稳定性

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稳定性 (stability)

系统受到扰动后其运动能保持在有限边界的区域内或回复到原平衡状态的性能。稳定性问题是自动控制理论研究的基本问题之一。稳定性分为状态稳定性和有界输入-有界输出稳定性。

状态稳定性如果充分小的初始扰动只引起系统偏离平衡状态的充分小的受扰运动,则称系统是稳定的。如果当时间趋于无穷大时,所有这些受扰运动均回复到原平衡状态,则称系统是渐近稳定的。如果对任意初始扰动引起的受扰运动,系统都能随时间趋于无穷大而回复到平衡状态,则称系统是全局或大范围渐近稳定的。

有界输入-有界输出稳定性如果对应于每个有界的输入,系统的输出均是有界的,就称系统是有界输入-有界输出稳定的,简称BIBO稳定。一个向量信号称为有界,是指组成信号的每一个分量的函数值都为有限值。对于可用常系数线性微分方程描述的系统,在系统是联合能控和能观测时(见能控性和能观测性),BIBO稳定等价于全局渐近稳定。在线性控制理论中,系统稳定即指其平衡状态是全局渐近稳定。

稳定性的判别判定系统稳定性主要有两种方法:①李雅普诺夫方法:它同时适用于线性系统和非线性系统,定常系统和时变系统。对于线性定常系统,这种方法在使用上并不简便(见李雅普诺夫稳定性理论。②基于对系统传递函数的极点分布的判别方法:只适用于线性定常系统。传递函数的极点即是其分母多项式为零的代数方程的根。这种方法在应用上比较简便。其中按代数方法进行判

别的为代数稳定判据,如劳思稳定判据和胡尔维茨稳定判据;按复变函数方法进行判别的有奈奎斯特稳定判据和米哈伊洛夫稳定判据;按图解方法通过研究极点随增益的变化关系来进行判别的为根轨迹法。除此之外,在研究某些类型的稳定性问题时,也常采用波波夫稳定判据。而泛函分析和微分几何的方法也已在研究稳定性问题中得到应用。

稳定性(stability)

在一定条件下,物体在偏离平衡位置后能恢复到原来平衡位置的性能。如塔式起重机一般要加适当的配重,使其承受各种载荷时重心始终在支承点周围的范围内而不翻倒。液压缸的活塞杆、压力机的丝杆、起重机钢结构的受压弦杆等细长杆,都要进行稳定性校核。焊接箱形结构的腹板存在薄板稳定性问题。薄壁压力容器受外压或抽真空时,需要考虑容器形状的稳定性,如失稳便会发生凹凸变形。

失稳及其形式物体偏离平衡位置后不能恢复到原来位置叫失稳。如细长杆或薄壁结构在过大的压应力作用下,原来的平衡形式突然改变,发生显著变形,杆变弯,容器的曲率半径发生显著变化,细长杆或薄壁结构就产生失稳。结构失稳的形式有:①压杆的载荷超过临界值时,原来的直线平衡形式失去稳定性,可能转为弯曲平衡形式,载荷逐渐加大时,实际弯曲变形也随之加大,但并未丧失承载能力。②受外压的球形薄壁容器失稳变形后所能承受的力已小于临界力,即结构丧失了原有的承载能力。③扁拱形薄板零件或扁壳形零件,其凸面承受压力时逐渐产生变形,当压力达到临界值时便失去稳定,其平衡位置发生跳跃,突然变

到和原来平衡位置相对对称的位置。

临界力具有稳定平衡位置的物体,势能量小;偏离平衡位置时势能较大,因此有恢复平衡位置的趋势。结构的稳定性与载荷大小有关。以两端受一对相等轴向压力的铰接杆为例,设想压杆稍有弯曲变形,杆的两端点有同时相对位移,于是外力在此位移上作功,则杆内存在弯曲应变能。如果计算出的外力功大于或至少等于应变能,则有可能发生弯曲变形。在工程上称能够引起原来的平衡形式失稳的压力和压应力的最低值为临界力。载荷小于临界力时,压杆的直线平衡形式是稳定的,可以按一般强度条件计算。载荷超过临界力时,只要有小的原始弯曲,就会导致不断增长的弯曲,而使杆失效。失稳问题的特点是平衡形式的突然变化,而临界应力的数值可能远低于材料的屈服极限。

补充

自动控制系统的种类很多,完成的功能也千差万别,有的用来控制温度的变化,有的却要跟踪飞机的飞行轨迹。但是所有系统都有一个共同的特点才能够正常地工作,也就是要满足稳定性的要求。

什么叫稳定性呢?我们可以通过一个简单的例子来理解稳定性的概念。如下图所示,一个钢球分别放在不同的两个木块上,A图放在木块的顶部,B图放在木块的底部。如果对图中的钢球施加一个力,使钢球离开原来的位置。A图的钢球就会向下滑落,不会在回到原来的位置。而B图中的钢球由于地球引力的作用,会在木块的底部做来回的滚动运动,当时间足够长时,小球最终还是要回到原来的位置。我们说A图所示的情况就是不稳定的,而B图的情况就是稳定的。

稳定性示意图

上面给出的是一个简单的物理系统,通过它我们对于稳定性有了一个基本的认识。稳定性可以这样定义:当一个实际的系统处于一个平衡的状态时(就相当于小球在木块上放置的状态一样)如果受到外来作用的影响时(相当于上例中对小球施加的力),系统经过一个过渡过程仍然能够回到原来的平衡状态,我们称这个系统就是稳定的,否则称系统不稳定。一个控制系统要想能够实现所要求的控制功能就必须是稳定的。在实际的应用系统中,由于系统中存在储能元件,并且每个元件都存在惯性。这样当给定系统的输入时,输出量一般会在期望的输出量之间摆动。此时系统会从外界吸收能量。对于稳定的系统振荡是减幅的,而对于不稳定的系统,振荡是增幅的振荡。前者会平衡于一个状态,后者却会不断增大直到系统被损坏。

既然稳定性很重要,那么怎么才能知道系统是否稳定呢?控制学家们给我们提出了很多系统稳定与否的判定定理。这些定理都是基于系统的数学模型,根据数学模型的形式,经过一定的计算就能够得出稳定与否的结论,这些定理中比较有名的有:劳斯判据、赫尔维茨判据、李亚谱若夫三个定理。这些稳定性的判别方法分别适合于不同的数学模型,前两者主要是通过判断系统的特征值是否小于零来判定系统是否稳定,后者主要是通过考察系统能量是否衰减来判定稳定性。

当然系统的稳定性只是对系统的一个基本要求,一个另人满意的控制系统必须还要满足许多别的指标,例如过渡时间、超调量、稳态误差、调节时间等。一个好的系统往往是这些方面的综合考虑的结果。

稳定性理论(stability theory )

对稳定性的研究是自动控制理论中的一个基本问题。稳定性是一切自动控制系统必须满足的一个性能指标,它是系统在受到扰动作用后的运动可返回到原平衡状态的一种性能。关于运动稳定性理论的奠基性工作,是1892年俄国数学家和力学家А.М.李雅普诺夫在论文《运动稳定性的一般问题》中完成的。

在经典控制理论中,主要限于研究线性定常系统的稳定性问题。判断系统稳定性的主要方法有奈奎斯特稳定判据和根轨迹法。它们根据控制系统的开环特性来判断闭环系统的稳定性。这些方法不仅适用于单变量系统,而且在经过推广之后也可用于多变量系统。

对于非线性系统稳定性的判别,李雅普诺夫第二方法至今仍是主要的方法(见李雅普诺夫稳定性理论。李雅普诺夫方法还被应用于研究绝对稳定性和有限时间区间稳定性问题。对于大系统和多级复杂系统,通过引入向量李雅普诺夫函数,可以建立判断稳定性的充分条件。在研究绝对稳定性问题方面,不同于李雅普诺夫方法的另一个重要方法是1960年V.M.波波夫建立的频率域形式的判据。它的主要优点是可利用系统中线性部分的频率响应的实验结果。后来的研究表明,李雅普诺夫方法和波波夫方法在实质上是等价的。波波夫在研究绝对稳定性的基础上,在1964年进一步提出超稳定的概念和理论(见波波夫超稳定性),并在1966年出版了《控制系统的超稳定性》的专著。超稳定性理论已在模型参考适应控制系统的分析和综合中得到应用。

相关文档
最新文档