π),所以A =π6. (2)同上例7、(2020·全国高三专题练习(文))在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满()(sin sin )sin )b a B A c B C -+=-.(1)求A 的大小; (2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC 的面积.min 2b =ABCABC 1sin 2S ac B ==【答案】(1)6A π=;(2)见解析【解析】(1)因为()(sin sin )sin )b a B A c B C -+=-, 又由正弦定理sin sin sin a b cA B C==,得()())b a b a c c -+=-,即222b c a +-=,所以222cos 222b c A bc bc a +===-, 因为0A π<<, 所以6A π=.(2)方案一:选条件①和②.由正弦定理sin sin a b A B=,得sin sin ab B A ==由余弦定理2222cos b a c ac B =+-,得222222cos4c c π=+-⨯,解得c =所以ABC 的面积11sin 2122S ac B ==⨯⨯=. 方案二:选条件①和③.由余弦定理2222cos a b c bc A =+-,得222433b b b =+-,则24b =,所以2b =.所以c =,所以ABC 的面积111sin 2222S bc A ==⨯⨯=题型三、考查三角函数的图像与性质例8、(2020届山东省泰安市高三上期末)在①函数()()1sin 20,22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象向右平移12π个单位长度得到()g x 的图象,()g x 图象关于原点对称;②向量()3sin ,cos 2m x x ωω=,()11cos ,,0,24n x f x m n ωω⎛⎫=>=⋅ ⎪⎝⎭;③函数()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭()0ω>这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数()f x 的图象相邻两条对称轴之间的距离为2π.(1)若02πθ<<,且sin 2θ=,求()f θ的值; (2)求函数()f x 在[]0,2π上的单调递减区间. 【解析】解:方案一:选条件① 由题意可知,22T ππω==,1ω∴= ()()1sin 22f x x ϕ∴=+,()1sin 226g x x πϕ⎛⎫∴=+- ⎪⎝⎭,又函数()g x 图象关于原点对称,,6k k Z πϕπ∴=+∈,2πϕ<,6πϕ∴=,()1sin 226f x x π⎛⎫∴=+ ⎪⎝⎭,(1)0,sin 2πθθ<<=,4πθ∴=,()4f f πθ⎛⎫∴= ⎪⎝⎭12sin 23π=4=; (2)由3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈,令0k =,得263x ππ≤≤,令1k =,得7563x ππ≤≤,∴函数()f x 在[]0,2π上的单调递减区间为275,,,6363ππππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.方案二:选条件②()113sin ,cos 2,cos ,24m x x n x ωωω⎛⎫== ⎪⎝⎭,()f x m n ∴=⋅1cos cos 24x x x ωωω=+112cos 222x x ωω⎫=+⎪⎪⎝⎭1sin 226x πω⎛⎫=+ ⎪⎝⎭, 又22T ππω==,1ω∴=,()1sin 226f x x π⎛⎫∴=+ ⎪⎝⎭,(1)0,sin 2πθθ<<=,4πθ∴=,()4f f πθ⎛⎫∴= ⎪⎝⎭12sin 23π=4=; (2)由3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈,令0k =,得263x ππ≤≤,令1k =,得7563x ππ≤≤,∴函数()f x 在[]0,2π上的单调递减区间为275,,,6363ππππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.方案三:选条件③()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭1cos sin cos cos sin 664x x x ππωωω⎛⎫=+- ⎪⎝⎭211cos cos 24x x x ωω=+-12cos 24x x ωω=+112cos 2222x x ωω⎛⎫=+ ⎪ ⎪⎝⎭1sin 226x πω⎛⎫=+ ⎪⎝⎭, 又22T ππω==,1ω∴=,()1sin 226f x x π⎛⎫∴=+ ⎪⎝⎭,(1)0,sin 22πθθ<<=,4πθ∴=,()4f f πθ⎛⎫∴= ⎪⎝⎭12sin 23π==; (2)由3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈,令0k =,得263x ππ≤≤,令1k =,得7563x ππ≤≤.∴函数()f x 在[]0,2π上的单调递减区间为275,,,6363ππππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.二、达标训练1、(2021年江苏连云港联考)已知有条件①(2)cos cos b c A a C -=, 条件②45cos 2cos 2=+⎪⎭⎫⎝⎛+A A π;请在上述两个条件中任选一个,补充在下面题目中,然后解答补充完整的题目.在锐角△ABC 中,内角 A , B , C 所对的边分别为a , b,c , a =7, b +c =5, 且满足.(1) 求角A 的大小; (2) 求△ABC 的面积.(注:如果选择多个条件分别解答,按第一个解答计分.)【解析】(1)选择条件①()2cos cos b c A a C -=,…………………………………1分 法1:由正弦定理得()2sin sin cos sin cos B C A A C -=, ………2分所以()2sin cos sin sin B A A C B =+=,………………………3分 因为sin 0B ≠, 所以1cos 2A =………………………………4分 又π0,2A ⎛⎫∈ ⎪⎝⎭,…………………5分 所以3A π=. ………………………………………………………6分法2:由余弦定理得()222222222b c a a b c b c abc ab+-+--=,……2分 化简得222b c a bc +-=………………………………………3分则2221cos 22b c a A bc +-==, ………………………………4分又π0,2A ⎛⎫∈ ⎪⎝⎭,……………………5分 所以3A π=. ………………………………………………6分(1)选择条件②25cos cos 24A A π⎛⎫++= ⎪⎝⎭………………………………………1分 法3:因为cos sin 2A A π⎛⎫+=-⎪⎝⎭,所以25sin cos 4A A += ……………2分因为22sin cos 1A A +=,所以251cos cos 4A A -+=…………3分化简得21cos 02A ⎛⎫-= ⎪⎝⎭,解得1cos 2A =, ………………………4分 又()0,A π∈,………………………5分 所以3A π=. ……………………………………………………6分 (2)由余弦定理2222cos3a b c bc π=+-, ……………………………7分 得()273b c bc =+-,…………………………………………………8分所以()2763b c bc bc +-=⇒=, ……………………………10分于是ABC ∆的面积11sin 62222S bc A ==⨯⨯=.………12分 2、(2021年泰州高三期中)在①a=√2,②S=C 2 cosB , ③C=π3这三个条件中任选-一个,补充在下面问题中,并对其进行求解.问题:在∆A BC 中,内角A, B,C 的对边分别为a,b,c,面积为S ,√3bcosA=acosC+ccosA ,b=1,____________,求 c 的值.注:如果选择多个条件分别解答,按第一个解答计分。

2021年中考数学一轮单元检测(四) 图形初步与三角形(含解析)

2021年中考数学一轮单元检测(四) 图形初步与三角形(含解析)

单元检测(四)图形初步与三角形(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20°B.60°C.70°D.160°2.(2020·湖南怀化)如图,已知直线a,b被直线c所截,且a∥b,若∠α=40°,则∠β的度数为()A.140°B.50°C.60°D.40°3.(2020·贵州遵义)一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为()A.30°B.45°C.55°D.60°4.(2020·江苏徐州)三角形的两边长分别为3 cm和6 cm,则第三边长可能为()A.2 cmB.3 cmC.6 cmD.9 cm5.(2020·广西玉林)一个三角形木架三边长分别是75 cm,100 cm,120 cm,现要再做一个与其相似的三角形木架,而只有长为60 cm和120 cm的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有()A.一种B.两种C.三种D.四种6.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A. B.C. D.7.(2020·湖南长沙)从一艘船上测得海岸上高为42米的灯塔顶部的仰角是30度,船离灯塔的水平距离为()A.42米B.14米C.21米D.42米8.(2020·江苏苏州)如图,小明想要测量学校操场上旗杆AB的高度,他做了如下操作:(1)在点C处放置测角仪,测得旗杆顶的仰角∠ACE=α;(2)量得测角仪的高度CD=a;(3)量得测角仪到旗杆的水平距离DB=b.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为()A.a+b tan αB.a+b sin αC.a+D.a+9.(2020·湖北荆门)如图,在△ABC中,AB=AC,∠BAC=120°,BC=2,D为BC的中点,AE=AB,则△EBD的面积为()A. B. C. D.10.(2020·重庆B卷)如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A. B.3 C.2 D.4二、填空题(本大题共4小题,每小题5分,满分20分)11.(2020·四川乐山)计算:|-2|-2cos 60°+(π-2 020)0=.12.(2020·湖南湘西)如图,直线AE∥BC,BA⊥AC,若∠ABC=54°,则∠EAC=度.13.(2020·湖北十堰)如图,在△ABC中,DE是AC的垂直平分线.若AE=3,△ABD的周长为13,则△ABC的周长为.第12题图第13题图第14题图14.(2020·湖南张家界)如图,正方形ABCD的边长为1,将其绕顶点C按逆时针方向旋转一定角度到CEFG位置,使得点B落在对角线CF上,则阴影部分的面积是.三、(本大题共2小题,每小题12分,满分24分)15.(2019·江苏南通)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离.为什么?16.如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD;(2)若AB=13,BC=10,求线段DE的长.四、(本大题共2小题,每小题14分,满分28分)17.(2020·黑龙江绥化)如图,热气球位于观测塔P的北偏西50°方向,距离观测塔100 km的A处,它沿正南方向航行一段时间后,到达位于观测塔P的南偏西37°方向的B处,这时,B处距离观测塔P有多远?(结果保留整数,参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75,sin 50°≈0.77,cos50°≈0.64,tan 50°≈1.19)18.(2020·黑龙江哈尔滨)已知,在△ABC中,AB=AC,点D,E在BC上,BD=CE,连接AD,AE.图1图2(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC,交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.五、(本大题共2小题,每小题19分,满分38分)19.(2020·福建)如图,△ADE由△ABC绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在BC的延长线上,AD,EC相交于点P.(1)求∠BDE的度数;(2)F是EC延长线上的点,且∠CDF=∠DAC.①判断DF和PF的数量关系,并证明;②求证:.20.(2020·甘肃天水)性质探究:如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.图(1)图(2)理解运用:(1)若顶角为120°的等腰三角形的周长为4+2,则它的面积为.(2)如图(2),在四边形EFGH中,EF=EG=EH.①求证:∠EFG+∠EHG=∠FGH;②在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展:顶角为2α的等腰三角形的底边与一腰的长度之比为(用含α的式子表示).参考答案单元检测(四)图形初步与三角形1.D解析∵∠AOD=160°,∴∠BOC=∠AOD=160°,故选D.2.D解析∵∠α=40°,∴∠1=∠α=40°,∵a∥b,∴∠β=∠1=40°,故选D.3.B解析∵AB∥CD,∴∠1=∠D=45°,故选B.4.C解析6-3=3<第三边长<6+3=9,只有6 cm满足题意,故选C.5.B解析长为120 cm的木条与三角形木架的最长边相等,则长为120 cm的木条不能作为一边,设从120 cm的木条上截下的两段长分别为x cm,y cm(x+y≤120),由于长为60 cm的木条不能与75 cm的一边对应,否则x+y大于120 cm,当长60 cm的木条与100 cm的一边对应,则,解得x=45,y=72;当长为60 cm的木条与120 cm的一边对应,则,解得x=37.5,y=50.则有两种不同的截法:把120 cm的木条截成的45 cm,72 cm的两段或把120 cm的木条截成长为37.5 cm,50 cm的两段.故选B.6.D解析∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA.∴.∴.故选D.7.A解析根据题意可得:船离灯塔的水平距离为42÷tan 30°=42米.8.A解析如图,延长CE交AB于点F,根据题意得,四边形CDBF为矩形,∴CF=DB=b,FB=CD=a,在Rt△ACF中,∠ACF=α,CF=b,tan∠ACF=,∴AF=CF·tan∠ACF=b tan α,AB=AF+BF=a+b tan α,故选A.9.B解析如图,连接AD,∵AB=AC,∠BAC=120°,BC=2,且D为边BC的中点,∴AD⊥BC,且∠BAD=∠CAD=∠BAC=60°,BD=DC=,∴在Rt△ABD中,AB=2,AD=1,∵AE=AB,∴BE=AB,∴S△EBD=S△ABD=×1×,故选B.10.C解析如图,延长BC交AE于点H,∵∠ABC=45°,∠BAC=15°,∴∠ACB=120°,∵将△ACB沿直线AC翻折得△ACD,∴∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°.∵∠DAE=∠DAC,∴∠DAE=∠DAC=15°,∴∠CAE=30°,∵∠ADC=∠DAE+∠AED,∴∠AED=45°-15°=30°,∴∠AED=∠EAC,∴AC=EC.又∠BCE=360°-∠ACB-∠ACE=120°=∠ACB,BC=BC,∴△ABC≌△EBC(SAS),∴AB=BE,∠ABC=∠EBC=45°,∴∠ABE=90°.∵AB=BE,∠ABC=∠EBC,∴AH=EH,BH⊥AE,∵∠CAE=30°,∴CH=AC=,AH=CH=,∴AE=2,∵AB=BE,∠ABE=90°,∴BE==2,故选C.11.2解析原式=2-2×+1=2.12.36解析∵AE∥BC,∴∠B+∠BAE=180°,∵∠B=54°,∴∠BAE=180°-54°=126°.∵BA⊥AC,∴∠BAC=90°,∴∠EAC=126°-90°=36°.13.19解析∵DE是AC的垂直平分线,AE=3,∴AC=2AE=6,AD=DC,∵AB+BD+AD=13,∴△ABC的周长=AB+BC+AC=AB+BD+AD+AC=13+6=19.14.-1解析如图,过E点作MN∥BC分别交AB,CD于点M,N,设AB与EF交于点P,连接CP, ∵点B在对角线CF上,∴∠DCE=∠ECF=45°,EC=1,∴△ENC为等腰直角三角形,∴MB=CN=EC=,又BC=AD=CD=CE,且CP=CP,△PEC和△PBC均为直角三角形,∴△PEC≌△PBC(HL),∴PB=PE.又∠PFB=45°,∴∠FPB=45°=∠MPE,∴△MPE为等腰直角三角形,设MP=x,则EP=BP=x,∵MP+BP=MB,∴x+x=,解得x=,∴BP=x=-1,∴阴影部分的面积=2S△PBC=2××BC×BP=1×(-1)=-1.15.解量出DE的长就等于AB的长,理由如下:在△ABC和△DEC中,∴△ABC≌△DEC(SAS).∴AB=DE.16.(1)证明∵AB=AC,∴∠ABC=∠ACB.∵AD是BC边上的中线,∴BD=CD,AD⊥BC.又∵DE⊥AB,∴∠DEB=∠ADC.又∵∠ABC=∠ACB,∴△BDE∽△CAD.(2)解∵BC=10,∴BD=BC=5.在Rt△ABD中,有AD2+BD2=AB2,∴AD==12.∵△BDE∽△CAD,∴,即.∴DE=.17.解由已知得,∠A=50°,∠B=37°,PA=100 km,在Rt△PAC中,∵sin A=,∴PC=PA·sin 50°≈77,在Rt△PBC中,∵sin B=,∴PB=≈128 km.答:这时,B处距离观测塔P约有128 km.18.解(1)证明:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴AD=AE.(2)顶角为45°的等腰三角形有以下四个:△ADE,△BAE,△CAD,△BDF.证明:∵∠C=45°,AB=AC,∴∠ABC=∠ACB=45°,∠BAC=90°,∴△ABC不符合题意.∵∠DAE=45°,AD=AE,即△ADE是等腰三角形,∠DAE=45°;∴∠ADE=∠AED==67.5°,∴∠BAD=∠CAE=67.5°-45°=22.5°,∴∠BAE=∠CAD=22.5°+45°=67.5°,∴∠BAE=∠BEA=∠CAD=∠CDA=67.5°,∴CA=CD,AB=BE,即△BAE,△CAD是等腰三角形,∠ABC=∠ACB=45°; ∵BF∥AC,∴∠DBF=∠C=45°,∠F=∠CAD=67.5°,又∠BDF=∠ADC=67.5°,∴∠BDF=∠F=67.5°,∴BD=BF,即△BDF是等腰三角形,∠DBF=45°.19.解(1)由旋转的性质可知,AB=AD,∠BAD=90°,△ABC≌△ADE,∴∠B=∠ADE,在Rt△ABD中,∠B=∠ADB=45°,∴∠ADE=∠B=45°, ∴∠BDE=∠ADB+∠ADE=90°.(2)①DF=PF.证明:由旋转的性质可知,AC=AE,∠CAE=90°,在Rt△ACE中,∠ACE=∠AEC=45°,∵∠CDF=∠CAD,∠ACE=∠ADB=45°,∴∠ADB+∠CDF=∠ACE+∠CAD,即∠FPD=∠FDP,∴DF=PF;②证明:如图,过点P作PH∥ED交DF于点H,∴∠HPF=∠DEP,.∵∠DPF=∠ADE+∠DEP=45°+∠DEP,∠DPF=∠ACE+∠DAC=45°+∠DAC, ∴∠DEP=∠DAC,又∠CDF=∠DAC,∴∠DEP=∠CDF,∴∠HPF=∠CDF.又FD=FP,∠F=∠F,∴△HPF≌△CDF,∴HF=CF,∴DH=PC,又,∴.图(1)20.解如图(1),作CD⊥AB于点D,则∠ADC=∠BDC=90°,∵AC=BC,∠ACB=120°,∴AD=BD,∠A=∠B=30°,∴AC=2CD,AD=CD,∴AB=2AD=2CD,∴.故答案为:∶1(或).理解运用:(1)解析由“性质探究”得AC=2CD,AD=CD,∵AC+BC+AB=4+2,∴4CD+2CD=4+2,解得CD=1,∴AB=2,∴△ABC的面积=AB×CD=×2×1=.(2)①证明∵EF=EG=EH,∴∠EFG=∠EGF,∠EGH=∠EHG,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH.图(2)②解如图(2),连接FH,作EP⊥FH于点P,则PF=PH,由①得∠EFG+∠EHG=∠FGH=120°,∴∠FEH=360°-120°-120°=120°,∵EF=EH,∴∠EFH=30°,∴PE=EF=10,∴PF=PE=10,∴FH=2PF=20.∵点M,N分别是FG,GH的中点,∴MN是△FGH的中位线,∴MN=FH=10.类比拓展:2sin α∶1(或2sin α)如图(3),作AD⊥BC于点D,∵AB=AC,∴BD=CD,∠BAD=∠BAC=α,图(3) ∵sin α=,∴BD=AB·sin α,∴BC=2BD=2AB·sin α,∴=2sin α.。

徐州市初中数学三角形经典测试题含解析

徐州市初中数学三角形经典测试题含解析

徐州市初中数学三角形经典测试题含解析一、选择题1.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数()A.28°B.22°C.32°D.38°【答案】B【解析】【分析】延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.【详解】解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∠ABC=60°,∵∠1=38°,∴∠AEC=∠ABC-∠1=22°,∵GH∥EF,∴∠2=∠AEC=22°,故选B.【点睛】本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,主要考查学生的推理能力.2.△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB的长为()cm A.6 B.8 C5D.5【答案】B【解析】【分析】根据已知条件结合三角形的内角和定理求出三角形中角的度数,然后根据含30度角的直角三角形的性质进行求解即可.【详解】设∠A=x,则∠B=2x,∠C=3x,由三角形内角和定理得∠A+∠B+∠C=x+2x+3x=180°,解得x=30°,即∠A=30°,∠C=3×30°=90°,此三角形为直角三角形,故AB=2BC=2×4=8cm,故选B.【点睛】本题考查了三角形内角和定理,含30度角的直角三角形的性质,熟练掌握“直角三角形中30°的角所对的直角边等于斜边的一半”是解题的关键.3.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【答案】D【解析】【详解】A.因为2+3=5,所以不能构成三角形,故A错误;B.因为2+4<6,所以不能构成三角形,故B错误;C.因为3+4<8,所以不能构成三角形,故C错误;D.因为3+3>4,所以能构成三角形,故D正确.故选D.4.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是()A.B.C.D.【答案】C【解析】【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】A 、72+242=252,152+202≠242,(7+15)2+202≠252,故A 不正确;B 、72+242=252,152+202≠242,故B 不正确;C 、72+242=252,152+202=252,故C 正确;D 、72+202≠252,242+152≠252,故D 不正确,故选C .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a 2+b 2=c 2,那么这个三角形是直角三角形.5.如图,在ABC V 中,AB AC =,点E 在AC 上,ED BC ⊥于点D ,DE 的延长线交BA 的延长线于点F ,则下列结论中错误的是( )A .AE CE =B .12DEC BAC ∠=∠ C .AF AE =D .1902B BAC ∠+∠=︒ 【答案】A【解析】【分析】 由题意中点E 的位置即可对A 项进行判断;过点A 作AG ⊥BC 于点G ,如图,由等腰三角形的性质可得∠1=∠2=12BAC ∠,易得ED ∥AG ,然后根据平行线的性质即可判断B 项;根据平行线的性质和等腰三角形的判定即可判断C 项;由直角三角形的性质并结合∠1=12BAC ∠的结论即可判断D 项,进而可得答案. 【详解】 解:A 、由于点E 在AC 上,点E 不一定是AC 中点,所以,AE CE 不一定相等,所以本选项结论错误,符合题意;B 、过点A 作AG ⊥BC 于点G ,如图,∵AB =AC ,∴∠1=∠2=12BAC ∠, ∵ED BC ⊥,∴ED ∥AG ,∴122DEC BAC ∠=∠=∠,所以本选项结论正确,不符合题意;C 、∵ED ∥AG ,∴∠1=∠F ,∠2=∠AEF ,∵∠1=∠2,∴∠F =∠AEF ,∴AF AE =,所以本选项结论正确,不符合题意;D 、∵AG ⊥BC ,∴∠1+∠B =90°,即1902B BAC ∠+∠=︒,所以本选项结论正确,不符合题意.故选:A .【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质以及直角三角形的性质等知识,属于基本题型,熟练掌握等腰三角形的判定和性质是解题的关键.6.(11·十堰)如图所示为一个污水净化塔内部,污水从上方入口进入后流经形如等腰直角三角形的净化材料表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的5个出口中的一个。

徐州数学全等三角形专题练习(解析版)

徐州数学全等三角形专题练习(解析版)
∴△BCF≌△CDE(AAS),∴CF=DE=5,
∴ .
故答案为:10.
【点睛】
本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.
3.如图,在等边 中取点 使得 , , 的长分别为3,4,5,则 _________.
【详解】
延长BM至G,使MG=BM=4,连接FG、DG,如图所示:
∵M为EF中点,
∴ME=MF,
在△BME和△GMF中,

∴△BME≌△GMF(SAS),
∴FG=BE,∠MBE=∠MGF,S△BEM=S△GFM,
∴FG∥BE,
∴∠C=∠GFC,
∵∠A+∠C=180°,∠DFG+∠GFC=180°,
∴∠A=∠DFG,
6.如图,在四边形ABCD中,∠A+∠C=180°,E、F分别在BC、CD上,且AB=BE,AD=DF,M为EF的中点,DM=3,BM=4,则五边形ABEFD的面积是_____.
【答案】12
【解析】
【分析】
延长BM至G,使MG=BM,连接FG、DG,证明△BME≌△GMF(SAS),得出FG=BE,∠MBE=∠MGF,证出AB=FG,证明△DAB≌△DFG(SAS),得出DB=DG,由等腰三角形的性质即可得DM⊥BM,由五边形ABEFD的面积=△DBG的面积,可求解.
故答案为: .
【点睛】
本题考查了等边三角形的性质与判定,解题的关键是熟知旋转的性质作出辅助线进行求解.
4.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4 ,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为_____.

三角形填空选择检测题(Word版 含答案)

三角形填空选择检测题(Word版 含答案)

=(a+b-c)+(a-b- c)+(a-b+c) =a+b-c+a-b- c+a-b+c =3a-b-c. 故答案为:3a-b-c. 【点睛】 本题主要考查了三角形的三边关系定理和利用绝对值的性质进行化简,利用三角形的三边 关系得出绝对值内式子的正负是解决此题的关键.
7.如图,A、B、C 三点在同一条直线上,∠A=50°,BD 垂直平分 AE,垂足为 D,则∠EBC 的度数为_____.
∴∠CAD=∠EAD,
∴AD 为∠EAC 的平分线,
过 D 点作 DG⊥AC 于 G 点,

Rt△ADE

Rt△ADG
中,
AD DE
AD DG

∴△ADE≌△ADG(HL), ∴DE=DG, ∴DG=DF.
CD CD 在 Rt△CDG 与 Rt△CDF 中, DG DF ,
∴Rt△CDG≌Rt△CDF(HL), ∴CD 为∠ACF 的平分线, ∠ACB=74°, ∴∠DCA=53°, ∴∠BDC=180°﹣∠CBD﹣∠DCA﹣∠ACB=180°﹣23°﹣53°﹣74°=30°. 故答案为:30° 【点睛】 本题考查了多边形的外角和内角,能熟记三角形的外角性质和三角形的内角和定理是解此 题的关键,注意:三角形的内角和等于 180°,三角形的一个外角等于和它不相邻的两个内 角的和.
设少加的 2 个内角和为 x 度,边数为 n.
则(n-2)×180=830+x,
即(n-2)×180=4×180+110+x,
因此 x=70,n=7 或 x=250,n=8.
故该多边形的边数是 7 或 8.
故选 C.
【点睛】

八年级上册三角形填空选择专题练习(解析版)

八年级上册三角形填空选择专题练习(解析版)

八年级上册三角形填空选择专题练习(解析版)一、八年级数学三角形填空题(难)1.△ABC的两边长为4和3,则第三边上的中线长m的取值范围是_______.【答案】1722m<<【解析】【分析】作出草图,延长AD到E,使DE=AD,连接CE,利用“边角边”证明△ABD和△ECD全等,然后根据全等三角形对应边相等可得CE=AB,再根据三角形的任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,便不难得出m的取值范围.【详解】解:如图,延长AD到E,使DE=AD,连接CE,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,AD DEADB EDCBD CD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=3,AC=4,∴4-3<AE<4+3,即1<AE<7,∴1722m<<.故答案为:1722m<<.【点睛】本题主要考查倍长中线法构造全等三角形和三边关系,解决本题的关键是要熟练掌握倍长中线法构造全等三角形.2.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.【答案】105°.【解析】【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.3.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°【答案】B【解析】正五边形的内角是∠ABC=()521805-⨯=108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E=()621806-⨯=120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.4.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.【答案】22【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去. ②当底边是4cm ,腰长是9cm 时,能构成三角形,则其周长=4+9+9=22cm .故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.5.已知a 、b 、c 为△ABC 的三边,化简:|a+b ﹣c|-|a ﹣b ﹣c|+|a ﹣b+c|=______.【答案】3a b c --【解析】【分析】根据三角形的三边关系判断绝对值内式子的正负,然后利用绝对值的性质去掉绝对值,再去括号合并同类项即可.【详解】解:∵a 、b 、c 为△ABC 的三边,∴a +b >c ,a -b <c ,a +c >b ,∴a +b -c >0,a -b -c <0,a -b +c >0,∴|a +b -c |-|a -b -c |+|a -b +c |=(a +b -c )+(a -b - c )+(a -b +c )=a +b -c +a -b - c +a -b +c=3a -b -c .故答案为:3a -b -c .【点睛】本题主要考查了三角形的三边关系定理和利用绝对值的性质进行化简,利用三角形的三边关系得出绝对值内式子的正负是解决此题的关键.6.如图,在ABC ∆中,B 与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.【答案】80°【分析】根据三角形内角和可以求得∠PBC+∠PCB 的度数,再根据角平分线的定义,求出∠ABC+∠ACB ,最后利用三角形内角和定理解答即可.【详解】解:在△PBC 中,∠BPC=130°,∴∠PBC+∠PCB=180°-130°=50°.∵PB 、PC 分别是∠ABC 和∠ACB 的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB )=2×50°=100°,在△ABC 中,∠A=180°-(∠ABC+∠ACB )=180°-100°=80°.故答案为80°.【点睛】本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.7.如图,李明从A 点出发沿直线前进5米到达B 点后向左旋转的角度为α,再沿直线前进5米,到达点C 后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.【答案】40︒.【解析】【分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】连续左转后形成的正多边形边数为:4559÷=,则左转的角度是360940︒÷=︒.故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.8.如图,在ABC ∆中,AD 是BC 边上的高,AE 平分BAC ∠,若130∠=,220∠=,则B ∠=__________.【答案】50°【解析】【分析】由角平分线的定义和已知可求出∠BAC ,由AD 是BC 边上的高和已知条件可以求出∠C,然后运用三角形内角和定理,即可完成解答.【详解】解:∵AE 平分BAC ∠,若130∠=∴BAC ∠=2160∠=;又∵AD 是BC 边上的高,220∠=∴C ∠=90°-270∠= 又∵BAC ∠+∠B+∠C=180°∴∠B=180°-60°-70°=50°故答案为50°.【点睛】本题考查了角平分线、高的定义以及三角形内角和的知识,考查知识点较多,灵活运用所学知识是解答本题的关键.9.如图,AB ∥CD ,∠ABE =66°,∠D =54°,则∠E =____度.【答案】12【解析】【分析】利用三角形的外角与内角的关系及平行线的性质可直接解答.【详解】∵ AB ∥CD ,∴ ∠BFC =∠ABE =66°.在△EFD 中,利用三角形的外角等于与它不相邻的两个内角的和,得到∠BFC =∠E +∠D , ∴ ∠E =∠BFC -∠D =12°.故答案是:12.【点睛】本题考查了三角形外角与内角的关系及平行线的性质,比较简单.10.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.【答案】85°.【解析】【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.【详解】∵在△ABC中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD平分∠ABC,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为85°.二、八年级数学三角形选择题(难)11.图1是二环三角形,S=∠A1+∠A2+…+∠A6=360,图2是二环四边形,S=∠A1+∠A2+…+∠A8=720,图3是二环五边形,S=∠A1+∠A2+…+∠A10=1080…聪明的同学,请你直接写出二环十边形,S=_____________度()A.1440 B.1800 C.2880 D.3600【答案】C【解析】【分析】本题只看图觉得很复杂,但从数据入手,就简单了,从图2开始,每个图都比前一个图多360度.抓住这点就很容易解决问题了.【详解】解:依题意可知,二环三角形,S=360度;二环四边形,S=720=360×2=360×(4﹣2)度;二环五边形,S=1080=360×3=360×(5﹣2)度;…∴二环十边形,S=360×(10﹣2)=2880度.故选:C.【点睛】本题考查了多边形的内角和,本题可直接根据S的度数来找出规律,然后根据规律表示出二环十边形的度数.12.如图,∠ABC =∠ACB ,BD 、CD 分别平分△ABC 的内角∠ABC 、外角∠ACP ,BE平分外角∠MBC 交 DC 的延长线于点 E ,以下结论:①∠BDE =12∠BAC ;② DB⊥BE ;③∠BDC +∠ACB= 90︒;④∠BAC + 2∠BEC = 180︒ .其中正确的结论有()A.1 个B.2 个C.3 个D.4 个【答案】D【解析】【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角的性质、判断即可.【详解】① ∵BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,∴∠ACP=2∠DCP,∠ABC=2∠DBC,又∵∠ACP=∠BAC+∠ABC,∠DCP=∠DBC+∠BDC,∴∠BAC=2∠BDE,∴∠BDE =12∠BAC∴①正确;②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥DB,故②正确,③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确,④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确,即正确的有4个,故选D【点睛】此题考查三角形的外角性质,平行线的判定与性质,三角形内角和定理,解题关键在于掌握各性质定理13.如图,在△ABC中,点D是BC边上的一点,E,F分别是AD,BE的中点,连结CE,CF,若S△CEF=5,则△ABC的面积为()A.15 B.20 C.25 D.30【答案】B【解析】【分析】根据题意,利用中线分的三角形的两个图形面积相等,便可找到答案【详解】解:根据等底同高的三角形面积相等,可得∵F是BE的中点,S△CFE=S△CFB=5,∴S△CEB=S△CEF+S△CBF=10,∵E是AD的中点,∴S△AEB=S△DBE,S△AEC=S△DEC,∵S△CEB=S△BDE+S△CDE∴S△BDE+S△CDE=10∴S△AEB+S△AEC=10∴S△ABC=S△BDE+S△CDE+S△AEB+S△AEC=20故选:B.【点睛】熟悉三角形中线的拓展性质:分其两个三角形的面积是相等的,这样便可在实际问题当中家以应用.A B C.再分14.如图,ABC的面积为1.分别倍长(延长一倍)AB,BC,CA得到111A B C.…… 按此规律,倍长2018次后得到的别倍长A1B1,B1C1,C1A1得到222A B C的面积为()201820182018A.201787D.2018 6B.20186C.2018【答案】C【解析】分析:根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A1B1C1的面积是△ABC的面积的7倍,依此类推写出即可.详解:连接AB1、BC1、CA1,根据等底等高的三角形面积相等,△A1BC、△A1B1C、△AB1C、△AB1C1、△ABC1、△A1BC1、△ABC的面积都相等,所以,S△A1B1C1=7S△ABC,同理S△A2B2C2=7S△A1B1C1=72S△ABC,依此类推,S△AnBnCn=7n S△ABC.∵△ABC 的面积为1,∴S△AnBnCn=7n,∴S△A2018B2018C2018=72018.故选C.点睛:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.15.能够铺满地面的正多边形组合是()A.正三角形和正五边形B.正方形和正六边形C.正方形和正五边形D.正五边形和正十边形【答案】D【解析】【分析】正多边形的组合能否铺满地面,关键是要看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【详解】解:A、正五边形和正三边形内角分别为108°、60°,由于60m+108n=360,得m=6-95 n,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;B、正方形、正六边形内角分别为90°、120°,不能构成360°的周角,故不能铺满,故此选项错误;C、正方形、正五边形内角分别为90°、108°,当90n+108m=360,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;D、正五边形和正十边形内角分别为108、144,两个正五边形与一个正十边形能铺满地面,故此选项正确.故选:D.【点睛】此题主要考查了平面镶嵌,两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.16.如图,△ABC 中,E 是 AC 的中点,延长BC 至D,使BC :CD=3:2,以CE,CD 为邻边做▱CDFE,连接 AF,BE,BF,若△ABC 的面积为 9,则阴影部分面积是()A.6 B.4 C.3 D.2【答案】A【解析】【分析】根据三角形中位线性质结合三角形面积去解答.【详解】解:在ABC中,E 是 AC 的中点,S ABC9, BC :CD=3:2▱CDFE 中,CD=EF1S BCE 4.52S ABC ∴== 设BCE 的高为1h , ABC 的高为2.h11S BCE 4.52BC h ∴=⨯⨯= 13h =12:1:2h h =26h ∴=S AEF S EFB s ∴=+阴()2111122EF h h EF h =⨯⨯-+⨯⨯ 212EF h =⨯⨯ 1262=⨯⨯ 6.=【点睛】此题重点考察学生对三角形中位线和面积的理解,熟练掌握三角形面积计算方法是解题的关键.17.如图P 为ABC ∆内一点,070,BAC ∠=0120,BPC ∠=BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,BD 与CE 交于F ,则BFC ∠=( )A .085B .090C .095D .0100【答案】C【解析】 ∵070,BAC ∠= 0120,BPC ∠=∴∠ABC+∠ACB=110°,∠PBC+∠PCB=60°,∴∠ABP+∠ACP=(∠ABC+∠ACB)-(∠PBC+∠PCB)=110°-60°=50°,∵BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,∴∠FBP+∠FCP=12 (∠ABP+∠ACP)=00150252⨯=;∴∠FBC+∠FCB=∠FBP+∠FCP+∠PBC+∠PCB=25°+60°=85°,∠=180°-(∠FBC+∠FCB)=180°-85°=95°.∴BFC故选C.点睛:本题主要考查了三角形的内角和定理和角平分线的定义,根据图形正确找出角与角之间的数量关系是解题的关键.18.已知△ABC的两条高的长分别为5和20,若第三条高的长也是整数,则第三条高的长的最大值为( )A.5 B.6 C.7 D.8【答案】B【解析】设△ABC的面积为S,所求的第三条高线的长为h,则三边长分别为,,,根据三角形的三边关系为,解得,所以h的最大整数值为6,即第三条高线的长的最大值为6.故选B.点睛:本题主要考查了三角形的面积公式,三角形三边关系定理及不等式组的解法,有一定难度.利用三角形的面积公式,表示出△ABC三边的长度,从而运用三角形三边关系定理,列出不等式组是解题的关键,难点是解不等式组.19.下列长度的三根小木棒能构成三角形的是( )A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【答案】D【解析】【详解】A.因为2+3=5,所以不能构成三角形,故A错误;B.因为2+4<6,所以不能构成三角形,故B错误;C.因为3+4<8,所以不能构成三角形,故C错误;D.因为3+3>4,所以能构成三角形,故D正确.故选D.20.一个多边形的每个内角均为108º,则这个多边形是()A.七边形 B.六边形 C.五边形 D.四边形【答案】C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.。

三角形填空选择专题练习(解析版)

三角形填空选择专题练习(解析版)
A. B.8C. D.6
【答案】B
【解析】
分析:延长BG交AC于D.由重心的性质得到BG=2GD,D为AC的中点,再由直角三角形斜边上的中线等于斜边的一半,得到AC=2GD,即有BG=AC,从而得到AC、GD的长.当GD⊥AC时,△AGC的面积的最大,最大值为: AC•GD,即可得出结论.
详解:延长BG交AC于D.
三角形填空选择专题练习(解析版)
一、八年级数学三角形填空题(难)
1.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C.其中正确个数是( )
③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;
④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确.
A.4个B.3个C.2个D.1个
【答案】B
【解析】
解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;
②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;

数学八年级上册 三角形填空选择专题练习(解析版)

数学八年级上册 三角形填空选择专题练习(解析版)

数学八年级上册三角形填空选择专题练习(解析版)一、八年级数学三角形填空题(难)1.已知如图,BQ平分∠ABP,CQ平分∠ACP,∠BAC=α,∠BPC=β,则∠BQC=_________.(用α,β表示)【答案】12(α+β).【解析】【分析】连接BC,根据角平分线的性质得到∠3=12∠ABP,∠4=12∠ACP,根据三角形的内角和得到∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,求出∠3+∠4=12(β-α),根据三角形的内角和即可得到结论.【详解】解:连接BC,∵BQ平分∠ABP,CQ平分∠ACP,∴∠3=12∠ABP,∠4=12∠ACP,∵∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,∴∠3+∠4=12(β-α),∵∠BQC=180°-(∠1+∠2)-(∠3+∠4)=180°-(180°-β)-12(β-α),即:∠BQC=12(α+β).故答案为:12(α+β).【点睛】本题考查了三角形的内角和,角平分线的定义,连接BC构造三角形是解题的关键.2.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C →B 运动.若设点P 运动的时间是t 秒,那么当t =___________________,△APE 的面积等于6.【答案】1.5或5或9【解析】【分析】分为两种情况讨论:当点P 在AC 上时:当点P 在BC 上时,根据三角形的面积公式建立方程求出其解即可.【详解】如图1,当点P 在AC 上.∵△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,∴CE =4,AP =2t .∵△APE 的面积等于6,∴S △APE =12AP •CE =12AP ×4=6.∵AP =3,∴t =1.5. 如图2,当点P 在BC 上.则t >3∵E 是DC 的中点,∴BE =CE =4. ∵PE ()43=7-PE t t =-- ,∴S =12EP •AC =12•EP ×6=6,∴EP =2,∴t =5或t =9. 总上所述,当t =1.5或5或9时,△APE 的面积会等于6.故答案为1.5或5或9.【点睛】本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.3.如图1,△ABC 中,沿∠BAC 的平分线AB 1折叠,剪掉重叠部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C 的平分线A n B n+1折叠,点B n 与点C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC 是△ABC 的好角.(1)如图2,在△ABC 中,∠B>∠C ,若经过两次折叠,∠BAC 是△ABC 的好角,则∠B 与∠C 的等量关系是_______;(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。

八年级数学三角形填空选择专题练习(解析版)

八年级数学三角形填空选择专题练习(解析版)

八年级数学三角形填空选择专题练习(解析版)一、八年级数学三角形填空题(难)1.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠: 1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=________________.【答案】20202α 【解析】【分析】 根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知21211112222a A A A A a ∠=∠=∠=∠=,,…,依此类推可知2020A ∠的度数. 【详解】解:∵∠ABC 与∠ACD 的平分线交于点A 1,∴11118022A ACD ACB ABC ∠=︒-∠-∠-∠ 1118018022ABC A A ABC ABC =︒-∠+∠-︒-∠-∠-∠()() 1122a A =∠=, 同理可得221122a A A ∠=∠=, …∴2020A ∠=20202α. 故答案为:20202α. 【点睛】 本题是找规律的题目,主要考查三角形的外角性质及三角形的内角和定理,同时也考查了角平分线的定义.2.如图,BE 平分∠ABC,CE 平分外角∠ACD,若∠A=42°,则∠E=_____°.【答案】21°【解析】根据三角形的外角性质以及角平分线的定义可得.解:由题意得:∠E =∠ECD −∠EBC =12∠ACD −12∠ABC =12∠A =21°. 故答案为21°.3.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。

【答案】45︒【解析】【分析】根据三角形内角与外角的关系可得2M MAB ∠∠∠=+由角平分线的性质可得MAB MAO ∠∠=根据三角形内角和定理可得OBA OAB BOA 180∠∠∠++=︒易得∠M 的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

徐州数学三角形填空选择专题练习(解析版)一、八年级数学三角形填空题(难)1.已知如图,BQ平分∠ABP,CQ平分∠ACP,∠BAC=α,∠BPC=β,则∠BQC=_________.(用α,β表示)【答案】12(α+β).【解析】【分析】连接BC,根据角平分线的性质得到∠3=12∠ABP,∠4=12∠ACP,根据三角形的内角和得到∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,求出∠3+∠4=12(β-α),根据三角形的内角和即可得到结论.【详解】解:连接BC,∵BQ平分∠ABP,CQ平分∠ACP,∴∠3=12∠ABP,∠4=12∠ACP,∵∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,∴∠3+∠4=12(β-α),∵∠BQC=180°-(∠1+∠2)-(∠3+∠4)=180°-(180°-β)-12(β-α),即:∠BQC=12(α+β).故答案为:12(α+β).【点睛】本题考查了三角形的内角和,角平分线的定义,连接BC构造三角形是解题的关键.2.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.【答案】78.【解析】【分析】利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.【详解】∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D∴∠DB C=12∠ABC ,∠ACD=12(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒, ∴∠D=12∠A=30︒, ∵84BEH ︒∠=,∴∠DEH=96︒,∵EFD ∆与EFH ∆关于直线EF 对称,∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,∵∠DFG=∠D+∠DEG=78︒,∴n=78.故答案为:78.【点睛】此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12∠A=30︒是解题的关键.3.如图,BE 平分∠ABC,CE 平分外角∠ACD,若∠A=42°,则∠E=_____°.【答案】21°【解析】根据三角形的外角性质以及角平分线的定义可得.解:由题意得:∠E=∠ECD−∠EBC=12∠ACD−12∠ABC=12∠A=21°.故答案为21°.4.如图,有一块直角三角板XYZ放置在△ABC上,三角板XYZ的两条直角边XY、XZ改变位置,但始终满足经过B、C两点.如果△ABC中,∠A=52°,则∠ABX+∠ACX=_________________.【答案】38°【解析】∠A=52°,∴∠ABC+∠ACB=128°,∠XBC+∠XCB=90°,∴∠ABX+∠ACX=128°-90°=38°.5.如图,在平面直角坐标系xOy中,点A、B分别在x轴的正半轴、y轴的正半轴上移动,点M在第二象限,且MA平分∠BAO,做射线MB,若∠1=∠2,则∠M的度数是_______。

【答案】45︒【解析】【分析】根据三角形内角与外角的关系可得2M MAB ∠∠∠=+由角平分线的性质可得MAB MAO ∠∠=根据三角形内角和定理可得OBA OAB BOA 180∠∠∠++=︒易得∠M 的度数。

【详解】 在ABM 中,2∠是ABM 的外角∴2M MAB ∠∠∠=+由三角形内角和定理可得OBA OAB BOA 180∠∠∠++=︒∵BOA 90∠=︒∴OBA OAB 90∠∠+=︒∵MA 平分BAO ∠∴BAO 2MAB ∠∠=由三角形内角与外角的关系可得12BAO BOA 90BAO ∠∠∠∠∠+=+=︒+ ∵12∠∠=∴2290BAO ∠∠=︒+又∵2M MAB ∠∠∠=+∴222M 2MAB 2M BAO ∠∠∠∠∠=+=+∴90BAO 2M BAO ∠∠∠︒+=+2M 90∠=︒M 45∠=︒【点睛】本题考查三角形外角的性质,即三角形的外角等于与之不相邻的两个内角的和。

6.如图,在ABC ∆中,B 与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.【答案】80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB的度数,再根据角平分线的定义,求出∠ABC+∠ACB,最后利用三角形内角和定理解答即可.【详解】解:在△PBC中,∠BPC=130°,∴∠PBC+∠PCB=180°-130°=50°.∵PB、PC分别是∠ABC和∠ACB的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB)=2×50°=100°,在△ABC中,∠A=180°-(∠ABC+∠ACB)=180°-100°=80°.故答案为80°.【点睛】本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.7.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.【答案】40︒.【解析】【分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】÷=,连续左转后形成的正多边形边数为:4559则左转的角度是360940︒÷=︒.故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.8.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.【答案】7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.9.将直角三角形(ACB ∠为直角)沿线段CD 折叠使B 落在B '处,若50ACB '︒∠=,则ACD ∠度数为________.【答案】20°.【解析】【分析】根据翻折的性质可知:∠BCD=∠B′CD ,又∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,继而即可求出∠BCD 的值,又∠ACD+∠BCD=∠ACB=90°,继而即可求出∠ACD 的度数.【详解】解:∵△B′CD 时由△BCD 翻折得到的,∴∠BCD=∠B′CD ,又∵∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,∴∠BCD=70°,又∵∠ACD+∠BCD=∠ACB=90°,∴∠ACD=20°.故答案为:20°.【点睛】本题考查翻折变换的知识,难度适中,解题关键是掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10.如图所示,请将12A ∠∠∠、、用“>”排列__________________.【答案】21A ∠∠∠>>【解析】【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A ,故答案为:∠2>∠1>∠A .【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.二、八年级数学三角形选择题(难)11.已知三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|的结果为()A.2a-10B.10-2aC.4D.-4【答案】C【解析】试题分析:已知三角形的三边长分别为2,a-1,4,则根据三角形的三边关系:可得:a-1>4-2,a-1<2+4即a>3,a<7.所以a-3>0,a-7<0. |a-3|+|a-7|=a-3+(7-a)=4.故选C点睛:本题主要考查考生三角形的三边关系:两边之和大于第三边,两边之差小于第三边。

由此可以得到a>3,a<7,因此可以判断a-3和a-7的正负情况。

此题还考查了考生绝对值的运算法则:正数的绝对值是其本身,负数的绝对值是它的相反数,零的绝对值还是零。

由此可化简|a-3|+|a-7|12.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积与△BCE的面积相等;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CHA.①②③B.②③④C.①③④D.①②③④【答案】A【解析】根据三角形中线的性质可得:△ABE的面积和△BCE的面积相等,故①正确,因为∠BAC=90°,所以∠AFG+∠ACF=90°,因为AD是高,所以∠DGC+∠DCG=90°,因为CF是角平分线,所以∠ACF=∠DCG,所以∠AFG=∠DGC,又因为∠DGC=∠AGF,所以∠AFG=∠AGF,故②正确,因为∠FAG+∠ABC=90°,∠ACB+∠ABC=90°,所以∠FAG=∠ACB,又因为CF是角平分线,所以∠ACB=2∠ACF,所以∠FAG=2∠ACF,故③正确,④假设BH=CH,∠ACB=30°,则∠HBC=∠HCB =15°,∠ABC=60°,所以∠ABE=60°-15°=45°,因为∠BAC=90°,所以AB=AE,因为AE=EC,所以AB=12AC,这与在直角三角形中30°所对直角边等于斜边的一半相矛盾,所以假设不成立,故④不一定正确,故选A.13.有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边长为、、3的三角形为直角三角形;③等腰三角形的两边长为3、4,则等腰三角形的周长为10;④一边上的中线等于这边长的一半的三角形是等腰直角三角形.其中正确的个数是()A.4个 B.3个 C.2个 D.1个【答案】C【解析】试题分析:根据等边三角形的性质可知,有一个角为60°的等腰三角形是等边三角形,故①正确;根据三边可知:,,3²=9,因此可知:,由勾股定理的逆定理可知其是直角三角形,故②正确;由等腰三角形的三边可知其边长为:3,3,4或3,4,4,则周长为10或11,故③不正确;由一边上的中线等于这边长的一半的直角三角形是等腰直角三角形,故④不正确.故选:C14.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°【答案】D【解析】【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.15.一个多边形的内角和是1260°,这个多边形的边数是()A.6 B.7 C.8 D.9【答案】D【解析】试题解析:设这个多边形的边数为n,由题意可得:(n-2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选D.的度数16.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则3等于()A.50°B.30°C.20°D.15°【答案】C【解析】【分析】根据平行和三角形外角性质可得∠2=∠4=∠1+∠3,代入数据即可求∠3.【详解】如图所示,∵AB∥CD∴∠2=∠4=∠1+∠3=50°,∴∠3=∠4-30°=20°,故选C.17.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG;其中正确的个数是()A.1B.2C.3D.4【答案】C【解析】【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB.又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;④无法证明CA平分∠BCG,故错误;③∵∠A=90°,∴∠ADC+∠ACD=90°.∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=∠CGE,∴∠CGE=2∠DFB,∴∠DFB=∠CGE,故正确.故选C.点睛:本题主要考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.18.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15°B.20°C.25°D.30°【答案】C 【解析】根据角平分线的定义和三角形的外角的性质即可得到∠D=12∠A.解:∵∠ABC的平分线与∠ACB的外角平分线相交于D点,∴∠1=12∠ACE,∠2=12∠ABC,又∠D=∠1﹣∠2,∠A=∠ACE﹣∠ABC,∴∠D=12∠A=25°.故选C.19.若(a﹣3)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为()A.12 B.15 C.12或15 D.18【答案】B【解析】【分析】根据非负数的和为零,可得每个非负数同时为零,可得a、b的值,根据等腰三角形的判定,可得三角形的腰,根据三角形的周长公式,可得答案.【详解】由(a﹣3)2+|b﹣6|=0,得a﹣3=0,b﹣6=0.则以a、b为边长的等腰三角形的腰长为6,底边长为3,周长为6+6+3=15,故选B.【点睛】本题考查了非负数的性质,利用非负数的和为零得出每个非负数同时为零是解题关键.20.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是()A.7 B.8 C.6 D.5【答案】B【解析】【分析】根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:B.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.。

相关文档
最新文档