四则混合运算知识点
四则混合运算的运算法则和运算顺序
四则混合运算的运算法则和运算顺序1.运算法则:在进行四则混合运算时,需要遵循以下几个基本的运算法则:1.1加法法则:两个数相加,结果等于这两个数的和。
例如:2+3=51.2减法法则:两个数相减,结果等于第一个数减去第二个数。
例如:5-3=21.3乘法法则:两个数相乘,结果等于这两个数的乘积。
例如:2×3=61.4除法法则:两个数相除,结果等于第一个数除以第二个数。
例如:6÷3=21.5括号法则:在括号中的运算先于其他运算进行。
例如:(2+3)×4=20。
2.运算顺序:在进行四则混合运算时,需要按照一定的运算顺序来进行。
具体的运算顺序如下:2.1先进行括号内的运算:括号内的运算优先级最高,要先计算括号内的运算。
例如:(2+3)×4,先计算括号内的2+3,得到5,再将5与4相乘,最终结果为20。
2.2其次进行乘法和除法运算:乘法和除法运算的优先级高于加法和减法运算。
例如:5×3+2÷4,先计算5×3得到15,再计算2÷4得到0.5,最后将15加上0.5,得到15.52.3最后进行加法和减法运算:加法和减法运算的优先级较低,要在前面的运算完成后进行。
例如:15+5-3,先计算15+5得到20,再将20减去3,最终结果为17需要注意的是,当存在同一优先级的运算时,按照从左到右的顺序进行计算。
例如:6÷3×2,先计算6÷3得到2,再将2与2相乘,最终结果为4综上所述,四则混合运算的运算法则包括加法、减法、乘法和除法法则,运算顺序为先进行括号内的运算,然后进行乘法和除法运算,最后进行加法和减法运算。
遵循这些法则和顺序,能够正确地进行四则混合运算,得出正确的结果。
数字的四则混合运算知识点总结
数字的四则混合运算知识点总结数学作为一门重要的学科,四则混合运算是其中的基础内容之一。
掌握好四则混合运算的知识点,对于解决实际问题、提高计算能力都有着重要的意义。
本文将对数字的四则混合运算知识点进行总结,并探讨一些常见的应用场景。
一、加法运算加法是最基础的运算符之一,其运算规则如下:1. 相同符号的两个数相加,符号不变,绝对值相加;2. 不同符号的两个数相加,绝对值相减,结果的符号取较大数的符号。
例如:求解表达式4 + (-7)的结果。
根据规则2,绝对值相减得到结果为3,然后根据规则2,结果的符号取较大数-7的符号,即为负号。
所以,4 + (-7) = -3。
二、减法运算减法是加法的逆运算,其运算规则如下:1. 减去一个正数等于加上一个负数;2. 减去一个负数等于加上一个正数。
例如:求解表达式8 - (-3)的结果。
根据规则2,减去一个负数可以转化为加上该负数的相反数,即8 - (-3) = 8 + 3 = 11。
三、乘法运算乘法是基本的运算符之一,其运算规则如下:1. 相同符号的两个数相乘,结果为正,绝对值相乘;2. 不同符号的两个数相乘,结果为负,绝对值相乘。
例如:求解表达式(-2) × (-5)的结果。
根据规则1,相同符号的两个数相乘,结果为正,绝对值相乘;所以,(-2) × (-5) = |(-2)| × |(-5)| = 2 ×5 = 10。
四、除法运算除法是乘法的逆运算,其运算规则如下:1. 除以一个正数等于乘以该正数的倒数;2. 除以一个负数等于乘以该负数的倒数。
例如:求解表达式12 ÷ (-3)的结果。
根据规则2,除以一个负数等于乘以该负数的倒数;所以,12 ÷ (-3) = 12 × (-1/3) = -4。
五、混合运算混合运算即在一个算式中同时包含加、减、乘、除运算,按照“先乘除后加减”的原则进行运算。
例如:求解表达式3 × (-4) + 2 ÷ (-1)的结果。
分数四则混合运算知识点总结
分数四则混合运算知识点总结一、分数四则混合运算的运算顺序。
1. 同级运算。
- 在没有括号的算式里,如果只有加、减法或者只有乘、除法,要从左到右依次计算。
- 例如:(1)/(2)+(1)/(3)-(1)/(4),先算加法(1)/(2)+(1)/(3)=(3 + 2)/(6)=(5)/(6),再算减法(5)/(6)-(1)/(4)=(10 - 3)/(12)=(7)/(12);(2)/(3)÷(4)/(5)×(3)/(8),先算除法(2)/(3)÷(4)/(5)=(2)/(3)×(5)/(4)=(5)/(6),再算乘法(5)/(6)×(3)/(8)=(5×3)/(6×8)=(5)/(16)。
2. 两级运算。
- 在没有括号的算式里,如果既有乘、除法又有加、减法,要先算乘、除法,后算加、减法。
- 例如:(1)/(2)+(2)/(3)×(3)/(4),先算乘法(2)/(3)×(3)/(4)=(1)/(2),再算加法(1)/(2)+(1)/(2)=1;(3)/(4)-(1)/(2)÷(2)/(3),先算除法(1)/(2)÷(2)/(3)=(1)/(2)×(3)/(2)=(3)/(4),再算减法(3)/(4)-(3)/(4)=0。
3. 有括号的运算。
- 有括号的分数四则混合运算,要先算小括号里面的,再算中括号里面的,最后算括号外面的。
- 例如:[(1)/(2)-((1)/(3)-(1)/(4))]÷(1)/(5),先算小括号里的(1)/(3)-(1)/(4)=(4 - 3)/(12)=(1)/(12),再算中括号里的(1)/(2)-(1)/(12)=(6 - 1)/(12)=(5)/(12),最后算括号外的除法(5)/(12)÷(1)/(5)=(5)/(12)×5=(25)/(12)。
四则混合运算知识梳理
一,四则混合运算顺序1在没有括号的算式里,如果只有加减或乘除按————顺序计算如3×9÷3÷9= 250+50-250+50=2,在没有括号的算式里,如果既有乘除又有加减,先-————再算——————例:19+56-1224÷3454÷18+41×33,在有括号的算式里,要先算——————再算——————,括号里面的遵循上面的规律计算例:5×(825-115÷23)(326+95×25)÷37二,关于“0:”的计算1,0不能做除数:2,一个数加上0--------------3,一个数,减去上0--------------4,被减数与减数-----,差为05,一个数和0相乘结果-------6,0除以任何非零的数结果------7,0÷0---- 0÷6----三,练习1,填空。
1.( )法、( )法、( )法和( )法统称四则运算。
2.在一个算式里只有加、减法或只有乘除法的运算,应( )依次计算,既有加法又有乘除法的运算应先算( ),再算( ),有括号的要先算( )里面的,再算( )外面的。
3.40减去40除以40的商,所得的差再剩以40,结果是( )。
4,计算350-182÷26×14+78运算顺序第一步是(),第二步是(),第三步是(),第四步是()。
2,用递等式计算88-28÷14 (49-49)×49 112-12×972÷(8×3)45÷(12-9)72-72÷12 521-21×12+88 1156÷17+5040÷42610-714÷21×15 338+2108÷34-292(82-936÷78)×15 1305-(760+240÷40)三、其他题。
小学四年级数学四则混合运算知识总结
小学四年级数学四则混合运算知识总结小学四年级数学主要包括数的认识与计算、数的比较与排序、数的整理与展开、数的应用等内容。
在这些内容中,四则混合运算是一个非常重要的知识点,包括加法、减法、乘法和除法。
下面是小学四年级数学四则混合运算的知识总结,希望对你有帮助。
一、加法1. 加法的定义加法是计算两个或多个数的总和的运算。
例如:1 + 2 = 3,表示将1和2相加得到3。
2. 加法的性质(1)交换律:a + b = b + a(2)结合律:(a + b) + c = a + (b + c)(3)零元素:a + 0 = a(4)加法逆元素:a + (-a) = 03. 加法的应用加法可以用于计算两个或多个数的总和,以及解决一些问题,如:小明拥有10个苹果,小红给他2个,那么他一共有多少个苹果?二、减法1. 减法的定义减法是计算一个数减去另一个数的差的运算。
例如:3 - 1 = 2,表示将3减去1得到2。
2. 减法的性质(1)减法不存在交换律:a - b ≠ b - a(2)减法不存在结合律:(a - b) - c ≠ a - (b - c)(3)减数减去被减数等于差:a - b = c,则 c + b = a3. 减法的应用减法可以用于计算一个数减去另一个数的差,以及解决一些问题,如:小红现在有8本书,她卖掉了3本,还剩下多少本?三、乘法1. 乘法的定义乘法是计算两个数的积的运算。
例如:2 × 3 = 6,表示将2和3相乘得到6。
2. 乘法的性质(1)交换律:a × b = b × a(2)结合律:(a × b) × c = a × (b × c)(3)乘法的分配律:a × (b + c) = a × b + a × c3. 乘法的应用乘法可以用于计算两个数的积,以及解决一些问题,如:小明有3个篮球,每个篮球的价格是5元,他一共要花多少钱买篮球?四、除法1. 除法的定义除法是将一个数分成若干等分的运算。
四则混合运算知识点讲解学习
四则混合运算知识点讲解学习
1.运算顺序:按照运算顺序进行四则混合运算是解决问题的基本原则。
运算顺序是指先乘除后加减,如果有多个乘法或除法运算,按照从左到右
的顺序进行。
括号里的运算按照特定的顺序进行。
例如,表达式2+3×4
的运算顺序是先进行乘法3×4得到12,再加2得到14
2.加法和减法:加法是将两个数或多个数相加,减法是将一个数减去
另一个数。
在进行加法和减法时,只需要按照运算顺序进行即可。
例如,20+15-8的运算顺序是先进行加法20+15得到35,再进行减法35-8得到
27
3.乘法:乘法是将两个数相乘得到积。
在进行乘法运算时,只需要将
两个数相乘即可。
例如,5×6的结果是30。
4.除法:除法是将一个数除以另一个数得到商。
在进行除法运算时,
需要注意除数不能为0。
除数为0会导致无法得到有效的结果。
例如,
10÷2的结果是5
5.括号运算:在四则混合运算中,括号运算是最先进行的运算。
在有
括号的表达式中,先计算括号内的表达式再进行其他运算。
例如,表达式
2×(3+4)的括号运算先计算括号内的3+4得到7,再进行乘法2×7得到
14
通过对四则混合运算的学习,我们能够在面对复杂的数学问题时能够
清晰地进行思考解决。
若要在四则混合运算中迅速准确地得出结果,需要
灵活运用运算顺序和基本运算法则,注意数学中的特殊情况,如除数不能
为0等。
此外,还需要多做练习,通过不断实践提高运算的速度和准确性。
四则混合运算法则
四则混合运算法则在数学中,四则混合运算是一种基本的数学运算方式,包括加法、减法、乘法和除法。
这些运算法则是数学学习的基础,也是解决实际问题的重要工具。
在本文中,我们将深入探讨四则混合运算法则的应用和相关知识。
一、加法。
加法是最基本的运算法则之一,用来表示两个或多个数的总和。
例如,2 + 3 = 5,表示两个数相加的结果为5。
在实际生活中,加法常常用来表示物品的累加数量,比如购物时计算总价,或者工程中计算总量等。
二、减法。
减法是用来表示两个数之间的差值。
例如,5 3 = 2,表示5减去3的结果为2。
减法常常用来表示物品的剩余数量,比如库存管理中的减少量,或者时间管理中的剩余时间等。
三、乘法。
乘法是用来表示两个或多个数的相乘结果。
例如,2 × 3 = 6,表示2和3相乘的结果为6。
乘法在实际生活中有着广泛的应用,比如计算面积、体积、速度等。
四、除法。
除法是用来表示一个数被另一个数整除的结果。
例如,6 ÷ 3= 2,表示6被3整除的结果为2。
除法在实际生活中常常用来表示比率、百分比、平均数等。
以上是四则混合运算的基本法则,下面我们将深入探讨这些运算法则的应用和相关知识。
四则混合运算的应用。
四则混合运算在实际生活中有着广泛的应用,比如在购物、做饭、工程、金融等方面都有着重要的作用。
下面我们将分别介绍四则混合运算在不同领域的应用。
1. 购物。
在购物时,我们常常需要进行四则混合运算,比如计算总价、折扣、找零等。
通过加法和乘法,我们可以计算出购物车中各种商品的总价;通过减法,我们可以计算出打折后的价格;通过除法,我们可以计算出每件商品的平均价格等。
2. 做饭。
在做饭时,我们也需要进行四则混合运算,比如计算食材的用量、烹饪时间、热量等。
通过乘法,我们可以计算出不同食材的配比;通过减法,我们可以计算出烹饪后的剩余量;通过除法,我们可以计算出每份食物的热量等。
3. 工程。
在工程中,四则混合运算也有着重要的应用,比如计算材料的用量、工程周期、成本等。
四年级四则混合运算知识总结
知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
知识点二:0的运算1、0不能做除数;字母表示:无,a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身,差是0;字母表示:a-a =05、一个数和0相乘,仍得0;字母表示:a×0 =06、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。
字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。
字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。
字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。
小学数学四则混合运算知识点总结
1、整数: 25×4=100 , 125×8=1000 2、小数: 0.25 ×4=1 , 0.125 ×8=1
二、加法交换律简算例题
50+98+50 = 50+50+98 = 100+98 = 198
三、加法结合律简算例题
488+40+60 = 488+(40+60) = 488+100 = 588
知识点二 0 的运算
1、0 不能做除数;字母表示:无, a÷0 是错误的表达 2、一个数加上 0 还得原数;字母表示: a+0 = a 3、一个数减去 0 还得原数;字母表示: a-0 = a 4、一个数减去它本身,差是 0;字母表示: a-a =0 5、一个数和 0 相乘,仍得 0;字母表示: a×0 =0 6、0 除以任何非 0 的数,还得 0;字母表示: 0÷a =0(a ≠0)
--------This is my 2bottom line--------
七、含有乘法交换律与结合律的简算例题:
25×0.125 ×4×8 = (25 ×4) × (0.125 × 8) = 100×1 = 100八、乘法分配律 Nhomakorabea算例题:
1、分解式 25×(40+4)
= 25×40+25×4 = 1000+100 = 1100 2、合并式
十一、其它简便运算例子:
① 256—58+44 = 256+44—58 = 300—58 = 242 ② 250÷8×4 = 250×4÷8 = 1000÷ 8 = 125
--------This is my 4bottom line--------
分数四则混合运算知识点
分数四则混合运算知识点
四则混合运算是指在一个表达式中同时使用了加法、减法、乘法和除法运算符的运算。
以下是分数四则混合运算的几个知识点:
1. 分数的加法和减法:
- 加法:分数的加法需要找到两个分母的最小公倍数,将分数转化为相同分母后再进行加法运算。
- 减法:分数的减法与加法类似,也需要找到两个分母的最小公倍数,将分数转化为相同分母后再进行减法运算。
2. 分数的乘法和除法:
- 乘法:分数的乘法直接将分子相乘得到新的分子,分母相乘得到新的分母,然后对新的分数进行化简。
- 除法:分数的除法可以转化为乘法,即将除法转化为分子与倒数的乘法,然后进行分数的乘法运算。
3. 运算顺序:
- 乘法和除法具有优先级高于加法和减法的特性,所以需要先进行乘法和除法的计算,然后再进行加法和减法的计算。
- 如果一个表达式包含多次乘法和除法,遵循从左到右的顺序进行计算。
- 如果需要改变计算的顺序,可以使用括号来改变优先级。
4. 化简分数:
- 在进行四则混合运算时,可能会得到一个未化简的分数,需要对其进行化简。
- 化简分数是指将分子与分母的最大公约数提取出来,然后将分子和分母分别除以最大公约数。
需要注意的是,进行四则混合运算时,先进行括号内的运算,再进行乘法和除法,最后进行加法和减法。
同时,还需要注意处理好分数的化简和转化。
四则混合运算
四则混合运算混合运算是指在一个表达式中同时使用了不同的四则运算。
在进行混合运算时,需要遵循运算的优先级规则,以确保计算结果的准确性。
本文将介绍四则混合运算的基本概念、优先级规则以及一些示例来巩固理解。
一、基本概念四则混合运算由加法、减法、乘法和除法组成。
在进行混合运算时,需要根据运算符的优先级和结合性进行计算。
四则混合运算常见的运算符有+、-、*和/。
二、运算符优先级规则在四则混合运算中,有一定的运算符优先级规则,一般按照以下顺序进行计算:1. 括号内的表达式具有最高优先级,先计算括号内的表达式。
2. 乘法和除法的优先级高于加法和减法,先进行乘法和除法运算。
3. 同等优先级的加法和减法按照从左到右的顺序进行计算。
三、示例演算为了更好地理解四则混合运算的原理,我们来看几个示例演算。
示例1:计算表达式:2 + 3 * 4 - 5首先按照优先级规则,先计算乘法运算:2 + 12 - 5接下来按照从左到右的顺序计算加法和减法运算:14 - 5最终结果为:9示例2:计算表达式:(7 + 3) * (6 - 2)根据括号具有最高优先级的规则,首先计算括号内的表达式:10 * (6 - 2)接下来按照从左到右的顺序计算乘法运算:10 * 4最终结果为:40示例3:计算表达式:18 / 2 + 5 * 3按照乘法和除法优先级高于加法和减法的规则,先进行除法和乘法运算:9 + 5 * 3接下来按照从左到右的顺序计算加法运算:9 + 15最终结果为:24通过以上示例演算,我们可以看出,按照四则混合运算的优先级规则,可以确保计算结果的准确性。
四、结论四则混合运算是数学中常见的运算形式,涉及到加法、减法、乘法和除法的综合运算。
在进行混合运算时,需要按照运算符的优先级规则,合理进行计算。
了解四则混合运算的基本概念和优先级规则,可以帮助我们更好地理解和解决相关的问题。
通过本文对四则混合运算的介绍,相信读者对该知识点有了更深入的理解。
【免费】小学六年级数学上册四则混合运算4大知识点汇总(全)
小学六年级数学上册四则混合运算4大知识点汇总(全)知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
知识点二:0的运算1、0不能做除数;字母表示:无,a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身,差是0;字母表示:a-a =05、一个数和0相乘,仍得0;字母表示:a×0 =06、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。
字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。
字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。
字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。
小学四年级数学四则混合运算知识总结
小学四年级数学四则混合运算知识总结一、整数的加减乘除运算1. 整数的加法:将两个整数的绝对值相加,并根据相加结果的正负确定最终结果的正负。
2. 整数的减法:将减数取相反数,然后再进行整数的加法运算。
3. 整数的乘法:将两个整数的绝对值相乘,并根据原来两个数的正负确定最终结果的正负。
4. 整数的除法:将被除数和除数的绝对值相除,并根据原来两个数的正负确定最终结果的正负。
需要注意的是,除数不能为0,否则没有意义。
二、小数的加减乘除运算1. 小数的加法:将两个小数的小数部分相加,并将整数部分相加后加上小数部分的和。
2. 小数的减法:将减数的小数部分减去被减数的小数部分,并将整数部分相减后减去小数部分的差。
3. 小数的乘法:将两个小数的小数部分相乘,并将整数部分相乘后加上小数部分的积。
4. 小数的除法:将被除数的小数部分除以除数的小数部分,并将整数部分除以除数后加上小数部分的商。
需要注意的是,除数不能为0,否则没有意义。
三、整数和小数的加减乘除运算1. 将整数和小数分别转化为分数,再进行分数的加减乘除运算。
2. 运算结果可以是真分数、带分数或小数。
四、混合运算混合运算指在一个算式中包含有整数、小数、加减乘除等运算。
在进行混合运算时,需要按照运算的先后顺序进行,即先进行括号里的运算,然后进行乘除法运算,最后进行加减法运算。
五、特殊情况的处理1. 遇到有括号的混合运算,需要先计算括号里的运算,并将结果带入到其他运算中。
2. 遇到连续的乘法或除法运算,需要先计算乘法或除法,再计算后面的加法或减法。
3. 遇到含有多个运算符的混合运算,可以根据运算优先级进行计算,优先计算乘法和除法。
六、问题解答的步骤1. 阅读题目,理解题意。
2. 提取出问题中的关键信息,并分析需要进行的运算。
3. 按照运算的先后顺序进行计算。
4. 仔细核对计算过程和结果,确保没有错误。
5. 将计算结果用文字清晰地回答问题。
以上是小学四年级数学四则混合运算的基本知识总结,通过学习和实践运用,可以帮助学生提高对混合运算的理解和掌握,从而更好地解决相关问题。
小学数学:四则混合运算知识总结
小学数学:四则混合运算知识总结知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
知识点二:0的运算1、0不能做除数;字母表示:无,a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身,差是0;字母表示:a-a =05、一个数和0相乘,仍得0;字母表示:a×0 =06、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。
字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。
字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。
字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。
小学1-6年级数学四则混合运算知识点汇总
小学数学:四则混合运算知识点总结知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
知识点二:0的运算1、0不能做除数;字母表示:无,a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身,差是0;字母表示:a-a =05、一个数和0相乘,仍得0;字母表示:a×0 =06、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。
字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。
字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。
字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。
四则混合运算知识点讲解学习
48 ÷
12
=
4
4 x 12 = 48 (积)÷(一个因数) =(另一个因数)
(因数) x(因数) =(积) 48 ÷
4
=
12
(积)÷(一个因数) =(另一个因数)
已知两个因数的积和其中一个因数,用除法计算;一个因数 =积÷另一个因数
2、被除数÷除数 =商 (求两个数的商用除法)
48 ÷ 12 = 4
65+28.6+35+71.4
25× 0.125 × 4× 8
= (65+35)+(28.6+71.4)
= (25 ×4) ×(0.125 ×8)
= 100+100
=100×1
ห้องสมุดไป่ตู้
= 200
=100
四、特殊例题
99× 25.6+25.6
45× 102
99× 26
5.3 × 8+35.3 —×46× 35.3
知识点二: 0 的运算
1、一个数加上 0 还得原数;字母表示: a+0 = a
2、一个数减去 0 还得原数;字母表示: a-0 = a
3、一个数减去它本身,差是 0;字母表示: a-a =0
4、一个数和 0 相乘,仍得 0;字母表示: a× 0 =0
5、0 除以任何非 0 的数,还得 0;字母表示: 0÷ a =0(a ≠ 0)
a—b—c=a—(b+c);a—(b+ c)=a—b—c;
② 在三个数的加减法运算中,交换后两个数的位置,得数不变。字母表示:
a—b—c=a—c—b;a—b+c=a+c—b
7、连除定律:
① 一个数连续除以两个数 , 等于这个数除以后两个数的积, 得数不变。字母表示:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四则混合运算知识点
知识点一:四则运算的概念和运算顺序
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,要从左往右依次计算。
3、在没有括号的算式里,如果既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
知识点二:0的运算
1、一个数加上0还得原数;字母表示:a+0 = a
2、一个数减去0还得原数;字母表示:a-0 = a
3、一个数减去它本身,差是0;字母表示:a-a =0
4、一个数和0相乘,仍得0;字母表示:a×0 =0
5、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)
6、0不能做除数,a÷0是错误的表达。
为什么?
如0÷5=5,因为一个数只有和0相乘,结果才是0,所以0除以一个不是0的数,商都是0;5÷0=,找不到商,因为0与任何数相乘的积都是0,不可能是5这样的非0数。
知识点三:乘除法的关系
1、因数x因数=积(求两个数的积用乘法)
48 ÷12 = 4
4 x 12 = 48 (积)÷(一个因数)=(另一个因数)
(因数)x(因数)=(积)48 ÷ 4 = 12
(积)÷(一个因数)=(另一个因数)
已知两个因数的积和其中一个因数,用除法计算;一个因数=积÷另一个因数
2、被除数÷除数=商(求两个数的商用除法)
48 ÷12 = 4
48 ÷ 4 = 12 (被除数)÷(商)=(除数)
(被除数)÷(除数)=(商)12 x 4 = 48
(商)x(除数)=(被除数)
除数=被除数÷商,被除数=商x除数
3、除法和乘法是互为逆运算的,运用除法可以验算乘法计算,运用乘法可以验算除法计算。
知识点四:运算定律
1、加法交换律:在两个数的加法运算中,例50+98+50
交换两个加数的位置,和不变。
字母表示:=50+50+98
a+b=b+a=100+98
=198
2、加法结合律:三个数相加,先把前两个例488+40+60
数相加,再加另一个加数;或者先把后两个=488+(40+60)
数相加,再加另一个加数;或者先把其中任=488+100
意两个数相加,再加另一个加数,和不变。
=588
字母表示:a+b+c=(a+b)+c=a+(b+c)
3、乘法交换律:两个数相乘的乘法运算中,例0.25×56×4
交换两个乘数的位置,积不变。
字母表示:=0.25×4×56
a×b=b×a=1×56
=56
4、乘法结合律:三个数相乘,先把前两例99×0.125×8
个数相乘,或先把后两个数相乘,积不变。
=99×(0.125×8)
字母表示:(a×b)×c=a×(b×c)=99×1
=99
5、乘法分配律:两个数相加(或相减)再1、分解式2、合并式
乘另一个数,等于把这个数分别同两个加25×(40+4)135×12.3—135×2.3
数(减数)相乘,再把两个积相加(相=25×40+25×4=135×(12.3—2.3)
减),得数不变。
字母表示:=1000+100=135×10
①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;=1100=1350
②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)
6、连减定律:
①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;
②在三个数的加减法运算中,交换后两个数的位置,得数不变。
字母表示:a—b—c=a—c—b;a—b+c=a+c—b
7、连除定律:
①一个数连续除以两个数, 等于这个数除以后两个数的积,得数不变。
字母表示:a÷b÷c=a÷(b×c);a÷(b×c)=a÷b÷c;
②在三个数的乘除法运算中,交换后两个数的位置,得数不变。
字母表示:
a÷b÷c=a÷c÷b;a÷b×c=a×c÷b
知识点四:简便计算例题
一、常见乘法计算:
1、整数:25×4=100 125×8=1000
2、小数:0.25×4=1 0.125×8=1
二、加法交换律与结合律的简算例题:三、乘法交换律与结合律的简算例题:65+28.6+35+71.425×0.125×4×8
=(65+35)+(28.6+71.4)=(25×4)×(0.125×8)
=100+100=100×1
=200=100
四、特殊例题
99×25.6+25.645×10299×265.3×8+35.3×6—4×35.3
=99×25.6+25.6×1=45×(100+2)=(100—1)×26=35.3×(8+6—4)
=25.6×(99+1)=45×100+45×2=100×26—1×26=35.3×10
=25.6×100=4500+90=2600—26=353
=2560=4590=2574
九、连减简便运算例子:
①528—6.5—3.5②528—89—128③52.8—(40+12.8)
=528—(6.5+3.5)=528—128—89=52.8—12.8—150
=528—10=400—89=40—40
=518=311=0
十、连除简便运算例子:十一、其它简便运算例子:
3200÷25÷4①256—58+44②250÷8×4
=3200÷(25×4)=256+44—58=250×4÷8 =3200÷100=300—58=1000÷8
=32=242=125。