用频率表示概率
数学上“频率”与“概率”的关系?
数学上“频率”与“概率”的关系?我是中考数学当百荟,从事初中数学教学三⼗多年。
说到“频率”与“概率”的关系,⾸先要了解初中数学中基本的统计思想:⽤样本估计总体,⽤频率估计概率;其次,要知道数学试验的统计量:频率=频数/总次数。
频率是通过试验得到的统计量,⽽概率是通过建⽴数学模型,计算得到的理论值。
在⼀定的情况下,可以⽤频率去估计(代替)事件发⽣的概率。
⼀。
⽤样本估计总体统计中,通常通过调查的⽅式获取相关的统计量。
调查通常有两种⽅式:普查和抽样调查。
⽐如:第六次全国⼈⼝普查(2010年11⽉1⽇),就是在国家统⼀规定的时间内,按照统⼀的⽅法、统⼀的项⽬、统⼀的调查表和统⼀的标准时点,对全国⼈⼝普遍地、逐户逐⼈地进⾏的⼀次性调查登记。
这次⼈⼝普查登记的全国总⼈⼝为1,339,724,852⼈这个数据采⽤的就是普查⽅式得到的。
⽽国家统计局每季度发布的居民⼈均可⽀配收⼊、居民消费价格指数、调查失业率等统计指标,是采⽤抽样调查⽅式获取的。
当统计的总体容量很⼤,调查耗时费⼒,调查成本巨⼤或者试验具有破坏性时,不宜采⽤普查⽅式,就要⽤抽样的⽅式来进⾏统计,然后⽤样本的统计量,去估计总体统计量。
这种统计思想就叫做⽤样本估计总体。
⽐如:某照明企业⽣产⼀批LED灯泡,为统计这批LED灯泡的使⽤寿命,采⽤哪种调查⽅式⽐较适合呢?因为要了解LED的使⽤寿命,按试验要求,就必须将LED灯泡变成“长明灯”,⼀直点亮直⾄⾃然熄灭(寿终正寝)。
这样试验是具有破坏性的,显然不能⽤普查⽅式,只能采⽤抽样的⽅式来进⾏。
从这批LED灯泡中,随机抽取50只灯泡作为⼀个样本,通过试验得到这个样本的平均使⽤寿命为3000⼩时,然后我们就说该企业的这批LED灯泡(总体)的使⽤寿命为3000⼩时。
⼆。
⽤频率估计概率俗话说,天有不测风云,⼈有旦⼣祸福。
这句话从数学的⾓度来理解就是,在⾃然界和⼈类社会中,严格确定的事件是⼗分有限的,⽽随机事件却是⼗分普遍的,概率就是对随机事件的⼀种数学的定量描述。
如何用频率来估计概率
如何用频率来估计概率在苏科版初中数学课本里所学习的概率计算问题有以下类型:第一类是可以列举有限个等可能发生的结果的概率计算问题(一步试验直接列举,两步以上的试验可以借助树状图或表格列举),比如掷一枚均匀硬币的试验;第二类是用试验或者模拟试验的数据计算频率,并用频率估计概率的概率计算问题,比如掷图钉的试验。
在八年级的数学学习中概率的计算,主要是第二类题型,我们知道频率是研究概率的基础,所以利用频率估计概率的试题频频出现在各地的中考试卷中,下面以中考题为例,来剖析这一类题型的解法。
一、填空题中的用频率估计概率例1.在课外活动中,小明同学在相同的条件下做了某种作物种子发芽的实验,结果如下表所示:由此估计这种作物种子发芽率约为(精确到0.01).解:由公式种子的发芽率= 可求出种子的发芽率为0.939,因为精确到0.001故答案为0.94.点评:本题考察了百分率问题(1)种子的发芽率= ;(2)注意括号的中的要求为精确到0.01例2.有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为0.6,据此可以估计红球的个数约为.解:解:∵摸到红球的频率约为0.6,∴红球所占的百分比是60%.∴1000×60%=600.故答案为:600.点评:本题考查用频率估计概率,因为多次重复上述过程后,发现摸到红球的频率约为0.6,所以红球所占的百分比也就是60%,根据总数可求出红球个数.二、选择题中的用频率估计概率例3.“六?一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:下列说法不正确的是()A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒解:由表中提供的信息可知,只有“转动转盘10次,一定有3次获得文具盒”的判断不一定正确,故应选D.点评:正确正解频率与概率之间的关系是求解此类问题的关键. 由表中提供的信息,我们可以知道,当n很大时,指针落在“铅笔”区域的频率趋于0.70,由此,由频率与概率之间的关系可知,假如你去转动转盘一次,获得铅笔的概率大约是0.70,如果转动转盘2000次,指针落在“文具盒”区域的次数大约有2000次×(1-0.7)=600次,而将转盘转动转盘10次,却不一定有3次获得文具盒.三、解答题中的用频率估计概率例4.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为40 000人次,公园游戏场发放的福娃玩具为10 000个.(1)求参加一次这种游戏活动得到福娃玩具的频率;(2)请你估计袋中白球接近多少个?分析(1)由40 000人次中公园游戏场发放的福娃玩具为10 000个,结合频率的意义可直接求得.(2)由概率与频率的关系可估计从袋中任意摸出一个球,恰好是红球的概率,从而引进未知数,构造方程求解.解(1)因为= ,所以参加一次这种游戏活动得到福娃玩具的频率为.(2)因为试验次数很大,大数次试验时,频率接近于理论频率,所以估计从袋中任意摸出一个球,恰好是红球的概率是.设袋中白球有x个,则根据题意,得= ,解得x=18.经检验x=18是方程的解.所以估计袋中白球接近18个.点评:利用频率估计概率,并以此引进未知数构造方程是求解此类问题的常用方法,同学们在学习时应注意体会和运用.例5.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.点评:(1)根据表格数据可以得到50次摸球实验活动中,出现红球20次,黄球30次,由此即可求出盒中红球、黄球各占总球数的百分比;(2)由题意可知50次摸球实验活动中,出现有记号的球4次,由此可以求出总球数,然后利用(1)的结论即可求出盒中红球.此题主要考查了利用频率估计概率的问题,首先利用模拟实验得到盒中红球、黄球各占总球数的百分比,然后利用百分比即可求出盒中红球个数.。
频率与概率的概念、古典概率
频率与概率的联系
频率是概率的近似值,当实验或观察 次数足够多时,频率趋近于概率。
在长期实践中,人们常常根据频率来 估计概率,从而做出相应的决策。
概率是频率的极限值,即当实验或观 察次数趋于无穷时,频率的值就是该 事件的概率。
如何选择频率或概率方法
01
在实际应用中,应根据 具体情况选择使用频率 或概率方法。
02
古典概率
古典概率的定义
古典概率是指在一系列等可能 事件中,某一事件发生的概率。
古典概率的定义基于事件的等 可能性,即每个事件发生的可 能性是相等的。
古典概率通常用于描述那些可 以重复进行且结果已知的实验, 例如掷骰子、抽签等。
古典概率的计算方法
计算公式
$P(A) = frac{有利于A的基本事件数}{全部 基本事件数}$
频率与概率的关系
频率是概率的估计
通过大量试验或观察,我们可以得到某一事件的频率,这个频率可以作为该事 件概率的一个估计值。
概率是频率的极限
当试验次数趋于无穷时,频率趋于概率。也就是说,如果一个随机事件的频率 在长期观察中稳定在某个值附近,那么我们可以认为这个值就是该事件的概率。
频率与概率的优缺点
频率和概率在统计学、决策理论、贝叶斯推断等领域中都有广泛应用。
如何更好地理解和应用频率与概率
• 了解频率与概率的基本定义和性质:掌握概率的基本性质,如概率的取值范围 、独立性、互斥性等,有助于更好地理解和应用频率与概率。
• 掌握概率计算方法:了解概率的基本计算方法,如加法公式、乘法公式、全概 率公式等,有助于计算复杂事件的概率。
可观察性
频率可以直接通过试验或观察获 得,不需要复杂的数学模型或理 论。
可验证性
频率与概率的定义
频率与概率的定义
频率和概率是概率论中两个重要且相关的概念。
频率是指某个事件在多次重复试验中发生的次数或数量。
换句话说,频率是通过实际观察或统计得到的数值,表示某个事件发生的相对次数或数量。
概率是指某个事件在一次试验中发生的可能性。
它是一个介于0和1之间的数值,可以表示为一个分数、小数或百分比。
概率是基于理论推导或主观估计得出的,它描述了某个事件发生的相对可能性。
在大量试验中,当试验次数趋近无限时,频率趋近于概率。
这被称为频率的稳定性或大数定律。
因此,频率可以用来估计概率,并且频率可以作为概率的一种近似值。
用频率估计概率 概率的简单应用(解析版)
第16讲 用频率估计概率 概率的简单应用例1.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲢鱼的概率约为( ) A .23B .12C .13D .16【答案】D 【解析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率. 解:∵捕捞到草鱼的频率稳定在0.5左右 设草鱼的条数为x ,可得:0.51600800xx=++,∴x =2400,经检验:2400x =是原方程的根,且符合题意, ∴捞到鲢鱼的概率为:8001160080024006=++,故选:D . 【点睛】本题考察了概率、分式方程的知识,解题的关键是熟练掌握概率的定义,通过求解方程,从而得到答案.例2.一个不透明的袋子里装有50个黑球,2个白球,这些球除颜色外其余都完全相同.小明同学做摸球试验,将球搅匀后,从中随机摸出一个球,记下它的颜色后放回袋中,然后再重复进行下一次试验,当摸球次数很大时,摸到白球的频率接近于( ) A .150B .126C .125D .12【答案】B 【解析】根据概率的求法,在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=mn,列式求解即可. ∵一个不透明的袋子里装有50个黑球,2个白球, ∴摸到白球的概率为215226=,∴摸到白球的频率为:126. 故选:B . 【点睛】本题主要考查了概率的求法,熟悉掌握概率的计算方法是解题的关键.例3.太原市林业部门要考察某种幼苗的移植成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况: 移植总数n 400 1500 3500 7000 9000 14000 成活数m369133532036335807312628成活的频率m n0.923 0.890 0.915 0.905 0.897 0.902根据以上数据,估计这种幼苗移植成活的概率是( ) A .0.80 B .0.85C .0.90D .0.95【答案】C 略例4.如图是一副宣传节约用水的海报,海报长1.2m ,宽0.6m .小明为了测量海报上“节约用水从我做起”八个字所占的面积,在长方形海报上随机撒豆子(假设豆子落在海报内每一点都是等可能的).经过大量试验,发现豆子落在“节约用水从我做起”八个字上的频率稳定在0.2左右.由此可估计海报上“节约用水从我做起”八个字所占的面积约为( )A .20.35mB .20.7mC .20.144mD .20.2m【答案】C 【解析】长方形宣传海报的面积为()21.20.60.72m⨯=.∵豆子落在“节约用水 从我做起”八个字上的频率稳定在0.2左右,∴“节约用水 从我做起”八个字图案占长方形宣传海报的20%.∴海报上“节约用水 从我做起”八个字的面积约为()21.20.60.72m⨯=.例5.一个不透明的盒子里装有若干个同一型号的白色乒乓球,小明想通过摸球实验估计盒子里有白色乒乓球的个数,于是又另外拿了9个黄色乒乓球(与白色乒乓球的型号相同)放进盒子里.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回去,通过大量重复摸球实验后发现,摸到黄色乒乓球的频率稳定在30%,估计原来盒子中白色乒乓球的个数为()A.21 B.24 C.27 D.30【答案】A【解析】设原来盒子中白色乒乓球的个数为x,根据摸到黄色乒乓球的频率稳定在30%得99x+=30%,解方程即可求解.设原来盒子中白色乒乓球的个数为x,根据题意,得:99x+=30%,解得:x=21,经检验:x=21是分式方程的解,∴原来盒子中白色乒乓球的个数为21个,故选A.【点睛】本题考查了频率与频数的关系,熟知频率=频数数据总和是解决问题的关键.例6.一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有4个,若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱,通过大量重复摸球实验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a大约是()A.25 B.20 C.15 D.10【答案】B【解析】由在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,即可知其概率,再利用概率公式即可推算出a的大小.由题意可得4100%20% a⨯=,解得20a=.经检验:a=20是原方程的根且符合题意【点睛】本题考查用频率估计概率,熟记概率公式是解本题的关键例7.笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先经过第一道门(A,B,或C),再经过第二道门(D或E)才能出去.问松鼠走出笼子的路线(经过的两道门)有()种不同的可能?A.12 B.6 C.5 D.2【答案】B【解析】解决本题的关键是分析两道门各自的可能性情况,然后再进行组合得到打开两道门的方法,这类题要读懂题意,从中找出组合的规律进行求解,本题不同的是首先分析每道门的情况数,然后整体进行组合即可得解.解:因为第一道门有A、B、C三个出口,所以出第一道门有三种选择;又因第二道门有两个出口,故出第二道门有D、E两种选择,因此小松鼠走出笼子的路线有6种选择,分别为AD、AE、BD、BE、CD、CE.故选:B.【点睛】本题考查了概率、所有可能性统计,通过列举法可以举出所有可能性的路径.一、单选题1.在抛掷硬币的试验中,下列结论正确的是()A.经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B.抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C.抛掷50000次硬币,可得“正面向上”的频率为0.5D.若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.518【答案】A【解析】根据频率的概念与计算公式逐项判断即可得.A、经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定,此项正确;B、抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率可能不同,此项错误;C、抛掷50000次硬币,可得“正面向上”的频率约为0.5,此项错误;D、若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率为10.5180.482-=,此项错误;故选:A.【点睛】本题考查了频率的概念与计算公式,掌握理解频率的概念是解题关键.2.投掷硬币m次,正面向上n次,其频率p=nm,则下列说法正确的是()A.p一定等于12B.p一定不等于12C.多投一次,p更接近12D.投掷次数逐步增加,p稳定在12附近【答案】D【解析】【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.投掷硬币m次,正面向上n次,投掷次数逐步增加,p稳定在12附近.故选:D.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意随机事件可能发生,也可能不发生.3.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32 B.0.55 C.0.68 D.0.87 【答案】C【解析】【分析】先计算出样本中身高不低于170cm的频率,然后根据利用频率估计概率求解.解:样本中身高不低于170cm的频率5501300.681000+==,所以估计抽查该地区一名九年级男生的身高不低于170cm的概率是0.68.故选:C.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.4.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,那么估计摸到黄球的概率为()A.0.3 B.0.7 C.0.4 D.0.6【答案】A【解析】【分析】根据利用频率估计概率得摸到黄球的频率稳定在0.3,进而可估计摸到黄球的概率.∵通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,∴估计摸到黄球的概率为0.3,故选:A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率.5.在三行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点).开始时,骰子如图(1)所示摆放,朝上的点数是2,最后翻动到如图(2)所示位置.现要求翻动次数最少,则最后骰子朝上的点数为2的概率为()A .112 B .16C .13D .14【答案】C 【解析】 【分析】根据题意模拟骰子的翻动过程,可以得到最后骰子朝上的点数所有的可能性和点数为2的基本事件的个数,代入概率公式即可.设三行三列的方格棋盘的格子坐标为(),a b ,其中开始时骰子所处的位置为()1,1,则图题(2)所示的位置为()3,3,则从()1,1到()3,3且次数翻动最少,共有6种走法,最后骰子朝上的点数分别为2,5,1,5,3,2,故最后骰子朝上的点数为2的概率为2163P ==,故选C . 【点睛】本题主要考查概率,根据已知条件计算出骰子朝上的点数所有的基本事件和满足条件的基本事件个数是关键.6.如图,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E 出口落出的概率是( )A .12 B .13C .14D .16【答案】C 【解析】 【分析】根据“在每个交叉口都有向左或向右两种可能,且可能性相等”可知在点B 、C 、D 处都是等可能情况,从而得到在四个出口E 、F 、G 、H 也都是等可能情况,然后概率的意义列式即可得解.解:由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等, 小球最终落出的点共有E 、F 、G 、H 四个,所以小球从E 出口落出的概率是:14;故选:C . 【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.7.用直角边长分别为2、1的四个直角三角形和一个小正方形(阴影部分)拼成了如图所示的大正方形飞镖游戏板.某人向该游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )A .13B .14C .15D 5【答案】C 【解析】 【分析】分别计算出大正方形和小正方形的面积,再利用概率公式计算即可 解:大正方形的面积为:21214(21)52⨯⨯⨯+-=, 阴影部分的小正方形的面积为:2(21)1-=, ∴飞镖落在阴影部分的概率是1155÷=, 故选:C . 【点睛】本题考查了几何概率的求法:首先根据题意用代数关系将面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.8.动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现在有一只20岁的动物,它活到30岁的概率是( )A .35B .38C .58D .310【答案】B【解析】【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.解:设共有这种动物x只,则活到20岁的只数为0.8x,活到30岁的只数为0.3x,故现年20岁到这种动物活到30岁的概率为0.30.8xx=38.故选:B.【点睛】本题考查概率的简单应用,用到的知识点为:概率=所求情况数与总情况数之比.9.在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个.小颖做摸球试验,她将盒子里面的球搅匀后从中随机摸出一个并记下颜色后放回,不断重复上述过程,多次试验后,得到表中的数据:并得出了四个结论,其中正确的是()A.试验1500次摸到白球的频率一定比试验800次的更接近0.6B.从该盒子中任意摸出一个小球,摸到白球的概率约为0.6C.当试验次数n为2000时,摸到白球的次数m一定等于1200D.这个盒子中的白球定有28个【答案】B【解析】【分析】观察表格发现:随着试验次数的逐渐增多,摸到白球的频率越来越接近0.6,据此求解即可.解:A. 试验1500次摸到白球的频率不一定比试验800次的更接近0.6,故不正确;B. 观察表格发现:随着试验次数的逐渐增多,摸到白球的频率越来越接近0.6,故正确;C. 当试验次数n为2000时,摸到白球的次数m不一定等于1200,故不正确;D. 这个盒子中的白球定估计有40×0.6=24个,故不正确;故选B.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.10.如图,小明在操场上做游戏,他在沙地上画了一个面积为15的矩形,并在四个角画上面积不等的扇形,在不远处的固定位置向矩形内部投石子,记录如下(石子不会落在矩形外面和各区域边缘):投石子的总次数50次150次300次600次石子落在空白区域内的次数14次85次199次400次石子落在空白区域内的频率725173019930023依此估计空白比分的面积是()A.6B.8.5C.9.95D.10【答案】D【解析】【分析】根据投在空白区域内的频率得到概率的大小,由此计算空白区域的面积.由表格可知:当投石子的次数越来越多时,石子落在空白区域的频率越接近23,即空白区域的面积占总面积的23,∴空白部分的面积=215103⨯=,故选D.【点睛】此题主要是利用频率估计概率,当实验次数越多时,某事件的频率越接近于该事件的概率,这是利用频率计算概率在实际生活中的运用.二、填空题11.一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是___________.【答案】0.32【解析】【分析】由题意依据大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率进行分析即可.解:一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是0.32.故答案为:0.32.【点睛】本题考查利用频率估计概率,解答本题的关键是掌握频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.12.袋子中有20个除颜色外完全相同的小球.在看不到球的条件下,随机地从袋子中摸出一个球,记录颜色后放回,将球摇匀.重复上述过程150次后,共摸到红球30次,由此可以估计口袋中的红球个数是__.【答案】4【解析】【分析】首先求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个.解:∵摸了150次后,发现有30次摸到红球,∴摸到红球的频率=301 1505=,∵袋子中共有20个小球,∴这个袋中红球约有12045⨯=个,故答案为4.【点睛】此题考查利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.如图,正方形二维码的边长为2cm,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.75左右,据此可估计黑色部分的面积的为___________cm2.【答案】3【解析】【分析】求出正方形二维码的面积,根据题意得到黑色部分的面积占正方形二维码面积的75%,计算即可.解:正方形二维码的边长为2cm,∴正方形二维码的面积为4cm2,∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.75左右,∴黑色部分的面积占正方形二维码面积的75%,∴黑色部分的面积约为:4×75%=3,故答案为:3.【点睛】本题考查的是利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.14.如图是计算机中“扫雷"游戏的画面,在99⨯小方格的正方形雷区中,随机埋藏着10颗地雷,每个小方格内最多只能藏1颗地雷.小红在游戏开始时随机踩中一个方格,踩中后出现了如图所示的情况,我们把与标号1的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域,数字1表示在A区域中有1颗地雷,那么第二步踩到地雷的概率A区域______B区域(填“>”“<”“=”).【答案】=【解析】【分析】分别求出A 区域踩到地雷的概率和B 区域踩到地雷的概率即可.∵A 区域踩到地雷的概率为18,B 区域踩到地雷的概率为91=728,∴第二步踩到地雷的概率A 区域和B 区域是相等的.故填=.【点睛】本题主要考查了几何概率,在解题时要注意知识的综合应用以及概率的算法是本题的关键. 15.一个不透明的布袋中装有4个红色球、m 个白色球、1个黑色球,其颜色外都相同,每次将球充分搅拌均匀后,任意摸出1个球记下颜色再放回袋中,通过大量摸球试验发现摸到白色球的频率稳定在0.5,可估计这个布袋中白球的个数为______. 【答案】5 【解析】 【分析】根据概率计算公式,用白球的个数除以球的总个数等于摸到白球的概率,列出式子求解即可. 根据题意列式:0.541mm =++,解得5m =,则布袋中白球的个数为5. 故答案为:5. 【点睛】本题主要考查概率计算公式,概率等于所求情况数与总情况数之比,熟练掌握并应用概率计算公式是解答本题的关键.16.小慧在一次用“频率估计概率”的试验中,把“学生知耻处,方知艺不精”中的每个汉字分别写在十张完全相同的卡片上,然后把卡片的背面朝上,随机抽取一张后统计某一个汉字被抽到的频率,并绘制了如图所示的折线统计图,则符合这一结果的汉字是______.【答案】知 【解析】 【分析】利用“频率估计概率”,观察图像,可得抽的此汉字的概率为15,总共有十个汉字,可得此汉字的个数为2,即可求解.解:利用“频率估计概率”,观察图像,可得抽的此汉字的概率为15,在“学生知耻处,方知艺不精”中总共有十个汉字, 可得此汉字的个数为2, 从而得到此汉字为知, 故答案为:知 【点睛】此题考查了利用“频率估计概率”,解题的关键是理解题意,正确求得抽的此汉字的概率. 17.一名男生投实心球,已知球行进的高度y (m )与水平距离x (m )之间的关系为 y=﹣425(x ﹣2)2+8125,那么该男生此次投实心球的成绩是__.【答案】6分 【解析】解:当y=0时,计算得出:x 1=6.5,x 2=-2.5(舍去),由表可以知道当水平距离x=6.5米时,该男生此次投实心球的成绩是6分.18.定义:若自然数n 使得三个数的加法运算“(1)(2)n n n ++++”产生进位现象,则称n 为“连加进位数”.例如,2不是“连加进位数”,因为2349++=不产生进位现象;4是“连加进位数”,因为45615++=产生进位现象;51是“连加进位数”,因为515253156++=产生进位现象.如果从0,1,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是_______. 【答案】2225【解析】 【分析】按照定义将数据依次代入(1)(2)n n n ++++进行验证,找出规律,得到“连加进位数”的个数,进而求出概率.当n=0时,(1)(2)=012=3++++++n n n ,不是连加进位数, 当n=1时,(1)(2)=123=6++++++n n n ,不是连加进位数, 当n=2时,(1)(2)=234=9++++++n n n ,不是连加进位数, 当n=3时,(1)(2)=345=12++++++n n n ,是连加进位数, 故0到9中,0、1、2不是连加进位数;当n=10时,(1)(2)=101112=33++++++n n n ,不是连加进位数,当n=11时,(1)(2)=111213=36++++++n n n ,不是连加进位数, 当n=12时,(1)(2)=121314=39++++++n n n ,不是连加进位数, 当n=13时,(1)(2)=131415=42++++++n n n ,是连加进位数, 故10到19中,10、11、12不是连加进位数;以此类推,20到29中,20、21、22不是连加进位数,30到39中,30、31、32不是连加进位数,40以后全部是连加进位数,所以连加进位数总共88个, 故取到“连加进位数”的概率是8822=10025. 【点睛】本题考查概率的算法,根据题意筛选出符合条件的的情况数目是解题的关键. 三、解答题19.在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.(1)估计该麦种的发芽概率.(2)如果播种该种小麦每公顷所需麦苗数为4000000棵,种子发芽后的成秧率为80%,该麦种的千粒质量为50g .那么播种3公顷该种小麦,估计约需麦种多少千克(精确到1kg )? 【答案】(1)该麦种的发芽概率约为95%; (2)约需麦种790千克 【解析】 【分析】(1)利用频率估计麦种的发芽率,大数次实验,当频率固定到一个稳定值时,可根据频率公式=频数÷总数计算即可;(2)设约需麦种x 千克,根据x 千克转化为克×1000,再转为颗粒÷50×1000,根据发芽率再×95%,根据芽转苗再×80%,等于三公顷地需要的苗总数,例方程x ×1000÷50×1000×95%×80%=4000000×3,解方程即可 (1)解:根据实验数量变大,发芽数也在增大,2850÷3000×100%=95%, 故该麦种的发芽概率约为95%; (2)解:设约需麦种x 千克,x ×1000÷50×1000×95%×80%=4000000×3, 化简得15200x=12000000, 解得x =789919, 答:约需麦种790千克 【点睛】本题考查用频率估计发芽率,一元一次方程解应用题,掌握用频率估计发芽率,一元一次方程解应用题的方法与步骤是解题关键.20.在一个不透明的盒子里装着只有颜色不同的黑、白两种球共5个,小明做摸球实验,他将盒子里面的球搅匀后从中随机摸出一球记下颜色,再把它放回盒子,不断重复上述过程实验n 次,下表是小明“摸到白球”的频数、频率统计表.(1)观察上表,可以推测,摸一次摸到白球的概率为______. (2)请你估计盒子里白球个数.(3)若往盒子中同时放入x 个白球和y 个黑球,从盒子中随机取出一个白球的概率是0.25,求y 与x 之间的函数关系式. 【答案】(1)0.2 (2)1个 (3)31y x =- 【解析】 【分析】(1)观察表格发现摸到白球的频率在0.2左右波动,所以n 很大时摸到白球的概率将会接近0.2;(2)设盒子里白球有m 个,根据题意列出方程m=0.25,解方程即可得出答案; (3)根据等可能事件概率的计算方法,得到等式10.255xx y +=++,化简后即可得答案.(1)观察表格发现摸到白球的频率在0.2左右波动,∴摸到白球的频率为0.2(2)设盒子里白球有m 个,根据题意得,m =0.25解得m =1.答:盒子里白球有1个. (3)解:由题意得:10.255xx y +=++.化简整理得:31y x =-.∴y 与x 之间的函数关系式为:31y x =-.(x 为正整数) 【点睛】本题考查用频率估计概率,理解概率的意义,能根据事件发生的频率来估计该事件的概率是解题的关键.21.根据你所学的概率知识, 回答下列问题:(1)我们知道: 抛掷一枚均匀的硬币, 硬币正面朝上的概率是________. 若抛两枚均匀硬币, 硬币落地后, 求两枚硬币都是正面朝上的概率. (用树状图或列表来说明) (2)小刘同学想估计一枚纪念币正面朝上的概率, 通过试验得到的结果如下表所示:根据上表, 下面有三个推断:①当抛掷次数是1000时, “正面朝上”的频率是0.512, 所以“正面朝上”的概率是0.512; ②随着试验次数的增加, “正面朝上”的频率总是在0.520附近摆动, 显示出一定稳定性, 可以估计“正面朝上”的概率是0.520;③若再做随机抛郑该纪念币的试验, 则当抛掷次数为3000时, 出现“正面朝上”的次数不一定是1558次;其中推断合理的序号是________.【答案】(1)12,14(2)②③ 【解析】【分析】(1)根据概率公式求解抛掷一枚均匀的硬币,硬币正面朝上的概率;根据树状图求两枚均匀硬币时,硬币正面朝上的概率;(2)根据试验次数越大,频率稳定,可用频率估算概率,据此判断即可.(1)抛掷一枚均匀的硬币,硬币正面朝上的概率是12;若抛两枚均匀硬币时,画树状图如下:共有4种等可能的情况数,其中两枚硬币都是正面朝上有1种,则两枚硬币都是正面朝上的概率是14;故答案为:12,14;(2)①当抛掷次数是1000时,“正面向上”的频率是0.512,但“正面向上”的概率不一定是0.512,故本选项错误,不符合题意;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520,故本选项正确,符合题意;③若再次做随机抛掷该纪念币的试验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次,故本选项正确,符合题意;其中推断合理的序号是②③.故答案为:②③.【点睛】本题考查了根据概率公式求概率,利用画树状图求概率,根据频率求概率,掌握求概率的方法是解题的关键.22.童老师在教学《简单事件的概率》时,设计了一个“挑战自我”的环节,即挑战的同学从如图1所示的A,B,C,D四张图片中随机选取一张,老师点击该图片,显示挑战问题,挑战的同学思考并回答.。
频率估计概率的公式
频率估计概率的公式
用频率估计概率的公式是f=p,在相同的条件下,进行了n次试验,在这n 次试验中,事件A发生的次数m称为事件A发生的频数。
比值m/n称为事件A发生的频率,用文字表示定义为:每个对象出现的次数与总次数的比值是频率。
某个组的频数与样本容量的比值也叫做这个组的频率。
有了频数(或频率)就可以知道数的分布情况。
在直角坐标系中,横轴表示样本数据,纵轴表示频率与组距的比值,将频率分布表中各组频率的大小用相应矩形面积的大小来表示,由此画成的统计图叫做频率分布直方图。
用频率估计概率
体会了一种思想: 用样本去估计总体 用频率去估计概率
结束寄语:
概率是对随机现象的一种数学描述,它可 以帮助我们更好地认识随机现象,并对生活中 的一些不确定情况作出自己的决策.
从表面上看,随机现象的每一次观察结果都 是偶然的,但多次观察某个随机现象,立即可 以发现:在大量的偶然之中存在着必然的规律.
在相同情况下随机的抽取若干个体进行实验,
进行实验统计.并计算事件发生的频率 m
根据频率估计该事件发生的概率.
n
问题1 某林业部门要考查某种幼树在一定条件的移植 的成活率,应采用什么具体做法?
幼树移植成活率是实际问题中 的一种概率。这个实际
问题中的移植实验不属于各种结果可能性相等的类型, 所以成活率要由频率去估计。
解:
根据概率的意义,可以 认为其概率大约等于 250/2000=0.125.
该镇约有 100000×0.125=12500 人看中央电视台的早 间新闻.
例4
大家都来做一做
从一定的高度落下的图钉,落地后 可能图钉尖着地,也可能图钉尖不找地, 估计一下哪种事件的概率更大,与同学
合作,通过做实验来验证 一下你事先估计是否正确?
360 641 1275
0.9 0.855
0.850
3500 7000 14000
3203 6335 12628
0.915 0.905
3500 7000 14000
2996 5985 11914
0.856
0.855 0.851
观察图表,回答问题串
1、从表中可以发现,A类幼树移植成活的 频率在___0_.9_左右摆动,并且随着统计数据 的增加,这种规律愈加明显,估计A类幼树 移植成活的概率为__0_.9_,估计B类幼树移
利用频率估计概率
利用频率估计概率以下是为您推荐的利用频率估计概率,希望本篇文章对您学习有所帮助。
利用频率估计概率疑难分析:1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A 出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P.3.利用频率估计出的概率是近似值.例题选讲例1 某篮球运动员在最近的几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解答:(1)0.75,0.8,0.75,0.78,0.75,0.7;(2)0.75.评注:本题中将同一运动员在不同比赛中的投篮视为同等条件下的重复试验,所求出的概率只是近似值.例2 某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1) 计算并完成表格:转动转盘的次数n 100 150 200 500 800 1000落在铅笔的次数m 68 111 136 345 546 701落在铅笔的频率(2) 请估计,当很大时,频率将会接近多少?(3) 转动该转盘一次,获得铅笔的概率约是多少?(4) 在该转盘中,标有铅笔区域的扇形的圆心角大约是多少?(精确到1)解答:(1)0.68、0.74、0.68、0.69、0.6825、0.701;(2)0.69;(3)0.69;(4)0.69360248.评注:(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率.基础训练一、选一选(请将唯一正确答案的代号填入题后的括号内)1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为 ( )A. 90个B.24个C.70个D.32个2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( ).A. B. C. D.3.下列说法正确的是( ).A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C.彩票中奖的机会是1%,买100张一定会中奖;D.中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.4.小亮把全班50名同学的期中数学测试成绩,绘成如图所示的条形图,其中从左起第一、二、三、四个小长方形高的比是1∶3∶5∶1.从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是( ).A. 、B. 、C. 、D. 、5.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ).A.10粒B.160粒C.450粒D.500粒6.某校男生中,若随机抽取若干名同学做是否喜欢足球的问卷调查,抽到喜欢足球的同学的概率是,这个的含义是( ).A.只发出5份调查卷,其中三份是喜欢足球的答卷;B.在答卷中,喜欢足球的答卷与总问卷的比为3∶8;C.在答卷中,喜欢足球的答卷占总答卷的 ;D.在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.7.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为,四位同学分别采用了下列装法,你认为他们中装错的是( ).A.口袋中装入10个小球,其中只有两个红球;B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;C.装入红球5个,白球13个,黑球2个;D.装入红球7个,白球13个,黑球2个,黄球13个.8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.假如老师随机问一个同学的零用钱,老师最有可能得到的回答是( ).A. 2元B.5元C.6元D.0元二、填一填9. 同时抛掷两枚硬币,按照正面出现的次数,可以分为2个正面、1个正面和没有正面这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:结果第一组第二组第三组第四组第五组第六组两个正面 3 3 5 1 4 2一个正面 6 5 5 5 5 7没有正面 1 2 0 4 1 1由上表结果,计算得出现2个正面、1个正面和没有正面这3种结果的频率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.10.红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上组别频数频率46 _ 50 4051 _ 55 8056 _ 60 16061 _ 65 8066 _ 70 3071_ 75 10从中任选一头猪,质量在65kg以上的概率是_____________.11.为配和新课程的实施,某市举行了应用与创新知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数)。
4.3 用频率估计概率
4.3 用频率估计概率知识要点 用频率估计概率一副扑克牌去掉“大王”“小王”后,只剩下52张牌,从中任取一张,记下花色,随着试验次数的增加,出现黑桃花色的频率将稳定在_______左右.分析:利用概率公式,先求出一副牌中抽到黑桃的概率,随着次数的增加,频率会稳定在其概率左右.方法点拨:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.小军家的玩具店进了一箱除颜色外都相同的塑料球共1000个,小军将箱中的球搅匀后,随机摸出一个球记下颜色,放回箱中;搅匀后再随机摸出一个球记下颜色,放回箱中;……多次重复上述试验后,发现摸到红球的频率逐渐稳定在0.2,由此分析:设红球的个数为x ,根据题意得x1000=0.2,解出x 即得到答案.方法点拨:本题利用了用大量重复性试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.1.杨彩霞参加射击训练,共射击100次,其中有38次击中靶子,由此估计,杨彩霞射击一次击中的概率是AA.1950B.35 C.10063 D .无法确定 2.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为40%,估计袋中白球有______个.3.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有________个.4.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为40000人次,公园游戏场发放的福娃玩具为10000个.(1)求参加一次这种游戏活动得到福娃玩具的频率;(2)请你估计袋中白球接近多少个?参考答案: 要点归纳知识要点:固定数 p 典例导学 例1 14例2 200 当堂检测1.A 2.4 3.124.解:(1)10000÷40000=14,∴参加一次这种活动得到的福娃玩具的频率为14;(2)∵试验次数很大,大数次试验时,频率接近于理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率为14.设袋中白球有x个,根据题意得6x +6=41,解得x =18,经检验x =18是方程的解.∴估计袋中白球接近18个.。
《用频率估计概率》ppt课件
频率的定义
01
频率是指在一定数量的 试验或观察中某一事件 发生的次数与总次数之 比。
02
03
04
频率通常用分数或小数 表示,并且具有以下特 点
• 频率介于0和1之间, 即0≤频率≤1。
• 当试验次数趋向于无 穷时,频率趋向于某 一固定值,即概率。
频率与概率的关系
频率是概率的近似值,当试验次数足够多时,频率趋近于概率。
人工智能算法
人工智能算法中,频率估计概率的方法也被 广泛应用。许多机器学习算法和自然语言处 理算法都需要用到概率和统计学的知识,而 频率估计概率是其中的重要组成部分。
例如,在自然语言处理中,词频统计是一种 常见的方法,通过对大量文本数据的分析, 可以估计某个词出现的概率,从而更好地理 解和处理自然语言。同样地,在机器学习中 ,频率估计概率的方法也被用于分类、聚类
交叉验证
采用交叉验证等方法评估频率 估计概率的准确性,以提高预
测的可靠性。
05
频率估计概率的应用场景
统计学研究
统计学研究是频率估计概率的重要应用领域之一。在统计 学中,频率估计概率的方法被广泛应用于数据分析和推断 中,例如在样本大小的计算、假设检验和置信区间的确定 等方面。
频率估计概率可以帮助统计学家了解数据分布的特征和规 律,从而为决策提供科学依据。例如,在市场调研中,通 过频率估计概率可以对市场趋势和消费者行为进行预测和 分析。
0到1之间,其中0表示事件不可能发 生,1表示事件一定发生。
概率的估计方法
01
02
03
直接估计
通过观察和实验直接得到 随机事件的频率,从而估 计概率。
间接估计
通过已知的概率分布函数 或者概率密度函数来计算 概率。
频率求概率的公式
频率求概率的公式
频率求概率的公式为:某一事件发生的频率/总事件发生的频率。
即P(A) = n(A) / n(S),其中P(A) 为事件A 的概率,n(A) 为事件A 发生的频率,n(S) 为总事件发生的频率。
频率求概率是统计学中的一种常用方法,它根据实验或观察得到的数据来估计概率。
具体来说,假设我们有一个随机试验,其中有若干种可能的结果,我们用n(A) 表示其中某一种结果A 发生的频率,用n(S) 表示所有结果发生的总频率。
那么根据频率定义,事件 A 的概率P(A) 就可以用下面的公式来计算:
P(A) = n(A) / n(S)
这个公式的意思是,事件A 发生的概率等于事件 A 发生的频率除以总事件发生的频率。
需要注意的是,这种方法只适用于经过大量重复试验得到的数据,这样才能保证数据具有代表性。
九年级上册数学精品课件:用频率估计概率
联系:
频率与概率的关系
频率
事件发生的 频繁程度
稳定性
概率 大量重复试验
事件发生的
可能性大小
在实际问题中,若事件的概率未知,常用频率作为 它的估计值.
区别:频率本身是随机的,在试验前不能确定,做同
样次数或不同次数的重复试验得到的事件的频率都可能 不同,而概率是一个确定数,是客观 存在的,与每次试 验无关.
2048 4040 10000 12000 24000
“正面向上” “正面向上”
次数m
频率(
m n
)
1061
0.518
2048
0.5069
4979
0.4979
6019
0.5016
12012
0.5005
支持
归纳总结
通过大量重复试验,可以用随机事件发生的频率 来估计该事件发生的概率.
数学史实
人们在长期的实践中发现,在随机试验中,由于 众多微小的偶然因素的影响,每次测得的结果虽不 尽相同,但大量重复试验所得结果却能反应客观规 律.这称为大数法则,亦称大数定律.
摸球的次数n
100 200 300 500 800 1000 3000
摸到白球次数m 65 124 178 302 481 599 1803
摸到白球概率 m 0.65 0.62 0.59 0.604 0.601 0.599 0.601
n
3
摸球的次数n
100 200 300 500 800 1000 3000
答:这是因为频数和频率的随机性以及一定的规律 性.或者说概率是针对大量重复试验而言的,大量重 复试验反映的规律并非在每一次试验中都发生.
3.在一个不透明的盒子里装有除颜色不同其余均相同的 黑、白两种球,其中白球24个,黑球若干.小兵将盒子 里面的球搅匀后从中随机摸出一个球记下颜色,再把它 放回盒子中,不断重复上述过程,下表是试验中的一组 统计数据:
用频率估计概率
解得x≈24 答:口袋中的白球大约有20个.
方法对比:一个口袋中有8个黑球和若干个白球,如果不许将球
倒出来数,那么你能估计出其中的白球数吗?
①小明:从口袋中随机摸出一球, 记下其颜色,再把它放回口袋中. 不断重复上述过程.我共摸了200次 ,其中有57次摸到黑球,因此我估计 口袋中大约有20个白球. ②小亮:利用抽样调查的方法,从 口袋中一次随机摸出10个球,求 出其中黑球数与10的比值,再把球 放回口袋中.不断重复上述过程. 我总共摸了20次,黑球数与10的比 值的平均数为0.25,因此我估计口 袋中大约有24个白球. 解:设口袋中有x个白球,得
一个口袋中有8个黑球和若干个白球,如果不许将球倒出 来数,那么你能估计出其中的白球数吗? ①小明:从口袋中随机摸出一球,记下其颜色,再把它放回 口袋中.不断重复上述过程.我共摸了200次,其中有57次摸到
黑球,因此我估计口袋中大约有20个白球. 解:设口袋中有x个白球,得
解得: x ≈20 答:口袋中的白球大约有20个.
a
m = b x
解得
bm x= a
bm 答:鱼塘中鱼的数量大约有 a 条.
【例1】小明想知道自家鱼塘中鱼的数量,她 【例题】
先从鱼塘中捞出100条鱼分别作上记号,再放回鱼塘
,等鱼完全混合后,第一次捞出100条鱼,其中有4
条带标记的鱼,放回混合后,第二次又捞出100条鱼 ,其中有6条带标记的鱼,请你帮她估计鱼塘中鱼的
相同呢?
300位同学中一定会有2个同学的生日相同吗? 400位呢?
你是怎么想的?
【猜想】 有人说:“50个同学中,就很有可能有2个同学的
生日相同.”这话正确吗?为什么? 这是老师统计的某班的55位同学的生日
用频率估计概率-完整版PPT课件
当堂练习
1一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕
获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个
水塘里有鲤鱼 尾3,鲢10鱼 尾
270
2 养鱼专业户为了估计他承包的鱼塘里有多少条鱼假设 这个塘里养的是同一种鱼,先捕上100条做上标记,然后放回 塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后 ,再捕上100条,发现其中带标记的鱼有10条,鱼塘里大约 有鱼多少条?
解:设鱼塘里有鱼条,根据题意可得
10 100 , 100 x
解得 =1000 答:鱼塘里有鱼1000条
3抛掷硬币“正面向上”的概率是05如果连续抛掷100次,而结 果并不一定是出现“正面向上”和“反面向上”各50次,这是这 什么?
答:这是因为频数和频率的随机性以及一定的规律性或者说 概率是针对大量重复试验而言的,大量重复试验反映的规律 并非在每一次试验中都发生
方法归纳
一般地,当试验的可能结果有很多且各种可能结果发生的 可能性相等时, 则用列举法,利用概率公式PA= 的方m 式得出
n
概率 当试验的所有可能结果不是有限个,或各种可能结果发生 的可能性不相等时,常常是通过统计频率来估计概率,即在同 样条件下,大量重复试验所得到的随机事件发生的频率的稳 定值来估计这个事件发生的概率
226 281 260 238 246 259 1490
450 550 503 487 510 495 2995
0502 0510 0517 049 0483 0523 0497
050
问题2 分析试验结果及下面数学家大量重复试验数据, 大家有何发现?
试验者
棣莫弗 布丰 费勒 皮尔逊 皮尔逊
抛掷次数n “正面向上” 次数m
课件1:25.3用频率估计概率
因为500千克柑橘损坏51.54千克,损坏率是0.103, 可以近似的估算是柑橘的损坏概率
练习
某农科所在相同条件下做了某作物种子发芽率的试验,结果如下表所示:
种子个数 100 200 300 400 500 600 700 800 900 1000
发芽种子个数 94 187 282 338 435 530 624 718 814 981
25.3 用频率估计概率
一 . 利用频率估计概率
当试验的可能结果有很多并且各种结果发生的可能性相等时,我们可以用
P
(A)
=
m n
的方式得出概率,当试验的所有可能结果不是有限个,或各种可能
结果发生的可能性不相等时,我们一般还要通过统计频率来估计概率.
在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐 渐稳定到的常数,可以估计这个事件发生的概率.
成活的频率( m)
n
0.80
50
47
0.94
270
235
0.870
400 750 1500
369 662 1335
0.923 0.883 0.890
3500
3203
0.915
7000 9000 14000
6335 8073 12628
0.905 0.897 0.902
从上表可以发现,幼树移植成活的频率在____9_0_%___左右摆动, 并且随着统计数据的增加,这种规律愈加明显,所以估计幼树 移植成活率的概率为___0_._9___
2 10000 20 2.22元 / 千克
9000
9
设每千克柑橘的销价为x元,则应有(x-2.22)×9 000=5 000
用频率估计概率
用频率估计概率
我们知道,抛掷一枚均匀硬币,硬币落地后, 出现“正面朝上”的可能性和“反面朝上”的可 能性是一样的,即“正面朝上”的概率和“反面 朝上”的概率都是 1 .在实际掷硬币时,会出现什
2
么情况?若只抛一次说明不了什么问题,我们不 妨多抛掷几次试试.
做一做
(1)抛掷一枚均匀硬币400次,每隔50次,分别记录 “正面朝上”和“反面朝上”的次数,汇总数据 后,完成下表:
2. 频率和概率都是随机事件可能性大小的定量的刻画, 概率是随机事件自身的固有的性质.当试验次数非常 多时,在大多数情况下,频率与概率会很接近,频 率可以作为概率的估计.
结束
SUCCESS
THANK YOU
2024/10/17
由于烧制结果不是等可能的,我们常用 “合格品”的频率作为“合格品率”的估计.
某瓷砖厂对最近出炉的一大批某型号瓷砖进行 质量抽检,结果如下:
抽取瓷砖数n 100 200 300 400 500 600 800 1000 2000
合格品数m 95 192 287 385 481 577 770 961 1924
n
则它在多次的重复观察中出现的次数就越多,因而 其频率就大,所以频率在一定程度上也反映了随机 事件的可能性的大小.
SUCCESS
THANK YOU
2024/10/17
可以发现,在抛瓶盖试验中,“开口朝上”的
频率
m n
一般会随着抛掷次数的增加,稳定在某个常
数p 附近.这个常数就是“开口朝上”发生的可能性.
试验者 蒲丰 皮尔逊 皮尔逊
掷硬币次数 正面朝上的次数
4040 12000 24000
2048 6019 12012
用频率估计概率的方法
解:(1)由表格可得,当n很大时,摸到白球的频率将会接近0.6. (2)P(白)= =m0.6, P(黑)=1-P(白n )=0.4.
(3)白球个数=20×0.6=12(个), 黑球个数=20×0.4=8(个).
【规律总结】 频率是概率的近似值,概率是频率的稳定值,它是频率的科学抽象,当试 验次数越来越多时,频率围绕概率摆动的平均幅度会越来越小,即频率靠近概率.
类型二:模拟实验估计概率 例2 王叔叔承包了鱼塘养鱼,到了收获时期,他想知道池塘里大约有多少条鱼,于 是他先捞出1 000条鱼,将它们做上标记,然后放回鱼塘,经过一段时间后,待有标 记的鱼完全混合于鱼群后,从中捕捞出150条鱼,发现有标记的鱼有3条,则 (1)池塘内约有多少条鱼? (2)如果每条鱼重0.5千克,每千克鱼的利润为1元,那么估计它所获得的利润为多 少元?
断重复,共摸球400次,其中88次摸到白球,估计盒中大约有黑球(
(A)28个
(B)30个 (C)36个 (D)42个
)A
2.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学
进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90
次,则黄色乒乓球的个数估计为(
解:(1)由题意得1 000÷ 3=50 000(条), 所以池塘内约有50 000条15鱼0 . (2)50 000×0.5×1=25 000(元), 所以估计所获得的利润为25 000元.
1.一个密闭不透明的盒子里有若干个黑球,在不允许将球倒出来的情况下,为估计黑球的
个数,小刚向其中放入8个白球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不
的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板书设计:
1、弄清了一种关系 ------ 频率与概率 的关系 2、了解了一种方法 ------- 用 多 次 试 验频率去估计概率 3、体会了一种思 想: 用样本去估计总体 用频率去估计概率
三、课堂检测
1.在做布斗的投针实验时,若改变平行线间的距离与针的长度的比值,则( ) A.针与平行线相交的概率不变 B.针与平行线相交的概率会改变 D.以上说法都不对
问题导入:
一、自主学习
以导课遇到的问题 为抓手,开门见山 地对树状图进行描 述,让同学们感知。
二、教师点拨
弄清了一种关系 ------ 频率与概率 的关系 了解了一种方法 ------- 用 多 次 试 验频率去估计概率 体会了一种思想: 用样本去估计总体 用频率去估计概率
学习 过程
1、历史上曾有人作过抛掷硬币的大量重复实验,结果如下表所示 实验结论: 当抛硬币的次数很多时,出现下面的频率值是稳定的,接 近于常数 ,在它附近摆动.
C.针与平行线相交的概率可能会改变;
2 .当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相 等时,求(估计)概率是用( ). A.通过统计频率估计概率 C.用列表法求概率 B.用列举法求概率 D.用树形图法求概率
教学 反思
大量重复试验得到 频率稳定值的分析 和事件的模拟试 验;
学习 目标
时间 分配
导课 5 分、交流 15 分、小结 3 分、检测 17 分
学案(学习过程) 一、自主学习 (一)复习巩固 1、古典概率条件是什么?用什么方法求? 2、用列举法求概率有哪几种? (二)自主探究 思考: 当实验的所有结果不是有限个;或各种可能结果发生的可能性 不相等时.又该如何求事件发生的概率呢?如:1)某射击运动员射 击一次,命中靶心的概率是__; 2)掷一次骰子,向上的一面数字是6的概率是____. 导案(学法指导)
山阳县色河中九年级数学学科导学案
主备人:授课班级 :(1)(2)
学习 内容
姓名:
备课组:数学 编号:
第 25 单元第 3 课(节): 用频率表示概率(第 1 课时 ) 课型:新授课 1、学会根据问题的特点,用统计概率来估计事件发生的概 率,培养分析问题、解决问题的能力。 2、 通过对问题过程的分析, 理解用频率来估计概率的方法, 渗透转化和估算的思想方法。 重点】通过对事 件发生的频率的 分析来估计事件 发生的概率; 【难点】
三、归纳总结
1 、一般地 , 在大量 重复试验中,如果 事件 A 发生的频率 稳定于某个常数 p, 那么事件 A 发生概
活的概率为_____. (三) 、归纳总结: 1、一般地,在大量重复试验中,如果事件 A 发生的频率 个常数 p,那么事件 A 发生概率的概率 : P(A)= p 稳定于某
率 的 概 率 : P(A)= p
2、某林业部门要考察某种幼树在一定条件的移植成活率,就采用什 么具体做法? 某林业部门要考查某种幼树在一定条件的移植成活率. (1)它能够用列举 法求出吗?为什么? (2)它应用什么方法求出? (3)请完成下表,并求出移植成活率. (表见教材) 由上表可以发现,幼树移植成活的频率在____左右摆动,并且 随着移植棵数越来越大,这种规律愈加明显. 所以估计幼树移植成
四、课堂检测
师巡回查看学生做 题情况,共性问题 要率估计出来的概率要比频率保留的数位要少。 (四)自我尝试: 1、一水塘里有鲤鱼、鲫鱼、鲢鱼共 1 000 尾,一渔民通过多次捕获 实验后发现:鲤鱼、鲫鱼出现的频率是 31%和 42%,则这个水塘里有 鲤鱼_______尾,鲢鱼_______尾. 2、动物学家通过大量的调查估计出,某种动物活到 20 岁的概率为 0.8,活到 25 岁的概率是 0.5,活到 30 岁的概率是 0.3.现年 20 岁 的这种动物活到 25 岁的概率为多少?现年 25 岁的这种动物活到 30 岁的概率为多少? 二、教师点拔 弄清了一种关系------频率与概率的关系 当试验次数很多或试验时样本容量足够大时,一件事件发生的频率 与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来 估计这一事件发生的概率. 了解了一种方法-------用多次试验频率去估计概率 体会了一种思想:用样本去估计总体 用频率去估计概率