水平井钻井专用工具
石油钻井设备与工具-王镇全 第二节 螺杆钻具
定子
转子 转动 方向
封线,形成一Байду номын сангаас一个的密封空
腔。 当具有一定能量的压力液
进入转、定子形成的密封腔,
并从马达的一端流到另一端时, 推动转子在定子中转动,将液 压能转换为机械能,这就是螺 杆马达的基本工作原理。
液流
万向节
3、螺杆马达的机械特性分析
在不计损失时,根据容积式机械工作过程中的能量守恒,在单
1.2 井底温度
型有一定要求外,还要求转子与定子的长度须不小于最小
限度,即最小长度要大于螺距。 转子轴线和定子轴线间有一距离,称为偏心距,一般 以e 表示。
2 、工作原理
螺杆钻具是一种容积式(液压式)机械,其理论基础基于帕斯卡原 理.。
P1>P2
P2
P1
转子和定子具有特殊的啮
合结构,啮合点沿轴向经大于 一个螺距的距离后形成螺旋密
能转换为机械能。
特殊说明
旁通阀不是螺杆钻具工作时的必须部件。在
水平钻井中,为了防止停泵时环空钻井液内的岩 屑从旁通阀的筛板进人马达,往往不装旁通阀, 或把旁通阀的弹簧取出来使旁通阀呈常闭状态, 而在直井段的钻柱上安装一个钻柱旁通阀,来代 替钻具旁通阀的作用。
二、马达的结构及工作原理
1、马达的组成及结构简介
速大扭矩特性。
三) 万向轴总成
万向轴总成由两个元件组成:壳体和万 向轴。壳体通过上、下锥螺纹分别和马达 定子壳下端及传动轴壳体上端相连接。
直螺杆钻具的万向轴壳体无结构弯角, 而弯壳体螺杆钻具万向轴壳体则是一个带 有结构弯角的弯壳体。
万向轴有几种不同的结构形式, 例如应用最普遍的为瓣型连接轴和挠 性连接轴(有一定柔度、上下两端为 连接螺纹的光轴)以及其他形式的万 向轴。万向轴的上端和马达转子下端 相连,而下端则和传动轴上端的导帽 相连。
径向水平井技术发展及工具特点
径向水平井技术发展及工具特点刘平全【摘要】径向水平井技术可以向储集层沿径向钻出长达50~100 m的生产流道,有效穿透泥浆污染带,成倍增加泄油面积,以提高油气单井产量.该技术通过转向器实现钻井轨迹由垂直到水平的位置转换,采用螺杆马达带动万向节及铣刀旋转,对油层套管实施开窗,然后下入喷射软管和喷射钻头,利用水力破岩机理,对油层实施喷射钻进.应用结果显示,该水力喷射钻进技术适用于松软地层,对硬地层钻进效果差.国外Max PERF径向钻孔技术,采用半刚性钻杆+金刚石钻头切削破岩钻进方式,对硬地层钻进具有明显优势,是径向水平井技术领域的发展趋势.%Ultra Short Radius Drilling System (USRDS) can drill up to 50 m to 100 m perforation into the reservoir along the radial direction from wellbore,in order to penetrating the mud belt and increasing the drainage area for improving the production of well.The USRDS Transited the drilling trajectory from vertical to horizontal by diverter and the screw motor and Cardan shaft driving the milling cutter to drill a hole of the oil casing,then the injection hose and the jet bit is putted into the well and drilled into the oil layer by hydraulic jetting.According to the results of application,the hydraulic drilling was effectively in soft formation but hard formation.The maxperf drilling system was introduced which was consisted of semi-rigid drillpipe,diamond bit and so on it has a more significant effect on hard formation.It will be the future trend of USRDS.【期刊名称】《石油矿场机械》【年(卷),期】2018(047)001【总页数】5页(P23-27)【关键词】径向水平井;技术;工具【作者】刘平全【作者单位】长城钻探工程有限公司工程技术研究院,辽宁盘锦124010【正文语种】中文【中图分类】TE921在钻完井及修井等过程中,地层不可避免地都将受到钻井液及固井水泥浆的伤害,造成近井地带渗透率下降,形成污染带。
一种水平井降摩减阻液力离合器钻井工具及方法
一种水平井降摩减阻液力离合器钻井工具及方法
水平井降摩减阻液力离合器钻井工具及方法涉及一种钻井工具,特别是涉及一种用于水平井钻井的降摩减阻液力离合器钻井工具及其使用方法。
水平井钻井中,钻柱在水平段运动时,会与井壁产生较大的摩擦力,这不仅会导致钻柱磨损,还可能影响钻井效率。
为了解决这个问题,我们设计了一种水平井降摩减阻液力离合器钻井工具。
该工具包括钻柱、液力离合器和控制模块。
液力离合器设置在钻柱上,用于在钻柱与井壁接触时,根据摩擦力的大小自动调整离合器的状态,从而减小钻柱与井壁的摩擦力。
控制模块则用于控制液力离合器的状态,保证其在合适的时机和条件下进行工作。
使用该工具进行水平井钻井时,首先将钻柱放入井中,然后启动控制模块。
当钻柱在水平段运动时,如果与井壁产生的摩擦力超过一定阈值,液力离合器会自动调整状态,减小摩擦力。
同时,控制模块会持续监测摩擦力的大小,保证离合器始终在合适的工作状态下运行。
此外,为了进一步提高该工具的性能,我们还对液力离合器的结构和材料进行了优化设计。
例如,我们采用了高强度耐磨材料制造离合器,以增加其使
用寿命;同时,我们还设计了独特的液力传动系统,使离合器能够快速响应并精确控制摩擦力的大小。
总的来说,这种水平井降摩减阻液力离合器钻井工具及其使用方法,能够有效降低水平井钻井中的摩擦阻力,提高钻井效率,延长钻柱使用寿命。
对于石油和天然气等行业来说,这种工具具有重要的实用价值和应用前景。
定向及水平井简介
对钻井设备和技术的要求较高 ,需要专业的定向井工程师团
队。
在某些情况下,可能存在井眼 轨迹控制难度大、油层污染等
问题。
水平井的优缺点
优点 可以实现长水平段穿越油层,提高油藏的开采效率。
对于薄油层和复杂油藏的开采具有重要意义。
水平井的优缺点
• 可以有效利用地层自然裂缝,提高油藏的开采效 率。
水平井的优缺点
01
缺点
02
钻井过程中需要控制好水平段的稳定性, 避免出现卡钻等事故。
03
对钻井设备和技术的要求较高,需要专业 的水平井工程师团队。
04
在某些情况下,可能存在水平段稳定性差 、油层污染等问题。
定向井与水平井的适用范围及选择依据
适用范围
定向井适用于需要大范围水平位移的油藏开采,如海上油田、复杂断块 油田等。
岩屑携带
定向钻井过程中,岩屑容易堆积在井 底,影响钻进效率。可以采用高压喷 射钻头、空气钻头等新型钻头,提高 岩屑携带能力。
地层适应性
不同地层对钻头、钻具和工艺有不同 的要求,需要根据地层特点选择合适 的钻头、钻具和工艺。
03
水平井钻井技术
水平井钻井设备及工具
01
02
03
04
钻机
用于钻进水平井的钻机,通常 采用顶部驱动钻井系统。
岩屑携带
水平井钻进过程中,岩屑容易堆积在井底,影响钻进效率 。可以采用高压喷射钻井技术来解决这一问题。
井壁稳定
水平井钻进过程中,容易发生井壁失稳现象,可以采用合 理的钻井液体系和稳定剂来解决这一问题。
完井作业
水平井完井作业过程中,需要采用特殊的完井技术,以确 保水平段的密封性和稳定性。可以采用先进的完井技术和 工具来解决这一问题。
钻井井下工具
井下工具井下工具分类井下工具包括扶正器、随钻震击器、取心筒、浮阀、水力割刀、刮管器、铅模、公锥、母锥、卡瓦打捞筒、磁铁打捞器和反循环强磁打捞器、一把抓、反循环打捞篮和反循环强磁打捞篮、磨鞋、安全接头、套管捞矛、接头等。
扶正器扶正器是下部钻具结构的重要组成部分,它可以防止井壁对钻具的磨损,根据扶正器在钻柱中的位置不同起到防斜、纠斜和稳斜的作用。
按其安装位置分为钻柱型和井底型(近钻头);按照扶正器翼片形式分为整体扶正器和可换套式扶正器;按照扶正器翼片形状分为螺旋扶正器和直翼扶正器。
随钻震击器随钻震击器是随钻柱一起进行钻井作业的井下解卡工具,当钻井过程中发生卡钻事故时,可根据需要及时启动震击器,进行连续上击或下击,使之解卡恢复正常钻进。
我公司现用随钻震击器是ANADRILL CO.E.Q.全机械式的,有4 3/4“、 6 1/2”、8“等几种规格。
该震击器可以单独选择向上、向下两个方向的冲击力,震击负荷预先在地面调较,也可以在井口现场调校,该震击器对扭矩不敏感,它有一个全机械释放机构,配有能在油中密封的工作部件,可以减少内部磨损。
另外,为了减少震击器心轴的挠曲应力,在震击器的下端要接上挠性接头。
随钻震击器的安装位置随钻震击器一般安置在最上倒数第二和第三根钻铤之间,也就是在中性点之上5吨张力部位,这样状况最好;但根据井下复杂情况,也可以安装在中性点之下使用。
经过检修的随钻震击器送井时都带了维修报告,维修报告中包括一份震击力调试报告。
在震击力调试报告中,标明了几种上击和下击的震击负荷,并标有“字母”记号,意思是此时定位的上、下击负荷。
这个震击负荷是根据一般状况下需要的。
如果需要比“字母”位高或低的震击负荷,现场可以调节。
浮阀钻井过程中,特别是钻到很疏松的砂粒岩且岩石很细碎,在井眼的环空会有很多的细砂,在下钻、接单根时泥浆会倒流,大量砂粒从钻头水眼进入钻具内,开泵就可能造成堵死水眼。
目前各油田正普遍开展钻大角度斜井、水平井,钻井中一般须使用MWD和井下动力钻具。
水平井段钻井技术措施
水平井段钻井技术措施1、钻具组合⑴9〞1/2井眼:Φ241.3mm钻头+Φ197mm单弯(1.5°) +[631×410]接头+Φ165mm无磁钻铤+[411×410]悬挂短节+Φ127mm无磁承压钻杆+Φ127mm加重钻杆(15根)+Φ127mm钻杆⑵6〞井眼:Φ152.4mm钻头+Φ120mm螺杆+331×310接头+FEWD +Φ120mmMWD悬挂短节+Φ89mm无磁承压钻杆+Φ89mm斜坡钻杆×18柱+Φ89mm加重钻杆×17根+Φ89mm钻杆2、钻进参数⑴9〞1/2井眼:钻压:50-80KN;泵压:12-14Mpa;排量:35-40L/S。
⑵6〞井眼:钻压:20-50KN;泵压:10-12Mpa;排量:15L/S3、技术要求⑴起下钻①井眼准备:下入定向钻具前,要求井眼畅通清洁,钻井液性能达到设计要求,井底无落物。
设备运转正常。
②动力钻具下井前要作好试运转,记录螺杆压降,运转正常方可下井。
③注意井口安全,严防井下落物,下钻禁止使用丝扣保护膜。
钻头过套管头时,防止碰坏牙齿。
④起下钻操作要平稳,严禁猛刹猛放,下钻时严格控制下放速度。
特别注意井眼轨迹曲率变化大的井段起下钻阻卡情况,确保MWD、LWD仪器安全。
⑤下钻遇阻不得硬压,应在畅通井段开泵正常后划眼修整井壁,注意划眼方式,6"井眼严禁用动力钻具划眼。
⑥起钻遇卡不得硬拔,以少提多放为主,严禁多提,若多次活动钻具仍不能通过,则下钻至畅通处,开泵倒划眼起出。
在后期施工中,应在起钻时低速起过造斜段,若发现有遇卡现象,应少提多放,配合转动起出钻具。
在键槽的井段,下入键槽破坏器消除键槽。
避免下入直径略大于钻杆接头外径的钻具,以防止键槽卡钻。
⑦为确保仪器正常工作,下钻过程中每下25柱必须向钻杆内灌一次泥浆,灌泥浆时一定要放入钻杆滤清器,并保证灌满。
⑧下钻到底后,转动转盘,破坏掉泥浆的静切力,钻头离井底5-10米开泵,排量由小到大,先用单凡尔开泵,返出正常后再开两个凡尔和三个凡尔,防止蹩泵或堵水眼。
钻井工具
钻井工具一、钻头:钻头是破碎岩石的主要工具。
钻头的质量,钻头与岩性,以及与钻头工艺是否适应,直接影响钻井速度,钻井质量和钻井成本。
目前,石油钻井中使用的钻头分为刮刀钻头,牙轮钻头和金刚石钻头。
1、刮刀钻头:刮刀钻头是旋转钻井中最早使用的一种钻头,其特点是结构简单,制造方便,适用于较软底层,机械钻速和钻头进尺较高,不适用于硬地层或软硬较错地层。
2,牙轮钻头;是使用最广泛的一种钻头。
牙轮钻头工作时切削齿交替接触井底,破岩扭矩小,切削齿与井底接触面积小,比压高,易吃入地层,工作刃总长度大,因而,减小了麽损。
牙轮钻头能适应从软到硬的多种地层。
牙轮钻头按牙轮的数量可分为单牙轮钻头,双牙轮钻头,三牙轮和四牙轮钻头。
3、金刚石钻头:是用金刚石材料作为切削刃的钻头。
金刚石钻头由刚体,胎体,水利结构(包括水眼或喷嘴,水槽亦称流道,排屑槽),保径,切削刃(齿)5部分组成。
金钻头按其形状可分为,双锥阶梯形,双锥形,B形,带泼纹B 形。
金刚石钻头是体形钻头,它没有牙轮钻头那样的活动部件,也没有结构薄弱环节,因而,它可以使用高的转速,适用于和高转速的井下动力钻具的一起使用,取得高的效益。
金刚石钻头结构设计,制造比较灵活,生产设备简单,因而,能满足非标准的异型尺寸井眼的钻井需要。
金刚石钻头使用正确时,耐麽且寿命长,适用于深井及研麽性地层使用。
金刚石钻头价格较高。
聚晶金刚石复合片(PDC)钻头:PDC钻头实际上就是微型切削片刮刀钻头。
因而,PDC 钻头的工作原理与刮刀钻头基本相同。
钻头在软到中硬地层以剪切方式破碎岩石,采用较小的钻压就能获得较高的机械钻速。
由于聚晶金刚石层极簿(1㎜左右),极硬,且比碳化钨衬底的耐麽性高100倍以上。
因此,在切削岩石过程中刃口能保持自锐。
锐利的刃口切入地层后,沿扭矩作用方向移动。
剪切岩石,充分利用了岩石剪切强度低的特点,适用于低钻压,高转速。
二、钻柱:钻柱是钻头以上,水龙头以下部分的刚管柱的总称,包括方钻杆,钻杆,钻铤,各种接头,稳定器,减震器,震击器等井下工具。
定向井专用工具解读
(7)、导向总成
导向钻具有单弯钻具和双弯钻具两种。 导向单弯钻具,是在马达下部设置一带角度的短 节,从而使弯曲点尽可能靠近钻头,提高造斜率。 导向双弯钻具,是在单弯钻具的基础上增加一弯 接头,以提高造斜性能,根据其弯曲方向、度数 及联接部位可有多种组合方式。
2、钻具规格及技术参数
(1)钻具表牌说明 (2)技术参数
(7)钻具轴承间隙要求
钻具经过一段时间的使用,必须进行检修,否则 将影响钻具的再次下井使用,判断钻具能否继续 下井使用的一般方法是:钻具除在井口试验正常 外,还要看其推力轴承的磨损程度,可测量主轴 的轴向窜动量,窜动量要在额定范围之内,否则, 钻具必须进行维修。测试方法如下:(如下图)
首先,将钻具用吊卡吊起来,测量并记录不转 动部分的最下端一下径向轴承的下端和驱动接 头之间的间隙尺寸D1。 然后,将钻具座在转盘上,用钻具自身重量压 缩轴承总成,测 量并记录不转动部分的最下 端和驱动接头之间的间隙尺寸D2。 D1—D2即为推力轴承间隙值,见表1。
d.地面检查结束后,用吊钳卡住驱动接头,用 钻头盒将钻头和钻具上紧扣,卸下方钻杆,按 设计的钻具组合把各联接件上紧,要防止粘扣、 错扣,应保证传动轴驱动接头相对于上面的壳 体反时针转动,以防止钻具内部的零件松扣或 脱扣。 使用定向弯接头时,定向弯接头带的定位键必 须和工具面对正,如果在钻头和传动轴之间加 转换接头,建议其长度不超过 250mm 长,否则 将影响轴承寿命及造斜效果,甚至损坏传动轴。
a.组合推力轴承:
用以承受工作状态时的钻压,马达、钻头水眼压 降产生的轴向力及转子、万向轴、传动轴、钻头 重量等各轴向力的合力。
b.径向滑动轴承
它分为上、下两组,主要作用是承受转子作行星 运动引起的弯曲载荷和钻头转动时产生的侧向力, 上径向轴承对钻井液起限流作用,它允许马达流 出钻井液的 5—10%通过轴承组件,起着冷却和润 滑轴承的作用。
定向及水平井简介
定向及水平井简介xx年xx月xx日CATALOGUE目录•定向及水平井概述•定向及水平井的分类与技术要求•定向井与水平井的施工流程•定向及水平井的应用场景与案例分析•定向及水平井的优缺点分析•定向及水平井的发展趋势与展望01定向及水平井概述按照事先设计的轨迹和方位钻达目的层的钻井方法。
可分为直井、斜井和丛式井。
定义与特点定向井井斜角达到或接近90°,井眼轨迹在油层中沿水平方向延伸的钻井方法。
水平井提高油井产能、降低开发成本、提高原油采收率、保护环境和减少污染。
特点定向及水平井的起源与发展20世纪60年代,由于定向磁性仪器和陀螺仪的出现,定向钻井技术得到了广泛应用。
20世纪80年代,水平井技术得到了快速发展,成为高效开发油气资源的重要手段。
定向井起源于19世纪末,由John Goodwin和J. Hoover提出。
0102定向及水平井的应用范围广泛应用于油气田开发、地热、水文工程、矿山工程、城市工程等领域。
定向及水平井的优势•提高油井产能:水平井能够穿过多层油藏,提高单井产能。
降低开发成本水平井可以大幅度减少所需的井数,降低开发成本。
提高原油采收率水平井能够更好地适应油藏特征,提高原油采收率。
保护环境减少对地表和植被的影响,减少对生态环境的破坏。
定向及水平井的应用范围与优势03040502定向及水平井的分类与技术要求单靶定向井、多靶定向井按照井底靶点个数增斜定向井、降斜定向井、S型定向井按照轨迹形状浅井定向井、中深井定向井、深井定向井按照钻井完钻深度浅水平井、中深水平井、深水平井按照完钻深度单靶水平井、多靶水平井按照靶点个数直平井、增斜平井、降斜平井、S 型平井按照轨迹形状定向及水平井的钻井技术要求钻头选型与优化根据地层特点选择合适的钻头类型和尺寸掌握地层特点了解地层岩性特征、力学性质和钻遇率等因素轨迹设计与控制利用计算机钻井设计软件进行轨迹设计,并通过钻进参数调整和辅助设备操作实现轨迹精确控制应对复杂情况定向及水平井钻进过程中需应对各种复杂情况,如地层出水、漏失、垮塌等现象,需采取相应的技术措施钻具组合选择与优化选用合适的钻具组合,包括钻杆、钻铤、稳定器等,并优化组合配置,以实现钻进高效、安全的目的03定向井与水平井的施工流程地质资料收集和分析对目标油田的地质资料进行详细收集和分析,包括地层分布、岩性、地应力等。
6英寸小井眼水平井无磁钻铤的改进
6英寸小井眼水平井无磁钻铤的改进【摘要】随着井眼直径6英寸的水平井在大牛地气田的大规模推广,在小井眼水平井的定向施工过程中,定向仪器的磨损和故障率明显升高,定向仪器的维修、折旧费用急剧增加。
定向仪器损坏造成的起下钻作业明显增多。
小井眼水平井施工现场急需要一种切实、有效地降低定向仪器故障率的措施。
从井下仪器的工作环境和状态出发,分析导致仪器损坏的各种因素。
提出有效降低定向仪器磨损和故障率的方法是加大水平段无磁钻铤的内径。
在不影响无磁钻铤本身机械性能的前提下,将无磁钻铤的内径改造成台阶孔形式,以扩大无磁钻铤的内径。
改造后的无磁钻铤经过数口水平井的实际使用测试,对定向仪器的保护表现出明显的优势,定向仪器的磨损明显减轻,仪器的故障率也显著下降,对水平井施工的提效、提速具有积极的意义。
【关键词】小井眼水平井无磁钻铤 mwd 钻具振动随着水平井钻井技术的发展,6英寸小井眼水平井在大牛地气田已得到深入推广。
相比之前的常规水平井,小井眼水平井在钻井施工过程中存在着诸多的优势,较小的钻具结构减少了钻井成本,降低了钻井施工难度,增加了机械钻速,缩短了建井周期。
但是在钻具尺寸变小后,我们在定向施工过程中发现,定向仪器的故障率明显比在大井眼水平井施工时增大很多。
在6英寸小井眼水平井的定向施工过程中,定向仪器的磨损、损坏特别严重,由于井下仪器损坏造成的起下钻作业也相应增多。
定向仪器的频繁损坏导致生产成本的急剧增加,严重的影响了气田水平井的钻井实效。
在此情形下,分析定向仪器的损坏机理,对大牛地气田6英寸小井眼水平井所用无磁钻铤进行技术改造,在满足正常定向钻井施工的同时,改善定向仪器的工作环境,延长定向仪器的使用寿命,降低定向仪器损坏事故率。
1 原因分析无磁钻铤在水平井钻井施工中不但起到钻铤的作用,还由于其具有极低的磁导率,能够为井下磁性测量仪器创造一个无磁干扰的工作环境。
无磁钻铤是水平井钻井施工中必需的专用工具,也是安装无线随钻测量仪器(mwd)的载体,无线随钻测量仪器都被安放在无磁钻铤的内部。
旋转导向+地质导向+水平井工具仪器介绍
±2.0°
±2.0°
0~360°
工具面角 外径 耐温 抗压筒抗压 抗压筒外径
系统精度
±2.0°
35mm 125℃ 15000 Psi 44.5mm
±2.0°
25mm 182℃ 15000 Psi 34.5mm
25mm 182℃ 15000 Psi 34.5mm
导向(几何)井下仪器工具
3、导向测量仪器 3.1.3有线随钻测量仪器-MS3
导向(几何)井下仪器工具
2、导向常用井下钻具组合
MWD导向钻具常用组合
SST 导向钻具常用组合
导向(几何)井下仪器工具
3、导向测量仪器
3.1 有线随钻测量仪
有线随钻测量仪采用单芯铠装电缆传输数据,整个系统 主要由 5 部分组成: 地面数据处理系统 井下仪器总成
地面数据显示系统
电缆操作设备 辅助作业工具。
发展成熟 带地质参 数的无线 随钻测斜 仪
无线随钻地质参 数仪器越来越全 面,随钻井底成 像技术日趋成 熟,地质仪器与 井下工具融为一 体
测量仪器发展历程
2)、国内测量仪器的发展
年代
内容
60-70 年代
年
80 代
90 代
年
超短半径水平井完井工具的设计与测试
2 完井工具的设计2.1 浮式柔性引鞋浮式柔性引鞋由基管、万向节、导引头组成(图1)。
引鞋装配后可形成密闭空间,管柱入井后,这个空间呈封闭状态,完井液不能进入,因而可以产生一定的浮力,减轻引鞋在完井液中的重量,便于引导防砂管柱下入裸眼段内。
其主要优势在于保证足够弯曲自由度的条件下连接上部柔性完井管柱,并提供引导下入功能,提高柔性完井管柱的下入成功率。
图1 浮式柔性引鞋结构图2.2 柔性盲管盲管是连接防砂管柱,实现管外封隔器、悬挂器坐封和砾石充填等工艺步骤的配套装置(图2)。
设计的柔性盲管由盲管基管和万向节组成。
盲管基管部分一端为用于连接的螺纹,另一端为万向节,万向节前段设计有螺纹扣,可与下一根柔性盲管或其他工具连接;万向节起到提高柔性盲管变形自由度的作用,安装在盲管基管的一端,并有用于连接的螺纹扣。
柔性盲管可以在保证足够弯曲自由度的条件下连接各种超短半径侧钻井完井工具,提供柔性完井管柱的机械连接完整性与密封性。
0 引言近年来海上油田开发进入高含水阶段,剩余油分布十分零散,如何进一步挖掘剩余油潜力成为低油价形势下急需解决的难题。
超短半径水平井利用原有井内套管进行开窗造斜,减少进尺,增大泄油面积,可重新激活低产低效井,改善薄油层、低渗透油层的开发效果。
由于超短半径水平井在完井过程中存在轨迹曲率半径小、工具弯折易受损、管柱下入摩阻大等难题,完井设计往往采用裸眼完井方式。
这种方式在致密砂岩、灰岩储层应用中,主要优点有完井工艺简单,泄油面积大,采收率高等,但对于海上疏松砂岩油藏,裸眼完井后出砂严重,往往造成砂砾堵塞井筒,损坏采油泵等问题。
针对这一问题,设计完成了浮式柔性引鞋、柔性盲管、柔性筛管、柔性管外封隔器、多分支悬挂器等配套柔性完井工具。
通过对样机的抗拉测试与抗扭测试,设计工具均达到设计要求,满足现场应用需求。
1 技术难点超短半径水平井的井眼曲率半径通常在1.5~3.6 m ,由柔性短节组成的特殊柔性钻杆完成。
水平井修井技术难点与工艺技术应用分析
水平井修井技术难点与工艺技术应用分析发布时间:2021-06-08T15:53:12.067Z 来源:《基层建设》2021年第4期作者:刘恩营[导读] 摘要:随着我国经济迅速发展,石油企业为我国发展做出了很大贡献。
大港油田第三采油厂修井管理中心河北省沧县 061023摘要:随着我国经济迅速发展,石油企业为我国发展做出了很大贡献。
在开采油田的工程中,采用水平井开采石油是最常用的技术手段,随着国家经济的飞速发展,对于油田开采工程越来越重视,范围也变得越来越大,但是一些油田的开采因为受到地理环境的影响而变得难度大。
但是水平井钻井技术,就可以应对很多不同的地理环境进行工程操作。
随着水平井的不断进步与发展,本文对其进行探究。
关键词:水平井;钻井;技术难点;对策分析1、水平井钻井技术概述水平井钻井技术是常规钻井技术的创新和发展,水平井虽然可以提升油气的质量,但是水平井在掘进的过程中存在一定的难度。
水平井的关键在于井眼轨迹,只有符合了设计要求的井眼轨迹才能够使得水平井质量达到要求。
水平井通常应用于低渗透地层以及垂直裂缝中,在浅层的油气开采中应用效果较好。
水平井钻井技术中专用工具:低转速、大扭矩的马达,能够进行灵活控制的弯头,稳定器,扩孔器,加压器(给水加压)以及高效PDC钻头等。
为了能够提升钻井效率,可控弯头和稳定器可以灵活活动,保证水平井的井眼轨迹符合设计的要求。
随着水平钻进技术的发展,水平井钻井的优化设计、井眼轨迹控制、钻具的优化组合、钻井液以及钻头组合等都得到了很大的发展和进步。
2、水平井修井技术的难点分析2.1修井技术难点水平井的典型井身结构一般包括直井段、造斜段和水平段。
水平段、斜井段的管柱贴近井壁低边,再加上受钟摆力和磨擦力影响原油流动的方向和中重力的流动方向不能保持一致,加之接单根,作业管柱容易被卡。
小井眼水平井内脏物如砂粒等容易形成砂床,修井的难度加大,风险也大。
主要体现为:其一,斜井段、水平段管柱贴近井壁低边,受钟摆力与磨擦力影响,还有流体流动方向和重力方向不一致和接单根,井内赃物易形成砂床,导致作业管柱被卡。
钻具组合图
钻具组合图一、常规钻井(直井)钻具组合:BIT钻头;DC钻鋌;SDC 螺旋钻鋌;LZ螺杆钻具;SJ双向减震器;DP钻杆;HWOP加重钻杆;STB或LF钻具稳定器;LB随钻打捞杯;DJ震击器;1、塔式钻具组合:Φ444.5mmBIT×0.50m+Φ229mmDC×27.24m +Φ203mmDC×54.94m+Φ165 mmDC×54.51m+Φ139.7mmDPΦ311.1mmBIT×0.40m+Φ229mmDC×54.38m+Φ203mmDC×82.23m+Φ165m mDC×81.83m+Φ139.7mmDPФ311.1mmBIT×0.32m+Ф244.5mm LZ×9.50m+Ф229mmDC×45.40m+Ф203 mmDC×73.13m+Ф165mmDC×81.83m+Ф139.7mmDPΦ311.1mmBIT×0.30m+Φ229mm SJ×6.62m+Ф229mmDC×53.94m+Ф203mm DC×81.75m+Ф165mmDC×81.83m+Ф139.7mmDP钻头FX1951X0.44 m(Φ311.1mm)+6A10/630×0.61 m+9″钻铤×52.17m (6根)+6A11/5A10×0.47 m+ 8″钻铤×133.19m(9根)+410/5A11×0.49 m+61/2″钻铤×79.88m(9根)+51/2″HWOP×141.88m(15根)+51/2″钻杆(**根)+顶驱Φ215.9mmBIT×0.25m+430/4A10+Ф165mmSDC×161.56m+4A11/410+Ф165 mmDJ×8.81m+411/4A10+61/2″钻铤×79.88m(9根)+51/2″HWOP×141.88m (15根)+51/2″钻杆(**根)+顶驱2、钟摆钻具组合:Φ660.4mmP2×0.50m+730/NC61母+Φ229mm SJ×9.24m+Φ229mmSDC×1 8.24m+730/NC61公+26″LF+731/NC61母+Φ229mmSDC×9.24m+730/NC61公+ 26″LF+731/NC56母+Φ203mmDC×94.94m+410/NC56公+Φ139.7mmDP+顶驱Φ444.5mmGA114×0.50m+730/NC61母+Φ229mmSJ×9.24m+Φ229mm SDC ×18.24m+171/2″LF+Φ229mmSDC×9.24m+171/2″LF+NC61公/NC56母+Φ2 03mmDC×121.94m+8″随震+8″DC×18.94m+410/NC56公+Φ127mmH WOP×141. 94m +Φ139.7mmDP+顶驱Φ311.1mmBIT×0.46m+Φ229mmDC×18.08m+Φ308mmLF×1.82m+Φ203 mmDC×9.10m+Φ308mmLF×1.51m+Φ229mmDC×27.32m+203mmDC×73.13m+Φ178mmDC×81.83m+Φ139.7mmDP+顶驱Φ311.1mmDB535Z×0.50m+630/NC61母+Φ229mmSJ×9.24m+Φ229mm SDC×18.24m +NC61公/NC56母+121/4″LF + NC56 公/ NC61母+Φ229mm SDC×9. 24m +NC61公/NC56母+121/4″LF+Φ203mmDC×121.94m+8″随震+8″SDC×27.9 4m+410/NC56公+Φ139.7mmHWOP×141.94m +Φ139.7mmDP+顶驱Φ311.1mmDB535FG2×0.50m+630/731+95/8″LZ+Φ229mmSJ×18.64m+ 12 1/4″LF ++Φ229mm SDC×9.24m +121/4″LF+Φ203mmDC×148.94m+410/NC56公+Φ139.7mmHWOP×141.94m +Φ139.7mmDP+顶驱Φ215.9mmBIT×0.33m+Φ172mmLZ×8.55m+Φ165mmSDC×1.39m+Φ165mmSD C×1.39m+Φ214mmSTB×1.38m+Φ165mmDC× 236.14m+Φ139.7mmHWOP×141.94 m +Φ139.7mmDP+顶驱3、满眼钻具组合:Φ311.1mmH136×0.30m+121/4″LF +NC56 公/ NC61母+Φ229mmSJ×9.24m+NC61公/NC56母+121/4″LF + NC56 公/ NC61母+Φ229mm SDC×18.24 m+NC61公/NC56母+121/4″LF+Φ203mmDC×121.94m+8″随震+8″SDC×18.94m +410/NC56公+Φ139.7mmHWOP×141.94m +Φ139.7mmDP+顶驱Φ215.9mm牙轮BIT×0.24m+Φ190mm LB×1.10m+Φ214mmSTB×1.39m+Ф16 5mm SDC×1.39m+Φ214mmSTB×1.40m+Ф165mm DC×8.53m+Φ214mmSTB×1.39m+Φ165mm SJ×5.08m+Ф165mm DC×244.63m+Φ139.7mmHWOP×141.94m +Φ139.7m mDP+顶驱Φ215.9mm牙轮BIT×0.24m+Φ214mmLF×1.49m+Ф165mmSDC×1.39m+Φ21 4mmLF×1.40m+Ф165mmDC×8.53m+Φ214mmLF×1.39m+Φ165mm SJ×5.08m+Ф16 5mmDC×244.63m+Φ139.7mmHWOP×141.94m +Φ139.7mmDP+顶驱Φ215.9mm牙轮BIT×0.25m+Φ214mmSTB×1.50m+Ф165mmSDC×1.38m+Φ2 14mmSTB×1.40m+Ф165mmDC×8.81m+Φ214mmSTB×1.40m+Ф165mm SJ×6.11m+Ф165mmDC×229.22m+Φ139.7mmHWOP×141.94m +Φ139.7mmDP+顶驱二、定向井(水平井)钻具组合:1、直井段钻具组合:采用塔式钻具组合、钟摆钻具组合、满眼钻具组合。
定向井和水平井钻井技术简介
定向井和水平井钻井技术简介第一节定向井井身参数和测斜计算一.定向井的剖面类型及其应用定向钻井就是“使井眼按预定方向偏斜,钻达地下预定目标的一门科学技术”。
定向钻井的应用范围很广,可归纳如图9-l所示。
定向井的剖面类型共有十多种,但是,大多数常规定向井的剖面是三种基本剖面类型,见图9-2,称为“J”型、“S”型和连续增斜型。
按井斜角的大小范围定向井又可分为:常规定向井井斜角<55°大斜度井井斜角55~85°水平井井斜角>85°(有水平延伸段)大位移井指总水平位移与总垂深之比n≥2的井,对n≥3的大位移井称为超大位移井。
二.定向井井身参数实际钻井的定向井井眼轴线是一条空间曲线。
钻进一定的井段后,要进行测斜,被测的点叫测点。
两个测点之间的距离称为测段长度。
每个测点的基本参数有三项:井斜角、方位角和井深,这三项称为井身基本参数,也叫井身三要素。
1.测量井深:指井口至测点间的井眼实际长度。
2.井斜角:测点处的井眼方向线与重力线之间的夹角。
3.方位角:以正北方向线为始边,顺时针旋转至方位线所转过的角度,该方向线是指在水平面上,方位角可在0—360°之间变化。
目前,广泛使用的各种磁力测斜仪测得的方位值是以地球磁北方位线为准的,称为磁方位角。
磁北方向线与正北方向线之间有一个夹角,称磁偏角,磁偏角有东、西之分,称为东或西磁偏角,真方位的计算式如下:真方位=磁方位角十东磁偏角或真方位=磁方位角一西磁偏角公式可概括为“东加西减”四个字。
4.造斜点:从垂直井段开始倾斜的起点。
5.垂直井深:通过井眼轨迹上某点的水平面到井口的距离。
6.闭合距和闭合方位(l)闭合距:指水平投影面上测点到井口的距离,通常指靶点或井底的位移,而其他测点的闭合距离可称为水平位移。
(2)闭合方位:指水平投影响图上,从正北方向顺时针转至测点与井口连线之间的夹角。
7.井斜变化率和方位变化率:井斜变化率是指单位长度内的井斜角度变化情况,方位变化率是指单位长度内的方位角变化情况,均以度/100米来表示(也可使用度/30米或度/100英尺等)。
钻井工具讲义
• • • • • •
• •
• •
③ 水眼直径 ④ 两端螺纹(扣型)紧密距 ⑤ 表面粗糙度 ⑥外观质量 对于销售人员来说订货时应确定工作外径、扣型。 球形稳定器(也叫橄榄形稳定器) 它除具有稳定器作用外还具有能改善井况参与切削、刮削井壁的作用。由于其结构小一 般扶正器长度不大于1200mm紧凑钻井阻力小尤其打定向井和水平井更是优选。其引导 1200mm 斜面镶有聚晶复合体及切削刃带处镶球形合金柱,所以在生产加工时应该多注意复合体 的镶嵌。 四、浮阀稳定器 它是在普通井底型稳定器母扣端孔内镗一孔装入浮阀后使用,浮阀稳定器内浮阀总成紧 靠钻头连接螺纹,也可连接在钻柱需要的地方。其主要功能:防止接单根时泥沙倒灌, 堵塞水眼,发生井喷、井涌时浮阀总成阀盖自动关闭,防止井喷事故的发生。对于销售 人员来说订货时应确定工作外径、扣型。 非旋转稳定器 非旋转稳定器是在钻井作业中为保护井壁不受刮削特别制做的专用工具,在钻井过程中 非旋转稳定器依靠芯轴体传递扭矩,而橡胶扶正套与芯轴体是滑动配合可以相对运动, 因此扶正套只起支承井壁的作用,因扶正套是采用耐温耐磨特殊的弹性材料所以耐磨性 能较好。在套铣作业中用一个锁紧离合器(自锁下接头)可以防橡胶套转动生产加工时 应注意隔套的间隙不能过大也不能过小。订货时应确定套管尺寸、或井眼直径、连接扣 型。
钻杆螺纹 代号对照
NC 26 NC 31 NC 38 NC 46 NC 50 2-3/8 IF 2-7/8 IF 3-1/2 IF 4 IF 4-1/2 IF 2A10×2A11 210×211 310×311 4A10×4A11 410×411 3-1/2 FH 4 FH(NC 40) 4-1/2 FH 5-1/2 FH 6-5/8 FH 320×321 4A20×4A21 420×421 520×521 620×621 2-3/8 REG 2-7/8 REG 3-1/2 REG 4-1/2 REG 5-1/2 REG 6-5/8 REG 7-5/8 REG 2A30×2A31 230×231 330×331 430×431 530×531 630×631 730×731
螺杆钻具
摘要:螺杆钻具是一种井下动力钻具,它是由高压泥浆驱动的容积式马达,把液压能转化为钻头转动所需的动能。
它具有结构简单、过载性能好、在小井眼和转盘不易加扭矩时也能得到大的扭矩和功率,钻进快,已广泛应用于垂直钻井、定向钻井、水平钻井、直井和修井作业中。
随着钻井工程的快速发展,螺杆钻具也有了长足的发展,目前国产螺杆钻具在国内市场已基本上占有主导地位,已较好地满足了我国钻井工程的需要,但还存在许多不足之处。
在对螺杆钻具的基本原理和结构功能分析之后,并对改进措施和今后的发展提出了自己的一点看法。
关键词:螺杆钻具;基本原理;钻具失效;钻具改善目录1 绪论 (3)1.1研究的目的和意义 (3)1.2国内外发展概况及趋势 (3)2 螺杆钻具的基本原理 (4)2.1螺杆钻具的基本原理与结构特征 (4)2.1.1 工作原理 (4)2.1.2 螺杆钻具结构 (5)2.2螺杆钻具的性能特点与工作特性 (7)2.2.1 螺杆钻具的性能特点 (7)2.2.2 螺杆钻具的工作特性 (8)3 螺杆钻具的失效分析 (9)3.1螺杆钻具失效主要原因 (9)3.1.1失效的结构因素 (9)3.1.2失效的工艺因素 (10)3.1.3失效的使用因素 (10)3.2螺杆钻具技术改进措施 (11)3.2.1 壳体防脱 (11)3.2.2 壳体防断 (11)3.2.3 传动轴防断防掉 (12)4 螺杆钻具的参数计算及设计要点 (12)4.1螺杆马达的工作原理的进一步介绍 (12)4.2螺杆钻具的设计要点 (13)4.2.1 螺杆钻具的总体设计 (13)5 结论 (14)1 绪论1.1 研究的目的和意义螺杆钻具又称定排量马达,是一种容积式井下动力钻具,是目前最广泛使用的一种井下动力钻具,主要用于定向井、水平井的造斜及扭方位施工,一部分也用于直井反扣或侧钻作业中。
螺杆钻具具有功率大、转速低、扭矩大、压降小、容易启动等优点,目前被油田广泛应用。
认知和研究螺杆钻具让更多的人了解螺杆钻具的基本原理、结构、失效形式、以及改进方法。
水平井钻井工具
压降 效率 转速 输出功率
» »
排量恒定时 涡轮钻具工作特性曲线
3.3 动力钻具
2. 螺杆钻具
– 螺杆钻具的组成
» » » » 旁通阀总成 马达总成 万向轴总成 传动轴总成
3.3 动力钻具
2. 螺杆钻具
– 螺杆钻具的组成
» 旁通阀总成:其作用是在 停泵时使钻柱内空间与环 空沟通,以免起下钻和接 单根时钻柱内钻井液溢出, 污染钻台。 旁通阀 总成
emu-----绝对电磁单位
3.2 无磁钻铤
4. 无磁钻铤使用长度的选择
Ⅰ
3.2 无磁钻铤
4. 无磁钻铤使用长度的选择
Ⅱ
3.2 无磁钻铤
4. 无磁钻铤使用长度的选择
Ⅲ
井斜角不变,方位越靠向东西, 需要NMDC越长。
井斜方位不变,井斜角越大, 需要NMDC越长。
3.2 无磁钻铤
4. 无磁钻铤使用长度的选择
右边为正 常工作区
»
排量恒定时 螺杆钻具实际特性曲线
3.3 动力钻具
3. 动力钻具造斜率计算
– 三点定圆法
» 三点定圆法是美国H. Karisson等人提出的一
种计算带有双稳定器单弯壳体动力钻具组合
造斜率的方法。 » 他们认为,钻头和两个稳定器这三点肯定与 下井壁相接处,由于不共线的三点可以确定 一个圆弧,因此这三点确定的圆弧的曲率就 是实钻井眼的曲率。
L1 L2 R 2 2
3.3 动力钻具
3. 动力钻具造斜率计算
– 三点定圆法
三点定圆法的缺点:
1) 只能用于带有双稳定器单弯壳体动力钻具组
合造斜率的计算; 2) 未考虑钻柱受力及变形对工具造斜率的影响;
3) 未考虑井眼扩大对工具造斜率的影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水平井钻井专用工具水平井钻井技术是指在一定钻井工艺的控制下使井眼由垂直状态变为水平状态或近似水平状态,这种钻井原理同定向钻井极为类似,也可以说,水平井钻井即是一种难度较大的特殊定向钻井。
水平井要求在产层或某一指定的地层钻成有一定长度延伸的水平段,这就决定了其工艺上固有的特殊性。
而工具的选择与使用必须能够保证钻头(或钻柱)按照设计的井眼轨迹准确运行。
水平井、特别是中半径水平井井身轨迹的特殊性,需要造斜工具必须具有较高的造斜能力,这是钻成水平井的基本保障;其次,在满足高造斜率要求的基础上还必须使工具有较好的稳定性。
要想使井眼有一定的偏斜并不困难,以往的定向钻井工艺早已解决了这方面的问题,但当井斜角大到一定程度后,继续增斜、至使井斜角接近或超过90°,这就存在着很大的难度,这是常规的定向钻井工具所不能完成的。
另外,水平井段的钻进也是我们前未遇的新问题,钻柱在这种特殊状态下的延伸必须有特殊的工具辅以维持。
为了满足水平井钻井施工的需要,设计制造出钻各种大、中曲率半径水平井的井下专用工具,通过现场试验使用进一步改进完善,总结出适合水平井钻井的工具模式。
一般说来,水平井钻井的生产工序环节,大致上分为造斜,增斜、稳斜或稳平,有时根据地质要求需另附加水平取芯段。
水平井井身轨迹的控制要求严格,各阶段使用的工具不尽相同,各种工具的研究技术难点也各不相同。
水平井钻井工具主要包括水平井钻井常用井下工具和地面工具两部分,该章主要介绍的井下工具是稳定器、无磁钻铤、螺旋钻铤、加重钻杆、定向接头、弯接头、定向弯接头、定向造斜专用PDC钻头、井底动力钻具(螺杆动力钻具、涡轮钻具)•和水平井取心工具等。
地面工具主要包括转盘量角器、钻杆量角器、钻铤量角器、方钻杆标定尺、钻杆划线规、定向键调节扳手。
稳定器一、概述稳定器用途最为广泛,不论是增斜降斜段,还是稳斜稳平段,都是不可缺少的工具之一。
根据不同生产段的需要和水平井自身的特点,有着不同稳定器的形状及几何尺寸。
综合考虑各种客观因素,确定稳定器在钻具组合中的最佳位置。
1.稳定器的种类:按稳定器的结构可将稳定器分为以下几种类型:螺旋稳定器、直条稳定器、无磁稳定器、可换片稳定器、滚子稳定器、偏心稳定器、近钻头稳定器(双母稳定器)等。
2.各种稳定器的特点:(1)•直条稳定器有结构简单起钻较容易的特点,对井壁切削最严重,稳定器效果不如螺旋稳定器好。
(2) 螺旋稳定器稳定器效果好,但起钻困难,易泥包。
(3)•滚子稳定器扭矩最小,稳定效果好,方位不易右漂,但存在结构复杂、价格高、更换滚子困难等缺点。
(4) 无磁稳定器用于无磁钻铤之间需要使用稳定器的情况下。
(5)•近钻头稳定器(双母稳定器)直接接钻头,不需要配合接头,缩小了钻头到稳定器中点的距离。
3.稳定器的用途特点井底钻具组合通过在不同部位接入稳定器,可以有效的改变钻具与井壁的触点,使得钻具成为增斜组合、稳斜组合、降斜组合等。
稳定器与钻具组成不同钻具组合用以完成各井段的施工,其基本工作原理在水平井中同样得到了充分利用,水平井稳定器应具有如下几个方面的特点:a)在大斜度或水平井段使用旋转方式钻进时必须具有更好的保径性能及耐磨性能。
b) 在大斜度或水平段使用时,要有利于传递钻压、减少摩阻。
c)在钻具组合中能更好地起到单点支撑作用,有利于控制井身轨迹达到设计要求。
d)在各类地层中都有良好的扶正效果,并使井径扩大率控制到最小。
e) 减少泥浆流动的环空阻力,保证井眼畅通,起下顺利。
f)在测量对磁性干扰有特殊要求的场合,稳定器应采用无磁材料。
二、水平井稳定器的结构稳定器在水平井中的作用效果与其本身的形状和外形尺寸有密切关系。
为了满足水平井钻井过程中控制增斜,稳斜或降斜等的需要,设计了短螺旋稳定器、球形稳定器,锥形稳定器、偏心稳定器和动力钻具稳定器。
1. PWZ锥形稳定器PWZ 型锥形稳定器主要用于近钻头的钻具扶正。
设计扶正翼较短、取三棱螺旋状结构,螺旋槽在转动时能使泥浆以较小的阻力流过,有利于清洗井壁,扶正翼与本体间以30°倒角过渡,螺旋条凸起表面及倒角背锥加密镶装硬质合金以增加其耐磨性。
为在软地层中加强稳定效果并能有效地控制井径扩大率,螺旋体取圆锥外形增加了与井壁接触面积。
2. PWD型短螺旋稳定器PWD 型外螺旋稳定器为钻柱型稳定器,•在钻具组合中通常加于PWZ之上,与一般螺旋稳定器相比,其主要特点是减少了扶正面积,可降低磨擦阻力,其他设计要求与 PWZ基本相同。
3. PWQ球形稳定器PWQ 形稳定器表面设计近似球形,主要是为了减小磨阻,容易通过造斜井段。
在旋转钻井钻具组合中通常配接在 PWD之上,用于稳直段;有时,该稳定器也替代 PWD与 PWZ配合用于增斜或降斜。
4. PWL型动力钻具稳定器PWL 型动力钻具稳定器用于弯壳体动力钻具的近钻头扶正,主要作用为增斜。
•基于减少磨阻和便于钻压传递的考虑,PWL型稳定器初始设计为五棱鼓形结构,由于在使用中发现因块正条翼间距较大,条翼凸部与动力钻具的背弯不易准确对正,难以实现与井壁稳定地支撑,而凸、凹部位做为支点所产生的造斜效果却相差较大,为此在设计上做了如下的改进:将其中两扶正条间填平加工成一个宽条,其宽度约为原在单扶正条的3倍,宽块正条安装在动力钻具的背弯方向,在井内支撑于下井壁。
这一改进较好地解决了稳定扶正和有效控制造斜率的问题,在以后水平井的施工中得到了满意的效果。
5. PWP型偏心稳定器PWP 型偏心稳定器通常加接在紧靠在动力钻具的上面,有利于增强动力钻具的刚性,•从而使造斜率均匀一致并保证方位稳定。
PWP偏心稳定器的加入可与动力钻具组配成更有利于造斜的钻具结构。
安装时应使其偏心距最大的部位与动力钻具弯向一致,使之与上井壁接触,从而迫使稳定器的背部成为钻具在下井壁的一个稳定支点。
PWP与近钻头稳定器相互作用,使动力钻具的倾斜、钻头偏移量和侧向力的方向都将更有利于井身轨迹沿增斜趋势延伸。
三、稳定器在定向井、水平井钻具组合中的作用原理稳定器在钻具组合中的安放位置不同,钻具组合所表现的性质就不同,一般地将,近钻头稳定器离钻头越近,钻头的增斜力就越大,反之钻头的增斜力则越小。
对于用两只以上稳定器的钻具组合来讲,一号稳定器和二号稳定器之间的距离在有效范围内越大,钻头的增斜力越大,反之钻头的增斜力越小。
下边应用力学理论对稳定器的作用原理进行分析。
图5-1 底部钻具组合示意图设a.井壁是刚性的;b.稳定器与井壁之间无摩擦;c.钻柱旋转无影响;d.钻具组合中共有n 个稳定器。
根据纵横连续梁理论,那么第i (i=1,2,…,n )个稳定器的三弯矩方程为:式 中:S i 第i 段钻柱的轴向力 N M i 第i 个稳定器处的钻柱内弯矩 N ²M R i 第i 个稳定器处的井壁反力 N R 0 钻头处的井壁反力 N Q i 第i 段钻柱的横向载荷 N/m I i 第i 段钻柱的惯性矩 m4 E 钻柱的弹性模量 N/m2 P i 第i 段钻柱在空气中单位长度重量 N/m ρc 钢材密度 g/cm3 ρm 钻井液密度 g/cm3 α 井斜角 (°) Δr i 第i 个稳定器与井壁之间的半径差值 mi i i i i i i i i i i i i i i i i i i i i iii EQ I L q I L q M I L M I L I L M I L 64421311131111111+--=+⎪⎪⎭⎫ ⎝⎛++++++++++++-γγαββα211123)2sin(3I i i i i ii i i i i u u u L r r L r r Q -=∆-∆-∆-∆=++-α212324)(3)2(23)2(3⎪⎪⎭⎫ ⎝⎛=-=-=i ii i ii i i i i i I EIL S u u u tgu u tg u u γβY i 第i 段钻柱的最大挠度 m θφ 钻头转角 rad切点处的辅助方程:第i 个稳定器处的井壁反力式 中:由上述三式可以求得钻头处的侧向力Pc :式中 Δr I =D i -D 井眼D I 为稳定器的外径, D 井眼 为井眼直径。
上式表明了稳定器的安放位置、外径对钻头的侧向力起着重要作用。
当井径一定时,稳定器外径在有限范围内越大,钻头的增斜力越大。
安放位置离钻头越远,钻头增斜力越小。
四、稳定器在定向井、水平井轨迹控制中的应用实践稳定器在钻具组合中的工作原理,早已在一般直井和定向井的钻井实践中得到了认识。
由于水平井和大位移井在世界各油田的普及与发展,使得人们对稳定器的工作原理及其作用下的造斜规律取得了更为深刻的认识,虽然理论推导和公式计算与实际有一定差距,但也正确地反映了其作用规律。
下边针对多年来的钻井实践,通过对部分井使用情况的统计分析,•可以看出稳定器在钻具组合中影响造斜性能的一般规律。
1111311111246+++++++++∆-∆=+n n n n n n n n n n n L r r EI L q EI L M γα"'i i i R R R +=1111211"1112'1)(21)(2+++++++--⎥⎦⎤⎢⎣⎡∆-∆--+=⎥⎦⎤⎢⎣⎡∆-∆+-+=i i i i i i i i ii i i i i i ii iL r r S M M L q R L r r S M M L q R ii i i i i c L r S M L q R P 1220⎪⎪⎭⎫ ⎝⎛∆-+-=-=稳定器间距与造斜率的相关关系注:表中 L1 为钻头与第一稳定器的间距, L2、L3 分别为第一、第二和第二、三稳定器的间距。
统计结果表明,在以转盘钻方式钻进过程中,稳定器间距在水平井钻具组合中对造斜率的影响基本上与普通井的规律相吻合:a)当L1<1.15m,L2<10m,L3<10m时,该工具组合有稳斜、稳平作用。
b)当L1<1.15m,L2≈20m,工具组合有增斜效果,且造斜率随着L2的增大而增大。
c)•当L1>4m,L2≈20m,工具组合有降斜效果,且降斜率随着L1的增大而提高。
应当指出,以上规律仅为胜利油田范围内部分水平井的统计结果,现场操作者的实际经验、操作水平以及地质情况对工具造斜性能的影响都是非常重要的,因此所提供的数据只能作为使用者在设计钻具组合时的参考。
水平井特殊管具一、无磁钻铤1. 无磁钻铤的材料及性能无磁钻铤使用无磁材料制成,目前现场使用无磁钻铤的材料多为孟乃尔合金(monels)•,它的弹性模量为:E=26*106磅/英寸 ,普通钢钻铤弹性模量为:E=29*106磅/英寸 ,铝为∶E=11*106磅/英寸 。
由于无磁钻铤的机械性能不同于普通钻铤,弹性模量较小,且费用高,因此使用应特别小心防止损坏。