热力学与统计物理课后习题答案
《热力学与统计物理》第四版(汪志诚)课后题答案
若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或(5)式(5)就是由所给求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。
问:(a )压强要增加多少才能使铜块的体积维持不变?(b )若压强增加100,铜块的体积改变多少?解:(a )根据1.2题式(2),有(1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。
如果系统的体积不变,与的关系为(2)在和可以看作常量的情形下,将式(2)积分可得11,T T pακ==11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰00(,)T p ()0,T p ,T pV V000ln=ln ln ,V T pV T p -000p V pV C T T ==.pV CT =11,T T pακ==0Cnp 51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和10Cnp np .T dVdT dp Vακ=-dVdTdpdpdT.Tdp dT ακ=αTκ(1)(2)(3)根据1.13题式(6),对于§1.9中的准静态绝热过程(二)和(四),有(4) (5)从这两个方程消去和,得(6)故(7)所以在是温度的函数的情形下,理想气体卡诺循环的效率仍为(8)1.14试根据热力学第二定律证明两条绝热线不能相交。
解:假设在图中两条绝热线交于点,如图所示。
设想一等温线与两条绝热线分别交于点和点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在2111ln ,V Q RT V =3224ln,V Q RT V =32121214lnln .V V W Q Q RT RT V V =-=-1223()(),F T V F T V =2411()(),F T V F T V =1()F T 2()F T 3214,V V V V =2121()ln,V W R T T V =-γ2111.T WQ T η==-p V-CAB故电阻器的熵变可参照§1.17例二的方法求出,为1.19 均匀杆的温度一端为,另一端为,试计算达到均匀温度后的熵增。
热力学与统计物理学课后习题及解答
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T k 。
解:由理想气体的物态方程为 nRT PV = 可得: 体胀系数:TP nR V T V V αp 111==⎪⎭⎫ ⎝⎛∂∂= 压强系数:TV nR P T P P βV 111==⎪⎭⎫ ⎝⎛∂∂=等温压缩系数:P P nRT V P V V κT 1)(112=−⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∂∂−=1.2 证明任何一种具有两个独立参量P T ,的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:()⎰−=dP κdT αV T ln 如果PκT αT 11==,,试求物态方程。
解: 体胀系数:p T V V α⎪⎭⎫ ⎝⎛∂∂=1,等温压缩系数:TT P V V κ⎪⎭⎫ ⎝⎛∂∂−=1 以P T ,为自变量,物质的物态方程为:()P T V V ,= 其全微分为:dP κV VdT αdP P V dT T V dV T Tp −=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=,dP κdT αV dV T −= 这是以P T ,为自变量的全微分,沿任意的路线进行积分得:()⎰−=dP κdT αV T ln 根据题设 ,将P κT αT 1,1==,代入:⎰⎪⎭⎫ ⎝⎛−=dP P dT T V 11ln 得:C pT V +=lnln ,CT PV =,其中常数C 由实验数据可确定。
1.4 描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是()0£=T L f ,,,实验通常在1n p 下进行,其体积变化可以忽略。
线胀系数定义为:£1⎪⎭⎫ ⎝⎛∂∂=T L L α,等温杨氏模量定义为:TL A L Y ⎪⎭⎫ ⎝⎛∂∂=£,其中A 是金属丝的截面积。
一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。
如果温度变化范围不大,可以看作常量。
热力学与统计物理答案 第一章
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT =(1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2)11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3)2111.T T V nRT V p V p p κ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭(4) 1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1)全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为 11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T p V T p -即 00p V pV C T T ==(常量),或 .pV CT =(5)式(5)就是由所给11,T T pακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.4 简单固体和液体的体胀系数α和等温压缩系数T κ数值都很小,在一定温度范围内可以把α和T κ看作常量. 试证明简单固体和液体的物态方程可近似为()()000(,),01.T V T p V T T T p ακ=+--⎡⎤⎣⎦解: 以,T p 为状态参量,物质的物态方程为(),.V V T p =根据习题1.2式(2),有.T dVdT dp Vακ=- (1) 将上式沿习题1.2图所示的路线求线积分,在α和T κ可以看作常量的情形下,有()()000ln ,T VT T p p V ακ=--- (2)或 ()()()()0000,,.T T T p p V T p V T p eακ---= (3)考虑到α和T κ的数值很小,将指数函数展开,准确到α和T κ的线性项,有()()()()0000,,1.ακ=+---⎡⎤⎣⎦T V T p V T p T T p p (4)如果取00p =,即有()()()00,,01.T V T p V T T T p ακ=+--⎡⎤⎣⎦(5)1.5 描述金属丝的几何参量是长度L ,力学参量是张力J ,物态方程是(),,0f J L T =实验通常在1n p 下进行,其体积变化可以忽略。
热力学和统计物理的答案解析第二章
第二章 均匀物质的热力学性质2.1 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加.解:根据题设,气体的压强可表为(),p f V T = (1)式中()f V 是体积V 的函数. 由自由能的全微分 dF SdT pdV =--得麦氏关系.T VS p V T ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 将式(1)代入,有().T VS p p f V V T T ∂∂⎛⎫⎛⎫=== ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 由于0,0p T >>,故有0T S V ∂⎛⎫>⎪∂⎝⎭. 这意味着,在温度保持不变时,该气体的熵随体积而增加.2.2 设一物质的物态方程具有以下形式:(),p f V T =试证明其内能与体积无关.解:根据题设,物质的物态方程具有以下形式:(),p f V T = (1)故有().Vp f V T ∂⎛⎫= ⎪∂⎝⎭ (2) 但根据式(2.2.7),有,T VU p T p V T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 所以()0.TU Tf V p V ∂⎛⎫=-= ⎪∂⎝⎭ (4) 这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T 的函数.2.3 求证: ()0;HS a p ⎛⎫∂< ⎪∂⎝⎭ ()0.U S b V ∂⎛⎫> ⎪∂⎝⎭解:焓的全微分为.dH TdS Vdp =+ (1)令0dH =,得0.HS Vp T ⎛⎫∂=-< ⎪∂⎝⎭ (2) 内能的全微分为.dU TdS pdV =- (3)令0dU =,得0.U S p V T∂⎛⎫=> ⎪∂⎝⎭ (4)2.4 已知0T UV ∂⎛⎫= ⎪∂⎝⎭,求证0.TU p ⎛⎫∂= ⎪∂⎝⎭ 解:对复合函数(,)(,(,))U T P U T V T p = (1)求偏导数,有.T T TU U V p V p ⎛⎫⎛⎫∂∂∂⎛⎫= ⎪⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (2) 如果0TU V ∂⎛⎫=⎪∂⎝⎭,即有0.TU p ⎛⎫∂= ⎪∂⎝⎭ (3) 式(2)也可以用雅可比行列式证明:(,)(,)(,)(,)(,)(,)T U U T p p T U T V T V T p T ⎛⎫∂∂= ⎪∂∂⎝⎭∂∂=∂∂.T TU V V p ⎛⎫∂∂⎛⎫=⎪ ⎪∂∂⎝⎭⎝⎭ (2)2.5 试证明一个均匀物体的在准静态等压过程中熵随体积的增减取决于等压下温度随体积的增减.解:热力学用偏导数pS V ∂⎛⎫⎪∂⎝⎭描述等压过程中的熵随体积的变化率,用pT V ∂⎛⎫⎪∂⎝⎭描述等压下温度随体积的变化率. 为求出这两个偏导数的关系,对复合函数(,)(,(,))S S p V S p T p V == (1)求偏导数,有.p p p p pC S S T T V T V T V ∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2) 因为0,0p C T >>,所以p S V ∂⎛⎫⎪∂⎝⎭的正负取决于pT V ∂⎛⎫⎪∂⎝⎭的正负. 式(2)也可以用雅可经行列式证明:(,)(,)(,)(,)(,)(,)P S S p V V p S p T p T p V p ∂∂⎛⎫= ⎪∂∂⎝⎭∂∂=∂∂P PS T T V ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2)2.6 试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落.解:气体在准静态绝热膨胀过程和节流过程中的温度降落分别由偏导数S T p ⎛⎫∂ ⎪∂⎝⎭和HT p ⎛⎫∂ ⎪∂⎝⎭描述. 熵函数(,)S T p 的全微分为 .P TS S dS dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在可逆绝热过程中0dS =,故有.T P p SPS V T p T T Sp C T ⎛⎫∂∂⎛⎫⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (1) 最后一步用了麦氏关系式(2.2.4)和式(2.2.8).焓(,)H T p 的全微分为.P TH H dH dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在节流过程中0dH =,故有.T PpH PH V T V p T T H p C T ⎛⎫∂∂⎛⎫- ⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (2) 最后一步用了式(2.2.10)和式(1.6.6). 将式(1)和式(2)相减,得0.pSH T T V p p C ⎛⎫⎛⎫∂∂-=> ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 所以在相同的压强降落下,气体在绝热膨胀中的温度降落大于节流过程中的温度降落. 这两个过程都被用来冷却和液化气体.由于绝热膨胀过程中使用的膨胀机有移动的部分,低温下移动部分的润滑技术是十分困难的问题,实际上节流过程更为常用. 但是用节流过程降温,气体的初温必须低于反转温度. 卡皮查(1934年)将绝热膨胀和节流过程结合起来,先用绝热膨胀过程使氦降温到反转温度以下,再用节流过程将氦液化.2.7 实验发现,一气体的压强p 与体积V 的乘积以及内能U 都只是温度的函数,即(),().pV f T U U T ==试根据热力学理论,讨论该气体的物态方程可能具有什么形式.解:根据题设,气体具有下述特性:(),pV f T = (1)().U U T = (2)由式(2.2.7)和式(2),有0.T VU p T p V T ∂∂⎛⎫⎛⎫=-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 而由式(1)可得.Vp T df T T V dT ∂⎛⎫= ⎪∂⎝⎭ (4) 将式(4)代入式(3),有,dfTf dT= 或.df dT f T= (5) 积分得ln ln ln ,f T C =+或,pV CT = (6)式中C 是常量. 因此,如果气体具有式(1),(2)所表达的特性,由热力学理论知其物态方程必具有式(6)的形式. 确定常量C 需要进一步的实验结果.2.8 证明2222,,p V T Vp TC C p V T T V T p T ∂⎛⎫⎛⎫⎛⎫∂∂∂⎛⎫==- ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭并由此导出0020222,.VV VV Vp p p p pp C C T dV T p C C T dp T ⎛⎫∂=+ ⎪∂⎝⎭⎛⎫∂=- ⎪∂⎝⎭⎰⎰根据以上两式证明,理想气体的定容热容量和定压热容呈只是温度T 的函数.解:式(2.2.5)给出.V VS C T T ∂⎛⎫= ⎪∂⎝⎭ (1) 以T ,V 为状态参量,将上式求对V 的偏导数,有2222,V T VC S S S T T T V V T T VT ⎛⎫⎛⎫⎛⎫∂∂∂∂⎛⎫===⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2) 其中第二步交换了偏导数的求导次序,第三步应用了麦氏关系(2.2.3). 由理想气体的物态方程pV nRT =知,在V 不变时,p 是T 的线性函数,即220.Vp T ⎛⎫∂= ⎪∂⎝⎭ 所以 0.V TC V ∂⎛⎫= ⎪∂⎝⎭这意味着,理想气体的定容热容量只是温度T 的函数. 在恒定温度下将式(2)积分,得0202.VV VV Vp C C T dV T ⎛⎫∂=+ ⎪∂⎝⎭⎰ (3) 式(3)表明,只要测得系统在体积为0V 时的定容热容量,任意体积下的定容热容量都可根据物态方程计算出来.同理,式(2.2.8)给出.p pS C T T ∂⎛⎫= ⎪∂⎝⎭ (4)以,T p 为状态参量,将上式再求对p 的偏导数,有2222.p p TC S S S T T T p p T T p T ∂⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂===- ⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (5)其中第二步交换了求偏导数的次序,第三步应用了麦氏关系(2.2.4). 由理想气体的物态方程pV nRT =知,在p 不变时V 是T 的线性函数,即220.pV T ⎛⎫∂= ⎪∂⎝⎭ 所以0.p TC p ∂⎛⎫= ⎪∂⎝⎭ 这意味着理想气体的定压热容量也只是温度T 的函数. 在恒定温度下将式(5)积分,得0202.pp pp pV C C T dp T ⎛⎫∂=+ ⎪∂⎝⎭⎰ 式(6)表明,只要测得系统在压强为0p 时的定压热容量,任意压强下的定压热容量都可根据物态方程计算出来.2.9 证明范氏气体的定容热容量只是温度T 的函数,与比体积无关.解:根据习题2.8式(2)22,V T VC p T V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 范氏方程(式(1.3.12))可以表为22.nRT n a p V nb V=-- (2) 由于在V 不变时范氏方程的p 是T 的线性函数,所以范氏气体的定容热容量只是T 的函数,与比体积无关.不仅如此,根据2.8题式(3)0202(,)(,),VV V V Vp C T V C T V T dV T ⎛⎫∂=+ ⎪∂⎝⎭⎰ (3)我们知道,V →∞时范氏气体趋于理想气体. 令上式的0V →∞,式中的0(,)V C T V 就是理想气体的热容量. 由此可知,范氏气体和理想气体的定容热容量是相同的.顺便提及,在压强不变时范氏方程的体积V 与温度T 不呈线性关系. 根据2.8题式(5)22,V T VC p V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 这意味着范氏气体的定压热容量是,T p 的函数.2.10 证明理想气体的摩尔自由能可以表为,,00,002ln ln V m m V m m m m V m m m mC F C dT U T dT RT V TS TdTT C dT U TS RT V T=⎰+-⎰--=-⎰⎰+--解:式(2.4.13)和(2.4.14)给出了理想气体的摩尔吉布斯函数作为其自然变量,T p 的函数的积分表达式. 本题要求出理想气体的摩尔自由能作为其自然变量,m T V 的函数的积分表达式. 根据自由能的定义(式(1.18.3)),摩尔自由能为,m m m F U TS =- (1)其中m U 和m S 是摩尔内能和摩尔熵. 根据式(1.7.4)和(1.15.2),理想气体的摩尔内能和摩尔熵为,0,m V m m U C dT U =+⎰ (2),0ln ,V m m m m C S dT R V S T=++⎰(3)所以,,00ln .V m m V m m m m C F C dT T dT RT V U TS T=--+-⎰⎰(4)利用分部积分公式 ,xdy xy ydx =-⎰⎰令,1,,V m x Ty C dT ==⎰可将式(4)右方头两项合并而将式(4)改写为,002ln .m V mm m m dTF T C dT RT V U TS T=--+-⎰⎰ (5)2.11 求范氏气体的特性函数m F ,并导出其他的热力学函数. 解:考虑1mol 的范氏气体. 根据自由能全微分的表达式(2.1.3),摩尔自由能的全微分为,m m m dF S dT pdV =-- (1)故2,m m m m TF RT ap V V b V ⎛⎫∂=-=-+ ⎪∂-⎝⎭ (2) 积分得()(),ln ().m m m maF T V RT V b f T V =---+ (3) 由于式(2)左方是偏导数,其积分可以含有温度的任意函数()f T . 我们利用V →∞时范氏气体趋于理想气体的极限条件定出函数()f T . 根据习题2.11式(4),理想气体的摩尔自由能为,,00ln .V m m V m m m m C F C dT dT RT V U TS T=--+-⎰⎰(4)将式(3)在m V →∞时的极限与式(4)加以比较,知,,00().V m V m m m C f T C dT T dT U TS T=-+-⎰⎰(5)所以范氏气体的摩尔自由能为 ()(),,00,ln .V m m m V m m m m mC aF T V C dT T dT RT V b U TS TV =----+-⎰⎰(6) 式(6)的(),m m F T V 是特性函数范氏气体的摩尔熵为(),0ln .V m mm m m C F S dT R V b S T T∂=-=+-+∂⎰ (7)摩尔内能为,0.m m m V m m maU F TS C dT U V =+=-+⎰ (8)2.12 一弹簧在恒温下的恢复力X 与其伸长x 成正比,即X Ax =-,比例系数A 是温度的函数. 今忽略弹簧的热膨胀,试证明弹簧的自由能F ,熵S 和内能U 的表达式分别为()()()()()()2221,,0,2,,0,21,,0.2F T x F T Ax x dAS T x S T dT dA U T x U T A T x dT =+=-⎛⎫=+- ⎪⎝⎭ 解:在准静态过程中,对弹簧施加的外力与弹簧的恢复力大小相等,方向相反. 当弹簧的长度有dx 的改变时,外力所做的功为.dW Xdx =- (1)根据式(1.14.7),弹簧的热力学基本方程为.dU TdS Xdx =- (2)弹簧的自由能定义为,F U TS =-其全微分为.dF SdT Xdx =--将胡克定律X Ax =-代入,有,dF SdT Axdx =-+ (3)因此.TF Ax x ∂⎛⎫= ⎪∂⎝⎭ 在固定温度下将上式积分,得()()0,,0xF T x F T Axdx =+⎰()21,0,2F T Ax =+(4) 其中(),0F T 是温度为T ,伸长为零时弹簧的自由能.弹簧的熵为()21,0.2F dAS S T x T dT∂=-=-∂ (5) 弹簧的内能为()21,0.2dA U F TS U T A T x dT ⎛⎫=+=+- ⎪⎝⎭(6) 在力学中通常将弹簧的势能记为21,2U Ax =力学 没有考虑A 是温度的函数. 根据热力学,U 力学是在等温过程中外界所做的功,是自由能.2.13 X 射线衍射实验发现,橡皮带未被拉紧时具有无定形结构;当受张力而被拉伸时,具有晶形结构. 这一事实表明,橡皮带具有大的分子链.(a )试讨论橡皮带在等温过程中被拉伸时,它的熵是增加还是减少;(b )试证明它的膨胀系数1ST L L α∂⎛⎫= ⎪∂⎝⎭是负的.解:(a )熵是系统无序程度的量度.橡皮带经等温拉伸过程后由无定形结构转变为晶形结构,说明过程后其无序度减少,即熵减少了,所以有0.TS L ∂⎛⎫< ⎪∂⎝⎭ (1) (b )由橡皮带自由能的全微分dF SdT JdL =-+可得麦氏关系.T LS J L T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 综合式(1)和式(2),知0.LJ T ∂⎛⎫> ⎪∂⎝⎭ (3)由橡皮带的物态方程(),,0F J L T =知偏导数间存在链式关系1,L J TJ T L T L J ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 即.J L TL J L T T J ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (4) 在温度不变时橡皮带随张力而伸长说明0.TL J ∂⎛⎫> ⎪∂⎝⎭ (5) 综合式(3)-(5)知0,JL T ∂⎛⎫< ⎪∂⎝⎭ 所以橡皮带的膨胀系数是负的,即10.JL L T α∂⎛⎫=< ⎪∂⎝⎭ (6)2.14 假设太阳是黑体,根据下列数据求太阳表面的温度;单位时间内投射到地球大气层外单位面积上的太阳辐射能量为3211.3510J m s --⨯⋅⋅(该值称为太阳常量),太阳的半径为86.95510m ⨯,太阳与地球的平均距离为111.49510m ⨯.解:以s R 表示太阳的半径. 顶点在球心的立体角d Ω在太阳表面所张的面积为2s R d Ω. 假设太阳是黑体,根据斯特藩-玻耳兹曼定律(式(2.6.8)),单位时间内在立体角d Ω内辐射的太阳辐射能量为42.s T R d Ωσ (1)单位时间内,在以太阳为中心,太阳与地球的平均距离se R 为半径的球面上接受到的在立体角d Ω内辐射的太阳辐射能量为321.3510.se R d Ω⨯令两式相等,即得132421.3510.ses R T R σ⎛⎫⨯⨯= ⎪⎝⎭(3)将,s R σ和se R 的数值代入,得5760.T K ≈2.15 计算热辐射在等温过程中体积由1V 变到2V 时所吸收的热量. 解:根据式(1.14.3),在可逆等温过程中系统吸收的热量为.Q T S =∆ (1)式(2.6.4)给出了热辐射的熵函数表达式34.3S aT V =(2) 所以热辐射在可逆等温过程中体积由1V 变到2V 时所吸收的热量为()4214.3Q aT V V =- (3)2.16 试讨论以平衡辐射为工作物质的卡诺循环,计算其效率. 解:根据式(2.6.1)和(2.6.3),平衡辐射的压强可表为41,3p aT = (1) 因此对于平衡辐射等温过程也是等压过程. 式(2.6.5)给出了平衡辐射在可逆绝热过程(等熵过程)中温度T 与体积V 的关系3().T V C =常量 (2)将式(1)与式(2)联立,消去温度T ,可得平衡辐射在可逆绝热过程中压强p 与体积V 的关系43pV C '=(常量). (3)下图是平衡辐射可逆卡诺循环的p V -图,其中等温线和绝热线的方程分别为式(1)和式(3).下图是相应的T S -图. 计算效率时应用T S -图更为方便.在由状态A 等温(温度为1T )膨胀至状态B 的过程中,平衡辐射吸收的热量为()1121.Q T S S =- (4)在由状态C 等温(温度为2T )压缩为状态D 的过程中,平衡辐射放出的热量为()2221.Q T S S =- (5) 循环过程的效率为()()2212211211111.T S S Q TQ T S S T η-=-=-=-- (6)2.17 如图所示,电介质的介电常量()DT Eε=与温度有关. 试求电路为闭路时电介质的热容量与充电后再令电路断开后的热容量之差.解:根据式(1.4.5),当介质的电位移有dD 的改变时,外界所做的功是đ,W VEdD = (1)式中E 是电场强度,V 是介质的体积. 本题不考虑介质体积的改变,V 可看作常量. 与简单系统đW pdV =-比较,在变换,p E V VD →-→ (2)下,简单系统的热力学关系同样适用于电介质.式(2.2.11)给出.p V V pp V C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3)在代换(2)下,有,E D D EE D C C VT T T ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ (4) 式中E C 是电场强度不变时介质的热容量,D C 是电位移不变时介质的热容量. 电路为闭路时,电容器两极的电位差恒定,因而介质中的电场恒定,所以D C 也就是电路为闭路时介质的热容量. 充电后再令电路断开,电容器两极有恒定的电荷,因而介质中的电位移恒定,所以D C 也就是充电后再令电路断开时介质的热容量.电介质的介电常量()DT Eε=与温度有关,所以 ,ED dE E T dT ∂⎛⎫= ⎪∂⎝⎭2,DE D d T dT εε∂⎛⎫=- ⎪∂⎝⎭ (5) 代入式(4),有2E D D d d C C VT EdT dTεεε⎛⎫⎛⎫-=-- ⎪⎪⎝⎭⎝⎭223.D d VT dT εε⎛⎫= ⎪⎝⎭(6)2.18 试证明磁介质H C 与M C 之差等于20H M M TH M C C T T H μ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭解:当磁介质的磁化强度有dM 的改变时,外界所做的功是0đ,W V HdM μ= (1)式中H 是电场强度,V 是介质的体积.不考虑介质体积的改变,V 可看作常量. 与简单系统đW pdV =-比较,在变换0p H,V VM μ→-→ (2)下,简单系统的热力学关系同样适用于磁介质. 式(2.2.11)给出.p V V pp V C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3)在代换(2)下,有0H M M HH M C C T T T μ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ (4)式中H C 是磁场强度不变时介质的热容量,M C 是磁化强度不变时介质的热容量. 考虑到1H M TM T H T H M ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (5) (5)式解出HM T ∂⎛⎫⎪∂⎝⎭,代入(4)式,得 20H M M TH M C C T T H μ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭2.19 已知顺磁物质遵从居里定律:().CM H T=居里定律 若维物质的温度不变,使磁场由0增至H ,求磁化热.解:式(1.14.3)给出,系统在可逆等温过程中吸收的热量Q 与其在过程中的熵增加值∆S 满足.Q T S =∆ (1)在可逆等温过程中磁介质的熵随磁场的变化率为(式(2.7.7))0.T HS m H T μ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 如果磁介质遵从居里定律(),CVm H C T=是常量 (3)易知2Hm CV H T T ∂⎛⎫=- ⎪∂⎝⎭, (4) 所以0.TCV H S H T μ∂⎛⎫=- ⎪∂⎝⎭2(5) 在可逆等温过程中磁场由0增至H 时,磁介质的熵变为202.2HTCV H S S dH H T μ∂⎛⎫∆==- ⎪∂⎝⎭⎰(6) 吸收的热量为20.2CV H Q T S Tμ=∆=- (7)2.20 已知超导体的磁感强度0()0B H M μ=+=,求证: (a )M C 与M 无关,只是T 的函数,其中M C 是磁化强度M 保持不变时的热容量.(b )200.2M M U C dT U μ=-+⎰(c )0.MC S dT S T=+⎰解:先对超导体的基本电磁学性质作一粗浅的介绍.1911年昂尼斯(Onnes )发现水银的电阻在4.2K 左右突然降低为零,如图所示. 这种在低温下发生的零电阻现象称为超导电性. 具有超导电性质的材料称为超导体. 电阻突然消失的温度称为超导体的临界温度. 开始人们将超导体单纯地理解为具有无穷电导率的导体. 在导体中电流密度e J 与电场强度E 满足欧姆定律.e JE σ= (1)如果电导率σ→∞,导体内的电场强度将为零. 根据法拉第定律,有,BV E t∂⨯=-∂ (2) 因此对于具有无穷电导率的导体,恒有0.Bt∂=∂ (3) 下图(a )显示具有无穷电导率的导体的特性,如果先将样品降温到临界温度以下,使之转变为具有无穷电导率的导体,然后加上磁场,根据式(3)样品内的B 不发生变化,即仍有0B =但如果先加上磁场,然后再降温到临界温度以下,根据式(3)样品内的B 也不应发生变化,即0.B ≠这样一来,样品的状态就与其经历的历史有关,不是热力学平衡状态了. 但是应用热力学理论对超导体进行分析,其结果与实验是符合的. 这种情况促使人们进行进一步的实验研究.1933年迈斯纳(Meissner )将一圆柱形样品放置在垂置于其轴线的磁场中,降低到临界温度以下,使样品转变为超导体,发现磁通量完全被排斥于样品之外,即超导体中的B 恒为零:()00.B H M μ=+= (4)这一性质称为完全抗磁性. 上图(b )画出了具有完全抗磁性的样品在先冷却后加上磁场和先加上磁场后冷却的状态变化,显示具有完全抗磁性的超导体,其状态与历史无关.1953年弗·伦敦(F.London )和赫·伦敦(H.London )兄弟二人提出了一个唯象理论,从统一的观点概括了零电阻和迈斯纳效应,相当成功地预言了超导体的一些电磁学性质.他们认为,与一般导体遵从欧姆定律不同,由于零电阻效应,超导体中电场对电荷的作用将使超导电子加速. 根据牛顿定律,有,m qE =v (5)式中m 和q 分别是超导电子的质量和电荷,v 是其加速度. 以s n 表示超导电子的密度,超导电流密度s J 为.=s s n q v J (6)综合式(5)和式(6),有1,s t Λ∂=∂J E (7) 其中2.s mΛn q=(8) 将式(7)代入法拉第定律(2),有,s Λt t ∂∂⎡⎤∇⨯=-⎢⎥∂∂⎣⎦B J或[]()0.s Λt∂∇⨯+=∂J B (9) 式(9)意味着()s Λ∇⨯+J B 不随时间变化,如果在某一时刻,有(),s Λ∇⨯=-J B (10)则在任何时刻式(10)都将成立. 伦敦假设超导体满足式(10). 下面证明,在恒定电磁场的情形下,根据电磁学的基本规律和式(10)可以得到迈斯纳效应. 在恒定电磁场情形下,超导体内的电场强度显然等于零,否则s J 将无限增长,因此安培定律给出0.s μ∇⨯=B J (11)对上式取旋度,有0(),s Λμμ∇⨯∇⨯∇⨯=-B J B (12)其中最后一步用了式(10). 由于2()().∇⨯∇⨯=∇∇⋅-∇B B B而0∇⋅=B ,因此式(12)给出20μΛ∇=B B (13) 式(13)要求超导体中B 从表面随浓度很快地减少. 为简单起见,我们讨论一维情形. 式(13)的一维解是e≈B (14)式(14)表明超导体中B 随深度x 按指数衰减.如果2310cm s n ≈,可以得到6210cm .-≈⨯这样伦敦理论不仅说明了迈斯纳效应,而且预言磁屏蔽需要一个有限的厚度,磁场的穿透浓度是-610cm 的量级. 实验证实了这一预言. 综上所述,伦敦理论用式(7)和式(10)s ,()s tΛΛ∂=∂∇⨯=-J B J B(15) 来概括零电阻和迈斯纳效应,以式(15)作为决定超导体电磁性质的基本方程. 迈斯纳效应的实质是,磁场中的超导体会在表面产生适当的超导电流分布,使超导体内部0.=B 由于零电阻,这超导电流是永久电流,不会衰减. 在外磁场改变时,表面超导电流才会相应地改变.伦敦理论是一个唯象理论. 1957年巴丁、库柏和徐瑞佛(Bardeen ,Cooper ,Schriffer )发展了超导的微观理论,阐明了低温超导的微观机制,并对超导体的宏观特性给予统计的解释.下面回到本题的求解. 由式(3)知,在超导体内部恒有,M H =- (16)这是超导体独特的磁物态方程. 通常的磁物态方程(,,)0f H M T =对超导体约化为式(16).根据式(16),有0,0.HMM T H T ∂⎛⎫= ⎪∂⎝⎭∂⎛⎫= ⎪∂⎝⎭ (17)(a ) 考虑单位体积的超导体. 式(2.7.2)给出准静态过程中的微功为0đ.W HdM μ= (18) 与简单系统的微功đW pdV =-比较知在代换0,p H V M μ→→下,简单系统得到的热力学关系同样适用于超导体. 2.9题式(2)给出22.V T VC p T V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ 超导体相应的热力学关系为2020.M T MC H T ΜT μ⎛⎫∂∂⎛⎫=-= ⎪ ⎪∂∂⎝⎭⎝⎭ (19) 最后一步用了式(17). 由式(19)可知,M C 与M 无关,只是T 的函数.(b )相应于简单系统的(2.2.7)式,T VU p T p V T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ 超导体有000,T MU ΗT H M ΜT μμμ∂∂⎛⎫⎛⎫=-+=- ⎪ ⎪∂∂⎝⎭⎝⎭ (20) 其中第二步用了式(17).以,T M 为自变量,内能的全微分为0.M T M U U dU dT dMT M C dT MdM μ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭=- 积分得超导体内能的积分表达式为200.2M M U C dT U μ=-+⎰ (21)第一项是不存在磁场时超导体的内能,第二项代表外磁场使超导体表面感生超导电流的能量. 第二项是负的,这是式(16)的结果,因此处在外磁场中超导体的内能低于无磁场时的内能. (c )相应于简单系统的(2.4.5)式0,V V C p S dT dV S T T ⎡⎤∂⎛⎫=++ ⎪⎢⎥∂⎝⎭⎣⎦⎰超导体有00M MC ΗS dT dM S T T μ∂⎛⎫=-+ ⎪∂⎝⎭⎰0,MC dT S T=+⎰(22) 第二步用了式(17). 这意味着,处在外磁场中超导体表面的感生超导电流对熵(无序度)没有贡献.补充题1 温度维持为25C ,压强在0至1000n p 之间,测得水的实验数据如下:()363114.510 1.410cm mol K .pV p T ----∂⎛⎫=⨯+⨯⋅⋅ ⎪∂⎝⎭ 若在25C 的恒温下将水从1n p 加压至1000n p ,求水的熵增加值和从外界吸收的热量.解:将题给的pV T ∂⎛⎫⎪∂⎝⎭记为.pV a bp T ∂⎛⎫=+ ⎪∂⎝⎭ (1) 由吉布斯函数的全微分dG SdT Vdp =-+得麦氏关系.p TV S T p ⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 因此水在过程中的熵增加值为()212121p P T p p pp p S S dpP V dp T a bp dp∂⎛⎫∆= ⎪∂⎝⎭∂⎛⎫=- ⎪∂⎝⎭=-+⎰⎰⎰()()222121.2b a p p p p ⎡⎤=--+-⎢⎥⎣⎦(3)将11,1000n n n p p p p ==代入,得110.527J mol K .S --∆=-⋅⋅根据式(1.14.4),在等温过程中水从外界吸收的热量Q 为 ()112980.527J mol 157J mol .Q T S--=∆=⨯-⋅=-⋅补充题2 试证明范氏气体的摩尔定压热容量与摩尔定容热容量之差为(),,23.21p m V m m m R C C a V b V RT-=--解:根据式(2.2.11),有,,.m m p m V m V pV p C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 由范氏方程2m mRT a p V b V =-- 易得,m V m p R T V b∂⎛⎫= ⎪∂-⎝⎭()232.m m Tm p RT aV V V b ⎛⎫∂=-+ ⎪∂-⎝⎭ (2) 但1,m m V m Tp V p T T V p ⎛⎫⎛⎫∂∂∂⎛⎫=-⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭所以m V m pm Tp T V T p V ∂⎛⎫ ⎪∂⎝⎭∂⎛⎫=- ⎪∂⎛⎫∂⎝⎭ ⎪∂⎝⎭()()323,2m m mm RV V b RTV a V b -=-- (3)代入式(1),得(),,23.21p m V m m mR C C a V b RTV -=--(4)补充题3 承前1.6和第一章补充题3,试求将理想弹性体等温可逆地由0L 拉长至02L 时所吸收的热量和内能的变化.解:式(2.4.4)给出,以,T V 为自变量的简单系统,熵的全微分为.V VC p dS dT dV T T ∂⎛⎫=+ ⎪∂⎝⎭ (1) 对于本题的情形,作代换,,V L p →→-J (2)即有.L LJ TdS C dT T dL T ∂⎛⎫=- ⎪∂⎝⎭ (3) 将理想弹性体等温可逆地由0L 拉长至02L 时所吸收的热量Q 为002.L L LQ TdS T dL T ∂⎛⎫==- ⎪∂⎝⎭⎰⎰J (4) 由2020L L J bT L L ⎛⎫=- ⎪⎝⎭可得220002200021,L L L dL J L L b bT T L L L L L dT⎛⎫⎛⎫∂⎛⎫=--+ ⎪ ⎪⎪∂⎝⎭⎝⎭⎝⎭ (5) 代入式(4)可得0002222200022002L L L L L L L L Q bT dL bT a dL L L L L ⎛⎫⎛⎫=--++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ 0051,2bTL a T ⎛⎫=-- ⎪⎝⎭ (6)其中0001.dL L dTα=过程中外界所做的功为002220020,L L L L L L W JdL bT dL bTL L L ⎛⎫==-= ⎪⎝⎭⎰⎰(7) 故弹性体内能的改变为2005.2U W Q bT L α∆=+= (8)补充题4 承上题. 试求该弹性体在可逆绝热过程中温度随长度的变化率.解:上题式(3)已给出.L LJ TdS C dT T dL T ∂⎛⎫=- ⎪∂⎝⎭ (1)在可逆绝热过程中0dS =,故有.S L L T T J L C T ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 将习题2.15式(5)求得的LJ T ∂⎛⎫⎪∂⎝⎭代入,可得 2200022002.S L L L T bT L L T L C L L L L α⎡⎤⎛⎫⎛⎫∂⎛⎫=--+⎢⎥ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭⎣⎦(3)补充题5 实验测得顺磁介质的磁化率()T χ. 如果忽略其体积变化,试求特性函数(,)f M T ,并导出内能和熵.解:在磁介质的体积变化可以忽略时,单位体积磁介质的磁化功为(式(2.7.2))0đ.W HdM μ= (1) 其自由能的全微分为0.df SdT MdM μ=-+将()χ=T M H 代入,可将上式表为.Mdf SdT dM μχ=-+ (2)在固定温度下将上式对M 积分,得20(,)(,0).2()M f T M f T T μχ=+ (3)(,)f T M 是特性函数. 单位体积磁介质的熵为(),MS f T M T ∂⎡⎤=-⎢⎥∂⎣⎦221(,0).2d M S T dTμχχ=+ (4) 单位体积的内能为220002.22M d U f TS M T U dTμμχχχ=+=++ (5) 本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。
热力学统计物理第五版答案
热力学统计物理第五版答案【篇一:热力学与统计物理答案第四章】ass=txt>4.1 若将u看作独立变量t,v,n1,?,nk的函数,试证明:(a)u??nii?u?u?v; ?ni?v(b)ui??u?u?ui. ?ni?v解:(a)多元系的内能u?u?t,v,n1,?,nk?是变量v,n1,?,nk的一次齐函数. 根据欧勒定理(式(4.1.4)),有??u??uu??ni??v,(1) ??vi??ni?t,v,nj式中偏导数的下标ni指全部k个组元,nj指除i组元外的其他全部组元.(b)式(4.1.7)已给出v??nivi,i其中vi??u??niui,(2)i??v???u?偏摩尔体积和偏摩尔内能. 将式(2),u????i??ni?t,p,nj??ni?t,p,nj代入式(1),有??u???u?(3) nu?nv?n????iiii?i????v?t,nii??ni?t,v,njii上式对ni的任意取值都成立,故有4.2 证明?i?t,p,n1,?,nk?是n1,?,nk的零次齐函数???i?ni???0. ??ni?i???u???u?ui?vi??.(4) ?????v?t,ni??ni?t,v,nj解:根据式(4.1.9),化学势?i是i组元的偏摩尔吉布斯函数 ?i????g?.(1) ???ni?t,p,njg是广延量,是n1,?,nk的一次齐函数,即g?t,p,?n1,?,?nk???g?t,p,n1,?,nk?.(2)将上式对?求导,有左方??g?t,p,?n1,?,?nk???????g?t,p,?n1,?,?nk???ni???i??ni??nii???nig?t,p,?n1,?,?nk???ni?i?t,p,?n1,?,?nk?,(3)i右边????g?t,p,n1,?,nk??? ????g?t,p,n1,?,nk???ni?i?t,p,n1,?,nk?.(4)i令式(3)与式(4)相等,比较可知?i?t,p,?n1,?,?nk???i?t,p,n1,?,nk?. (5)???i?n??0. (6) ?j?j??ni?上式说明?i是n1,?,nk的零次齐函数. 根据欧勒定理(式(4.1.4)),有4.3 二元理想溶液具有下列形式的化学势:?1?g1?t,p??rtlnx1,?2?g2?t,p??rtlnx2,xi是溶液中i组元的摩尔分数. 当物其中gi?t,p?为纯i组元的化学势,质的量分别为n1,n2的两种纯液体在等温等压下合成理想溶液时,试证明混合前后(a)吉布斯函数的变化为?g?rt?n1lnx1?n2lnx2?.(b)体积不变,即?v?0.(c)熵变?s??r?n1lnx1?n2lnx2?. (d)焓变?h?0, 因而没有混合热. (e)内能变化为多少?解:(a)吉布斯函数是广延量,具有相加性. 混合前两纯液体的吉布斯函数为g0?t,p??n1g1?t,p??n2g2?t,p?.(1)根据式(4.1.8),混合后理想溶液的吉布斯函数为g?t,p??n1?1?t,p??n2?2?t,p??n1g1?t,p??n1rtinx1?n2g2?t,p??n2rtinx2.(2)混合前后吉布斯函数的变化为?g?g?t,p??g0?t,p?其中x1??rt?n1lnx1?n2lnx2?, (3)n1n2,x2?分别是溶液中组元1,2的摩尔分数. n1?n2n1?n2(b)根据式(4.1.10),混合前后体积的变化为????v???g??0. (4)?p??t,n1,n2(c)根据式(4.1.10),混合前后熵的变化为????s????g???t?p,n1,n2??r?n1lnx1?n2lnx2?. (5)注意x1和x2都小于1,故?s?0, 混合后熵增加了.(d)根据焓的定义h?g?ts, 将式(3)和式(5)代入,知混合前后焓的变化为?h??g?t?s?0.(6)混合是在恒温恒压下进行的.在等压过程中系统吸收的热量等于焓的增加值,式(6)表明混合过程没有混合热.(e)内能u?h?pv. 将式(6)和式(4)代入,知混合前后内能的变化为?u??h?p?v?0.(7)4.4 理想溶液中各组元的化学势为?i?gi?t,p??rtlnxi.(a)假设溶质是非挥发性的. 试证明,当溶液与溶剂的蒸气达到平衡时,相平衡条件为g1??g1?rtln?1?x?,其中g1?是蒸气的摩尔吉布斯函数,g1是纯溶剂的摩尔吉布斯函数,x是溶质在溶液中的摩尔分数.(b)求证:在一定温度下,溶剂的饱和蒸气压随溶质浓度的变化率为p??p???. ??1?x??x?t(c)将上式积分,得px?p0?1?x?,其中p0是该温度下纯溶剂的饱和蒸气压,px是溶质浓度为x时的饱和蒸气压. 上式表明,溶剂饱和蒸气压的降低与溶质的摩尔分数成正比. 该公式称为拉乌定律.解:(a)溶液只含一种溶质. 以x表示溶质在液相的摩尔分数,则溶剂在液相的摩尔分数为1?x. 根据式(4.6.17),溶剂在液相的化学势?1为?1?t,p,x??g1?t,p??rtln?1?x?.(1)??t,p?. (2) ?1??t,p??g1在溶质是非挥发性的情形下,气相只含溶剂的蒸气,其化学势为平衡时溶剂在气液两相的化学势应相等,即?1?t,p,x???1??t,p?.(3)??t,p?, (4) g1?t,p??rtln?1?x??g1将式(1)和式(2)代入,得式中已根据热学平衡和力学平衡条件令两相具有相同的温度t和压强p. 式(4)表明,在t,p,x三个变量中只有两个独立变量,这是符合吉布斯相律的.(b)令t保持不变,对式(4)求微分,得????g1???g1rtdp?dx?????dp. (5) 1?x??p?t??p?t??g???vm,所以式(5)可以表示为 ?p??t根据式(3.2.1),?rtdx, (6) 1?x?和vm分别是溶剂气相和液相的摩尔体积. 由于vm???vm,略去其中vm?vm??vm?dp??vm,并假设溶剂蒸气是理想气体,pvm??rt,可得rtp??p?????. (7) ????x?t?1?x?vm?1?x(c)将上式改写为dpdx??.(8) p1?x在固定温度下对上式积分,可得px?p0?1?x?, (9)式中p0是该温度下纯溶剂的饱和蒸气压,px是溶质浓度为x时溶剂的饱和蒸气压. 式(9)表明,溶剂饱和蒸气压的降低与溶质浓度成正比.4.5 承4.4题:(a)试证明,在一定压强下溶剂沸点随溶质浓度的变化率为rt??t??, ????x?pl1?x2其中l为纯溶剂的汽化热.(b)假设x??1. 试证明,溶液沸点升高与溶质在溶液中的浓度成正比,即rt2?t?x.l解:(a)习题4.4式(4)给出溶液与溶剂蒸气达到平衡的平衡【篇二:热力学统计物理_答案】程可由实验测得的体胀系数?及等温压缩系数??,根据下述积分求得:如果??,?t?1t1,试求物态方程。
热力学统计物理 课后习题 答案
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为nRT pV =由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数T pV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数p p nRT V p V V T 1)(112=-⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛∂∂-=κ 1.2证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测量的体胀系数和等温压缩系数,根据下述积分求得()⎰-=dp dT V T καln ,如果P T T 1,1==κα,试求物态方程。
解: 体胀系数 pT V V ⎪⎭⎫ ⎝⎛∂∂=1α 等温压缩系数 TT p V V ⎪⎪⎭⎫ ⎝⎛∂∂-=1κ 以T ,P 为自变量,物质的物态方程为 ()p T V V ,=其全微分为 dp V dT V dp p V dT T V dV T Tp κα-=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= dp dT VdV T κα-= 这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得()⎰-=dp dT V T καln 根据题设 , 若 pT T 1,1==κα ⎰⎪⎪⎭⎫ ⎝⎛-=dp p dT T V 11ln 则有 C pT V +=ln ln , PV=CT 要确定常数C ,需要进一步的实验数据。
1.4描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是(£,L,T)=0,实验通常在大气压下进行,其体积变化可以忽略。
线胀系数定义为FT L L ⎪⎭⎫ ⎝⎛∂∂=1α ,等温杨氏模量定义为TL F A L Y ⎪⎭⎫ ⎝⎛∂∂= ,其中A 是金属丝的截面。
一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。
如果温度变化范围不大,可以看作常数。
假设金属丝两端固定。
热力学与统计物理课后答案.docx
《热力学与统计物理学》课后习题及解答选用教材:汪志诚主编,高等教育出版社第一章热力学的基本规律1.1试求理想气体的体胀系数压强系数卩和等温压缩系数為。
解:由理想气体的物态方程为PV = uRT 可得:1.2证明任何一种具有两个独立参量T,尸的物质,其物态方程可由实验测得的 体胀系数Q 及等温压缩系数紡,根据下述积分求得:\nV = \(adT-K T dP)以八尸为自变量,物质的物态方程为:V = V(T,P)如耘〒 专’试求物态方程。
解: 体胀系数: 其全微分为:dV dT + p ar dP dP = aVdT-VK T dP, y- = adT-K T dP体胀系数:压强系数:0 =等温压缩系数: 丄P等温压缩系数:这是以八P 为自变量的全微分,沿任意的路线进行积分得:}nV = j (adT-K T dP ) 根据题设,将6(=丄,K T =丄,代入:ln/=f 丄dT -丄dPT T P }{T P 丿得:lnr = ln- + C, PV = CT,其中常数c 由实验数据可确定。
P1.5描述金属丝的儿何参量是长度厶,力学参量是张力£,物态方程是 ./、(£, L, r ) = o,实验通常在1几下进行,其体积变化可以忽略。
线胀系数定义为:“丄(学],等温杨氏模量定义为:Y = -(^},其中/是 L (打人 牡。
厶力金属丝的截面积。
一般来说,a 和Y 是厂的函数,对£仅有微弱的依赖关系。
如 果温度变化范围不大,可以看作常量。
假设金属丝两端固定。
试证明,当温度由 7;降至3时,其张力的增加为:\^ = -YAa (T 2-T^ 解:由/(£,厶,T )= 0,可得:£ = £(L, T )微分为:〃£ = (等)血+ (善]刃\由题意可知:dL = O.即:d£ = -aAYdT,积分得:A£ = -aAY(T 2 ・TJ1. 7在25 °C 下,压强在0至1000 p n 之间,测得水的体积为:K = (18.066-0.715x 10~3P + 0.046x 1 O'6P 2\m\mor [Q 如果保持温度不变,将 1 mol 的水从1几加压至1000 求外界所作的功。
热力学与统计物理答案 第一章
线不可能相交。
1.15 热机在循环中与多个热源交换热量,在热机从其中吸收热量
的热源中,热源的最高温度为,在热机向其放出热量的热源中,热源的
最低温度
为,试根据克氏不等式证明,热机的效率不超过
解:根据克劳修斯不等式(式(1.13.4)),
有
(1)
式中是热机从温度为的热源吸取的热量(吸热为正,放热为负)。 将
因此式(1)可表为
(2)
如果气体是理想气体,根据式(1.3.11)和(1.7.10),有
(3)
(4)
式中是系统所含物质的量。代入式(2)即有
(5)
活门是在系统的压强达到时关上的,所以气体在小匣内的压强也可看
作,其物态方程为
(6)
与式(3)比较,知
(7)
1.8 满足的过程称为多方过程,其中常数名为多方指数。试证明:
1.4 简单固体和液体的体胀系数和等温压缩系数数值都很小,在一
定温度范围内可以把和看作常量. 试证明简单固体和液体的物态方程可
近似为
解: 以为状态参量,物质的物态方程为
根据习题1.2式(2),有 (1)
将上式沿习题1.2图所示的路线求线积分,在和可以看作常量的情形
下,有 (2)或 (3)
考虑到和的数值很小,将指数函数展开,准确到和的线性项,有 (4)
样的等温线总是存在的),则在循环过程中,系统在等温过程中从外界
吸取热量,而在循环过程中对外做功,其数值等于三条线所围面积(正
值)。循环过程完成后,系统回到原来的状态。根据热力学第一定律,
有
。
这样一来,系统在上述循环过程中就从单一热源吸热并将之完全转变为
功了,
这违背了热力学第二定律的开尔文说法,是不可能的。 因此两条绝热
热力学与统计物理
(1)•A-•B-•C-•D-正确答案:B(2)一级相变和二级相变的特点( )•A所有物理性质都发生突变•B化学势一阶偏导数发生突变为一级相变,二阶偏导数发生突变为二级相变•C只有比容发生突变的为一级相变,比热发生突变为二级相变•D只有比热发生突变的为一级相变,比容发生突变为二级相变正确答案:B理想气体经历等温可逆过程,其熵变的计算公式是:•AΔS =nRTln(p1/p2)•BΔS =nRTln(V2/V1)•CΔS =nRln(p2/p1)•DΔS =nRln(V2/V1)正确答案:D(4)两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则:•A两种气体分子的平均平动动能相等.•B两种气体分子的平均动能相等.•C两种气体分子的平均速率相等.•D两种气体的内能相等.正确答案:A(5)在体系温度恒定的变化过程中,体系与环境之间:•A一定产生热交换•B一定不产生热交换•C不一定产生热交换•D温度恒定与热交换无关正确答案:C(6)关于理想气体, 正确说法是 ( ).•A只有当温度很低时, 实际气体才可当做理想气体•B只有压强很大时, 实际气体才可当做理想气体•C在常温常压下, 许多实际气体可当做理想气体•D所有的实际气体在任何情况下, 都可以当做理想气体正确答案:C(7)热能转变为机械能的唯一途径是通过工作物质的()•A膨胀•B压缩•C凝结•D加热正确答案:A(8)某理想气体,初态温度为T,体积为V,先绝热变化使体积变为2V,再等容变化使温度恢复到T,最后等温变化使气体回到初态,则整个循环过程中,气体•A向外界放热.•B从外界吸热.•C对外界做正功.•D内能减少.正确答案:B(9)某体系等压过程A→B的焓变∆H与温度T无关,则该过程的:()•A∆U与温度无关;•B∆S与温度无关;•C∆A与温度无关;•D∆G与温度无关。
正确答案:B(10)一可逆的卡诺热机在27℃及127℃的两个热源之间操作,其最大理论效率为多少?•A79•B75•C25•D21正确答案:C(11)孤立体系内发生的可逆变化过程•A△S=0,△S(环)=0•B△S﹥0,△S(环)=0•C△S=0,△S(环)﹥0•D△S﹥0,△S(环)﹥0正确答案:A(12)玻色-爱因斯坦凝集( )•A只有绝对零度时才能发生•B没有激发态粒子•C气体分子间平均距离极小于它的热波长•D气体分子间平均距离极大于它的热波长正确答案:C(13)理想气体绝热节流后,其状态参数变化为•A熵增大,焓不变,温度不变•B熵增大,焓不变,温度不定•C压力降低,焓不变,熵不变•D压力降低,熵增大,焓增大。
热力学统计物理 课后习题 答案
第七章 玻耳兹曼统计7.1试根据公式Va P Lll∂∂-=∑ε证明,对于非相对论粒子 ()222222212zy x n n n L m m P ++⎪⎭⎫ ⎝⎛== πε,( ,2,1,0,,±±=z y x n n n )有V U P 32= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为()22222,,2212z y x n n nn n n L m m P zy x ++⎪⎭⎫ ⎝⎛== πε ( ,2,1,0,,±±=z y x n n n )-------(1) 为书写简便,我们将上式简记为32-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()22222)2(z y x n n n ma ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。
由(2)式可得VaV V l L εε323235-=-=∂∂----------------------(3) 代入压强公式,有VUa VV a P l ll L ll3232==∂∂-=∑∑εε----------------------(4) 式中 lll a U ε∑=是系统的内能。
上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
注:(4)式只适用于粒子仅有平移运动的情形。
如果粒子还有其他的自由度,式(4)中的U 仅指平动内能。
7.2根据公式Va P Lll∂∂-=∑ε证明,对于极端相对论粒子 ()212222z y x n n n Lc cp ++== πε, ,2,1,0,,±±=z y x n n n 有VUP 31=上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为()21222,,2z y x n n nn n n Lczy x ++= πε, ,2,1,0,,±±=z y x n n n -------(1)为书写简便,我们将上式简记为31-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()212222z y x n n n c a ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。
汪志诚热力学与统计物理答案
汪志诚热力学与统计物理答案【篇一:热力学统计物理_第四版_汪志诚_答案】xt>1.1 试求理想气体的体胀系数?,压强系数?和等温压缩系数?解:已知理想气体的物态方程为?。
pv?nrt,(1)由此易得??1??v?nr1??,(2) ??v??t?ppvt1??p?nr1??,(3) ??p??t?vpvt???t??????????2??.(4)v??p?t?v??p?p1??v??1??nrt?11.8 满足pvn?c的过程称为多方过程,其中常数n名为多方指数。
试证明: n??cv n?1理想气体在多方过程中的热容量cn为cn?解:根据式(1.6.1),多方过程中的热容量??q???u???v?cn?lim???p?????. (1) ?t?0?t??n??t?n??t?n对于理想气体,内能u只是温度t的函数,??u????cv, ??t?n所以??v?cn?cv?p??. (2)??t?n将多方过程的过程方程式pvn?c与理想气体的物态方程联立,消去压强p可得。
(3) tvn?1?c1(常量)将上式微分,有1 / 15vn?1dt?(n?1)vn?2tdv?0,所以v??v???.(4) ??(n?1)t??t?n代入式(2),即得cn?cv?pvn???cv,(5) t(n?1)n?1其中用了式(1.7.8)和(1.7.9)。
1.9 试证明:理想气体在某一过程中的热容量c多方过程,多方指数n?cn?cpcn?cvn如果是常数,该过程一定是。
假设气体的定压热容量和定容热容量是常量。
解:根据热力学第一定律,有du??q??w.(1)对于准静态过程有?w??pdv,对理想气体有du?cvdt,气体在过程中吸收的热量为?q?cndt,因此式(1)可表为(cn?cv)dt?pdv. (2)用理想气体的物态方程pv?vrt除上式,并注意cp?cv?vr,可得(cn?cv)dtdv?(cp?cv).(3) tv将理想气体的物态方程全式求微分,有dpdvdt??. (4) pvt式(3)与式(4)联立,消去dt,有 t(cn?cv)2 / 15dpdv?(cn?cp)?0. (5) pv令n?cn?cpcn?cv,可将式(5)表为dpdv?n?0. (6) pv如果cp,cv和cn都是常量,将上式积分即得。
热力学与统计物理答案
热力学与统计物理答案Vp解TOC \o “1-5” \h \z U p U p( V)T=T ( T)V -p; ( V)T=0 ; p T( T)V( U)T = (U,T) = (U,T) ( p,T) =0= ( U )T ( p)T V T (V,T) (p,T) (V,T) p T V TpU∵ ( )T≠0 ; ( )T =0。
:证明∵:证明TT(p,S)TTdTdpTT(p,S)TTdTdpdS1pSSp证:TT(p,H)TdT dp dH pH H p T T H H dp dp dS p H Hp pS S p T T H dp pH Hp p S- >0 )p S p HSpdS联立(1)2)2)式得:THCpTTHCpTp据: dU TdS pdV解: F=U-TS, 将自由能 F视为 P,V的函数 ; F=F(p,V)S,pT,pS,pSTpSS,pT,pVpV,p= T, pV,V,pVT,pTpSSCpT由关系C p T。
TpVpTVp习题试证明一个均匀物体在准静态等过程中熵随体积的增减取决于等压下温度随体积的增减。
习题试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落。
(提示熵不变时,(熵不变时,( dS=0 ), dU pdVdH TdS Vdp=VT - T = V 0dH TdS VdpT - T = V 0;p S p H Cp原题得证。
习题一弹簧在恒温下的恢复力与其伸长成正比,即.= -A;今忽略弹簧的热膨胀,试证明弹簧的自由能 F、熵S和内能 U的表达式分别为;解: A,A A(T);U U(T,)dUUUdT+dTTdFSdTFA(T ) d;TS; A(T)SF1 dA(T)2 =dB(T)T2 dTdT由于 F U TS,1dA(T) 2dB=A(T)T 2B(T) T2dTdTFT∵=0 时, U =0,即不考虑自身因温度而带来的能量。
热力学与统计物理课后习题答案第一章复习课程
热力学与统计物理课后习题答案第一章1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数Tκ的定义,可将上式改写为.TdVdT dpVακ=-(2)上式是以,T p为自变量的完整微分,沿一任意的积分路线积分,有()ln.TV dT dpακ=-⎰(3)若11,TT pακ==,式(3)可表为11ln.V dT dpT p⎛⎫=-⎪⎝⎭⎰(4)选择图示的积分路线,从00(,)T p积分到()0,T p,再积分到(,T p),相应地体积由V最终变到V,有000ln=ln ln,V T pV T p-即00p VpVCT T==(常量),或.pV CT=(5)式(5)就是由所给11,T T pακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。
热力学统计物理 课后习题 答案
第四章 多元系的复相平衡和化学平衡4.1 证明:若将U 看作独立变量T,V ,n 1,⋅⋅⋅,n k 的函数,试证明 (1) VUVn U n U i ii∂∂+∂∂=∑ (2) VUv n U u ii i ∂∂+∂∂=解:(1)多元系的内能()k n n V T U U 1,,=是变量V ,n 1,⋅⋅⋅,n k 的一次齐函数。
根据εular 定理,()k n n V T U U λλλλ 1,,'=⋅,mf x fx iii=∂∂∑ 有U V U V n U n x f x j jn V T n V T i i ii i=⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂=∂∂∑∑,,,, ------------------(1) 式子中偏导数的下标n i 指全部K 个组元,n j 指除i 组元外的其他全部组元。
(2)根据体积和内能为广延量,有iii v n V ∑=,iii u n U ∑= --------------------(2)根据(1)结论 VUVn U n U i ii∂∂+∂∂=∑------------------(1) 将(2)式代入(1)式,有i ii u n U ∑=V UV n U n i ii∂∂+∂∂=∑V U v n n U n ii i ii i ∂∂+∂∂=∑∑------------------(3) 上式对n i 的任意取值都成立,故有VUv n U u ii i ∂∂+∂∂=4.2证明μi (T,P,n 1,⋅⋅⋅,n k )是n 1,⋅⋅⋅,n k 的零次齐函数,0)(=∂∂∑jiii n n μ。
证明:根据式jnP T i i n G ,,⎪⎪⎭⎫⎝⎛∂∂=μ------------------(1) μi 是第i 个组元的化学势。
G 是广延量,是n 1,⋅⋅⋅,n k 的一次齐函数,即()()k k n n p T G n n p T G 11,,,,λλλ=------------------(2)将上式对λ求导,有 左式=()()λλλλλλλλ∂∂∂∂=∂∂∑)(,,)(,,11i k i k n n n p T n G n n p T G()k i in n p T n Gn λλλ 1,,)(∂∂=∑()k i i n n p T n λλμ 1,,∑=---------------(3)右式=()()k k n n p T G n n p T G 11,,],,[=∂∂λλ()k i i n n p T n 1,,μ∑=------(4) 令式(3)与式(4)相等,比较后可以知道()()k i k i n n p T n n p T 11,,,,μλλμ= --------------(5)上式说明μi (T,P,n 1,⋅⋅⋅,n k )是n 1,⋅⋅⋅,n k 的零次齐函数,根据欧勒定理有0)(=∂∂∑jiii n n μ 4.4理想溶液中各组元的化学势为i i x RT P T ln ),(g i +=μ(1)假设溶质是非挥发性的。
热力学与统计物理答案汪志诚
热力学与统计物理答案(汪志诚) 第一章热力学的基本规律1.1 热力学系统的平衡态及其描述1.什么是热力学系统?热力学系统有哪些分类?答:热力学系统是指由大量相互作用的粒子组成的集合体,可以用一些宏观物理量来描述其状态。
热力学系统可以分为孤立系统、封闭系统和开放系统。
2.什么是热力学平衡态?热力学平衡态有哪些性质?答:热力学平衡态是指在没有外界影响的情况下,系统的宏观性质不随时间变化的状态。
热力学平衡态具有均匀性、各向同性和稳定性等性质。
3.如何描述热力学系统的状态?常用的状态参量有哪些?答:热力学系统的状态可以用一组状态参量来描述,常用的状态参量有体积、温度、压力和熵等。
1.2 热力学第零定律温度1.热力学第零定律的内容是什么?如何理解?答:热力学第零定律的内容是:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。
这个定律说明了温度是描述热力学系统状态的一个重要参量,也是进行热交换的驱动力。
2.什么是温度?温度有哪些性质?答:温度是描述热力学系统状态的一个宏观参量,表示系统的冷热程度。
温度具有可加性和可比较性等性质,可以用温度计来测量。
3.温度与微观粒子运动的关系是什么?答:温度与微观粒子运动的关系可以通过麦克斯韦-玻尔兹曼分布来描述。
在一定温度下,系统中微观粒子的速度分布服从麦克斯韦-玻尔兹曼分布,粒子的平均动能与温度成正比。
1.3 热力学第一定律能量守恒定律1.热力学第一定律的内容是什么?如何理解?答:热力学第一定律的内容是:物体内能的增加等于物体吸收的热量和对物体所作的功的总和。
这个定律说明了能量守恒和转换的规律,即能量既不会凭空产生也不会凭空消失,只会从一种形式转换成另一种形式。
2.什么是内能?内能有哪些性质?答:内能是指热力学系统中所有微观粒子的动能和势能之和。
内能是一个状态函数,具有可加性和单调性等性质。
热力学·统计物理第五版答案
热力学·统计物理第五版答案【篇一:热力学与统计物理答案第二章】=txt>2.1 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加.解:根据题设,气体的压强可表为p?f?v?t,(1)式中f(v)是体积v的函数. 由自由能的全微分df??sdt?pdv得麦氏关系将式(1)代入,有p??sp?f(v)?.(3)t??v?t??t?vs0. 这意味着,在温度保持不变时,该?v??t??sp. (2) ??v?t??t?v由于p?0,t?0,故有??气体的熵随体积而增加.2.2 设一物质的物态方程具有以下形式:p?f(v)t,试证明其内能与体积无关.解:根据题设,物质的物态方程具有以下形式:故有p?f(v). (2) ?t??v但根据式(2.2.7),有u?p?tp, (3) ?v?t??t??v所以utf(v)?p?0. (4) ??v?t这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度t的函数.2.3 求证: (a)s?)p0; (bs?h??v 0.u解:焓的全微分为dh?tds?vdp. 令dh?0,得sp?v0. ht内能的全微分为du?tds?pdv. 令du?0,得s?v?p?0. ut2.4 已知u0,求证?u?v?tp?0. t解:对复合函数u(t,p)?u(t,v(t,p))求偏导数,有uuv?p?v?.ttpt如果??uv?0,即有 tu?p?0. t式(2)也可以用雅可比行列式证明:(1)(2)(3)(4)(1)(2)(3)u(u,p?t?(p,(u,(v,t)t)t)?(v,t)t)?(p,t)u?v. (2) ??v?tp?t2.5 试证明一个均匀物体的在准静态等压过程中熵随体积的增减取决于等压下温度随体积的增减.解:热力学用偏导数??用??s描述等压过程中的熵随体积的变化率,?v??pt描述等压下温度随体积的变化率. 为求出这两个偏导数的关??v?p 系,对复合函数求偏导数,有cp??tsst?. (2) ??v?p??t?p??v?pt??v?ps?s(p,v)?s(p,t(p,v)) (1)因为cp?0,t?0,所以??st的正负取决于的正负. ??v?p??v?p式(2)也可以用雅可经行列式证明:(s,sv?p?(v,(s,(t,p)p)p)?(t,p)p)?(v,p)s?t (2) ?t?v??p??p2.6 试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落.解:气体在准静态绝热膨胀过程和节流过程中的温度降落分别由偏导数?t?t?和描述. 熵函数s(t,p)的全微分为 ??p?s??p?hs?s?ds??dtdp. ?tppt在可逆绝热过程中ds?0,故有s?v?t??pt??t?p???t?. (1) spcspt?p最后一步用了麦氏关系式(2.2.4)和式(2.2.8).焓h(t,p)的全微分为h?h?dh??dtdp. ?t?pp?t在节流过程中dh?0,故有h?v?t??v??pt???t???t?p. (2) ??cp??hp?ht?p最后一步用了式(2.2.10)和式(1.6.6). 将式(1)和式(2)相减,得t?t?v0.(3) p?pc??s??hp所以在相同的压强降落下,气体在绝热膨胀中的温度降落大于节流过程中的温度降落. 这两个过程都被用来冷却和液化气体.由于绝热膨胀过程中使用的膨胀机有移动的部分,低温下移动部分的润滑技术是十分困难的问题,实际上节流过程更为常用. 但是用节流过程降温,气体的初温必须低于反转温度. 卡皮查(1934年)将绝热膨胀和节流过程结合起来,先用绝热膨胀过程使氦降温到反转温度以下,再用节流过程将氦液化.2.7 实验发现,一气体的压强p与体积v的乘积以及内能u都只是温度的函数,即pv?f(t),u?u(t).试根据热力学理论,讨论该气体的物态方程可能具有什么形式.解:根据题设,气体具有下述特性:pv?f(t),(1)u?u(t). (2)由式(2.2.7)和式(2),有而由式(1)可得tdf??p?t??. (4) ??tvdt??vu?pt?p?0. (3) ??v?t??t?v将式(4)代入式(3),有tf, dt或积分得lnf?lnt?lnc,dfdt?. (5) ft或pv?ct, (6)式中c是常量. 因此,如果气体具有式(1),(2)所表达的特性,由热力学理论知其物态方程必具有式(6)的形式. 确定常量c需要进一步的实验结果.2.8 证明2p?cv?t?2?,??v?t??t?vcp?2v?t?2?,t?pp?t并由此导出【篇二:热力学统计物理课后习题答案】t>8.4求弱简并理想费米(玻色)气体的压强公式.解:理想费米(玻色)气体的巨配分函数满足lnlln1?ell在弱简并情况下:2?v2?v3/23/22lng3?2m1/2ln1?e??ldg3?2md?3/2ln1?el30hh02?v3/22?3/2g3?2mln1?e?l3?h3/2dln1?el2?vd?3/22 ??g3?2m3/2l30he?1与(8.2.4)式比较,可知ln??再由(8.2.8)式,得3/23/21n?h21?h2nkt?1??lnnkt?1??v2?mkt??2?mkt??4242??2u 3en?h2?v?2?mkt??3/23/2h2n?? ?ev?t?2?mkt?nn v3/23/21?n?h2n?n?h2p?ln??kt?1???nkt?1v2?mkt?t2?mkt?t???? 42?42??8.10试根据热力学公式 s?熵。
《热力学与统计物理学》习题解答
《热力学与统计物理学》习题解答
热力学与统计物理学习题解答:
P1. 一个双分子物质中有两个粒子,其中一个是A粒子而另一个则是B
粒子。
当它们达到蒸汽相时,请估计它们各自的平均表面速度。
答:根据热力学原理,在蒸汽相中,A粒子和B粒子的平均表面速
度应该是相同的,且都等于Boltzmann常数乘以绝对温度的平方根
(kT^(1/2))。
P2. 甲烷气体在室温下的布朗运动速度是多少?
答:甲烷气体的平均布朗运动速度等于Boltzmann常数乘以绝对
温度的平方根 (kT^(1/2)),在室温(293K)下,则为1.25×10^5 m/s。
P3. 为什么热力学第三定律的最终状态是均匀的熵?
答:热力学第三定律的最终状态是均匀的熵,这是因为概率分布
函数定义熵,而不断扩大分布函数来接近熵最大值,就可以最大化熵。
而这正是热力学第三定律所要求的。
热力学统计物理课后习题答案
1. 1试求理想气体的体胀系数 :,压强系数:和等温压缩系数:T解:已知理想气体的物态方程为 pV 二nRT 由此得到体胀系数-貯。
诵冷,1. 2证明任何一种具有两个独立参量 T ,P 的物质,其物态方程可由实验测量的体胀系数和 等温压缩系数,根据下述积分求得 InV =:・dT -:T dp ,如果:•二丄「.T -,试求物态方TP程。
解:体胀系数:=-—V 5丿p等温压缩系数K T =--—]V 2P 人这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得根据题设,若〉=丄,冷=丄T p则有InV =ln T C , PV=CTp要确定常数C,需要进一步的实验数据。
1. 4描述金属丝的几何参量是长度 L ,力学参量是张力£,物态方程是(£丄,T )=0,实验通 1 r 鬥)常在大气压下进行,其体积变化可以忽略。
线胀系数定义为a =丄丄| ,等温杨氏模量L 5丿F定义为Y -L 「匚 ,其中A 是金属丝的截面。
一般来说,:和Y 是T 的函数,对£仅有微A I^L 人第一章热力 学 的 基 本压强系数1 仔、_ n R _ 1 B JT 厂而=T等温压缩系数'-T =以T ,P 为自变量, 物质的物态方程为V =V T,p其全微分为 dV =eVdp 二 V : dT -V T dp i印」n RT ) T~) p所以C n = C Vn -1弱的依赖关系。
如果温度变化范围不大,可以看作常数。
假设金属丝两端固定。
试证明,当 温度由T1降至T2时,其张力的增加为厶£ = -YA/T 2-TJ 。
解:f ( £ 丄,T)=0, £ =F £ (L,T)d £=空;dT +( dL — i dT (dL=0)©丿Li 此丿T &T .丿L所以:£= -YA MT ? -TJ1. 6 1mol 理想气体,在27o C 的恒温下发生膨胀,其压强由20P n 准静态地降到1P n ,求气体 所做的功和所吸收的热量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T
S T
V
;即
T T 0 S V CV
于是: 0>
p 正p数
V T V S
于是:
< 0p
V S
CP
T
S T
P
T
S , T ,
p p
T
S, p S,V
S,V T , p
T
p V
S
S,V T , p
T p V S
S T
,V ,V
T ,V T , p
化简。
解:由式(3.2.7)得:U TS pV ;又由式(3.4.6)得:
dp L dT TV
;L TS
Pa
U L L p dT T dp
L1
p T
dT dp
第四章 多元系的复相平衡和化学平衡
=0。
解: 由式(2.2.7)得:
(
U V
)T
p
=T
( T
)V
-p;
(
U V
)T
=0
;
p
T
( p T
)V
( U V
)T
=
(U ,T ) (V ,T )
(U ,T )
=
( p,T )
( p,T ) (V ,T )
U =0= ( p )T
(
p V
)T
∵
( p V
)T≠0
;
(
U p
)=T 0。
习题2.10 证明范氏气体的定容热容量只是温度的函数,与比容无
)U
>0
证: 由式(2.1.2)得: dH TdS VdP
等H过程: (TdS )H (VdP)H
(
S )H=P
V T
<0
(V>0; T>0)
由基本方程:dU TdS PdV ;
dS 1 dU p dV
T
T
(S )U= p >0.
V
T
习题2.5
已知
( U V
)T
=0
,
求证
(
U p
)T
第一章 热力学的基本规律
习题 1.1 试求理想气体的体胀系数 ,压强系数 和等温压缩
系数 T 。
解:由 PV nRT得:V nRT ; P nRT
P
V
f (T,V , p) 0
所以,
1 V
(
V T
)
P
1 V
nR P
1 T
V V (T , p)
lnV (dT T dp)
1 P P (T )V
V
p V
T
dV
p T
V
dT
dn
S
V
P T
V② n dT
V
P V
T
dV n
dn
G T V ,n
S
V ① p T
V
G V p②
V T ,n
V T
G
③
n T ,V
由式 ①
S
V
p T
V
n
G T V ,n
S n T ,V
关。
证: 范氏气体
p
a v2
v
b
RT
由式(2.2.7)
U
v T
=T p T
-p=T V
R vb
p
a v2
U = v T
a v2
U (T , v)
U0
a v
f
(T )
CV
U
T V
= f (T )
;与v无关。
第三章 单元系的相变
习题3.2 试由 Cv 0及
(
p V
)T
解:
f (, L,T ) 0, L L(,T )
所以
dL
(
L
)T
d
(
L T
)
dT
因
(
L
)
T
1
(
L
)T
;
(
L
)
T
L AY
L
L (T ) ; dL
L AY
d
LdT
所以
dL 0;所以, d dT, d AYdT
AY YA (T2 T1)
习题2.4 求证:(ⅰ)
S
(P)H <0
(ⅱ)
( S V
S V T
p V S
ห้องสมุดไป่ตู้
T V
, ,
S S
S,T V ,T
=
p V S
T V
,S ,T
V V
,T ,S
T , S V ,T
= p
V
S
V V
,T ,S
T , S 2 V ,T
=
p V
S
T S
V
T , S 2
V
,T
由式(2.2.5)
CV
dV
( V T
) p dT
(V p
)T
dp因为
1 V
(
V T
)
p
,
T
1 V
V ( p )T
所以
dV
VdT
V
T
dp,
dV V
dT
T dp
lnV dT T dp
1/T,T 1/ p
ln V
dT T
dp , 得到 p
:
pV
CT
习题1.4 描述金属丝的几何参量是长度 L ,力学参量是张力 ,
T
p V
S
S T
V
V p
T
p V S
V p
T
CV
CV 0 因而 CP 0
习题3.4
求证:(1)
T
V ,n
S n
T
,V
;(2)
p
T ,n
V n
T , p
证: (1) 开系吉布斯自由能
dG SdT Vdp dn , p p(V ,T )
dG
SdT
G T
V
,n
n
2G Tn
V
2G nT
V
T ,V
S n
T
,V
第T(1)V式,n 得证。
(2) 由式(3.2.6)得:
V n
T ,
p
2G pn
T
2G np
T
p
T ,n
习题3.7
试证明在相变中物质摩尔内能的变化为:u
L1
p T
dT dp
如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式
证0 明
C p 及0
证:
由式(2.2.1)
Cp
CV
T
p T
V
V T
p
(
p V
)
S。
0
CP
H = T p
T
S T
p
;CV
U T
V
T
S T
V
dp p dV p dT
V T
T V
dp
p dV p dS
V S
S V
= p dV p
V S
S V
S V
T
dV
S T
V
dT
p V
T
p S
V
S
+V
T
p V S
(1)
p p S
(2)
T V S V T T
由麦氏关系(2.2.3)代入(1)式中
T V
S
- p S V
p
V T
p V S
T V S
物态方程是 f (, L,T ) 0 实验通常在 1pn 下进行,其体积变化可
忽略。线胀系数定义为
1 L
L (T )
等杨氏摸量定义为Y
L
A ( L )T
其中 A是金属丝的截面积,一般说来, 和Y 是T 的函数,对仅
有微弱的依赖关系,如果温度变化范不大,可看作常数。假设金
属丝两端固定。试证明,当温度由 T1 降 T2 时,其张力的增加为 YA (T2 T1)
Rn PV
1/ T
T
T
1 V
(
V P
)T
1 V
nRT
1 P2
1/ P
习题1.2 试证明任何一种具有两个独立参量的物质 T , p,其物态
方程可由实验测得的体胀系数 及等温压缩系数 ,根T 据下述
积分求得:
ln V (dT 如T果dp)
1 T
,试T 求 物1p ,态方
程。
解: 因为 f (T,V , p) ,0 所以,我们可写成 V V (T,, p由) 此,