江苏专用2018版高考数学大一轮复习第二章函数概念与基本初等函数I2.8函数与方程教师用书文

合集下载

(江苏专用)2018年高考数学一轮复习 第二章 函数 2.1 函数的概念课件

(江苏专用)2018年高考数学一轮复习 第二章 函数 2.1 函数的概念课件

计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时
应购买19个还是20个易损零件?
解析 (1)当x≤19时,y=3 800;
当x>19时,y=3 800+500(x-19)=500x-5 700,
所以y与x的函数解析式为y= 350(8x00∈x0,N 5) .7 0( 04, 分xx )1199,

+2=1.
1 2
2
5.(2015浙江,10,6分)已知函数f(x)=
x

2 x

3,
x

1,
则f(f(-3))=
, f(x)的最小值是
.
lg(x2 1), x 1,
答案 0;2 2 -3
解析 ∵-3<1,∴f(-3)=lg[(-3)2+1]=lg 10=1,
2
当x> 1 时, 2
f(x)+f

x

1 2

=2x+ 2x
1 2
>1恒成立.
综上,x的取值范围为 14
,


.
2.(2017山东文改编,9,5分)设f(x)=
x,0 x 1, 2(x 1), x 1.
若f(a)=f(a+1),则f 1a =
.
答案 [0,1)
解析

x 0, 1 x
0,
解得0≤x<1.
三年模拟
A组 2015—2017年高考模拟·基础题组
(时间:25分钟 分值:40分)
填空题(每题5分,共40分)
1.(2017苏锡常镇四市教学情况调研,3)函数f(x)= ln(41x

高考数学一轮复习考点与题型总结:第二章 函数的概念与基本初等函数

高考数学一轮复习考点与题型总结:第二章 函数的概念与基本初等函数

精品基础教育教学资料,仅供参考,需要可下载使用!第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一函数的定义域[典例] (1)(2019·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则 (1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.[题组训练]1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f (x -1),x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2,∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f (2x +1)log 2(x +1)有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1.所以该函数的定义域为(0,1]. 答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f (f (-9))=________.解析:∵函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2.答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3. 答案:-312.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2, 故所求x 的取值范围是[-4,2]. 答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)函数f (x )的图象如图所示.第二节函数的单调性与最值一、基础知识1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.有关单调区间的两个防范(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论在公共定义域内:(1)函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;(2)函数f (x )单调递减,g (x )单调递减,则f (x )+g (x )是减函数; (3)函数f (x )单调递增,g (x )单调递减,则f (x )-g (x )是增函数; (4)函数f (x )单调递减,g (x )单调递增,则f (x )-g (x )是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反;(7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.考点一 确定函数的单调性(区间))[典例] (1)求函数f (x )=-x 2+2|x |+1的单调区间. (2)试讨论函数f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.[解] (1)易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)法一:定义法 设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1).由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2. 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.[题组训练]1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x 与y=-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选D 令t =x 2-4,则y =log 12t .因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).3.判断函数f (x )=x +ax (a >0)在(0,+∞)上的单调性.解:设x 1,x 2是任意两个正数,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ). 当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax (a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数.考点二 求函数的值域(最值))[典例] (1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-ax+b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.[解析] (1)图象法函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上是增函数, ∴f (x )min =f ⎝⎛⎭⎫12=12,f (x )max =f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.[答案] (1)[3,+∞) (2)1 52 (3)4[提醒] (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.[题组训练]1.函数f (x )=x 2+4x 的值域为________.解析:当x >0时,f (x )=x +4x ≥4,当且仅当x =2时取等号; 当x <0时,-x +⎝⎛⎭⎫-4x ≥4, 即f (x )=x +4x ≤-4,当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞). 答案:(-∞,-4]∪[4,+∞)2.若x ∈⎣⎡⎦⎤-π6,2π3,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________.解析:令t =sin x ,因为x ∈⎣⎡⎦⎤-π6,2π3, 所以t ∈⎣⎡⎦⎤-12,1,y =f (t )=4t 2-12t -1, 因为该二次函数的图象开口向上,且对称轴为t =32,所以当t ∈⎣⎡⎦⎤-12,1时,函数f (t )单调递减,所以当t =-12时,y max =6;当t =1时,y min =-9. 答案:6 -93.已知f (x )=x 2+2x +ax ,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.解析:对任意x ∈[1,+∞),f (x )>0恒成立等价于x 2+2x +a >0在x ∈[1,+∞)上恒成立,即a >-x 2-2x 在x ∈[1,+∞)上恒成立.又函数y =-x 2-2x 在[1,+∞)上单调递减, ∴(-x 2-2x )max =-3,故a >-3,又∵a ≤1,∴-3<a ≤1. 答案:(-3,1]考点三 函数单调性的应用考法(一) 比较函数值的大小[典例] 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解析] 因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数. 所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). [答案] A[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式[典例] 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)[解析] 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2]. [答案] B[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)[典例] (2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.[解析] 设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数, ∴f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). [答案] [-1,+∞)[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.[题组训练]1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12 B.⎣⎡⎦⎤14,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎭⎫12,1解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎡⎦⎤14,12.[课时跟踪检测]A 级1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( )A .(2,+∞)B .(-∞,2)C .(4,+∞)D .(-∞,4)解析:选B 因为f (x )=ax +1在R 上单调递减,所以a <0. 而g (x )=a (x 2-4x +3)=a (x -2)2-a .因为a <0,所以g (x )在(-∞,2)上单调递增.3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13. 所以0≤2x -1<13,解得12≤x <23.4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).6.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5,x ≤1,a x ,x >1是R 上的增函数,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)解析:选C 若f (x )是R 上的增函数,则应满足⎩⎪⎨⎪⎧-a2≥1,a <0,-12-a ×1-5≤a 1,解得-3≤a ≤-2.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.解析:设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t =x 2-2x -3在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).答案:[3,+∞)8.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:29.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数,∴f (x )max =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:410.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________.解析:f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.答案:(-∞,3)11.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上是增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25.12.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1].B 级1.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]解析:选D 函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 解析:因为f (x )=ln x +x 在(0,+∞)上是增函数,所以⎩⎪⎨⎪⎧a 2-a >a +3,a 2-a >0,a +3>0,解得-3<a <-1或a >3.又a >0,所以a >3. 答案:(3,+∞)3.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1. (1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1. 又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以函数f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.第三节 函数的奇偶性与周期性一、基础知1.函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的前提条件.若f (x )≠0,则奇(偶)函数定义的等价形式如下:(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数.2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.周期函数定义的实质存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.考点一 函数奇偶性的判断[典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.[解] (1)由f (x )=36-x 2|x +3|-3,可知⎩⎪⎨⎪⎧ 36-x 2≥0,|x +3|-3≠0⇒⎩⎪⎨⎪⎧-6≤x ≤6,x ≠0且x ≠-6,故函数f (x )的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0⇒x 2=1⇒x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (-x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0⇒-1<x <0或0<x <1,定义域关于原点对称.此时f (x )=log 2(1-x 2)|x -2|-2=log 2(1-x 2)2-x -2=-log 2(1-x 2)x ,故有f (-x )=-log 2[1-(-x )2]-x =log 2(1-x 2)x =-f (x ),所以函数f (x )为奇函数. (4)法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数.法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数.[题组训练]1.(2018·福建期末)下列函数为偶函数的是( ) A .y =tan ⎝⎛⎭⎫x +π4 B .y =x 2+e |x | C .y =x cos xD .y =ln|x |-sin x解析:选B 对于选项A ,易知y =tan ⎝⎛⎭⎫x +π4为非奇非偶函数;对于选项B ,设f (x )=x 2+e |x |,则f (-x )=(-x )2+e |-x |=x 2+e |x |=f (x ),所以y =x 2+e |x |为偶函数;对于选项C ,设f (x )=x cos x ,则f (-x )=-x cos(-x )=-x cos x =-f (x ),所以y =x cos x 为奇函数;对于选项D ,设f (x )=ln|x |-sin x ,则f (2)=ln 2-sin 2,f (-2)=ln 2-sin(-2)=ln 2+sin 2≠f (2),所以y =ln|x |-sin x 为非奇非偶函数,故选B.2.设函数f (x )=e x -e -x2,则下列结论错误的是( )A .|f (x )|是偶函数B .-f (x )是奇函数C .f (x )|f (x )|是奇函数D .f (|x |)f (x )是偶函数解析:选D ∵f (x )=e x -e -x2,则f (-x )=e -x -e x2=-f (x ).∴f (x )是奇函数. ∵f (|-x |)=f (|x |),∴f (|x |)是偶函数,∴f (|x |)f (x )是奇函数.考点二 函数奇偶性的应用[典例] (1)(2019·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-x C .-2-xD .2x(2)(2018·贵阳摸底考试)已知函数f (x )=a -2e x +1(a ∈R)是奇函数,则函数f (x )的值域为( )A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)[解析] (1)当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .(2)法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x+1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).[答案] (1)C (2)A[解题技法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.[题组训练]1.(2019·贵阳检测)若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=( )A .2B .4C .-2D .-4解析:选C 根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.2.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.解析:法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎫x +122+14,所以当x <0时,函数f (x )的最大值为14. 法二:当x >0时,f (x )=x 2-x =⎝⎛⎭⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.答案:143.(2018·合肥八中模拟)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )=x ln(x +a +x 2)为偶函数,∴f (-x )=f (x ),即-x ln(a +x 2-x )=x ln(x +a +x 2),从而ln[(a +x 2)2-x 2]=0,即ln a =0,故a =1.答案:1考点三 函数的周期性[典例] (1)(2018·开封期末)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12C .2D .-2(2)(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.[解析] (1)由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.(2)由函数f (x )满足f (x +4)=f (x )(x ∈R), 可知函数f (x )的周期是4, 所以f (15)=f (-1)=⎪⎪⎪⎪-1+12=12, 所以f (f (15))=f ⎝⎛⎭⎫12=cos π4=22. [答案] (1)D (2)22[题组训练]1.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________. 解析:∵f (x +2)=-1f (x ),∴f (x +4)=f (x ), ∴f ⎝⎛⎭⎫-112=f ⎝⎛⎭⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝⎛⎭⎫52=52,∴f ⎝⎛⎭⎫-112=52. 答案:522.(2019·哈尔滨六中期中)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫214=________. 解析:由题意可得f ⎝⎛⎭⎫214=f ⎝⎛⎭⎫6-34=f ⎝⎛⎭⎫-34=4×⎝⎛⎭⎫-342-2=14,f ⎝⎛⎭⎫14=14.答案:14[课时跟踪检测]A 级1.下列函数为奇函数的是( ) A .f (x )=x 3+1 B .f (x )=ln 1-x1+xC .f (x )=e xD .f (x )=x sin x解析:选B 对于A ,f (-x )=-x 3+1≠-f (x ),所以其不是奇函数;对于B ,f (-x )=ln 1+x 1-x=-ln1-x 1+x=-f (x ),所以其是奇函数;对于C ,f (-x )=e -x ≠-f (x ),所以其不是奇函数;对于D ,f (-x )=-x sin(-x )=x sin x =f (x ),所以其不是奇函数.故选B.2.(2019·南昌联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称解析:选B 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y轴对称.3.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,则f (-7)=( )A .3B .-3C .2D .-2解析:选B 因为函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,所以f (-7)=-f (7)=-log 2(7+1)=-3.4.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( ) A .e x -e -x B.12(e x +e -x )C.12(e -x -e x ) D.12(e x -e -x )解析:选D 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x , 所以g (x )=12(e x -e -x ).。

(新)江苏专用2018版高考数学大一轮复习第二章函数概念与基本初等函数I2_2函数的单调性与最值教师用书理苏

(新)江苏专用2018版高考数学大一轮复习第二章函数概念与基本初等函数I2_2函数的单调性与最值教师用书理苏

第二章函数概念与基本初等函数I 2.2 函数的单调性与最值教师用书理苏教版1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A.如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是单调增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是单调减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间I 上是单调增函数或单调减函数,那么就说函数y =f (x )在区间I 上具有单调性,区间I 叫做y =f (x )的单调区间. 2.函数的最值前提 设函数y =f (x )的定义域为A ,如果存在x 0∈A ,使得条件 对于任意的x ∈A ,都有f (x )≤f (x 0) 对于任意的x ∈A ,都有f (x )≥f (x 0)结论 f (x 0)为最大值 f (x 0)为最小值【知识拓展】 函数单调性的常用结论 (1)对∀x 1,x 2∈D (x 1≠x 2),f x 1-f x 2x 1-x 2>0⇔f (x )在D 上是增函数,f x 1-f x 2x 1-x 2<0⇔f (x )在D 上是减函数.(2)对勾函数y =x +ax(a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ].(3)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.(4)函数f (g (x ))的单调性与函数y =f (u )和u =g (x )的单调性的关系是“同增异减”. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( × ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (3)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( × )(4)所有的单调函数都有最值.( × )(5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( × )(6)闭区间上的单调函数,其最值一定在区间端点取到.( √ )1.(教材改编)下列函数中,在区间(0,2)上为增函数的是________.(填序号) ①y =1x;②y =2x -1;③y =1-x ;④y =(2x -1)2.答案 ②解析 ①y =1x在(0,2)上为减函数;②y =2x -1在(0,2)上为增函数; ③y =1-x 在(0,2)上为减函数;④y =(2x -1)2在(-∞,12)上为减函数,在(12,+∞)上为增函数.2.(教材改编)函数y =⎩⎪⎨⎪⎧x ,x ≥0,x 2,x <0的单调增区间为__________;单调减区间为__________.答案 [0,+∞) (-∞,0)解析 当x ≥0时,y =x 为增函数;当x <0时,y =x 2为减函数.3.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上是增函数,则实数a 的取值范围为________________________________________________________________________. 答案 (-∞,1]解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数f (x )的单调递增区间是[a ,+∞), 由[1,2]⊆[a ,+∞),可得a ≤1.4.(2016·盐城模拟)函数y =x 2+2x -3(x >0)的单调增区间为________. 答案 (0,+∞)解析 函数的对称轴为x =-1,又x >0, 所以函数f (x )的单调增区间为(0,+∞). 5.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 答案 2 25解析 可判断函数f (x )=2x -1在[2,6]上为减函数, 所以f (x )max =f (2)=2,f (x )min =f (6)=25.题型一 确定函数的单调性(区间) 命题点1 给出具体解析式的函数的单调性例1 (1)(2016·连云港模拟)函数f (x )=12log (x 2-4)的单调递增区间是______________.(2)y =-x 2+2|x |+3的单调增区间为____________. 答案 (1)(-∞,-2) (2)(-∞,-1],[0,1]解析 (1)因为y =12log t ,t >0在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2). (2)由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数. 命题点2 解析式含参数的函数的单调性 例2 已知函数f (x )=axx 2-1(a >0),用定义法判断函数f (x )在(-1,1)上的单调性.解 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2x 21-1x 22-1=a x 2-x 1x 1x 2+1x 21-1x 22-1∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. 又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数f (x )在(-1,1)上为减函数. 引申探究如何用导数法求解例2?解 f ′(x )=a ·x 2-1-ax ·2x x 2-12=-a x 2+1x 2-12,∵a >0,∴f ′(x )<0在(-1,1)上恒成立, 故函数f (x )在(-1,1)上为减函数. 思维升华 确定函数单调性的方法(1)定义法和导数法,证明函数单调性只能用定义法和导数法; (2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.(1)已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为__________. 答案 [3,+∞)解析 设t =x 2-2x -3,则t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞). 因为函数t =x 2-2x -3的图象的对称轴为x =1, 所以函数t 在(-∞,-1]上单调递减, 在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞).(2)已知函数f (x )=ln x +mx 2(m ∈R ),求函数f (x )的单调区间. 解 (导数法)依题意知f (x )的定义域为(0,+∞). 对f (x )求导,得f ′(x )=1x +2mx =1+2mx2x.当m ≥0时,f ′(x )>0,f (x )在(0,+∞)上单调递增. 当m <0时,令f ′(x )=0,得x = -12m. 当x ∈(0,-12m)时,f ′(x )>0, 所以f (x )在(0, -12m)上单调递增; 当x ∈(-12m,+∞)时,f ′(x )<0,所以f (x )在(-12m,+∞)上单调递减. 题型二 函数的最值例3 (1)函数f (x )=⎩⎪⎨⎪⎧1x,x ≥1,-x 2+2,x <1的最大值为________.答案 2解析 当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.(2)已知f (x )=x 2+2x +ax,x ∈[1,+∞),且a ≤1.①当a =12时,求函数f (x )的最小值;②若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解 ①当a =12时,f (x )=x +12x+2,又x ∈[1,+∞),所以f ′(x )=1-12x 2>0,即f (x )在[1,+∞)上是增函数,所以f (x )min =f (1)=1+12×1+2=72.②f (x )=x +ax+2,x ∈[1,+∞).(ⅰ)当a ≤0时,f (x )在[1,+∞)内为增函数. 最小值为f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0, 所以-3<a ≤0.(ⅱ)当0<a ≤1时,f ′(x )=1-a x2,因为x ∈[1,+∞),所以f ′(x )≥0,即f (x )在[1,+∞)上为增函数, 所以f (x )min =f (1)=a +3, 即a +3>0,a >-3,所以0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,1].思维升华 求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. (5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数y =x +x -1的最小值为________.(2)函数f (x )=x 2+8x -1(x >1)的最小值为________.答案 (1)1 (2)8解析 (1)易知函数y =x +x -1在[1,+∞)上为增函数,∴x =1时,y min =1.(本题也可用换元法求解)(2)方法一 (基本不等式法)f (x )=x 2+8x -1=x -12+2x -1+9x -1=(x -1)+9x -1+2≥2 x -1·9x -1+2=8,当且仅当x -1=9x -1,即x =4时,f (x )min =8. 方法二 (导数法)f ′(x )=x -4x +2x -12,令f ′(x )=0,得x =4或x =-2(舍去). 当1<x <4时,f ′(x )<0,f (x )在(1,4)上是递减的;当x >4时,f ′(x )>0,f (x )在(4,+∞)上是递增的,所以f (x )在x =4处取到极小值也是最小值, 即f (x )min =f (4)=8. 题型三 函数单调性的应用 命题点1 比较大小例4 已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为____________. 答案 b >a >c解析 根据已知可得函数f (x )的图象关于直线x =1对称,且在(1,+∞)上是减函数,因为a =f (-12)=f (52),且2<52<3,所以b >a >c .命题点2 解函数不等式例5 (2017·苏州月考)定义在R 上的奇函数y =f (x )在(0,+∞)上递增,且f (12)=0,则满足19(log )f x >0的x 的集合为________________.答案 {x |0<x <13或1<x <3}解析 由题意知f (12)=0,f (-12)=0,由19(log )f x >0,得19log >12,或-12<19log x <0,解得0<x <13或1<x <3.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是____________.(2)已知f (x )=⎩⎪⎨⎪⎧2-a x +1,x <1,a x,x ≥1满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2>0成立,那么a 的取值范围是________.答案 (1)[-14,0] (2)[32,2)解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综上所述,得-14≤a ≤0.(2)由已知条件得f (x )为增函数, 所以⎩⎪⎨⎪⎧2-a >0,a >1,2-a ×1+1≤a ,解得32≤a <2,所以a 的取值范围是[32,2).思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)(2016·徐州模拟)已知函数f (x )=x (ex-1e x ),若f (x 1)<f (x 2),则下面正确的式子为________. ①x 1>x 2; ②x 1+x 2=0; ③x 1<x 2;④x 21<x 22.(2)(2016·宿迁模拟)要使函数y =2x +kx -2与y =log 3(x -2)在(3,+∞)上具有相同的单调性,则实数k 的取值范围是________. 答案 (1)④ (2)(-∞,-4)解析 (1)f (-x )=-x (1e x -e x)=f (x ),∴f (x )在R 上为偶函数,f ′(x )=e x -1e x +x (e x +1ex ),∴当x >0时,f ′(x )>0,∴f (x )在[0,+∞)上为增函数, 由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|, ∴x 21<x 22.(2)由于y =log 3(x -2)的定义域为(2,+∞),且为增函数,故函数y =log 3(x -2)在(3,+∞)上是增函数. 又函数y =2x +k x -2=2x -2+4+k x -2=2+4+kx -2,因其在(3,+∞)上是增函数,故4+k <0,得k <-4.1.解抽象函数不等式典例(14分)函数f(x)对任意的m,n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.思维点拨(1)对于抽象函数的单调性的证明,只能用定义.应该构造出f(x2)-f(x1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”是本题的切入点.要构造出f(M)<f(N)的形式.规范解答(1)证明设x1,x2∈R且x1<x2,则x2-x1>0,∵当x>0时,f(x)>1,∴f(x2-x1)>1. [3分]f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1,[5分]∴f(x2)-f(x1)=f(x2-x1)-1>0⇒f(x1)<f(x2),∴f(x)在R上为增函数. [7分] (2)解∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,[9分]f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),[11分]∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2). [14分]解函数不等式问题的一般步骤第一步:(定性)确定函数f (x )在给定区间上的单调性; 第二步:(转化)将函数不等式转化为f (M )<f (N )的形式;第三步:(去f )运用函数的单调性“去掉”函数的抽象符号“f ”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.1.(2016·南京模拟)下列函数中,在区间(1,+∞)上是增函数的是________. ①y =-x +1; ②y =11-x ;③y =-(x -1)2;④y =31-x.答案 ②解析 ①中,函数在(1,+∞)上为减函数,③中,函数在(1,+∞)上为减函数,④中,函数在(1,+∞)上为减函数.2.函数f (x )=|x -2|x 的单调减区间是__________. 答案 [1,2]解析 f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2,当x ≥2时,f (x )为增函数,当x <2时,(-∞,1]是函数f (x )的增区间; [1,2]是函数f (x )的减区间.3.定义新运算:当a ≥b 时,a b =a ;当a <b 时,a b =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于________.答案 6解析 由已知得,当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数, ∴f (x )的最大值为f (2)=23-2=6.4.已知f (x )=⎩⎪⎨⎪⎧a x,x >1,4-a2x +2,x ≤1是R 上的单调递增函数,则实数a 的取值范围是________. 答案 [4,8)解析 由已知可得⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥4-a2+2,解得4≤a <8.*5.函数f (x )的定义域为D ,若对于任意x 1,x 2∈D ,当x 1<x 2时,都有f (x 1)≤f (x 2),则称函数f (x )在D 上为非减函数,设函数f (x )在[0,1]上为非减函数,且满足以下三个条件:①f (0)=0;②f (x 3)=12f (x );③f (1-x )=1-f (x ).则f (13)+f (18)=________.答案 34解析 由①③,令x =0,可得f (1)=1.由②,令x =1,可得f (13)=12f (1)=12.令x =13,可得f (19)=12f (13)=14.由③结合f (13)=12,可知f (23)=12,令x =23,可得f (29)=12f (23)=14,因为19<18<29且函数f (x )在[0,1]上为非减函数,所以f (18)=14, 所以f (13)+f (18)=34.6.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是____________. 答案 [1,+∞)解析 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1.7.函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________.答案 3解析 由于y =⎝ ⎛⎭⎪⎫13x在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.8.(2017·江苏天一中学月考)对a ,b ∈R ,记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,函数f (x )=max{|x+1|,|x -2|}(x ∈R )的最小值是________. 答案 32解析 方法一f (x )=⎩⎪⎨⎪⎧2-x ,x <12,x +1,x ≥12,f (x )在(-∞,12)和[12,+∞)上分别为减函数和增函数,∴[f (x )]min =f (12)=32.方法二 作函数f (x )的图象如图所示,由图知当x =12时,[f (x )]min =f (12)=32.9.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________. 答案 -6解析 f (x )=|2x +a |=⎩⎪⎨⎪⎧2x +a ,x ≥-a2,-2x -a ,x <-a2.函数的单调递增区间为[-a2,+∞), ∴-a2=3,∴a =-6.*10.已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________. 答案 (-∞,-2)解析 二次函数y 1=x 2-4x +3的对称轴是x =2, ∴该函数在(-∞,0]上单调递减,∴x 2-4x +3≥3, 同样可知函数y 2=-x 2-2x +3在(0,+∞)上单调递减, ∴-x 2-2x +3<3,∴f (x )在R 上单调递减, ∴由f (x +a )>f (2a -x )得到x +a <2a -x , 即2x <a ,∴2x <a 在[a ,a +1]上恒成立, ∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).11.(2016·江苏新海中学期中)已知函数f (x )=-4x 2+4ax -4a -a 2(a >0)在区间[0,1]内有一个最大值-5,则a 的值为________. 答案 54解析 f (x )=-4(x -a2)2-4a ,对称轴为x =a 2,顶点为(a2,-4a ).①当a2≥1,即a ≥2时,f (x )在区间[0,1]上递增.∴y max =f (1)=-4-a 2.令-4-a 2=-5,∴a =±1<2(舍去).②当0<a 2<1,即0<a <2时,y max =f (a2)=-4a ,令-4a =-5,∴a =54∈(0,2).12.(2016·江苏泰州中学月考)已知t 为常数,函数y =|x 2-2x -t |在区间[0,3]上的最大值为2,则t =________. 答案 1解析 二次函数y =x 2-2x -t 图象的对称轴为x =1,函数y =|x 2-2x -t |的图象是将二次函数y =x 2-2x -t 的图象在x 轴下方的部分翻到x 轴上方(x 轴上方部分不变)得到的.由区间[0,3]上的最大值为2,知y max =f (3)=|3-t |=2,解得t =1或5;检验t =5时,f (0)=5>2不符,而t =1时满足题意.13.函数f (x )=4x 2-4ax +a 2-2a +2在区间[0,2]上有最小值3,求a 的值. 解 f (x )=4(x -a2)2-2a +2,①当a2≤0,即a ≤0时,函数f (x )在[0,2]上是增函数.∴f (x )min =f (0)=a 2-2a +2. 由a 2-2a +2=3,得a =1± 2. ∵a ≤0,∴a =1- 2. ②当0<a2<2,即0<a <4时,f (x )min =f (a2)=-2a +2.由-2a +2=3,得a =-12∉(0,4),舍去.③当a2≥2,即a ≥4时,函数f (x )在[0,2]上是减函数,f (x )min =f (2)=a 2-10a +18.由a 2-10a +18=3,得a =5±10. ∵a ≥4,∴a =5+10.综上所述,a =1-2或a =5+10.14.(2016·江苏南通中学质检)已知函数f (x )=-(x +1)2+2|x +1|+3. (1)试求函数f (x )的单调区间,并指出相应的单调性;(2)若f (2a 2+a +1)<f (3a 2-2a +1)恒成立,试求实数a 的取值范围. 解 (1)当x ≥-1时,f (x )=-[(x +1)2-2(x +1)+1]+4=-[(x +1)-1]2+4=-x 2+4,当x <-1时,f (x )=-[(x +1)2+2(x +1)+1]+4 =-[(x +1)+1]2+4=-(x +2)2+4,即f (x )=⎩⎪⎨⎪⎧-x 2+4x ≥-1,-x +22+4x <-1,其大致图象如图所示.由图易知函数f (x )在区间(-∞,-2],(-1,0]上单调递增,在区间(-2,-1],(0,+∞)上单调递减.(2)易知2a 2+a +1>0且3a 2+2a +1>0恒成立,由(1)知函数f (x )在(0,+∞)上单调递减, 故由f (2a 2+a +1)<f (3a 2-2a +1), 得2a 2+a +1>3a 2-2a +1,即a2-3a<0,解得0<a<3,∴a的取值范围为{a|0<a<3}.。

(新)江苏专用2018版高考数学大一轮复习第二章函数概念与基本初等函数I2_5指数与指数函数教师用书理苏教版

(新)江苏专用2018版高考数学大一轮复习第二章函数概念与基本初等函数I2_5指数与指数函数教师用书理苏教版

第二章函数概念与基本初等函数I 2.5 指数与指数函数教师用书理苏教版1.分数指数幂(1)我们规定正数的正分数指数幂的意义是mna=na m(a>0,m,n∈N*,且n>1).正数的负分数指数幂的意义与负整数指数幂的意义相仿,我们规定mna =1mna(a>0,m,n∈N*,且n>1).0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a s a t=a s+t,(a s)t=a st,(ab)t=a t b t,其中s,t∈Q,a>0,b>0.2.指数函数的图象与性质y=a x a>10<a<1图象定义域(1)R 值域(2)(0,+∞) 性质(3)过定点(0,1)(4)当x >0时,y >1; 当x <0时,0<y <1(5)当x >0时,0<y <1; 当x <0时,y >1(6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数1.指数函数图象画法的三个关键点画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),(-1,1a).2.指数函数的图象与底数大小的比较如图是指数函数(1)y =a x,(2)y =b x,(3)y =c x,(4)y =d x的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b .由此我们可得到以下规律:在第一象限内,指数函数y =a x(a >0,a ≠1)的图象越高,底数越大. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)na n=(na )n=a .( × )(2)分数指数幂m na 可以理解为m n个a 相乘.( × ) (3)24(1)-=12(1)-=-1.( × ) (4)函数y =a -x是R 上的增函数.( × ) (5)函数y =21x a +(a >1)的值域是(0,+∞).( × )(6)函数y =2x -1是指数函数.( × )1.(教材改编)若函数f (x )=a x(a >0且a ≠1)的图象经过点P (2,12),则f (-1)=________.答案2解析 由题意知12=a 2,所以a =22,所以f (x )=(22)x ,所以f (-1)=(22)-1= 2. 2.(2016·苏州模拟)已知函数f (x )=a x -2+2的图象恒过定点A ,则A 的坐标为________.答案 (2,3)解析 由a 0=1知,当x -2=0,即x =2时,f (2)=3,即图象必过定点(2,3).3.已知113344333(),(),()552a b c ---===,则a ,b ,c 的大小关系是______________.答案 c <b <a解析 ∵y =(35)x是减函数,11034333()()(),555--∴>>即a >b >1,又c =343()2-<(32)0=1,∴c <b <a .4.计算:133()2-×⎝ ⎛⎭⎪⎫-760+148×42________.答案 2解析 原式=132()3×1+131344222()3⨯-=2.5.若函数y =(a 2-1)x在(-∞,+∞)上为减函数,则实数a 的取值范围是________________. 答案 (-2,-1)∪(1,2)解析 由y =(a 2-1)x 在(-∞,+∞)上为减函数,得0<a 2-1<1,∴1<a 2<2,即1<a <2或-2<a <-1.题型一 指数幂的运算 例1 化简下列各式:(1)122.553[(0.064)]--3338-π0;(2)41233322338(4a a b ab a--÷-+.解 (1)原式=121553326427{[()]}()110008---1521()33523343[()][()]1102⨯-⨯=--=52-32-1=0. (2)原式=11111213333333321111111223333352[()(2)]2()()(2)(2)()a a b a b a a aa ab b a a --⋅÷⨯+⋅+⋅ 51116333111336(2)2a a a a b a ba=-⨯⨯-12233.a a a a =⨯⨯=思维升华 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序. (2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.化简132113321()4(0.1)()a b ---⋅⋅⋅=________. 答案 85解析 原式=2×333223322210a b a b--⋅⋅⋅⋅=21+3×10-1=85.题型二 指数函数的图象及应用 例2 已知f (x )=|2x-1|. (1)求f (x )的单调区间; (2)比较f (x +1)与f (x )的大小;(3)试确定函数g (x )=f (x )-x 2的零点的个数.解 (1)由f (x )=|2x-1|=⎩⎪⎨⎪⎧2x -1,x ≥0,1-2x,x <0可作出函数的图象如图所示.因此函数f (x )在(-∞,0)上递减,在(0,+∞)上递增.(2)在同一坐标系中,分别作出函数f (x )、f (x +1)的图象如图所示.由图象知,当0012112x x +-=-,即x 0=log 223时,两图象相交,由图象可知,当x <log 223时,f (x )>f (x +1);当x =log 223时,f (x )=f (x +1);当x >log 223时,f (x )<f (x +1).(3)将g (x )=f (x )-x 2的零点个数问题转化为函数f (x )与y =x 2的图象的交点个数问题,在同一坐标系中,分别作出函数f (x )=|2x-1|和y =x 2的图象(图略),有四个交点,故g (x )有四个零点.思维升华 (1)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论. (3)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.已知函数f (x )=⎩⎪⎨⎪⎧x +10≤x <1,2x -12x ≥1,设a >b ≥0,若f (a )=f (b ),则b ·f (a )的取值范围是______. 答案 [34,2)解析 函数的图象如图所示.因为a >b ≥0,f (a )=f (b ),所以0.5≤b <1且1.5≤f (a )<2.所以0.75≤bf (a )<2.题型三 指数函数的性质及应用 命题点1 指数函数单调性的应用例3 (1)(2016·徐州模拟)下列各式比较大小正确的是________. ①1.72.5>1.73;②0.6-1>0.62; ③0.8-0.1>1.250.2;④1.70.3<0.93.1.(2)设函数f (x )=⎩⎪⎨⎪⎧12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是________.答案 (1)② (2)(-3,1)解析 (1)②中,∵y =0.6x是减函数, ∴0.6-1>0.62.(2)当a <0时,不等式f (a )<1可化为(12)a-7<1,即(12)a <8,即(12)a <(12)-3, 所以a >-3.又a <0,∴-3<a <0. 当a ≥0时,不等式f (a )<1可化为a <1. 所以0≤a <1,综上,a 的取值范围为(-3,1). 命题点2 复合函数的单调性 例4 (1)已知函数f (x )=|2|2x m -(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________. (2)函数2211()()2xx f x -++=的单调减区间为________________________________________________________________________. 答案 (1)(-∞,4] (2)(-∞,1]解析 (1)令t =|2x -m |,则t =|2x -m |在区间[m 2,+∞)上单调递增,在区间(-∞,m2]上单调递减.而y =2t为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4,所以m 的取值范围是(-∞,4].(2)设u =-x 2+2x +1,∵y =⎝ ⎛⎭⎪⎫12u 在R 上为减函数,∴函数f (x )=2211()2x x -++的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1], ∴f (x )的减区间为(-∞,1]. 引申探究 函数f (x )=4x-2x +1的单调增区间是________.答案 [0,+∞)解析 设t =2x,则y =t 2-2t 的单调增区间为[1,+∞),令2x≥1,得x ≥0, ∴函数f (x )=4x-2x +1的单调增区间是[0,+∞).命题点3 函数的值域(或最值)例5 (1)函数y =⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在区间[-3,2]上的值域是________.(2)如果函数y =a 2x+2a x-1(a >0,a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.答案 (1)⎣⎢⎡⎦⎥⎤34,57 (2)13或3 解析 (1)因为x ∈[-3,2],所以若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8,故y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57.故所求函数的值域为⎣⎢⎡⎦⎥⎤34,57.(2)令a x =t ,则y =a 2x +2a x -1=t 2+2t -1 =(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈[1a,a ],又函数y =(t +1)2-2在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去). 当0<a <1时,因为x ∈[-1,1],所以t ∈[a ,1a],又函数y =(t +1)2-2在[a ,1a]上单调递增,则y max =(1a +1)2-2=14,解得a =13(负值舍去).综上,a =3或a =13.思维升华 (1)在利用指数函数性质解决相关综合问题时,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(2)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性的求解方法,要化归于指数函数来解.(1)已知函数f (x )=⎩⎪⎨⎪⎧-12x ,a ≤x <0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是________.(2)已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f x ,x ≥0,f -x ,x <0,则函数g (x )的最小值是________.答案 (1)[-3,0) (2)0解析 (1)当0≤x ≤4时,f (x )∈[-8,1], 当a ≤x <0时,f (x )∈[-(12)a,-1),所以[-12a ,-1)[-8,1],即-8≤-12a <-1,即-3≤a <0,所以实数a 的取值范围是[-3,0).(2)当x ≥0时,g (x )=f (x )=2x-12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x-12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0.2.指数函数底数的讨论典例 (2016·南京模拟)已知函数22xxy b a +=+(a ,b 为常数,且a >0,a ≠1)在区间[-32,0]上有最大值3,最小值52, 则a ,b 的值分别为________.错解展示解析 令t =x 2+2x =(x +1)2-1,∵-32≤x ≤0,∴-1≤t ≤0.∵1a ≤a t ≤1,∴b +1a ≤b +a t ≤b +1,由⎩⎪⎨⎪⎧ b +1a =52,b +1=3,得⎩⎪⎨⎪⎧ a =2,b =2.答案 2,2现场纠错解析 令t =x 2+2x =(x +1)2-1,∵x ∈[-32,0],∴t ∈[-1,0].①若a >1,函数f (x )=a t 在[-1,0]上为增函数,∴a t ∈[1a ,1],22x x b a ++∈[b +1a ,b +1],依题意得⎩⎪⎨⎪⎧b +1a =52,b +1=3,解得⎩⎪⎨⎪⎧ a =2,b =2.②若0<a <1,函数f (x )=a t 在[-1,0]上为减函数,∴a t ∈[1,1a ],则22x x b a ++∈[b +1,b +1a ],依题意得⎩⎪⎨⎪⎧ b +1a=3,b +1=52,解得⎩⎪⎨⎪⎧ a =23,b =32.综上①②,所求a ,b 的值为⎩⎪⎨⎪⎧ a =2,b =2或⎩⎪⎨⎪⎧a =23,b =32.答案 2,2或23,32纠错心得 与指数函数、对数函数的单调性有关的问题,要对底数进行讨论.1.(2016·苏州模拟)设2x =8y +1,9y =3x -9,则x +y 的值为________.答案 27解析 ∵2x =8y +1=23(y +1),∴x =3y +3,∵9y =3x -9=32y ,∴x -9=2y ,解得x =21,y =6,∴x +y =27.2.函数f (x )=2|x -1|的图象是________.答案 ②解析 ∵|x -1|≥0,∴f (x )≥1,排除③、④.又x =1时,|f (x )|min =1,排除①.3.已知a =40.2,b =0.40.2,c =0.40.8,则a ,b ,c 的大小关系为__________.答案 a >b >c解析 由0.2<0.8,底数0.4<1知,y =0.4x 在R 上为减函数,所以0.40.2>0.40.8,即b >c . 又a =40.2>40=1,b =0.40.2<1,所以a >b ,综上,a >b >c .4.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为__________. 答案 [1,9]解析 由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2在[2,4]上是增函数,所以f (x )min =f (2)=1,f (x )max =f (4)=9.5.(2015·山东改编)若函数f (x )=2x +12x -a是奇函数,则使f (x )>3成立的x 的取值范围为__________.答案 (0,1)解析 ∵f (x )为奇函数,∴f (-x )=-f (x ),即2-x +12-x -a =-2x+12x -a,整理得(a -1)(2x +1)=0, ∴a =1,∴f (x )>3即为2x +12x -1>3, 当x >0时,2x -1>0,∴2x +1>3·2x -3,解得0<x <1;当x <0时,2x -1<0,∴2x +1<3·2x -3,无解.∴x 的取值范围为(0,1).6.(2016·浙江改编)已知函数f (x )满足f (x )≥2x ,x ∈R .若f (a )≤2b,则a ,b 的大小关系为________.答案 a ≤b解析 依题意得f (a )≥2a ,若f (a )≤2b ,则2a ≤f (a )≤2b ,∴2a ≤2b ,又y =2x 是R 上的增函数,∴a ≤b . 7.设函数f (x )=⎩⎪⎨⎪⎧ e x -1,x <1,13x ,x ≥1,则使得f (x )≤2成立的x 的取值范围是________. 答案 (-∞,8]解析 当x <1时,由ex -1≤2得x ≤1+ln 2,∴x <1时恒成立; 当x ≥1时,由13x ≤2得x ≤8,∴1≤x ≤8.综上,符合题意的x 的取值范围是x ≤8.8.若直线y =2a 与函数y =|a x-1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________.答案 (0,12) 解析 (数形结合法)由图象可知0<2a <1,∴0<a <12.9.(2016·镇江模拟)已知y =f (x )是定义在R 上的奇函数且当x ≥0时,f (x )=-14x +12x ,则此函数的值域为________.答案 [-14,14]解析 设t =12x ,当x ≥0时,2x≥1,∴0<t ≤1,f (t )=-t 2+t =-(t -12)2+14.∴0≤f (t )≤14,故当x ≥0时,f (x )∈[0,14].∵y =f (x )是定义在R 上的奇函数,∴当x ≤0时,f (x )∈[-14,0].故函数的值域为[-14,14].10.已知函数f (x )=2ax +2(a 为常数),(1)求函数f (x )的定义域;(2)若a >0,试证明函数f (x )在R 上是增函数;(3)当a =1时,求函数y =f (x ),x ∈(-1,3]的值域.(1)解 函数f (x )=2ax +2对任意实数都有意义,所以定义域为实数集R .(2)证明 任取x 1,x 2∈R ,且x 1<x 2,由a >0,得ax 1+2<ax 2+2.因为y =2x 在R 上是增函数,所以有122222ax ax ++,即f (x 1)<f (x 2).所以函数f (x )在R 上是增函数.(3)解 由(2)知,当a =1时,f (x )=2x +2在(-1,3]上是增函数.所以f (-1)<f (x )≤f (3),即2<f (x )≤32.所以函数f (x )的值域为(2,32].11.已知函数f (x )=(23)|x |-a.(1)求f (x )的单调区间;(2)若f (x )的最大值等于94,求a 的值.解 (1)令t =|x |-a ,则f (x )=(23)t,不论a 取何值,t 在(-∞,0]上单调递减,在[0,+∞)上单调递增,又y =(23)t 是单调递减的, 因此f (x )的单调递增区间是(-∞,0],单调递减区间是[0,+∞).(2)由于f (x )的最大值是94且94=(23)-2, 所以g (x )=|x |-a 应该有最小值-2,即g (0)=-2,从而a =2.12.已知函数f (x )=2431()3ax x -+.(1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值.解 (1)当a =-1时,f (x )=2431()3xx --+,令t =-x 2-4x +3, 由于函数t =-x 2-4x +3在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t 在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3,则f (x )=⎝ ⎛⎭⎪⎫13g (x ), 由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧ a >0,3a -4a =-1,解得a =1,即当f (x )有最大值3时,a 的值为1.*13.已知函数f (x )=14x -λ2x -1+3(-1≤x ≤2). (1)若λ=32,求函数f (x )的值域; (2)若函数f (x )的最小值是1,求实数λ的值.解 (1)f (x )=14x -λ2x -1+3=(12)2x -2λ·(12)x+3(-1≤x ≤2).设t =(12)x ,得g (t )=t 2-2λt +3(14≤t ≤2).当λ=32时,g (t )=t 2-3t +3=(t -32)2+34(14≤t ≤2).所以g (t )max =g (14)=3716,g (t )min =g (32)=34.所以f (x )max =3716,f (x )min =34,故函数f (x )的值域为[34,3716].(2)由(1)得g (t )=t 2-2λt +3=(t -λ)2+3-λ2(14≤t ≤2),①当λ≤14时,g (t )min =g (14)=-λ2+4916,令-λ2+4916=1,得λ=338>14,不符合舍去;②当14<λ≤2时,g (t )min =g (λ)=-λ2+3,令-λ2+3=1,得λ=2(λ=-2<14,不符合舍去);③当λ>2时,g (t )min =g (2)=-4λ+7,令-4λ+7=1,得λ=32<2,不符合舍去.综上所述,实数λ的值为 2.14.(2017·江苏淮阴中学月考)已知f (x )=23x +1+m ,m 是实常数.(1)当m =1时,写出函数f (x )的值域;(2)当m =0时,判断函数f (x )的奇偶性,并给出证明;(3)若f (x )是奇函数,不等式f (f (x ))+f (a )<0有解,求a 的取值范围.解 (1)当m =1时,f (x )=23x +1+1,定义域为R ,3x +1∈(1,+∞),则23x +1∈(0,2), 所以f (x )=23x +1+1∈(1,3), 即当m =1时,函数f (x )的值域为(1,3).(2)当m =0时,f (x )为非奇非偶函数.证明如下 :当m =0时,f (x )=23x +1,f (1)=24=12, f (-1)=213+1=32, 因为f (-1)≠f (1),所以f (x )不是偶函数;又因为f (-1)≠-f (1),所以f (x )不是奇函数.故f (x )为非奇非偶函数.(3)因为f (x )是奇函数,所以f (-x )=-f (x )恒成立,即23-x+1+m =-23x +1-m 对x ∈R 恒成立, 化简整理得-2m =2×3x1+3x +23x +1,即-2m =2,所以m =-1. 下面用定义法研究f (x )=23x +1-1的单调性. 任取x 1,x 2∈R 且x 1<x 2, f (x 1)-f (x 2)=1222113131x x --+++ 21212(33)0(31)(31)x x x x -=++>, 所以f (x 1)>f (x 2),所以函数f (x )在R 上单调递减.所以f (f (x ))+f (a )<0有解,且函数f (x )为奇函数,所以f (f (x ))<-f (a )=f (-a ),又因为函数f (x )在R 上单调递减,所以f (x )>-a 有解,又易求函数f (x )=23x +1-1的值域为(-1,1),所以-a <1,即a >-1.。

江苏专用2018版高考数学大一轮复习第二章函数概念与基本初等函数I2.8函数与方程教师用书文

江苏专用2018版高考数学大一轮复习第二章函数概念与基本初等函数I2.8函数与方程教师用书文

2.8 函数与方程(1)函数零点的定义对于函数y=f(x)(x∈D),把使函数y=f(x)的值为0的实数x叫做函数y=f(x)(x∈D)的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)上有零点,即存在c∈(a,b),使得f(c)=0,这个__c__也就是方程f(x)=0的根.对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0) (x1,0) 无交点零点个数210【知识拓展】有关函数零点的结论(1)假设连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.【思考辨析】判断以下结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x 轴的交点.( × )(2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0.( × ) (3)只要函数有零点,我们就可以用二分法求出零点的近似值.( × ) (4)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( √ )(5)假设函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( √ )1.(教材改编)函数f (x )=12x -(12)x的零点个数为____________.答案 1解析 f (x )是增函数,又f (0)=-1,f (1)=12,∴f (0)f (1)<0,∴f (x )有且只有一个零点.2.(教材改编)已知f (x )=ax 2+bx +c 的零点为1,3,则函数y =ax 2+bx +c 的对称轴是________. 答案 x =2解析 ∵y =a (x -1)(x -3)=a (x -2)2-a , ∴对称轴为x =2.3.(2016·长春检测)函数f (x )=12ln x +x -1x -2的零点所在的区间是________.①(1e ,1); ②(1,2); ③(2,e); ④(e,3).答案 ③解析 因为f (1e )=-12+1e -e -2<0,f (1)=-2<0,f (2)=12ln 2-12<0,f (e)=12+e -1e -2>0,所以f (2)f (e)<0,所以函数f (x )=12ln x +x -1x-2的零点所在区间是(2,e).f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫13,1 解析 ∵函数f (x )的图象为直线,由题意可得f (-1)f (1)<0,∴(-3a +1)·(1-a )<0,解得13<a <1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫13,1. 5.(教材改编)已知函数f (x )=x 2+x +a 在区间(0,1)上有零点,则实数a 的取值范围是__________.答案 (-2,0)解析 结合二次函数f (x )=x 2+x +a 的图象知⎩⎪⎨⎪⎧f 0<0f1>0,故⎩⎪⎨⎪⎧a <01+1+a >0,所以-2<a <0.题型一 函数零点确实定 命题点1 确定函数零点所在区间例1 (1)(2016·盐城调研)已知函数f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2的零点为x 0,则x 0所在的区间是________.(填序号) ①(0,1); ②(1,2); ③(2,3);④(3,4).(2)设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),假设x 0∈(n ,n +1),n ∈N ,则x 0所在的区间是______. 答案 (1)③ (2)(1,2)解析 (1)∵f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2在(0,+∞)为增函数,又f (1)=ln 1-⎝ ⎛⎭⎪⎫12-1=ln 1-2<0,f (2)=ln 2-⎝ ⎛⎭⎪⎫120<0,f (3)=ln 3-⎝ ⎛⎭⎪⎫121>0,∴x 0∈(2,3).(2)令f (x )=x 3-(12)x -2,则f (x 0)=0,易知f (x )为增函数,且f (1)<0,f (2)>0,∴x 0所在的区间是(1,2).命题点2 函数零点个数的判断例2 (1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.(2)假设定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是________. 答案 (1)2 (2)4解析 (1)当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上有一个零点;当x >0时,f ′(x )=2+1x>0恒成立,所以f (xf (2)=-2+ln 2<0,f (3)=ln 3>0,所以f (x )在(0,+∞)上有一个零点,综上,函数f (x )的零点个数为2. (2)由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如图,观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点.思维升华 (1)确定函数零点所在区间,可利用零点存在性定理或数形结合法.(2)判断函数零点个数的方法:①解方程法;②零点存在性定理、结合函数的性质;③数形结合法:转化为两个函数图象的交点个数.(1)已知函数f (x )=6x-log 2x ,在以下区间中,包含f (x )零点的区间是________.(填序号) ①(0,1); ②(1,2); ③(2,4);④(4,+∞).(2)(教材改编)已知函数f (x )=2x-3x ,则函数f (x )的零点个数为________. 答案 (1)③ (2)2解析 (1)因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).(2)令f (x )=0,则2x =3x ,在同一平面直角坐标系中分别作出y =2x和y =3x 的图象,如下图,由图知函数y =2x和y =3x 的图象有2个交点,所以函数f (x )的零点个数为2.题型二 函数零点的应用例 3 (1)函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是__________.(2)已知函数f (x )=|x 2+3x |,x ∈R ,假设方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围是________________. 答案 (1)(0,3) (2)(0,1)∪(9,+∞)解析 (1)因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0.所以0<a <3.(2)设y 1=f (x )=|x 2+3x |,y 2=a |x -1|,在同一直角坐标系中作出y 1=|x 2+3x |,y 2=a |x -1|的图象如下图.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图象有4个不同的交点且4个交点的横坐标都小于1,所以⎩⎪⎨⎪⎧y =-x 2-3x ,y =a 1-x 有两组不同解,消去y 得x 2+(3-a )x +a =0有两个不等实根, 所以Δ=(3-a )2-4a >0,即a 2-10a +9>0, 解得a <1或a >9.又由图象得a >0,∴0<a <1或a >9. 引申探究本例(2)中,假设f (x )=a 恰有四个互异的实数根,则a 的取值范围是________________.答案 (0,94)解析 作出y 1=|x 2+3x |,y 2=a 的图象如下:当x =-32时,y 1=94;当x =0或x =-3时,y 1=0,由图象易知,当y 1=|x 2+3x |和y 2=a 的图象有四个交点时,0<a <94.思维升华 已知函数零点情况求参数的步骤及方法(1)步骤:①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式(组);③解不等式(组),即得参数的取值范围. (2)方法:常利用数形结合法.(1)已知函数f (x )=x 2+x +a (a <0)在区间(0,1)上有零点,则a 的取值范围为________.(2)(2016·江苏前黄中学调研)假设函数f (x )=|x |x -1-kx 2有4个零点,则实数k 的取值范围是______________.答案 (1)(-2,0) (2)(-∞,-4) 解析 (1)∵-a =x 2+x 在(0,1)上有解, 又y =x 2+x =(x +12)2-14,∴函数y =x 2+x ,x ∈(0,1)的值域为(0,2), ∴0<-a <2,∴-2<a <0. (2)令f (x )=0,则方程|x |x -1=kx 2有4个不同的实数根,显然,x =0是方程的一个实数根. 当x ≠0时,方程可化为1k=|x |(x -1),设h (x )=1k,g (x )=|x |(x -1),由题意知h (x )与g (x )图象(如下图)有三个不同的交点,由g (x )=⎩⎪⎨⎪⎧x x -1,x >0,-x x -1,x <0,结合图象知-14<1k<0,所以k <-4.题型三 二次函数的零点问题例4 已知f (x )=x 2+(a 2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围.解 方法一 设方程x 2+(a 2-1)x +(a -2)=0的两根分别为x 1,x 2(x 1<x 2),则(x 1-1)(x 2-1)<0,∴x 1x 2-(x 1+x 2)+1<0,由根与系数的关系,得(a -2)+(a 2-1)+1<0, 即a 2+a -2<0,∴-2<a <1.方法二 函数图象大致如图,则有f (1)<0,即1+(a 2-1)+a -2<0,∴-2<a <1. 故实数a 的取值范围是(-2,1).思维升华 解决与二次函数有关的零点问题 (1)利用一元二次方程的求根公式.(2)利用一元二次方程的判别式及根与系数之间的关系. (3)利用二次函数的图象列不等式组.(2016·江苏泰州中学质检)关于x 的一元二次方程x 2+2(m +3)x +2m +14=0有两个不同的实根,且一根大于3,一根小于1,则m 的取值范围是______. 答案 (-∞,-214)解析 设f (x )=x 2+2(m +3)x +2m +14, 由题设可得⎩⎪⎨⎪⎧f 3<0,f1<0,所以m <-214.典例 (1)假设函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是________.(2)假设关于x 的方程22x+2xa +a +1=0有实根,则实数a 的取值范围为________. 思想方法指导 (1)函数零点个数可转化为两个函数图象的交点个数,利用数形结合求解参数范围.(2)“a =f (x )有解”型问题,可以通过求函数y =f (x )的值域解决.解析 (1)函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,即方程a x-x -a =0有两个根,即函数y =a x与函数y =x +a 的图象有两个交点.当0<a <1时,图象如图(1)所示,此时只有一个交点. 当a >1时,图象如图(2)所示,此时有两个交点. ∴实数a 的取值范围为(1,+∞).(2)由方程,解得a =-22x+12x +1,设t =2x (t >0),则a =-t 2+1t +1=-(t +2t +1-1)=2-[(t +1)+2t +1],其中t +1>1, 由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2. 答案 (1)(1,+∞) (2)(-∞,2-22]1.(2016·江苏东海中学期中)假设函数f (x )=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1,-1<x <2,则函数g (x )=f (x )-x 的零点为______________.答案 1+2或1解析 题目转化为求方程f (x )=x 的根,所以⎩⎪⎨⎪⎧x ≥2或x ≤-1,x 2-x -1=x 或⎩⎪⎨⎪⎧-1<x <2,1=x ,解得x =1+2或x =1,所以g (x )的零点为1+2或1.f (x )=log 3x +x -3的零点所在的区间是(n ,n +1)(n ∈Z ),则n =________.答案 2解析 由f (2)=log 32-1<0,f (3)=1>0,知f (x )=0的根在区间(2,3)内,即n =2.f (x )=2x +x ,g (x )=x -2,h (x )=log 2x +x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为________. 答案 a <c <b解析 方法一 由于f (-1)=12-1=-12<0,f (0)=1>0且f (x )为R 上的递增函数.故f (x )=2x+x 的零点a ∈(-1,0). ∵g (2)=0,∴g (x )的零点b =2; ∵h ⎝ ⎛⎭⎪⎫12=-1+12=-12<0,h (1)=1>0,且h (x )为(0,+∞)上的增函数,∴h (x )的零点c ∈⎝ ⎛⎭⎪⎫12,1,因此a <c <b . 方法二 由f (x )=0得2x=-x ;由h (x )=0得log 2x =-x ,作出函数y =2x,y =log 2x 和y =-x 的图象(如图).由图象易知a <0,0<c <1,而b =2, 故a <c <b .4.方程|x 2-2x |=a 2+1(a >0)的解的个数是________. 答案 2解析 (数形结合法) ∵a >0,∴a 2+1>1.而y =|x 2-2x |的图象如图,∴y =|x 2-2x |的图象与y =a 2+1的图象总有两个交点.f (x )=⎩⎪⎨⎪⎧x 2-1x ≤0,x -2+ln xx >0的零点个数为______.答案 2解析 当x ≤0时,令f (x )=0,得x 2-1=0,∴x =-1,此时f (x )有一个零点;当x >0时,令f (x )=0,得x -2+ln x =0,在同一个坐标系中画出y =2-x 和y =ln x 的图象(图略),观察其图象可知函数y =2-x 和y =ln x 的图象在(0,+∞)上的交点个数是1,所以此时函数f (x )有一个零点,所以f (x )的零点个数为2.x ∈R ,符号[x ]表示不超过x 的最大整数,假设函数f (x )=[x ]x-a (x ≠0)有且仅有3个零点,则实数a 的取值范围是________________.答案 ⎝ ⎛⎦⎥⎤34,45∪[43,32)解析 当0<x <1时,f (x )=[x ]x-a =-a ;当1≤x <2时,f (x )=[x ]x -a =1x -a ;当2≤x <3时,f (x )=[x ]x-a =2x-a ;…f (x )=[x ]x -a 的图象是把y =[x ]x 的图象进行纵向平移而得到的,画出y =[x ]x的图象,如下图,通过数形结合可知a ∈(34,45]∪[43,32).7.(2016·徐州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为________.答案 x =0解析 当x ≤1时,由f (x )=2x-1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解. 综上,函数f (x )的零点只有0.f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0,假设函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________. 答案 (0,1)解析 画出函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0的图象,如图.由于函数g (x )=f (x )-m 有3个零点,结合图象得0<m <1,即m ∈(0,1).R 上的奇函数f (x )满足:当x >0时,f (x )=2 015x+log 2 015x ,则在R 上,函数f (x )零点的个数为________.答案 3解析 函数f (x )为R 上的奇函数,因此f (0)=0,当x >0时,f (x )=2 015x +log 2 015x 在区间(0,12 015)内存在一个零点, 又f (x )为增函数,因此在(0,+∞)内有且仅有一个零点.根据对称性可知函数在(-∞,0)内有且仅有一解,从而函数f (x )在R 上的零点的个数为3. a >1,设函数f (x )=a x +x -4的零点为m ,函数g (x )=log a x +x -4的零点为n ,则1m +1n 的最小值为________.答案 1解析 设F (x )=a x ,G (x )=log a x ,h (x )=4-x ,则h (x )与F (x ),G (x )的交点A ,B 横坐标分别为m ,n (m >0,n >0).因为F (x )与G (x )关于直线y =x 对称,所以A ,B 两点关于直线y =x 对称.又因为y =x 和h (x )=4-x 交点的横坐标为2,所以m +nm >0,n >0,所以1m +1n =(1m +1n )·m +n 4=14(2+n m +m n )≥14(2+2 n m ×m n)=1. 当且仅当n m =m n ,即m =n =2时等号成立.所以1m +1n的最小值为1. 11.(2016·江苏淮阴中学期中)已知关于x 的一元二次方程x 2-2ax +a +2=0的两个实根是α,β,且有1<α<2<β<3,则实数a 的取值范围是________.答案 (2,115) 解析 设f (x )=x 2-2ax +a +2,结合二次函数的图象及一元二次方程根的分布情况可得 ⎩⎪⎨⎪⎧ f 1>0,f 2<0,f 3>0,即⎩⎪⎨⎪⎧ 1-2a +a +2>0,4-4a +a +2<0,9-6a +a +2>0,解得2<a <115,所以实数a 的取值范围为(2,115).x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围. 解 显然x =0不是方程x 2+(m -1)x +1=0的解,0<x ≤2时,方程可变形为1-m =x +1x ,又∵y =x +1x 在(0,1]上单调递减,[1,2]上单调递增, ∴y =x +1x 在(0,2]上的取值范围是[2,+∞),∴1-m ≥2,∴m ≤-1,故m 的取值范围是(-∞,-1].y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x .(1)写出函数y =f (x )的解析式;(2)假设方程f (x )=a 恰有3个不同的解,求a 的取值范围.解 (1)设x <0,则-x >0,∴f (-x )=x 2+2x .又∵f (x )是奇函数,∴f (x )=-f (-x )=-x 2-2x .∴f (x )=⎩⎪⎨⎪⎧ x 2-2x ,x ≥0,-x 2-2x ,x <0.(2)方程f (x )=a 恰有3个不同的解.即y =f (x )与y =a 的图象有3个不同的交点,作出y =f (x )与y =a 的图象如下图,故假设方程f (x )=a 恰有3个不同的解只需-1<a <1,故a 的取值范围为(-1,1).。

2018版高考数学(江苏专用文科)大一轮复习讲义:第二章函数概念与基本初等函数I2-9含答案

2018版高考数学(江苏专用文科)大一轮复习讲义:第二章函数概念与基本初等函数I2-9含答案

第9讲函数模型及其应用基础巩固题组(建议用时:40分钟)一、填空题1.给出下列函数模型:①一次函数模型;②幂函数模型;③指数函数模型;④对数函数模型.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是________(填序号)。

x45678910y15171921232527数值的增量是均匀的,故为一次函数模型.答案①2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是________(填序号).解析前3年年产量的增长速度越来越快,说明呈高速增长,只有①,③图象符合要求,而后3年年产量保持不变,总产量增加,故①正确,③错误.答案①3.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差________元.解析设A种方式对应的函数解析式为s=k1t+20,B种方式对应的函数解析式为s=k2t,当t=100时,100k1+20=100k2,∴k2-k1=错误!,t=150时,150k2-150k1-20=150×15-20=10。

答案104.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为________m.解析设内接矩形另一边长为y,则由相似三角形性质可得错误!=错误!,解得y=40-x,所以面积S=x(40-x)=-x2+40x=-(x-20)2+400(0<x<40),当x=20时,S max=400。

答案205.(2017·长春模拟)一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y=a e-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.解析当t=0时,y=a,当t=8时,y=a e-8b=错误!a,∴e-8b=错误!,容器中的沙子只有开始时的八分之一时,即y=a e-bt=错误!a,e-bt=错误!=(e-8b)3=e-24b,则t=24,所以再经过16 min.答案166.A,B两只船分别从在东西方向上相距145 km的甲乙两地开出.A从甲地自东向西行驶.B从乙地自北向南行驶,A的速度是40km h,B的速度是16 km h,经过________h,AB间的距离最短.解析设经过x h,A,B相距为y km,则y=错误!=错误!(0≤x≤错误!),求得函数的最小值时x的值为错误!.答案错误!7.某企业投入100万元购入一套设备,该设备每年的运转费用是0。

(江苏专用)2018年高考数学一轮复习 第二章 函数 2.2 函数的基本性质课件

(江苏专用)2018年高考数学一轮复习 第二章 函数 2.2 函数的基本性质课件

3
.
22
思路分析 利用函数的奇偶性将原不等式转化为f(2|a-1|)>f( 2),结合函数f(x)在(0,+∞)上单调递 减即可求得a的取值范围.
C组 教师专用题组
1.(2013四川理改编,10,5分)设函数f(x)= ex x a (a∈R,e为自然对数的底数).若曲线y=sin x上存
a,b,c的大小关系为
.(用“<”连接)
答案 b<a<c
解析 本题考查函数的奇偶性、单调性的应用,对数值大小的比较.
奇函数f(x)在R上是增函数,当x>0时, f(x)>f(0)=0,当x1>x2>0时, f(x1)>f(x2)>0,∴x1 f(x1)>x2 f(x2),∴g(x) 在(0,+∞)上单调递增,且g(x)=xf(x)是偶函数,∴a=g(-log25.1)=g(log25.1).2<log25.1<3,1<20.8<2,由g(x)在 (0,+∞)上单调递增,得g(20.8)<g(log25.1)<g(3),∴b<a<c.
3.(2017江苏泰州中学第一学期第一次质量检测,10)已知函数f(x)=
x x

ln x 5,0 9 m, x
x 1
x
1
1,
的值域为R,
则实数m的取值范围为
.
答案 m≤1
解析 当0<x≤1时,f(x)=x+ln x+5∈(-∞,6],当x>1时,f(x)=x+ 9 +m=x+1+ 9 +m-1≥2
在点(x0,y0)使得f(f(y0))=y0,则a的取值范围是

(新)江苏专用2018版高考数学大一轮复习第二章函数概念与基本初等函数I2_9函数模型及其应用教师用书理苏教

(新)江苏专用2018版高考数学大一轮复习第二章函数概念与基本初等函数I2_9函数模型及其应用教师用书理苏教

第二章 函数概念与基本初等函数I 2.9 函数模型及其应用教师用书理 苏教版1.几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数且a ≠0) 反比例函数模型f (x )=kx+b (k ,b 为常数且k ≠0)二次函数模型f (x )=ax 2+bx +c(a ,b ,c 为常数,a ≠0)指数函数模型f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1)对数函数模型 f (x )=b log a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1)幂函数模型f (x )=ax n +b (a ,b 为常数,a ≠0)2.三种函数模型的性质函数性质y =a x (a >1)y =log a x (a >1)y =x n (n >0)在(0,+∞)上的单调递增单调递增单调递增【知识拓展】 1.解函数应用题的步骤2.“对勾”函数形如f (x )=x +a x(a >0)的函数模型称为“对勾”函数模型: (1)该函数在(-∞,-a ]和[a ,+∞)上单调递增, 在[-a ,0)和(0,a ]上单调递减. (2)当x >0时,x =a 时取最小值2a , 当x <0时,x =-a 时取最大值-2a . 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,若按九折出售,则每件还能获利.( √ )(2)幂函数增长比直线增长更快.( × ) (3)不存在x 0,使0x a <0nx <log a x 0.( × )(4)在(0,+∞)上,随着x 的增大,y =a x(a >1)的增长速度会超过并远远大于y =x a(a >0)的增长速度.( √ )(5)“指数爆炸”是指数型函数y =a ·b x+c (a ≠0,b >0,b ≠1)增长速度越来越快的形象比喻.( × )1.(教材改编)某商人将彩电先按原价提高40%,然后“八折优惠”,结果是每台彩电比原价多赚270元,那么每台彩电原价是________元. 答案 2 250解析 设每台原价是a 元,则a (1+40%)·80% =a +270,解得a =2 250.2.(教材改编)某汽车油箱中存油22千克,油从管道中匀速流出,200分钟流尽,油箱中剩油量y (千克)与流出时间x (分钟)之间的函数关系式为________. 答案 y =22-11100x (0≤x ≤200)解析 流速为22200=11100,x 分钟可流11100x ,则y =22-11100x (0≤x ≤200).3.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为________________. 答案p +1q +1-1解析 设年平均增长率为x ,则(1+x )2=(1+p )(1+q ), ∴x =1+p1+q -1.4.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________. 答案 3解析 设隔墙的长度为x (0<x <6),矩形面积为y ,则y =x ×24-4x 2=2x (6-x )=-2(x -3)2+18,∴当x =3时,y 最大.5.(教材改编)有两个相同的桶,由甲桶向乙桶输水,开始时,甲桶有a L 水,t min 后,剩余水y L 满足函数关系y =a e-nt,那么乙桶的水就是y =a -a e-nt,假设经过5 min ,甲桶和乙桶的水相等,则再过________ min ,甲桶中的水只有a8 L.答案 10解析 由题意可得,5 min 时,a e -5n=12a ,n =15ln 2, 那么ln 25et a =18a ,∴t =15,即再过10 min ,甲桶中的水只有a8L.题型一 用函数图象刻画变化过程例1 某民营企业生产A 、B 两种产品,根据市场调查和预测,A 产品的利润与投资成正比,其关系如图①所示;B 产品的利润与投资的算术平方根成正比,其关系如图②所示(单位:万元).分别将A 、B 两种产品的利润表示为投资的函数关系式.解 设投资为x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元. 由题意设f (x )=k 1x (x ≥0),g (x )=k 2x (x ≥0). 由图①知f (1)=14,∴k 1=14.由图②知g (4)=52,∴k 2=54.∴f (x )=14x (x ≥0),g (x )=54x (x ≥0).思维升华 判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象. (2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.为了发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式.其中所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x (min)与通话费y (元)的关系如图所示.(1)分别求出通话费y 1、y 2与通话时间x 之间的函数关系式; (2)请帮助用户计算在一个月内使用哪种卡便宜.解 (1)设y 1=k 1x +29,y 2=k 2x ,把点B (300,35),C (300,15)分别代入得k 1=150,k 2=120.∴y 1=150x +29,y 2=120x .(2)令y 1=y 2,即150x +29=120x ,得x =96623.当x =96623时,两种卡收费一致;当x <96623时,y 1>y 2,即“如意卡”便宜;当x >96623时,y 1<y 2,即“便民卡”便宜.题型二 已知函数模型的实际问题例2 我们知道:人们对声音有不同的感觉,这与它的强度有关系.声音的强度用瓦/米2(W/m 2)表示,但在实际测量时,声音的强度水平常用L 1表示,它们满足以下公式:L 1=10 lg II 0(单位为分贝,L 1≥0,其中I 0=1×10-12,是人们平均能听到的最小强度,是听觉的开端).回答下列问题:(1)树叶沙沙声的强度是1×10-12W/m 2,耳语的强度是1×10-10W/m 2,恬静的无线电广播的强度是1×10-8W/m 2,试分别求出它们的强度水平;(2)某一新建的安静小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,试求声音强度I 的范围为多少?解 (1)由题意知树叶沙沙声的强度水平为L 2=10 lg I 2I 0=10 lg 1=0(分贝);耳语的强度水平为L 3=10 lg I 3I 0=10 lg102=20(分贝);恬静的无线电广播的强度水平为L 4=10 lg I 4I 0=10lg 104=40(分贝).(2)由题意知0≤L 1<50,即0≤10lg I I 0<50, 所以1≤I I 0<105,即1×10-12≤I <1×10-7.所以新建的安静小区的声音强度I 大于等于1×10-12W/m 2,同时小于1×10-7 W/m 2.思维升华 求解所给函数模型解决实际问题的关注点 (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.(1)某航空公司规定,乘飞机所携带行李的质量(kg)与其运费(元)由如图的一次函数图象确定,那么乘客可免费携带行李的质量最大为________kg.(2)我国为了加强对烟酒生产的宏观管理,除了应征税收外,还征收附加税.已知某种酒每瓶售价为70元,不收附加税时,每年大约销售100万瓶;若每销售100元国家要征附加税x 元(叫做税率x%),则每年销售量将减少10x万瓶,如果要使每年在此项经营中所收取的附加税额不少于112万元,则x的最小值为________.答案(1)19 (2)2解析(1)由图象可求得一次函数的解析式为y=30x-570,令30x-570=0,解得x=19.(2)由分析可知,每年此项经营中所收取的附加税额为104·(100-10x)·70·x100,令104·(100-10x)·70·x100≥112×104,解得2≤x≤8.故x的最小值为2. 题型三构造函数模型的实际问题命题点1 构造二次函数模型例3 将出货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定________元. 答案 95解析 设每个售价定为x 元,则利润y =(x -80)·[400-(x -90)·20]=-20[(x -95)2-225].∴当x =95时,y 最大.命题点2 构造指数函数、对数函数模型例4 光线通过一块玻璃,强度要损失10%.设光线原来的强度为k ,通过x 块这样的玻璃以后强度为y .(1)写出y 关于x 的函数解析式;(2)至少通过多少块这样的玻璃,光线强度能减弱到原来的14以下?(参考数据:lg 2≈0.301 0,lg 3≈0.477 1)解 (1)光线通过1块玻璃后,强度y =(1-10%)k =0.9k ; 光线通过2块玻璃后,强度y =(1-10%)·0.9k =0.92k ; 光线通过3块玻璃后,强度y =(1-10%)·0.92k =0.93k ; ……光线通过x 块玻璃后,强度y =0.9xk . 故y 关于x 的函数解析式为y =0.9x k (x ∈N *). (2)由题意,得0.9xk <k4,即0.9x <14,两边取对数,得x lg 0.9<lg 14.因为lg 0.9<0,所以x >lg 14lg 0.9.又lg 14lg 0.9=-2lg 22lg 3-1=-0.602 00.954 2-1=-0.602 0-0.045 8≈13.14, 且x ∈N *,所以x min =14.故至少通过14块这样的玻璃,光线强度能减弱到原来的14以下.命题点3 构造分段函数模型例 5 (2017·盐城质检)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/小时)解 (1)由题意可知当0≤x <20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b ,显然v (x )=ax +b 在[20,200]上是减函数,由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003,故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60, 0≤x <20,13200-x , 20≤x ≤200.(2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧60x , 0≤x <20,13x 200-x , 20≤x ≤200,当0≤x <20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200;当20≤x ≤200时,f (x )=13x (200-x )≤13[x +200-x 2]2=10 0003,当且仅当x =200-x ,即x =100时,等号成立,所以,当x =100时,f (x )在区间[20,200]上取得最大值10 0003.综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约3 333辆/小时.思维升华 构建数学模型解决实际问题,要正确理解题意,分清条件和结论,理顺数量关系,将文字语言转化成数学语言,建立适当的函数模型,求解过程中不要忽略实际问题对变量的限制.(1)一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,此人至少经过________小时才能开车.(精确到1小时)(2)大学毕业生小赵想开一家服装专卖店,经过预算,该门面需要装修费为20 000元,每天需要房租、水电等费用100元,受经营信誉度、销售季节等因素的影响,专卖店销售总收益R 与门面经营天数x 的关系是R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400,则总利润最大时,该门面经营的天数是________. 答案 (1)5 (2)300解析 (1)设经过x 小时才能开车. 由题意得0.3(1-25%)x≤0.09,∴0.75x≤0.3,x ≥log 0.750.3≈4.19.∴x 最小为5. (2)由题意,总利润y =⎩⎪⎨⎪⎧400x -12x 2-100x -20 0000≤x ≤400,60 000-100x x >400,当0≤x ≤400时,y =-12(x -300)2+25 000,所以x =300时,y max =25 000,当x >400时,y =60 000-100x <20 000,综上,当该门面经营的天数为300时,总利润最大为25 000元.2.函数应用问题典例 (14分)已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x-40 000x 2,x >40.(1)写出年利润W (万美元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润. 思维点拨 根据题意,要利用分段函数求最大利润.列出解析式后,比较二次函数和“对勾”函数的最值的结论. 规范解答解 (1)当0<x ≤40时,W =xR (x )-(16x +40) =-6x 2+384x -40,[3分]当x >40时,W =xR (x )-(16x +40) =-40 000x-16x +7 360.所以W =⎩⎪⎨⎪⎧-6x 2+384x -40,0<x ≤40,-40 000x -16x +7 360,x >40. [5分](2)①当0<x ≤40时,W =-6(x -32)2+6 104, 所以W max =W (32)=6 104;[8分]②当x >40时,W =-40 000x-16x +7 360,由于40 000x+16x ≥240 000x×16x =1 600,当且仅当40 000x=16x ,即x =50∈(40,+∞)时,取等号,所以W 取最大值为5 760. [12分] 综合①②知,当x =32时,W 取得最大值6 104万美元.[14分]解函数应用题的一般程序第一步:(审题)弄清题意,分清条件和结论,理顺数量关系;第二步:(建模)将文字语言转化成数学语言,用数学知识建立相应的数学模型; 第三步:(解模)求解数学模型,得到数学结论;第四步:(还原)将用数学方法得到的结论还原为实际问题的意义;第五步:(反思)对于数学模型得到的数学结果,必须验证这个数学结果对实际问题的合理性.1.某商品定价为每件60元,不加收附加税时年销售量约80万件,若征收附加税,税率为p ,且年销售量将减少203p 万件.则每年征收的税金y 关于税率p 的函数关系为________.答案 y =60(80-203p )p解析 征收附加税后年销售为(80-203p )万件,故每年征收的税金y =60(80-203p )p .2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图象正确的是________.答案①解析前3年年产量的增长速度越来越快,说明呈高速增长,只有①,③图象符合要求,而后3年年产量保持不变.3.(教材改编)某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.答案9解析出租车行驶不超过3 km,付费9元;出租车行驶8 km,付费9+2.15×(8-3)=19.75元.现某人乘坐一次出租车付费22.6元,故出租车行驶里程超过8 km,且22.6-19.75=2.85,所以此次出租车行驶了8+1=9 km.4.(2017·盐城月考)某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为________ m 3. 答案 13解析 设该职工用水x m 3时,缴纳的水费为y 元,由题意得y =⎩⎪⎨⎪⎧mx 0<x ≤10,10m +x -10·2mx >10,则10m +(x -10)·2m =16m , 解得x =13.5.(2016·北京朝阳区统一考试)设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流x (0<x <100,x ∈N *)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是________. 答案 16解析 由题意,分流前每年创造的产值为100t (万元), 分流x 人后,每年创造的产值为(100-x )(1+1.2x %)t ,则由⎩⎪⎨⎪⎧0<x <100,x ∈N *,100-x1+1.2x %t ≥100t ,解得0<x ≤503.因为x ∈N *,所以x 的最大值为16.6.(2016·南通模拟)某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是________万元. 答案 43解析 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆,所以可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1(x -212)2+0.1×2124+32.因为x ∈[0,16]且x ∈N ,所以当x =10或11时,总利润取得最大值43万元.7.(2016·四川改编)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是________年.(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) 答案 2019解析 设x 年后该公司全年投入的研发资金为200万元,由题可知,130(1+12%)x=200,解得x =log 1.12200130=lg 2-lg 1.3lg 1.12≈3.80,因资金需超过200万,则x 取4,即2019年.8.(2016·苏州模拟)某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt(其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =__________,经过5小时,1个病毒能繁殖为________个. 答案 2ln 2 1 024解析 当t =0.5时,y =2,∴2=12e k ,∴k =2ln 2,∴y =e 2t ln 2,当t =5时,y =e10ln 2=210=1 024.9.(2016·淮安模拟)在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m. 答案 20解析 设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40), 当x =20时,S max =400.*10.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x 的值等于________. 答案5-12解析 依题意得x =c -a b -a,(c -a )2=(b -c )(b -a ), ∵b -c =(b -a )-(c -a ),∴(c -a )2=(b -a )2-(b -a )(c -a ), 两边同除以(b -a )2,得x 2+x -1=0, 解得x =-1±52.∵0<x <1,∴x =5-12.11.候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为v =a +b log 3Q10(其中a 、b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a 、b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位? 解 (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s ,故a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1.(2)由(1)知,v =-1+log 3Q 10.所以要使飞行速度不低于2 m/s ,则有v ≥2,即-1+log 3Q10≥2,即log 3Q10≥3,解得Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位. 12.经市场调查,某种商品在过去50天的销售量和价格均为销售时间t (天)的函数,且销售量近似地满足f (t )=-2t +200(1≤t ≤50,t ∈N ).前30天价格为g (t )=12t +30(1≤t ≤30,t ∈N ),后20天价格为g (t )=45(31≤t ≤50,t ∈N ).(1)写出该种商品的日销售额S 与时间t 的函数关系; (2)求日销售额S 的最大值. 解 (1)依题意得S =⎩⎪⎨⎪⎧-2t +200⎝ ⎛⎭⎪⎫12t +301≤t ≤30,t ∈N ,45-2t +20031≤t ≤50,t ∈N ,即S =⎩⎪⎨⎪⎧-t 2+40t +6 0001≤t ≤30,t ∈N ,-90t +9 00031≤t ≤50,t ∈N .(2)①当1≤t ≤30,t ∈N 时,S =-(t -20)2+6 400, ∴当t =20时,S 取得最大值为6 400. ②当31≤t ≤50,t ∈N 时,S =-90t +9 000为递减函数,∴当t =31时,S 取得最大值为6 210.综上知,当t =20时,日销售额S 有最大值6 400.*13. (2016·常州模拟)某旅游景点2016年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似地满足p (x )=12x (x +1)(39-2x )(x ∈N *,且x ≤12).已知第x 个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧35-2x x ∈N *,且1≤x ≤6,160xx ∈N *,且7≤x ≤12.(1)写出2016年第x 个月的旅游人数f (x )(单位:人)与x 的函数关系式; (2)试问2016年第几个月旅游消费总额最大?最大月旅游消费总额为多少万元? 解 (1)当x =1时,f (1)=p (1)=37, 当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)x (41-2x ) =-3x 2+40x , 验证x =1也满足此式,所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12). (2)第x 个月旅游消费总额为g (x )=⎩⎪⎨⎪⎧-3x 2+40x 35-2x x ∈N *,且1≤x ≤6,-3x 2+40x ·160x x ∈N *,且7≤x ≤12,即g (x )=⎩⎪⎨⎪⎧6x 3-185x 2+1 400x x ∈N *,且1≤x ≤6,-480x +6 400x ∈N *,且7≤x ≤12.①当1≤x ≤6,且x ∈N *时,g ′(x )=18x 2-370x +1 400,令g ′(x )=0,解得x =5或x =1409(舍去).当1≤x <5时,g ′(x )>0, 当5<x ≤6时,g ′(x )<0,∴当x =5时,g (x )max =g (5)=3 125(万元).②当7≤x ≤12,且x ∈N *时,g (x )=-480x +6 400是减函数, ∴当x =7时,g (x )max =g (7)=3 040(万元).综上,2016年5月份的旅游消费总额最大,最大旅游消费总额为3 125万元.14.(2016·江苏扬州中学质检)某环线地铁按内、外环线同时运行,内、外环线的长均为30 km(忽略内、外环线长度差异).(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10 min ,求内环线列车的最小平均速度;(2)新调整的方案要求内环线列车平均速度为25 km/h ,外环线列车平均速度为30 km/h.现内、外环线共有18列列车投入运行,问:要使内、外环线乘客的最长候车时间之差最短,则内、外环线应各投入几列列车运行?解 (1)设内环线列车运行的平均速度为v km/h ,由题意可知309v ×60≤10⇒v ≥20.所以,要使内环线乘客最长候车时间为10 min ,列车的最小平均速度是20 km/h.(2)设内环线投入x 列列车运行,则外环线投入(18-x )列列车运行,设内、外环线乘客最长候车时间分别为t 1 min 、t 2 min ,则t 1=3025x ×60=72x ,t 2=303018-x ×60=6018-x.设内、外环线乘客的候车时间之差为t min , 于是有t =|t 1-t 2|=⎪⎪⎪⎪⎪⎪72x -6018-x=⎩⎪⎨⎪⎧72x +60x -18,1≤x ≤9,x ∈N *,-72x +60x -18,10≤x ≤17,x ∈N *,该函数在(1,9)上递减,在(10,17)上递增.又t (9)>t (10),所以当内环线投入10列列车运行,外环线投入8列列车运行时,内、外环线乘客最长候车时间之差最短.。

精选江苏专用2018版高考数学大一轮复习第二章函数概念与基本初等函数I2.1函数及其表示教师用书理苏教版

精选江苏专用2018版高考数学大一轮复习第二章函数概念与基本初等函数I2.1函数及其表示教师用书理苏教版

第二章函数概念与基本初等函数I 2.1 函数及其表示教师用书理苏教版1.函数与映射2.函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,其中所有x组成的集合A称为函数y=f(x)的定义域;将所有y 组成的集合叫做函数y=f(x)的值域.(2)函数的三要素:定义域、对应法则和值域.(3)函数的表示法表示函数的常用方法有列表法、解析法和图象法.3.分段函数在定义域内不同部分上,有不同的解析表达式,这样的函数,通常叫做分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【知识拓展】求函数定义域常见结论(1)分式的分母不为零;(2)偶次根式的被开方数不小于零;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数大于零且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z );(6)零次幂的底数不能为零;(7)实际问题中除要考虑函数解析式有意义外,还应考虑实际问题本身的要求. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)对于函数f :A →B ,其值域是集合B .( × )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( × ) (3)映射是特殊的函数.( × )(4)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.( × ) (5)分段函数是由两个或几个函数组成的.( × )1.设f (x )=⎩⎪⎨⎪⎧x ,x -∞,a ,x 2,x ∈[a ,+若f (2)=4,则a 的取值范围为________.答案 (-∞,2]解析 因为f (2)=4,所以2∈[a ,+∞),所以a ≤2,则a 的取值范围为(-∞,2]. 2.(2016·江苏)函数y =3-2x -x 2的定义域是________. 答案 [-3,1]解析 要使原函数有意义,需满足3-2x -x 2≥0, 解得-3≤x ≤1,故函数的定义域为[-3,1]. 3.(教材改编)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数, 则f (g (π))的值为________. 答案 0解析 由题意得,g (π)=0, ∴f (g (π))=f (0)=0.4.(教材改编)如果f (1x )=x1-x ,则当x ≠0,1时,f (x )=________.答案1x -1解析 令1x =t ,则x =1t ,代入f (1x )=x1-x,则有f (t )=1t 1-1t=1t -1,∴f (x )=1x -1.5.已知f (x )=1x +1,则f (f (x ))的定义域为________. 答案 {x |x ≠-2且x ≠-1} 解析 因为f (x )=1x +1, 所以f (x )的定义域为{x |x ≠-1}, 则在f (f (x ))中,f (x )≠-1,即1x +1≠-1, 解得x ≠-2,所以f (f (x ))的定义域为{x |x ≠-2且x ≠-1}.题型一 函数的概念 例1 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1x -x表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________. 答案 ②③解析 对于①,由于函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧x ,-x的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应法则均相同,所以f (x )和g (t )表示同一函数;对于④,由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1. 综上可知,正确的判断是②③.思维升华 函数的值域可由定义域和对应法则唯一确定,当且仅当定义域和对应法则都相同的函数才是同一函数.值得注意的是,函数的对应法则是就结果而言的(判断两个函数的对应法则是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应法则算出的函数值是否相同).(1)(2016·南京模拟)下列所给图象中函数图象的个数为________.(2)下列各组函数中,表示同一个函数的是________.①y =x -1和y =x 2-1x +1;②y =x 0和y =1;③f (x )=x 2和g (x )=(x +1)2; ④f (x )=x 2x和g (x )=x x2.答案 (1)2 (2)④解析 (1)①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象.(2)①中两个函数的定义域不同;②中y =x 0的x 不能取0;③中两函数的对应法则不同. 题型二 函数的定义域问题 命题点1 求函数的定义域 例2 (1)(教材改编)函数f (x )=x -4-2x的定义域用区间表示为____________.(2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.答案 (1)[0,1)∪(1,2) (2)[0,1)解析 (1)要使函数有意义,需满足⎩⎨⎧x -1≠0,x ≥0,4-2x >0,即⎩⎪⎨⎪⎧x ≠1,x ≥0,x <2.∴函数f (x )的定义域为[0,1)∪(1,2). (2)由0≤2x ≤2,得0≤x ≤1, 又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1). 引申探究例2(2)中,若将“函数y =f (x )的定义域为[0,2]”改为“函数y =f (x +1)的定义域为[0,2]”,则函数g (x )=f x x -1的定义域为________________.答案 [12,1)∪(1,32]解析 由函数y =f (x +1)的定义域为[0,2], 得函数y =f (x )的定义域为[1,3],令⎩⎪⎨⎪⎧1≤2x ≤3,x -1≠0,得12≤x ≤32且x ≠1, ∴g (x )的定义域为[12,1)∪(1,32].命题点2 已知函数的定义域求参数范围例3 (1)若函数f (x )R ,则a 的取值范围为________.(2)若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________.答案 (1)[-1,0] (2)[0,3) 解析 (1)因为函数f (x )的定义域为R , 所以222x ax a+--1≥0对x ∈R 恒成立,即222x ax a+-≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. (2)因为函数y =ax +1ax 2+2ax +3的定义域为R ,所以ax 2+2ax +3=0无实数解,即函数t =ax 2+2ax +3的图象与x 轴无交点. 当a =0时,函数y =3的图象与x 轴无交点; 当a ≠0时,则Δ=(2a )2-4·3a <0,解得0<a <3. 综上所述,a 的取值范围是[0,3).思维升华 (1)求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴,要特别注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得f (x )的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式,然后求解.(1)已知函数f (x )的定义域为[3,6],则函数y=______________. (2)若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是______________.答案 (1)[32,2) (2)[0,34)解析 (1)要使函数y需满足⎩⎪⎨⎪⎧3≤2x ≤6,12log -x ⇒⎩⎪⎨⎪⎧32≤x ≤3,0<2-x <1⇒32≤x <2. (2)要使函数的定义域为R ,则mx 2+4mx +3≠0恒成立. ①当m =0时,得到不等式3≠0,恒成立; ②当m ≠0时,要使不等式恒成立,需满足⎩⎪⎨⎪⎧m >0,Δ=m2-4×m ×3<0,即⎩⎪⎨⎪⎧ m >0,m m-或⎩⎪⎨⎪⎧m <0,Δ<0,即⎩⎪⎨⎪⎧m <0,m m-解得0<m <34.由①②得0≤m <34.题型三 求函数解析式例4 (1)已知f (2x+1)=lg x ,则f (x )=________.(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x)x -1,则f (x )=________.答案 (1)lg2x -1(x >1) (2)2x +7 (3)23x +13解析 (1)(换元法)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)(待定系数法) 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17,不论x 为何值都成立,∴⎩⎪⎨⎪⎧a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. (3)(消去法)在f (x )=2f (1x )x -1中,用1x代替x ,得f (1x )=2f (x )1x-1,将f (1x)=2f x x-1代入f (x )=2f (1x )x -1中,可求得f (x )=23x +13.思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(4)消去法:已知f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(1)已知f (x -1x )=x 2+1x2,求f (x );(2)已知一次函数f (x )满足f (f (x ))=4x -1,求f (x ); (3)已知f (x )+3f (-x )=2x +1,求f (x ). 解 (1)设x -1x =t ,则x 2+1x 2=(x -1x)2+2,∴f (t )=t 2+2,∴f (x )=x 2+2.(2)设f (x )=kx +b (k ≠0),则f (f (x ))=k 2x +kb +b , 即k 2x +kb +b =4x -1,∴⎩⎪⎨⎪⎧k 2=4,kb +b =-1,∴⎩⎪⎨⎪⎧k =2,b =-13或⎩⎪⎨⎪⎧k =-2,b =1.故f (x )=2x -13或f (x )=-2x +1.(3)以-x 代替x 得f (-x )+3f (x )=-2x +1,∴f (-x )=-3f (x )-2x +1,代入f (x )+3f (-x )=2x +1可得f (x )=-x +14.2.分类讨论思想在函数中的应用典例 (1)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为______________.(2)(2015·山东改编)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是____________.思想方法指导 (1)求分段函数的函数值,首先要确定自变量的范围,通过分类讨论求解; (2)当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.解析 (1)当a >0时,1-a <1,1+a >1,由f (1-a )=f (1+a ),可得2(1-a )+a =-(1+a )-2a ,解得a =-32,不合题意.当a <0时,1-a >1,1+a <1, 由f (1-a )=f (1+a ),可得-(1-a )-2a =2(1+a )+a ,解得a =-34,符合题意.(2)由f (f (a ))=2f (a ),得f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a≥1,∴a ≥0,∴a ≥1.综上,a ≥23.答案 (1)-34 (2)⎣⎢⎡⎭⎪⎫23,+∞1.下列各组函数中,表示同一函数的是________.①y =x 2-9x -3与y =x +3;②y =x 2-1与y =x -1; ③y =x 0(x ≠0)与y =1(x ≠0); ④y =2x +1,x ∈Z 与y =2x -1,x ∈Z . 答案 ③解析 ①中两函数的定义域不同;②,④中两函数的对应法则不同. 2.(2016·江苏苏锡常镇调研)函数f (x )=x -x 2x -1的定义域为__________.答案 (0,1)∪(1,2)解析 由题意可得⎩⎪⎨⎪⎧2x -x 2>0,x -1≠0,解得0<x <1或1<x <2,故所求函数的定义域为(0,1)∪(1,2). 3.给出下列函数:①f (x )=|x |;②f (x )=x -|x |;③f (x )=x +1;④f (x )=-x .其中满足f (2x )=2f (x )的是________.(填序号) 答案 ①②④解析 将f (2x )表示出来,看与2f (x )是否相等. 对于①,f (2x )=|2x |=2|x |=2f (x );对于②,f (2x )=2x -|2x |=2(x -|x |)=2f (x ); 对于③,f (2x )=2x +1≠2f (x ); 对于④,f (2x )=-2x =2f (x ). 故只有③不满足f (2x )=2f (x ).4.(2016·南通模拟)函数f (x )=⎩⎪⎨⎪⎧πx 2,-1<x <0,e x -1,x ≥0满足f (1)+f (a )=2,则a 所有可能的值为________.答案 1或-22解析 ∵f (1)=e 1-1=1且f (1)+f (a )=2,∴f (a )=1,当-1<a <0时,f (a )=sin(πa 2)=1, ∵0<a 2<1,∴0<πa 2<π, ∴πa 2=π2⇒a =-22;当a ≥0时,f (a )=ea -1=1⇒a =1.5.设f (x )=lg 2+x 2-x ,则f (x 2)+f (2x )的定义域为____________.答案 (-4,-1)∪(1,4)解析 ∵2+x 2-x >0,∴-2<x <2,∴-2<x 2<2且-2<2x <2,解得-4<x <-1或1<x <4,∴所求的定义域为(-4,-1)∪(1,4).6.(2016·江苏淮阴中学期中)从集合A 到集合B 的映射f :x →x 2+1,若A ={-2,-1,0,1,2},则B 中至少有________个元素. 答案 3解析 根据映射的定义可得x =±2→y =5,x =±1→y =2,x =0→y =1,所以集合B 为{1,2,5},故集合B 中至少有3个元素.7.设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2, x ≤0,-x 2, x >0.若f (f (a ))=2,则a =________.答案 2解析 当a >0时,f (a )=-a 2<0,f (f (a ))=a 4-2a 2+2=2,解得a =2(a =0与a =-2舍去);当a ≤0时,f (a )=a 2+2a +2=(a +1)2+1>0,f (f (a ))=-(a 2+2a +2)2=2,此方程无解.8.(2016·苏州暑假测试)已知实数m ≠0,函数f (x )=⎩⎪⎨⎪⎧3x -m ,x ≤2,-x -2m ,x >2,若f (2-m )=f (2+m ),则m 的值为____________. 答案 8或-83解析 当m >0时,2-m <2,2+m >2,所以3(2-m )-m =-(2+m )-2m ,所以m =8;当m <0时,2-m >2,2+m <2,所以3(2+m )-m =-(2-m )-2m ,所以m =-83.9.(2015·浙江)已知函数f (x )=⎩⎪⎨⎪⎧ x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.答案 0 22-3解析 ∵f (-3)=lg[(-3)2+1]=lg 10=1,∴f (f (-3))=f (1)=0, 当x ≥1时,f (x )=x +2x -3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0; 当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3. *10.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧ x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.答案 ①③解析 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足; 对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足; 对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1, 故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足. 综上可知,满足“倒负”变换的函数是①③.11.已知f (x )=⎩⎪⎨⎪⎧ f x +,-2<x <0,2x +1,0≤x <2,x 2-1,x ≥2.(1)求f (-32)的值; (2)若f (a )=4且a >0,求实数a 的值. 解 (1)由题意,得f (-32)=f (-32+1)=f (-12) =f (-12+1)=f (12)=2×12+1=2. (2)当0<a <2时,由f (a )=2a +1=4,得a =32, 当a ≥2时,由f (a )=a 2-1=4,得a =5或a =-5(舍去),综上所述,a =32或a = 5.。

(江苏专用)2018版高考数学一轮温习 第二章节 函数概念与基本初等函数I 2.4 幂函数与二次函数讲义 文

(江苏专用)2018版高考数学一轮温习 第二章节 函数概念与基本初等函数I 2.4 幂函数与二次函数讲义 文

【训练4】 (2017·苏北四市摸底)已知函数f(x)是定义在R上的 偶 函 数 , 当 x≥0 时 , f(x) = x2 - 2x , 如 果 函 数 g(x) = f(x) - m(m∈R)恰有4个零点,则m的取值范围是________. 解析 函数g(x)=f(x)-m(m∈R) 恰有4个零点可化为函数y=f(x)的 图象与直线y=m恰有4个交点,作 函数y=f(x)与y=m的图象如图所 示,故m的取值范围是(-1,0). 答案 (-1,0)
第4讲 幂函数与二次函数
考试要求 1.幂函数的概念,函数 y=x,y=x2,y=x3,y=1x,y= 的图象与性质,A 级要求;2.二次函数的图象与性质及应用,B 级 要求.
知识梳理 1.幂函数
(1)幂函数的定义 一般地,形如 yቤተ መጻሕፍቲ ባይዱx的α 函数称为幂函数,其中x是自变量,
α为常数. (2)常见的5种幂函数的图象
2.若幂函数 y=(m2-3m+3)xm2-m-2 的图象不经过原点,则实数 m 的值为________. 解析 由mm22- -3mm-+23≤=01,, 解得 m=1 或 2. 经检验 m=1 或 2 都适合. 答案 1 或 2
3.(必修1P47习题9改编)已知f(x)=x2+px+q满足f(1)=f(2)= 0,则f(-1)的值是________. 解析 由f(1)=f(2)=0知方程x2+px+q=0的两根分别为 1,2,则p=-3,q=2,∴f(x)=x2-3x+2,∴f(-1)=6. 答案 6
考点三 二次函数的应用(多维探究) 命题角度一 二次函数的恒成立问题 【例3-1】 已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R.
(1)若函数f(x)的最小值为f(-1)=0,求f(x)的解析式,并写 出单调区间; (2)在(1)的条件下,f(x)>x+k在区间[-3,-1]上恒成立, 试求k的取值范围.

2018届江苏高考数学一轮复习课件 函数的图象与性质

2018届江苏高考数学一轮复习课件 函数的图象与性质
利用函数图象研究方程的解、不等式的解集等是高考的热点,多以填空题 的形式出现,属中档题目,主要考查学生的数形结合意识以及用图象解答问题 的能力.
1 0,2, cos πx,x∈ 已知 f(x)为偶函数,当 x≥0 时,f(x)= 则 1 2x-1,x∈ ,+∞, 2
象恰有两个交点,借助函数图象(图略)可知 k≥2 或 k=0,即实数 k 的取值范围 为 k=0 或 k≥2.
[ 规律方法] 1.利用函数的图象研究函数的性质,一定要注意其对应关系, 如:图象的左右范围对应定义域,上下范围对应值域,上升、下降趋势对应单 调性,对称性对应奇偶性. 2.有关方程解的个数问题常常转化为两个熟悉的函数图象的交点个数;利 用此法也可由解的个数求参数值或范围. 3.有关不等式的问题常常转化为两个函数图象的上、下关系来解.
|a-1|
1 1 3 < 2,即|a-1|<2,所以2<a<2.]
☞角度 2
奇偶性与周期性结合
(2017· 南通二模)已知 f(x)是定义在 R 上的偶函数,且对于任意的 x ∈[0,+∞),满足 f(x+2)=f(x),若当 x∈[0,2)时,f(x)=|x2-x-1|,则函数 y =f(x)-1 在区间[ -2,4] 上的零点个数为________.
7 [由 f(x+2)=f(x)可知,f(x)在[0,+∞)上是周期为 2 的 函数,又 x∈[0,2)时,f(x)=|x2-x-1|, 且 f(x)为偶函数,故 f(x)在[ -2,4] 上的图象如图所示.由图 可知 y=f(x)与 y=1 有 7 个交点, 故函数 y=f(x)-1 在区间[ -2,4] 上有 7 个零点. ]
- ∞,0)上单调递增.若实数 a 满足 f(2|a 1|)>f(- 2),则 a 的取值范围是________.

2018版高考数学(江苏专用文科)大一轮复习讲义第二章函数概念与基本初等函数I2-2Word版含答案

2018版高考数学(江苏专用文科)大一轮复习讲义第二章函数概念与基本初等函数I2-2Word版含答案

第2讲 函数的单调性与最值基础巩固题组(建议用时:40分钟)一、填空题1.若函数f (x )=|2x +a |的单调递增区间是上的最大值为________.解析 由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.答案 6 4.(2017·南京、盐城模拟)函数f (x )=⎝ ⎛⎭⎪⎫13x -log 2(x +2)在区间上的最大值为________. 解析 由于y =⎝ ⎛⎭⎪⎫13x 在R 上递减,y =log 2(x +2)在上递增,所以f (x )在上单调递减,故f (x )在上的最大值为f (-1)=3.答案 35.函数f (x )=log(x 2-4)的单调递增区间为________.解析 因为y =log t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).答案 (-∞,-2)6.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是________.解析 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f ≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧ x >0,x -8>0,x x -,解得8<x ≤9.答案 (8,9] 7.(2017·无锡期末)设函数f (x )=⎩⎪⎨⎪⎧ -x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.解析 作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.答案 (-∞,1]∪(a 为实数).(1)当a =1时,求函数y =f (x )的值域;(2)求函数y =f (x )在区间(0,1]上的最大值及最小值,并求出当函数f (x )取得最值时x 的值.解 (1)当a =1时,f (x )=2x -1x,任取1≥x 1>x 2>0,则f (x 1)-f (x 2)=2(x 1-x 2)-⎝ ⎛⎭⎪⎫1x 1-1x 2 =(x 1-x 2)⎝ ⎛⎭⎪⎫2+1x 1x 2.∵1≥x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0.∴f (x 1)>f (x 2),∴f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值1,所以f (x )的值域为(-∞,1].(2)当a ≥0时,y =f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值2-a ;当a <0时,f (x )=2x +-a x, 当-a2≥1,即a ∈(-∞,-2]时,y =f (x )在(0,1]上单调递减,无最大值,当x =1时取得最小值2-a ; 当-a 2<1,即a ∈(-2,0)时,y =f (x )在⎝ ⎛⎦⎥⎤0,-a 2上单调递减,在⎣⎢⎡⎦⎥⎤-a 2,1上单调递增,无最大值,当x =-a2时取得最小值2-2a . 能力提升题组(建议用时:20分钟) 11.(2017·泰州一检)若函数f (x )=a x (a >0,a ≠1)在上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在,即-b 2+4b -3>-1,即b 2-4b +2<0,解得2-2<b <2+ 2.所以实数b 的取值范围为(2-2,2+2). 答案 (2-2,2+2)13.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧ a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析 依题意,h (x )=⎩⎪⎨⎪⎧ log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数,当x >2时,h (x )=3-x 是减函数,∴h (x )在x =2时,取得最大值h (2)=1.答案 114.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围. 解 (1)由x +a x -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时, ∴g ′(x )=1-a x 2=x 2-a x 2>0. 因此g (x )在[2,+∞)上是增函数,∴f (x )在[2,+∞)上是增函数.则f (x )min =f (2)=ln a 2. (3)对任意x ∈[2,+∞),恒有f (x )>0.即x +a x-2>1对x ∈[2,+∞)恒成立.∴a >3x -x 2.令h (x )=3x -x 2,x ∈[2,+∞). 由于h (x )=-⎝ ⎛⎭⎪⎫x -322+94在[2,+∞)上是减函数, ∴h (x )max =h (2)=2.故a >2时,恒有f (x )>0.因此实数a 的取值范围为(2,+∞).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.8 函数与方程1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使函数y=f(x)的值为0的实数x叫做函数y=f(x)(x∈D)的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)上有零点,即存在c∈(a,b),使得f(c)=0,这个__c__也就是方程f(x)=0的根.2.二分法对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.3.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0) (x1,0) 无交点零点个数210【知识拓展】有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x 轴的交点.( × )(2)函数y =f (x )在区间(a ,b )有零点(函数图象连续不断),则f (a )·f (b )<0.( × ) (3)只要函数有零点,我们就可以用二分法求出零点的近似值.( × ) (4)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( √ )(5)若函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( √ )1.(教材改编)函数f (x )=12x -(12)x的零点个数为____________.答案 1解析 f (x )是增函数,又f (0)=-1,f (1)=12,∴f (0)f (1)<0,∴f (x )有且只有一个零点.2.(教材改编)已知f (x )=ax 2+bx +c 的零点为1,3,则函数y =ax 2+bx +c 的对称轴是________. 答案 x =2解析 ∵y =a (x -1)(x -3)=a (x -2)2-a , ∴对称轴为x =2.3.(2016·检测)函数f (x )=12ln x +x -1x -2的零点所在的区间是________.①(1e ,1); ②(1,2); ③(2,e); ④(e,3).答案 ③解析 因为f (1e )=-12+1e -e -2<0,f (1)=-2<0,f (2)=12ln 2-12<0,f (e)=12+e -1e -2>0,所以f (2)f (e)<0,所以函数f (x )=12ln x +x -1x-2的零点所在区间是(2,e).4.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值围是________.答案 ⎝ ⎛⎭⎪⎫13,1 解析 ∵函数f (x )的图象为直线,由题意可得f (-1)f (1)<0,∴(-3a +1)·(1-a )<0,解得13<a <1,∴实数a 的取值围是⎝ ⎛⎭⎪⎫13,1. 5.(教材改编)已知函数f (x )=x 2+x +a 在区间(0,1)上有零点,则实数a 的取值围是__________.答案 (-2,0)解析 结合二次函数f (x )=x 2+x +a 的图象知⎩⎪⎨⎪⎧f 0<0f 1>0,故⎩⎪⎨⎪⎧a <01+1+a >0,所以-2<a <0.题型一 函数零点的确定 命题点1 确定函数零点所在区间例 1 (1)(2016·调研)已知函数f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2的零点为x 0,则x 0所在的区间是________.(填序号) ①(0,1); ②(1,2); ③(2,3);④(3,4).(2)设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),若x 0∈(n ,n +1),n ∈N ,则x 0所在的区间是______. 答案 (1)③ (2)(1,2)解析 (1)∵f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2在(0,+∞)为增函数,又f (1)=ln 1-⎝ ⎛⎭⎪⎫12-1=ln 1-2<0,f (2)=ln 2-⎝ ⎛⎭⎪⎫120<0,f (3)=ln 3-⎝ ⎛⎭⎪⎫121>0,∴x 0∈(2,3).(2)令f (x )=x 3-(12)x -2,则f (x 0)=0,易知f (x )为增函数,且f (1)<0,f (2)>0,∴x 0所在的区间是(1,2).命题点2 函数零点个数的判断例2 (1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.(2)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是________.答案 (1)2 (2)4解析 (1)当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上有一个零点;当x >0时,f ′(x )=2+1x>0恒成立,所以f (x )在(0,+∞)上是增函数.又因为f (2)=-2+ln 2<0,f (3)=ln 3>0,所以f (x )在(0,+∞)上有一个零点,综上,函数f (x )的零点个数为2.(2)由题意知,f (x )是周期为2的偶函数.在同一坐标系作出函数y =f (x )及y =log 3|x |的图象,如图,观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点.思维升华 (1)确定函数零点所在区间,可利用零点存在性定理或数形结合法.(2)判断函数零点个数的方法:①解方程法;②零点存在性定理、结合函数的性质;③数形结合法:转化为两个函数图象的交点个数.(1)已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是________.(填序号) ①(0,1); ②(1,2); ③(2,4);④(4,+∞).(2)(教材改编)已知函数f (x )=2x-3x ,则函数f (x )的零点个数为________. 答案 (1)③ (2)2解析 (1)因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).(2)令f (x )=0,则2x=3x ,在同一平面直角坐标系中分别作出y =2x和y =3x 的图象,如图所示,由图知函数y =2x 和y =3x 的图象有2个交点,所以函数f (x )的零点个数为2.题型二 函数零点的应用例3 (1)函数f (x )=2x-2x-a 的一个零点在区间(1,2),则实数a 的取值围是__________.(2)已知函数f (x )=|x 2+3x |,x ∈R ,若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值围是________________. 答案 (1)(0,3) (2)(0,1)∪(9,+∞)解析 (1)因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x-2x-a 的一个零点在区间(1,2),则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0.所以0<a <3.(2)设y 1=f (x )=|x 2+3x |,y 2=a |x -1|,在同一直角坐标系中作出y 1=|x 2+3x |,y 2=a |x -1|的图象如图所示.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图象有4个不同的交点且4个交点的横坐标都小于1,所以⎩⎪⎨⎪⎧y =-x 2-3x ,y =a 1-x有两组不同解,消去y 得x 2+(3-a )x +a =0有两个不等实根, 所以Δ=(3-a )2-4a >0,即a 2-10a +9>0, 解得a <1或a >9.又由图象得a >0,∴0<a <1或a >9.引申探究本例(2)中,若f (x )=a 恰有四个互异的实数根,则a 的取值围是________________. 答案 (0,94)解析 作出y 1=|x 2+3x |,y 2=a 的图象如下:当x =-32时,y 1=94;当x =0或x =-3时,y 1=0,由图象易知,当y 1=|x 2+3x |和y 2=a 的图象有四个交点时,0<a <94.思维升华 已知函数零点情况求参数的步骤及方法(1)步骤:①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式(组);③解不等式(组),即得参数的取值围. (2)方法:常利用数形结合法.(1)已知函数f (x )=x 2+x +a (a <0)在区间(0,1)上有零点,则a 的取值围为________.(2)(2016·前黄中学调研)若函数f (x )=|x |x -1-kx 2有4个零点,则实数k 的取值围是______________.答案 (1)(-2,0) (2)(-∞,-4) 解析 (1)∵-a =x 2+x 在(0,1)上有解, 又y =x 2+x =(x +12)2-14,∴函数y =x 2+x ,x ∈(0,1)的值域为(0,2), ∴0<-a <2,∴-2<a <0. (2)令f (x )=0,则方程|x |x -1=kx 2有4个不同的实数根,显然,x =0是方程的一个实数根. 当x ≠0时,方程可化为1k=|x |(x -1),设h (x )=1k,g (x )=|x |(x -1),由题意知h (x )与g (x )图象(如图所示)有三个不同的交点,由g (x )=⎩⎪⎨⎪⎧x x -1,x >0,-x x -1,x <0,结合图象知-14<1k<0,所以k <-4.题型三 二次函数的零点问题例4 已知f (x )=x 2+(a 2-1)x +(a -2)的一个零点比1大,一个零点比1小,数a 的取值围.解 方法一 设方程x 2+(a 2-1)x +(a -2)=0的两根分别为x 1,x 2(x 1<x 2),则(x 1-1)(x 2-1)<0,∴x 1x 2-(x 1+x 2)+1<0,由根与系数的关系,得(a -2)+(a 2-1)+1<0, 即a 2+a -2<0,∴-2<a <1.方法二 函数图象大致如图,则有f (1)<0,即1+(a 2-1)+a -2<0,∴-2<a <1. 故实数a 的取值围是(-2,1).思维升华 解决与二次函数有关的零点问题 (1)利用一元二次方程的求根公式.(2)利用一元二次方程的判别式及根与系数之间的关系. (3)利用二次函数的图象列不等式组.(2016·中学质检)关于x 的一元二次方程x 2+2(m +3)x +2m +14=0有两个不同的实根,且一根大于3,一根小于1,则m 的取值围是______. 答案 (-∞,-214)解析 设f (x )=x 2+2(m +3)x +2m +14,由题设可得⎩⎪⎨⎪⎧f3<0,f1<0,所以m <-214.4.利用转化思想求解函数零点问题典例 (1)若函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,则实数a 的取值围是________. (2)若关于x 的方程22x+2xa +a +1=0有实根,则实数a 的取值围为________.思想方法指导 (1)函数零点个数可转化为两个函数图象的交点个数,利用数形结合求解参数围.(2)“a =f (x )有解”型问题,可以通过求函数y =f (x )的值域解决.解析 (1)函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,即方程a x-x -a =0有两个根,即函数y =a x与函数y =x +a 的图象有两个交点.当0<a <1时,图象如图(1)所示,此时只有一个交点. 当a >1时,图象如图(2)所示,此时有两个交点. ∴实数a 的取值围为(1,+∞).(2)由方程,解得a =-22x+12x +1,设t =2x(t >0),则a =-t 2+1t +1=-(t +2t +1-1)=2-[(t +1)+2t +1],其中t +1>1, 由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2. 答案 (1)(1,+∞) (2)(-∞,2-22]1.(2016·东海中学期中)若函数f (x )=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1,-1<x <2,则函数g (x )=f (x )-x 的零点为______________.答案 1+2或1解析 题目转化为求方程f (x )=x 的根,所以⎩⎪⎨⎪⎧x ≥2或x ≤-1,x 2-x -1=x 或⎩⎪⎨⎪⎧-1<x <2,1=x ,解得x =1+2或x =1,所以g (x )的零点为1+2或1.2.若函数f (x )=log 3x +x -3的零点所在的区间是(n ,n +1)(n ∈Z ),则n =________. 答案 2解析 由f (2)=log 32-1<0,f (3)=1>0,知f (x )=0的根在区间(2,3),即n =2. 3.已知三个函数f (x )=2x+x ,g (x )=x -2,h (x )=log 2x +x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为________.答案 a <c <b解析 方法一 由于f (-1)=12-1=-12<0,f (0)=1>0且f (x )为R 上的递增函数.故f (x )=2x+x 的零点a ∈(-1,0). ∵g (2)=0,∴g (x )的零点b =2; ∵h ⎝ ⎛⎭⎪⎫12=-1+12=-12<0,h (1)=1>0,且h (x )为(0,+∞)上的增函数,∴h (x )的零点c ∈⎝ ⎛⎭⎪⎫12,1,因此a <c <b . 方法二 由f (x )=0得2x=-x ;由h (x )=0得log 2x =-x ,作出函数y =2x,y =log 2x 和y =-x 的图象(如图).由图象易知a <0,0<c <1,而b =2, 故a <c <b .4.方程|x 2-2x |=a 2+1(a >0)的解的个数是________. 答案 2解析 (数形结合法) ∵a >0,∴a 2+1>1.而y =|x 2-2x |的图象如图,∴y =|x 2-2x |的图象与y =a 2+1的图象总有两个交点.5.函数f (x )=⎩⎪⎨⎪⎧x 2-1x ≤0,x -2+ln x x >0的零点个数为______.答案 2解析 当x ≤0时,令f (x )=0,得x 2-1=0,∴x =-1,此时f (x )有一个零点;当x >0时,令f (x )=0,得x -2+ln x =0,在同一个坐标系中画出y =2-x 和y =ln x 的图象(图略),观察其图象可知函数y =2-x 和y =ln x 的图象在(0,+∞)上的交点个数是1,所以此时函数f (x )有一个零点,所以f (x )的零点个数为2.6.已知x ∈R ,符号[x ]表示不超过x 的最大整数,若函数f (x )=[x ]x-a (x ≠0)有且仅有3个零点,则实数a 的取值围是________________. 答案 ⎝ ⎛⎦⎥⎤34,45∪[43,32) 解析 当0<x <1时,f (x )=[x ]x-a =-a ;当1≤x <2时,f (x )=[x ]x -a =1x -a ;当2≤x <3时,f (x )=[x ]x-a =2x-a ;…f (x )=[x ]x -a 的图象是把y =[x ]x 的图象进行纵向平移而得到的,画出y =[x ]x的图象,如图所示,通过数形结合可知a ∈(34,45]∪[43,32).7.(2016·模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为________.答案 x =0解析 当x ≤1时,由f (x )=2x-1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解. 综上,函数f (x )的零点只有0.8.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值围是________.答案 (0,1)解析 画出函数f (x )=⎩⎪⎨⎪⎧ 2x -1,x >0,-x 2-2x ,x ≤0的图象,如图.由于函数g (x )=f (x )-m 有3个零点,结合图象得0<m <1,即m ∈(0,1).9.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2 015x +log 2 015x ,则在R 上,函数f (x )零点的个数为________. 答案 3解析 函数f (x )为R 上的奇函数,因此f (0)=0,当x >0时,f (x )=2 015x +log 2 015x 在区间(0,12 015)存在一个零点, 又f (x )为增函数,因此在(0,+∞)有且仅有一个零点.根据对称性可知函数在(-∞,0)有且仅有一解,从而函数f (x )在R 上的零点的个数为3.10.若a >1,设函数f (x )=a x +x -4的零点为m ,函数g (x )=log a x +x -4的零点为n ,则1m +1n的最小值为________. 答案 1解析 设F (x )=a x ,G (x )=log a x ,h (x )=4-x ,则h (x )与F (x ),G (x )的交点A ,B 横坐标分别为m ,n (m >0,n >0).因为F (x )与G (x )关于直线y =x 对称,所以A ,B 两点关于直线y =x 对称.又因为y =x 和h (x )=4-x 交点的横坐标为2,所以m +n =4.又m >0,n >0,所以1m +1n =(1m +1n )·m +n 4=14(2+n m +m n )≥14(2+2 n m ×m n)=1. 当且仅当n m =m n,即m =n =2时等号成立.所以1m +1n的最小值为1. 11.(2016·中学期中)已知关于x 的一元二次方程x 2-2ax +a +2=0的两个实根是α,β,且有1<α<2<β<3,则实数a 的取值围是________.答案 (2,115) 解析 设f (x )=x 2-2ax +a +2,结合二次函数的图象及一元二次方程根的分布情况可得 ⎩⎪⎨⎪⎧ f 1>0,f 2<0,f 3>0,即⎩⎪⎨⎪⎧ 1-2a +a +2>0,4-4a +a +2<0,9-6a +a +2>0,解得2<a <115,所以实数a 的取值围为(2,115). 12.关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,数m 的取值围.解 显然x =0不是方程x 2+(m -1)x +1=0的解,0<x ≤2时,方程可变形为1-m =x +1x, 又∵y =x +1x在(0,1]上单调递减,[1,2]上单调递增, ∴y =x +1x在(0,2]上的取值围是[2,+∞), ∴1-m ≥2,∴m ≤-1,故m 的取值围是(-∞,-1].13.已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x .(1)写出函数y =f (x )的解析式;(2)若方程f (x )=a 恰有3个不同的解,求a 的取值围.解 (1)设x <0,则-x >0,∴f (-x )=x 2+2x .又∵f (x )是奇函数,∴f (x )=-f (-x )=-x 2-2x .∴f (x )=⎩⎪⎨⎪⎧ x 2-2x ,x ≥0,-x 2-2x ,x <0.(2)方程f (x )=a 恰有3个不同的解.即y =f (x )与y =a 的图象有3个不同的交点,作出y =f (x )与y =a 的图象如图所示,故若方程f(x)=a恰有3个不同的解只需-1<a<1,故a的取值围为(-1,1).。

相关文档
最新文档