2019-2020学年湖南省长沙市浏阳市七年级(上)期末数学试卷-解析版

合集下载

2019—2020年新湘教版七年级数学上册(第一学期)期末模拟综合试题及答案解析(试题).docx

2019—2020年新湘教版七年级数学上册(第一学期)期末模拟综合试题及答案解析(试题).docx

上学期期末教学质量监测模拟试卷七年级数学(时量:120分钟 满分:130分)姓名: 班级: 得分:一、选择题(本大题共10小题,每小题3分,共30分)1.81-的相反数是( )A .81-B .8-C .81D .82.下列有理数大小关系判断正确的是( )A .)21()21(-+<--B .5465-<-C .3282110>--D .)327(327--=--3.神州十一号飞船成功飞向浩瀚宇宙,并在距地面约390000米的轨道上与天宫二号交会对接. 将390000用科学记数法表示应为() A .4109.3⨯ B .5109.3⨯C .41039⨯ D .61039.0⨯ 4.单项式32xy π-的系数和次数分别是( ) A .π2-,4B .4,π2-C .-2,3D .3,-2 5.若6135'︒=∠A ,则其余角的度数为( ) A .4454'︒B .4854'︒C .4455'︒D .44144'︒6.为了解某校2000名学生的视力情况,从中随机调查了400名学生的视力情况,下列说法正确的是( )A .400名学生是总体B .每个学生是个体C .该调查的方式是普查D .2000名学生的视力情况是总体 7.如图,已知OC 是AOB ∠内部的一条射线,︒=∠30AOC ,OE 是COB ∠的平分线.当︒=∠40BOE 时,AOB ∠的度数是A .70°B .80°C .100°D .110°8.关于多项式1723.03232+--xy y x y x ,下列说法错误的是( ) A. 这个多项式是五次四项式B. 四次项的系数是7C. 常数项是1D. 按y 降幂排列为13.0272233++--y x y x xy9.观察图中正方形四个顶点所标的数字规律,可知数2016应标在( )A .第503个正方形的左下角B .第503个正方形的右下角C .第504个正方形的左下角D .第504个正方形的右下角10. 如图,R P N M ,,,分别是数轴上四个整数所对应的点,其中有一点是原点,并且1===PR NP MN . 数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3=+b a ,则原点可能是A. M 或RB. N 或PC. M 或ND. P 或R二、填空题(本大题共10小题,每小题3分,共30分) 11.已知55-x 与93--x 互为相反数,则=x .12.一个三位数,a 表示百位数,b 表示十位数,c 表示个位数,那么这个数可表示为 .13.当=k 时,代数式8)3(2---xy k x 不含xy 项. 14.若关于x 的方程5)2(1=--m xm 是一元一次方程,则=m ________.15.若方程112-=+x 的解也是关于x 的方程2)(21=--a x 的解,则a 的值为.16.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,若设这种商品的进价是x 元,由题意可列方程为.17.当1=x 时,代数式43213+-bx ax 的值是7,则当1-=x 时,这个代数式的值是.18.如下图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为cm .19. 如图,在正方形ABCD 中,E 为DC 边上的一点,沿线段BE 对 折后,若ABF ∠比EBF ∠大︒15,则EBF ∠的度数是. 20. 若19=a ,97=b ,且b a b a +≠+,那么=-b a . 三、解答题(本大题共9小题,共70分) 21.(本小题满分8分)计算:(1)51)3()21()2(1232016------⨯-+- (2))214131(125+-⨯--22.(本小题满分12分)解方程:(1)31)2(3-=-+x x ; (2)23141xx x --=--.23.(本小题满分5分)先化简,再求值:)76()32(2522a ab a ab ab ---+,其中b a ,满足()03112=-++b a .24.(本小题满分5分)平面上有四个点A 、B 、C 、D ,按照以下要求作图: (1)连接AB 并延长AB 至E ,使AB BE =; (2)作射线CB ;(3)在直线BD 上确定点G ,使得GC AG +最短.25.(本小题满分6分)某车间共有75名工人生产A 、B 两种零件,已知一名工人每天可生产A 种零件15件或B 种零件20件,但要安装一台机械时,同时需A 种零件1件,BADBC种零件2件,才能配套。

2019-2020学年七年级(上)期末考试数学试卷(解析版)

2019-2020学年七年级(上)期末考试数学试卷(解析版)

2019-2020学年七年级(上)期末考试数学试卷一、选择题(每小题3分,共30分)1.计算1+(﹣2)的正确结果是()A.﹣2 B.﹣1 C.1 D.32.﹣2019的相反数是()A.﹣2019 B.2019 C.﹣D.3.观察下列实物模型,其形状是圆柱体的是()A.B.C.D.4.温度先上升6℃,再上升﹣3℃的意义是()A.温度先上升6℃,再上升3℃B.温度先上升﹣6℃,再上升﹣3℃C.温度先上升6℃,再下降3℃D.无法确定5.把(﹣)÷(﹣)转化为乘法是()A.(﹣)×B.(﹣)×C.(﹣)×(﹣)D.(﹣)×(﹣)6.某学习小组为了了解本校2000名学生的视力情况,随机抽查了500名学生,其中有200名学生近视.对于这个问题上,下列说法中正确的是()A.每名学生是总体的一个个体B.样本容量是500C.样本是500名学生D.该校一定有1000名学生近视7.若a为有理数,且|a|=2,那么a是()A.2 B.﹣2 C.2或﹣2 D.48.某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()A.100a+50b B.100a﹣50b C.50a+100b D.50a+100b 9.下列说法正确的是()A.多项式x2+2x2y+1是二次三项式B.单项式2x2y的次数是2C.0是单项式D.单项式﹣3πx2y的系数是﹣310.王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25%x)=33825二、填空题(每小题3分,共15分)11.比较大小:1 ﹣2(填“>,<或=”)12.把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是.13.2018年前三季度,我市社会消费品零售总额为19400000000元,该数据用科学记数法可表示为.14.“□”“△”“〇”各代表一种物品,其质量关系由下面两个天平给出(左右平衡状态),如果“〇”的质量是4kg,那么“□”的质量是千克.15.食品店一周中的盈亏情况如下(盈余为正):132元,﹣12.5元,﹣10.5元,127元,﹣87元,136.5元,98元.则该食品店这一周共盈余了元.三、解答题(共55分,解答应写出必要的文字说明,演算步骤或推理过程)16.(5分)计算:﹣32﹣(﹣2)3+4÷2×2.17.(5分)解方程:﹣=1.18.(7分)先化简,再求值:3(m2n﹣mn)﹣6(m2n﹣mn),其中m=1,n=2.19.(7分)甲、乙两列火车从相距480km的A、B两地同时出发,相向而行,甲车每小时行80km,乙车每小时行70km,问多少小时后两车相距30km?20.(7分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了名学生;(2)被调查的学生中,最喜爱丁类图书的有人,最喜爱甲类图书的人数占本次被调查人数的%;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.21.(8分)如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.22.(8分)已知平面上四点A,B,C,D,如图:(1)请按要求画图:①画直线AB,射线CD;②画射线AD,连接BC;③直线AB与射线CD相交于E;④连接AC、BD相交于点F.(2)根据以上作图,请判断下列位置关系:①点C与直线AB;②点E与直线CD;③直线AB与直线CD.23.(8分)方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?参考答案一、选择题1.计算1+(﹣2)的正确结果是()A.﹣2 B.﹣1 C.1 D.3【分析】绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.解:1+(﹣2)=﹣(2﹣1)=﹣1.故选:B.【点评】本题主要考查的是有理数的加法法则,熟练掌握有理数的加法法则是解题的关键.2.﹣2019的相反数是()A.﹣2019 B.2019 C.﹣D.【分析】直接利用相反数的定义分析得出答案.解:﹣2019的相反数是:2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.3.观察下列实物模型,其形状是圆柱体的是()A.B.C.D.【分析】熟悉立体图形的基本概念和特性即可解.解:圆柱的上下底面都是圆,所以正确的是D.故选D.【点评】熟记常见圆柱体的特征,是解决此类问题的关键.4.温度先上升6℃,再上升﹣3℃的意义是()A.温度先上升6℃,再上升3℃B.温度先上升﹣6℃,再上升﹣3℃C.温度先上升6℃,再下降3℃D.无法确定【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.上升﹣3℃的意义是下降3℃.解:温度先上升6℃,再上升﹣3℃的意义是温度先上升6℃,再下降3℃.故选:C.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.5.把(﹣)÷(﹣)转化为乘法是()A.(﹣)×B.(﹣)×C.(﹣)×(﹣)D.(﹣)×(﹣)【分析】根据除以一个不等于0的数,等于乘这个数的倒数可得.解:把(﹣)÷(﹣)转化为乘法是(﹣)×(﹣),故选:D .【点评】本题主要考查有理数的除法,解题的关键是掌握有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.6.某学习小组为了了解本校2000名学生的视力情况,随机抽查了500名学生,其中有200名学生近视.对于这个问题上,下列说法中正确的是( )A .每名学生是总体的一个个体B .样本容量是500C .样本是500名学生D .该校一定有1000名学生近视【分析】根据总体,样本,个体,样本容量的定义写出即可.解:A .每名学生的视力情况是总体的一个个体,此选项错误;B .样本容量是500,此选项正确;C .样本是500名学生的视力情况,此选项错误;D .该校大约有800名学生近视,此选项错误;故选:B .【点评】本题考查了对总体,样本,个体,样本容量的理解和运用,关键是能根据定义说出一个事件的总体,样本,个体,样本容量.7.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4【分析】利用绝对值的代数意义求出a 的值即可.解:若a 为有理数,且|a |=2,那么a 是2或﹣2,故选:C.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.8.(3分)某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()A.100a+50b B.100a﹣50b C.50a+100b D.50a+100b 【分析】由总价=单价×数量,可用含a,b的代数式表示出需付金额,此题得解.解:依题意,需付(100a+50b)元.故选:A.【点评】本题考查了列代数式,根据数量之间的关系,利用含a,b的代数式表示出需付总金额是解题的关键.9.下列说法正确的是()A.多项式x2+2x2y+1是二次三项式B.单项式2x2y的次数是2C.0是单项式D.单项式﹣3πx2y的系数是﹣3【分析】根据多项式、单项式、系数、常数项的定义分别进行判断,即可求出答案.解:A.多项式x2+2x2y+1是三次三项式,此选项错误;B.单项式2x2y的次数是3,此选项错误;C.0是单项式,此选项正确;D.单项式﹣3πx2y的系数是﹣3π,此选项错误;故选:C.【点评】此题考查了多项式、单项式;把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.10.王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25%x)=33825【分析】根据“利息=本金×利率×时间”(利率和时间应对应),代入数值,计算即可得出结论.解:设王先生存入的本金为x元,根据题意得出:x+3×4.25%x=33825;故选:A.【点评】此题主要考查了一元一次方程的应用,计算的关键是根据利息、利率、时间和本金的关系,进行计算即可.二、填空题(每小题3分,共15分)11.比较大小:1 >﹣2(填“>,<或=”)【分析】根据有理数的大小比较法则比较即可.解:∵负数都小于正数,∴1>﹣2,故答案为:>.【点评】本题考查了对有理数的大小比较法则的应用,注意:负数都小于正数.12.把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是﹣8﹣5+2 .【分析】根据有理数的运算法则即可求出答案.解:原式=﹣8﹣5+2,故答案为:﹣8﹣5+2.【点评】本题考查有理数的运算,解题的关键熟练运用有理数的运算法则,本题属于基础题型.13.2018年前三季度,我市社会消费品零售总额为19400000000元,该数据用科学记数法可表示为 1.94×1010.【分析】根据科学记数法的表示方法:a×10n,可得答案.解:19400000000用科学记数法表示为:1.94×1010,故答案为:1.94×1010.【点评】本题考查了科学记数法,确定n的值是解题关键,n是整数数位减1.14.“□”“△”“〇”各代表一种物品,其质量关系由下面两个天平给出(左右平衡状态),如果“〇”的质量是4kg,那么“□”的质量是9 千克.【分析】设△的质量为xkg,□的质量为ykg,根据图示,列出关于x和y的二元一次方程组,解之即可.解:设△的质量为xkg,□的质量为ykg,根据题意得:,解得:,即□的质量为9kg.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.15.食品店一周中的盈亏情况如下(盈余为正):132元,﹣12.5元,﹣10.5元,127元,﹣87元,136.5元,98元.则该食品店这一周共盈余了383.5 元.【分析】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况.解:132+(﹣12.5)+(﹣10.5)+127+(﹣87)+136.5+98=132﹣12.5﹣10.5+127﹣87+136.5+98=132+98+127﹣87+136.5﹣12.5﹣10.5=230+40+113.5=383.5;答:这一周食品店的盈余了383.5元.故答案为:383.5.【点评】此题主要考查了正数和负数及有理数加法在实际生活中的应用,解题的关键是熟练掌握有理数的加法法则.三、解答题(共55分,解答应写出必要的文字说明,演算步骤或推理过程)16.(5分)计算:﹣32﹣(﹣2)3+4÷2×2.【分析】根据有理数的乘除法和加减法可以解答本题.解:﹣32﹣(﹣2)3+4÷2×2=﹣9﹣(﹣8)+4=﹣9+8+4=3.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.(5分)解方程:﹣=1.【分析】依次去分母、去括号、移项、合并同类项、系数化为1可得.解:2(x﹣3)﹣3(4x+1)=6,2x﹣6﹣12x﹣3=6,2x﹣12x=6+6+3,﹣10x=15,x=﹣.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.18.(7分)先化简,再求值:3(m2n﹣mn)﹣6(m2n﹣mn),其中m=1,n=2.【分析】先算乘法,再合并同类项,最后代入求出即可.解:原式=3m2n﹣3mn﹣6m2n+4mn=﹣3m2n+mn,当m=1,n=2时,原式=﹣3×12×2+1×2=﹣6+2=﹣4.【点评】本题主要考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则.19.(7分)甲、乙两列火车从相距480km的A、B两地同时出发,相向而行,甲车每小时行80km,乙车每小时行70km,问多少小时后两车相距30km?【分析】设x小时后两车相距30km,根据相距30km有两种情况分别列出方程求出即可.解:设x小时后两车相距30km,根据题意,得:(80+70)x=480﹣30或(80+70)x=480+30,解得:x=3或.答:3小时或小时后两车相距30km.【点评】此题主要考查了一元一次方程的应用,根据两车相距30km分类讨论得出是解题关键.20.(7分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了200 名学生;(2)被调查的学生中,最喜爱丁类图书的有15 人,最喜爱甲类图书的人数占本次被调查人数的40 %;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.【分析】(1)根据百分比=频数÷总数可得共调查的学生数;(2)最喜爱丁类图书的学生数=总数减去喜欢甲、乙、丙三类图书的人数即可;再根据百分比=频数÷总数计算可得最喜爱甲类图书的人数所占百分比;(3)设男生人数为x人,则女生人数为1.5x人,由题意得方程x+1.5x=1500×20%,解出x的值可得答案.解:(1)共调查的学生数:40÷20%=200(人);故答案为:50;(2)最喜爱丁类图书的学生数:200﹣80﹣65﹣40=15(人);最喜爱甲类图书的人数所占百分比:80÷200×100%=40%;故答案为:15,40;(3)设男生人数为x人,则女生人数为1.5x人,由题意得:x+1.5x=1500×20%,解得:x=120,当x=120时,1.5x=180.答:该校最喜爱丙类图书的女生和男生分别有180人,120人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.【分析】(1)根据角平分线的定义求出∠MOB的度数,根据邻补角的性质计算即可.(2)根据题意得到:∠DOM为∠DON的余角.解:(1)∵∠AOC+∠AOD=∠AOD+∠BOD=180°,∴∠BOD=∠AOC=50°,∵OM平分∠BOD,∴∠BOM=∠DOM=25°,又由∠MON=90°,∴∠AON=180°﹣(∠MON+∠BOM)=180°﹣(90°+25°)=65°;(2)由∠DON+∠DOM=∠MON=90°知∠DOM为∠DON的余角,∵∠AON+∠BOM=90°,∠DOM=∠MOB,∴∠AON+∠DOM=90°,∴∠NOD+∠BOM=90°,故∠DON的余角为:∠DOM,∠BOM.【点评】本题考查的是邻补角的概念以及角平分线的定义,掌握邻补角的性质是邻补角互补是解题的关键.22.(8分)已知平面上四点A,B,C,D,如图:(1)请按要求画图:①画直线AB,射线CD;②画射线AD,连接BC;③直线AB与射线CD相交于E;④连接AC、BD相交于点F.(2)根据以上作图,请判断下列位置关系:①点C与直线AB;②点E与直线CD;③直线AB与直线CD.【分析】(1)根据直线、射线及线段的定义作图可得;(2)结合图形,依据点与直线的位置关系和直线与直线的位置关系逐一判断即可得.解:(1)如图所示:(2)由图知,①点C在直线AB外;②点E在直线CD上;③直线AB与直线CD相交.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握直线、射线及线段的定义和点与直线、直线与直线的位置关系.23.(8分)方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?【分析】第一个窗户射进的阳光的面积=长方形面积﹣半径为的一个半圆的面积;第二个窗户射进的阳光的面积=长方形面积﹣半径为的2个圆的面积.解:第一个窗户射进的阳光的面积为ab﹣×π()2=ab﹣第二个窗户射进的阳光的面积为ab﹣2×π()2=ab﹣∵>∴第一个窗户射进的阳光的面积<第二个窗户射进的阳光的面积.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.要能根据图形得到窗户射进的阳光的面积的计算公式.。

2019-2020学年七年级上学期期末考试数学试卷(解析版)

2019-2020学年七年级上学期期末考试数学试卷(解析版)

2019-2020学年七年级上学期期末考试数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个2.在1,﹣1,﹣2这三个数中,任意两数之和的最大值是()A.1B.0C.﹣1D.﹣33.下列各式中运算正确的是()A.3a﹣4a=﹣1B.a2+a2=a4C.3a2+2a3=5a5D.5a2b﹣6a2b=﹣a2b4.下列结论正确的是()A.﹣3ab2和b2a是同类项B.不是单项式C.a比﹣a大D.2是方程2x+1=4的解5.如图,已知直线AB,CD相交于点O,OE平分∠COB,若∠EOB=55°,则∠BOD的度数是()A.35°B.55°C.70°D.110°6.运用等式性质的变形,正确的是()A.如果a=b,那么a+c=b﹣c B.如果,那么a=bC.如果a=b,那么D.如果a=3,那么a2=3a27.有理数a,b在数轴上的点的位置如图所示,则正确的结论是()A.a<﹣4B.a+b>0C.|a|>|b|D.ab>08.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.1009.在图中,将左边方格纸中的图形绕O点顺时针旋转90°得到的图形是()A.B.C.D.10.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.11.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上12.如图,△AOB中,∠B=30°.将△AOB绕点O顺时针旋转52°得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为()A.22°B.52°C.60°D.82°13.有m辆校车及n个学生,若每辆校车乘坐40名学生,则还有10名学生不能上车;若每辆校车乘坐43名学生,则只有1名学生不能上车.现有下列四个方程:①40m+10=43m﹣1;②=;③=;④40m+10=43m+1.其中正确的是()A.①②B.②④C.②③D.③④14.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n需几根火柴棒()A.2+7n B.8+7n C.4+7n D.7n+1二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.单项式﹣xy2的系数是.16.a的3倍与b的差的平方,用代数式表示为.17.计算:15°37′+42°51′=.18.如图,是一个数值转换机的示意图,若输入x的值为3,y的值为﹣2时,则输出的结果为.19.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是.20.在排成每行七天的日历表中取下一个3×3的方块(如图所示).若所有日期数之和为189,则n的值为.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)计算:(1)﹣12014﹣(1﹣)÷[﹣32÷(﹣2)2](2)a﹣(5a﹣2b)﹣2(a﹣3b)22.(10分)解方程(1)4(2x﹣3)﹣(5x﹣1)=7(2).23.(10分)如图所示.(1)阴影部分的周长是;(2)阴影部分的面积是;(3)当x=5.5,y=4时,阴影部分的周长是多少?面积是多少?24.(10分)已知含字母x,y的多项式是:3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1)(1)化简此多项式;(2)小红取x,y互为倒数的一对数值代入化简的多项式中,恰好计算得多项式的值等于0,那么小红所取的字母y的值等于多少?25.(10分)周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)请根据他们的对话内容,求小明和爸爸的骑行速度.(2)爸爸第一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?26.(10分)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.参考答案与试题解析一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.【分析】先化简原题中的各数,然后即可判断哪些数是负数,本题得以解决.【解答】解:∵﹣22=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是2个,故选:C.【点评】本题考查正数和负数,解题的关键是明确负数的定义,可以对题目中的数进行化简.2.【分析】求最大值,应是较大的2个数的和,找到较大的两个数,相加即可.【解答】解:∵在1,﹣1,﹣2这三个数中,只有1为正数,∴1最大;∵|﹣1|=1,|﹣2|=2,1<2,∴﹣1>﹣2,∴任意两数之和的最大值是1+(﹣1)=0.故选:B.【点评】考查有理数的比较及运算;得到三个有理数中2个较大的数是解决本题的突破点.3.【分析】根据合并同类项进行解答即可.【解答】解:A、3a﹣4a=﹣a,错误;B、a2+a2=2a2,错误;C、3a2与2a3不是同类项,不能合并,错误;D、5a2b﹣6a2b=﹣a2b,正确.故选:D.【点评】此题考查合并同类项问题,理解合并同类项法则,是解决这类问题的关键.4.【分析】根据同类项、单项式、有理数的大小比较、一元一次方程的解逐个判断即可.【解答】解:A、﹣3ab2和b2a是同类项,故本选项符合题意;B、是单项式,故本选项不符合题意;C、当a=0时,a=﹣a,故本选项不符合题意;D、1.5是方程2x+1=4的解,2不是方程的解,故本选项不符合题意;故选:A.【点评】本题考查了同类项、单项式、有理数的大小比较、一元一次方程的解,能熟记知识点的内容是解此题的关键.5.【分析】利用角平分线的定义和补角的定义求解.【解答】解:OE平分∠COB,若∠EOB=55°,∴∠BOC=55+55=110°,∴∠BOD=180﹣110=70°.故选:C.【点评】本题考查了角平分线和补角的定义.6.【分析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立;C、不成立,因为c必需不为0;D、因为a2=9,3a2=27,所以a2≠3a2;故选:B.【点评】主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.7.【分析】根据图示,可得:﹣4<a<﹣3,1<b<2,据此逐项判断即可.【解答】解:根据图示,可得:﹣4<a<﹣3,1<b<2,﹣4<a<﹣3,选项A不符合题意;∵﹣4<a<﹣3,1<b<2,∴a+b<0,选项B不符合题意;∴|a|>|b|,选项C符合题意;∵a<0,b>0,∴ab<0,选项D不符合题意.故选:C.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.8.【分析】设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.9.【分析】根据旋转的性质,找出图中三角形的关键处(旋转中心)按顺时针方向旋转90°后的形状即可选择答案.【解答】解:根据旋转的性质可知,绕O点顺时针旋转90°得到的图形是.故选:B.【点评】本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.10.【分析】根据图形,结合互余的定义判断即可.【解答】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.【点评】本题考查了对余角和补角的应用,主要考查学生的观察图形的能力和理解能力.11.【分析】依据点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,即可得到点C在线段AB上.【解答】解:如图,∵点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,∴点A在线段BC的延长线上,故A错误;点B在线段AC延长线上,故B错误;点C在线段AB上,故C正确;点A在线段CB的反向延长线上,故D错误;故选:C.【点评】本题主要考查了两点间的距离,解决问题的关键是判段点C的位置在线段AB上.12.【分析】根据旋转变换的性质可得∠B′=∠B,因为△AOB绕点O顺时针旋转52°,所以∠BOB′=52°,而∠A'CO是△B′OC的外角,所以∠A′CO=∠B′+∠BOB′,然后代入数据进行计算即可得解.【解答】解:∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选:D.【点评】本题考查的是图形的旋转及三角形外角与内角的关系,图形旋转角即为原三角形的一边与形成新三角形后该对应边的夹角.13.【分析】有m辆校车及n个学生,则无论怎么分配,校车和学生的个数是不变的,据此列方程即可.【解答】解:根据学生数不变可得:40m+10=43m+1,故④正确;根据校车数不变可得:=,故③正确.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.14.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;故选:D.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:单项式﹣xy2的系数是﹣,故答案为:﹣.【点评】本题考查了单项式系数的定义,确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.注意π是数字,应作为系数.16.【分析】先算差,再算平方.【解答】解:所求代数式为:(3a﹣b)2.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.注意抓住关键词,找到相应的运算顺序.17.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.18.【分析】首先根据已知一个数值转换机的示意图,逐步列出代数式并化简,最后表示出输出的结果的代数式,然后代入求值.【解答】解:根据已知一个数值转换机的示意图可得x×2=2x,(y)3=y3,(2x+y3)÷2=x+,把x=3,y=﹣2代入得3+×(﹣2)3=3+(﹣4)=﹣1.故答案为:﹣1.【点评】此题考查了代数式求值问题的理解和掌握.关键是首先根据示意图正确列出代数式,再代入求值.19.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.20.【分析】根据日历表中的数据列出方程,求出方程的解即可得到结果.【解答】解:根据题意得:n﹣8+n﹣7+n﹣6+n﹣1+n+n+1+n+6+n+7+n+8=189,解得:n=21,则n的值为21,故答案为:21【点评】此题考查了一元一次方程的应用,弄清日历时候数据的规律是解本题的关键.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=﹣1﹣÷(﹣)=﹣1+×=﹣1+=﹣;(2)a﹣(5a﹣2b)﹣2(a﹣3b)=a﹣5a+2b﹣2a+6b=﹣6a+8b.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:8x﹣12﹣5x+1=7,移项合并得:3x=18,解得:x=6;(2)去分母得:2(2x﹣1)﹣(5﹣x)=﹣12,去括号得:4x﹣2﹣5+x=﹣12,移项合并得:5x=﹣5,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.【分析】(1)阴影部分的周长等于各边长的和,将各边长相加即可;(2)阴影部分的面积等于大长方形的面积减去小长方形的面积;(3)将x=5.5,y=4代入(1)(2)即可.【解答】解:(1)阴影部分的周长:y+2y+y+y+2x+2x=4x+6y,故答案为4x+6y;(2)阴影部分的面积2x•2y﹣y•(2x﹣x﹣0.5x)=3.5xy,故答案为3.5xy;(3)当x=5.5,y=4时,阴影部分的周长为4x+6y=4×5.5+6×4=46,阴影部分的面积为3.5xy=3.5×5.5×4=77.【点评】本题考查了代数式的值,正确列出代数式是解题的关键.24.【分析】(1)原式去括号合并即可得到结果;(2)由x,y互为倒数,得到xy=1,原式整理后即可求出y的值.【解答】解:(1)3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1)=3x2+6(y2+xy﹣2)﹣3x2﹣6y2﹣4xy+4x+4=3x2+6y2+6xy﹣12﹣3x2﹣6y2﹣4xy+4x+4=2xy+4x﹣8;(2)∵x,y互为倒数,∴xy=1,∴2xy+4x﹣8=4x﹣6=0,解得:x=,则y=.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.25.【分析】(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据距离=速度差×时间即可得出关于x的一元一次方程,解之即可得出结论;(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸跑道上相距50m.根据距离=速度差×时间即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据题意得:2(2x﹣x)=400,解得:x=200,∴2x=400.答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.(2)解:设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸相距50m.400y﹣200y=50y=或者60×y+50﹣60×y=400,解得y=.答:爸爸第一次追上小明后,在第二次相遇前,再经过或分钟,小明和爸爸相距50m.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由路程差找出合适的等量关系列出方程,再求解.26.【分析】(1)MN的长为3﹣(﹣1)=4,即可解答;(2)根据题意列出关于x的方程,求出方程的解即可得到x的值;(3)可分为点P在点M的左侧和点P在点N的右侧,点P在点M和点N之间三种情况计算;(4)分别根据①当点M和点N在点P同侧时;②当点M和点N在点P异侧时,进行解答即可.【解答】解:(1)MN的长为3﹣(﹣1)=4.(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,PN+PM=8,不合题意.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5.(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.【点评】此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.。

2019-2020学年湖南省长沙市七年级上册期末数学试卷

2019-2020学年湖南省长沙市七年级上册期末数学试卷

2019-2020学年湖南省长沙市七年级上册期末数学试卷题号一二三四总分得分第I卷(选择题)一、选择题(本大题共12小题,共36.0分)1.2018的倒数是()A. 2018B. 12018C. −12018D. −20182.某市一天上午的气温是10℃,下午上升了2℃,半夜(24时)下降了15℃,则半夜的气温是()A. 3℃B. −3℃C. 4℃D. −2℃3.我国自行设计、自主集成研制的蛟龙号载人潜水器最大下潜深度为7062m.将7062用科学记数法表示为()A. 7.062×103B. 7.1×103C. 0.7062×104D. 7.062×1044.下列单项式中,单项式12ab2的同类项是()A. B. C. −5ab2 D. −ab35.设M=x2+8x+12,N=−x2+8x−3,那么M与N的大小关系是()A. M>NB. M=NC. M<ND. 无法确定6.若x=2是方程4x+2m−14=0的解,则m的值为()A. 10B. 4C. 3D. −37.若关于x的方程2x+4=3m与x−1=m有相同的解,则m的值为()A. 6B. 5C. 52D. −238.若“∗”是新规定的某种运算符号,有x∗y=2x−y,则(−1)∗k=4中k的值为()A. 2B. 6C. −2D. −69.如图,D为线段CB的中点,CD=3,AB=11,则AC的长为()A. 4B. 5C. 6D. 810.把10.26°用度、分、秒表示为()A. 10°15′36″B. 10°20′6″C. 10°14′6″D. 10°26″11.如图,O为直线AB上一点,OE、OF分别是∠AOC、∠BOC的平分线,则∠EOF的度数是A. 60°B. 80°C. 90°D. 100°12.若关于x的方程2x+a=9−a(x−1)的解是x=3,则a的值为()A. 1B. 2C. −3D. 5第II卷(非选择题)二、填空题(本大题共8小题,共24.0分)13.已知|a−1|=3,|b|=3,a,b在数轴上对应的点分别为A、B,则A、B两点间距离等于.14.若m,n满足|m−6|+(7+n)2=0,则(m+n)2018=______.15.若2m−n−4=2,则4m−2n−9=______ .16.关于x、y的多项式2x3+x2−mx3−2x2+1不含x3项,则m的值是______.17.某件商品的标价是110元,按标价的八折销售时,仍可获利10%,则这件商品每件的进价为______元.18.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.19.已知点C在直线AB上,若AC=4cm,BC=6cm,E、F分别为线段AC、BC的中点,则EF=______cm.20.如图,直线AB,CD相交于点O,OA平分且,则______ .三、计算题(本大题共1小题,共5.0分)21.计算:(1)(+8)+(−7)−(−3)(2)−8÷(−2)+4×(−3)四、解答题(本大题共5小题,共55.0分)22.解方程:(1)2(x+1)−3(3x−4)=2(2)3x−14−5x−76=123.某车间有28名工人,生产某种螺栓和螺母,一个螺栓的两头各套上一个螺母配成一套,每人每天平均生产螺栓12个或螺母18个.问:多少名工人生产螺栓,多少名工人生产螺母,才能使一天所生产的螺栓和螺母刚好配套?24.(1)如图1,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.(2)如图2,∠BOE=2∠AOE,OF平分∠AOB,∠EOF=20°.求∠AOB.25.代数式(x3−1)−2(x3−3)+x3的值与x的值有关吗?请说明理由26.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°,将一直角三角板MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)求∠CON的度数;(2)如图2是将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周的情况.在旋转的过程中,当第t秒时,三条射线OA、OC、OM构成相等的角,求此时t的值;(3)将图1中的三角板绕点O逆时针旋转至图3,使ON在∠AOC的内部时,请探究∠AOM与∠CON的数量关系,并说明理由.答案和解析1.【答案】B,【解析】解:2018的倒数是12018故选:B.直接利用倒数的定义进而分析得出答案.此题主要考查了倒数,正确把握倒数的定义是解题关键.2.【答案】B【解析】【分析】此题主要考查了有理数的加减混合运算的应用,要熟练掌握.根据有理数的加减混合运算的运算方法,结合题意列出算式即可解答.【解答】解:根据题意可列算式:10+2−15=12−15=−3,则半夜的气温是−3℃,故选B.3.【答案】A【解析】解:7062用科学记数法表示为7.062×103,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】【分析】本题考查了同类项的知识,解答本题的关键是掌握同类项的定义,属于基础题.解题时,根据同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项,结合选项逐一判断即可.【解答】解:A.12a2b与12ab2所含字母相同,但相同字母的指数不相同,不是同类项,故此选项错误;B.3ab与12ab2所含字母相同,但字母b的指数不相同,不是同类项,故此选项错误;C.−5ab2与12ab2所含字母相同,且相同字母的指数也相同,是同类项,故此选项正确;D.−ab3与12ab2所含字母相同,但字母b的指数不相同,不是同类项,故此选项错误.故选C.5.【答案】A【解析】【分析】此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.将M与N代入M−N中,去括号合并得到最简结果,根据结果的正负即可做出判断.【解答】解:因为M−N=(x2+8x+12)−(−x2+8x−3)=x2+8x+12+x2−8x+3= 2x2+15>0,所以M>N.故选A.6.【答案】C【解析】【分析】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值;把x=2代入方程计算即可求出m的值.【解答】解:将x=−2代入方程得:8+2m−14=0,解得m=3,故选C.7.【答案】A【解析】【分析】本题考查了同解方程,利用同解方程得出关于m的方程是解题关键.根据同解方程,可得关于m的方程,解方程可得答案.【解答】解:由题意,得x=m+1,2(m+1)+4=3m,解得m=6,故选:A.8.【答案】D【解析】【分析】此题考查了新定义运算以及解一元一次方程,解题关键是掌握新定义运算的规则.解题时,先将新定义方程转化为一元一次方程,求解,即可求出k的值.【解答】解:根据题中的新定义得:(−1)∗k=−2−k,所求方程化为−2−k=4,k=−6.故选D.9.【答案】B【解析】解:∵D为线段CB的中点,CD=3,∴BC=2CD=6,∴AC=AB−BC=5.故选:B.根据线段中点的定义求出BC,结合图形计算即可.本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.10.【答案】A【解析】【分析】此类题是进行度分秒的换算,相对比较简单,注意以60为进制即可.【解答】解:∵0.26°×60=15.6′,0.6′×60=36″,∴10.26°用度、分、秒表示为10°15′36″.故选:A.11.【答案】C【解析】【分析】此题考查了角平分线定义,熟练掌握角平分线定义是解本题的关键.由OE与OF为角平分线,利用角平分线定义得到两对角相等,由平角的定义及等式的性质即可求出所求角的度数.【解答】解:∵OE、OF分别是∠AOC、∠BOC的平分线,∴∠AOE=∠COE,∠COF=∠BOF,∵∠AOC+∠COB=∠AOE+∠COE+∠COF+∠FOB=180°,∴2(∠COE+∠COF)=180°,即∠COE+∠COF=90°,则∠EOF=∠COE+∠COF=90°.故选C.12.【答案】A【解析】解:将x=3代入方程2x+a=9−a(x−1),得:6+a=9−2a,解得:a=1,故选:A.把x=3代入方程,即可二次一个关于a的方程,求出方程的解即可.本题考查了解一元一次方程和一元一次方程的解的应用,能得出关于a的一元一次方程是解此题的关键.13.【答案】1或5或7【解析】解:∵|a−1|=3,∴a−1=3或a−1=−3,a=4或a=−2;∵|b|=3,∴b=±3,分为四种情况:①当a=4,b=3时,A、B两点间的距离是4−3=1;②当a=4,b=−3时,A、B两点间的距离是4−(−3)=7;③当a=−2,b=3时,A、B两点间的距离是3−(−2)=5;④当a=−2,b=−3时,A、B两点间的距离是(−2)−(−3)=1.则A,B两点间距离等于1或5或7.故答案为:1或5或7.求出a=4或−2,b=±3,分为四种情况:①当a=4,b=3时,②当a=4,b=−3时,③当a=−2,b=3时,④当a=−2,b=−3时,求出A、B两点间的距离即可求解.本题考查了数轴,绝对值,注意:若数轴上A表示的数是m,B表示的数是n(m>n),数轴上两点A、B间的距离表示为|m−n|,也可以表示为m−n(大的数减去小的数).14.【答案】1【解析】【分析】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.根据非负数的性质,可求出m、n的值,然后再代值计算即可得出答案.【解答】解:∵|m−6|+(7+n)2=0,∴m−6=0且7+n=0,解得:m=6、n=−7,则原式=(6−7)2018=1.故答案为:1.15.【答案】3【解析】解:由2m−n−4=2得,2m−n=6,4m−2n−9=2(2m−n)−9,=2×6−9,=12−9,=3.故答案为3.先求出2m−n的值,然后整体代入进行计算即可得解.本题考查了代数式求值,整体思想的利用是解题的关键.16.【答案】2【解析】解:∵关于x、y的多项式2x3+x2−mx3−2x2+1不含x3项,∴2−m=0,解得:m=2.故答案为:2.直接利用多项式中不含x3项,得出2−m=0,进而得出答案.此题主要考查了多项式,得出x3项的系数为零是解题关键.17.【答案】80【解析】【分析】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设这种商品每件的进价为x元,根据题意得:110×80%−x=10%x,解得:x=80,则这种商品每件的进价为80元.故答案为80.18.【答案】4【解析】解:8个班进行友谊赛,也就是说每个班级要和其余7个班级比赛,根据总比赛场数为7,设赢了x场,则3x+(7−x)=15,解得:x=4.故答案是:4.8个班进行友谊赛,也就是说每个班级要和其余7个班级比赛,根据总比赛场数为7,设赢了x场,总分数为15即可列出方程,即可解题.本题考查了一元一次方程的应用,本题中根据题意找出总比赛场数为7是解题的关键.19.【答案】5或1【解析】【分析】本题考查了两点间的距离,分类讨论是解题关键.分类讨论点C在线段AB上,点C在线段AB的反向延长线上,根据中点分线段相等,可得AE与CE的关系,BF与CF的关系,可根据线段的和差,可得答案.【解答】解:当点C在线段AB上,E、F分别为线段AC、BC的中点,CE=AE=12AC=2cm,CF=BF=12BC=3cm,EF=CE+CF=2+3=5cm;当点C在线段AB的反向延长线上,E、F分别为线段AC、BC的中点,CE=AE=12AC=2cm,CF=BF=12BC=3cm,EF=CF−CE=3−2=1cm,故答案为5或1.20.【答案】30°【解析】【分析】本题考查了邻补角的定义,对顶角相等的性质,角平分线的定义有关知识,根据邻补角的定义求出∠EOC,再根据角平分线的定义求出∠AOC,然后根据对顶角相等解答.【解答】解:∵∠EOC:∠EOD=1:2,∴∠EOC=180°×11+2=60°,∵OA平分∠EOC,∴∠AOC=∠EOA=12×60°=30°,∴∠BOD=∠AOC=30°.故答案为30°.21.【答案】解:(1)(+8)+(−7)−(−3)=8+(−7)+3=4;(2)−8÷(−2)+4×(−3)=4+(−12)=−8.【解析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法和加法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.【答案】(1)解:去括号得:2x+2−9x+12=2移项得:2x−9x=2−2−12合并同类项得:−7x=−12系数化为1得:x=12;7(2)解:去分母得:3(3x−1)−2(5x−7)=12,去括号得:9x−3−10x+14=12,移项得:9x−10x=12+3−14,合并同类项得:−x=1,系数化为1得:x=−1.【解析】本题主要考查一元一次方程的解法,掌握一元一次方程的一般步骤是解题的关键.(1)可去括号,移项,合并同类项,把系数化为1即可求解;(2)可先去分母,去括号,再移项,合并同类项,把系数化为1即可求解.23.【答案】解:设应分配x名工人生产螺栓,(28−x)名工人生产螺母.根据题意,得12x×2=18×(28−x),解得x=12,则28−x=16,答:12名工人生产螺栓,16名工人生产螺母,才能使一天所生产的螺栓和螺母刚好配套.【解析】本题主要考查一元一次方程的应用.解题的关键是找出题目中的等量关系.设应分配x名工人生产螺栓,(28−x)名工人生产螺母,根据等量关系为:生产的螺栓的数量×2=生产的螺母的数量,由此可列出方程求解.24.【答案】解:(1)∵M是AC的中点,AC=6cm,∴MC=12AC=6×12=3cm,又因为CN:NB=1:2,BC=15cm,∴CN=15×13=5cm,∴MN=MC+CN=3+5=8cm,∴MN的长为8cm;(2)∵∠BOE=2∠AOE,∠AOB=∠BOE+∠AOE,∴∠BOE=23∠AOB,∵OF平分∠AOB,∴∠BOF=12∠AOB,∴∠EOF=∠BOE−∠BOF=16∠AOF,∵∠EOF=20°,∴∠AOB=120°.【解析】(1)直接利用两点之间距离分别得出CN,MC的长进而得出答案;(2)直接利用角平分线的性质以及结合已知角的关系求出答案.此题主要考查了角平分线的定义以及两点之间距离,正确把握相关定义是解题关键.25.【答案】解:该代数式的值与x的值无关.理由:∵(x3−1)−2(x3−3)+x3=x3−1−2x3+6+x3=5,故该代数式的值与x的值无关.【解析】直接利用整式的加减运算法则计算得出答案.此题主要考查了整式的加减运算,正确合并同类项是解题关键.26.【答案】解:(1)由图1可知∠AOC=60°,∠AON=90°,∴∠CON=∠AOC+∠AON=60°+90°=150°,(2)在图2中,要分三种情况讨论:①当∠AOC=∠COM=60°时,此时旋转角∠BOM= 60°,由10°t=60°,解得t=6,②当∠AOM=∠COM=30°时,此时旋转角∠BOM=150°,由10°t=150°,解得t=15.③当∠AOC=∠AOM=60°时,此时旋转角∠BOM=240°,由10°t=240°,解得t=24,综上所述,得知t的值为6或15或24,(3)当ON在∠AOC内部时,∠AOM−∠CON=30°,其理由是:设∠AON=x°,则有∠AOM=∠MON−∠AON=(90−x)°,∠CON=∠AOC−∠AON=(60−x)°,∴∠AOM−∠CON=(90−x)°−(60−x)°=30°.【解析】本题主要考查角的和、差关系,此题很复杂,难点是找出变化过程中的不变量,需要结合图形来计算,在计算分析的过程中注意动手操作,在旋转的过程中得到不变的量.(1)根据已知及角的计算,求出∠CON的值,(2)根据已知条件可知,在第t秒时,三角板转过的角度为10°t,然后按照OA、OC、ON三条射线构成相等的角分三种情况讨论,即可求出t的值;(3)根据三角板∠MON=90°可求出∠AOM、∠NOC和∠AON的关系,然后两角相加即可求出二者之间的数量关系.。

2019—2020年最新湘教版七年级数学上学期期末模拟综合试题及答案解析(试卷).doc

2019—2020年最新湘教版七年级数学上学期期末模拟综合试题及答案解析(试卷).doc

七年级数学(上)期末复习试卷(A)一、选择题(30分)1.下列各组中两个式子的值相等的是( )A.﹣23与(﹣2)3B.32与﹣32C.(﹣2)2与﹣22D.|﹣2|与﹣|+2|2.下列运算中,错误的是( )A.﹣3+(﹣2)=﹣5 B.5﹣(﹣4)=1C.6÷(﹣)=6×(﹣3)D.(﹣3)2×()2=13.m与n的3倍的和可以表示为( )A.3m+n B.3(m+n)C.m+3n D.3m+3n+34.若代数式3x4y与﹣x m y是同类项,则常数m的值为( )A.1 B.2 C.3 D.45.下列说法中正确的是( )A.1是单项式B.单项式m的系数为0,次数为0C.单项式2a2b的系数是2,次数是2D.xy﹣x+y﹣4的项是xy,x,y,46.当x分别等于2或﹣2时,代数式x4﹣7x2+1的两个值( )A.相等B.互为相反数C.互为倒数D.不同于以上答案7.若方程2x﹣1=5与kx+1=7同解,则k的值为( )A.4 B.2 C.﹣2 D.﹣48.两个锐角的和( )A.必为钝角B.仍为锐角C.必为直角D.以上三种情况均有可能9.既可以表示数量的多少,又能清楚地表示出数量增减变化的统计图是( ) A.条形统计图B.折线统计图C.扇形统计图D.复式统计图10.如图,OC是∠AOB的平分线,OD平分∠AOC,若∠COD=25°,则∠AOB的度数为( )A.100 B.80C.70 D.60二、填空题(30分)11.2014的相反数是__________.12.计算:8÷(﹣2)= .13.已知=2,那么=__________.14.两点之间的所有连线中,__________最短.15.如果x=1是方程2x+1=x﹣4+n的解,则n=__________.16.将数150000000用科学记数法表示为__________.17.如图,线段AD=12,点B、C是AD的三等分点,则线段CD的长为________18.某校有3000名学生,随机抽取300名学生进行体重调查,该问题中,样本的容量为__________.19.若|x|=3,|y+2|=0,则=__________.20.如图,是一个简单的数值运算程序,当输入x的值为2时,输出的数值为__________.三、计算与解答(40分)21.计算:32°45′48″+21°25′14″.22.先化简,再求值:4xy﹣(4x2+2xy)﹣2(3xy+10),其中x=1,y=﹣2.23.计算:﹣22﹣×[2﹣(﹣3)2].24.已知一个角的补角是这个角的余角的3倍,求这个角.25.已知代数式3x2﹣4x+6的值为9,求代数式x2﹣x+6的值.26.一队学生去校外郊游,他们以每小时5千米的速度行进,经过一段时间后,学校要将一紧急的通知传给队长.通讯员骑自行车从学校出发,以每小时14千米的速度按原路追上去,用去10分钟追上学生队伍,求通讯员出发前,学生队伍走了多长的时间.参考答案:一、选择题1. A.2.B.3. C.4. D.5. A.6. A.7. B.8. D.9. B.10. A.二、填空题11.﹣2014.12.﹣. 13. 5.14.线段.15. n=6.16. 1.5×108.17. 4.18. 300.19.±.20.﹣13.三、计算解答21. 54°11′2″.22.原式=﹣4x2﹣4xy﹣20,当x=1,y=﹣2时,原式=﹣4+8﹣20=﹣16.23.﹣3.24.解:设这个角为x,则补角为(180°﹣x),余角为(90°﹣x),由题意得,3(90°﹣x)=180°﹣x,解得:x=45,即这个角为45°.25.∵3x2﹣4x+6=9,∴x2﹣x+2=3,即x2﹣x=1∴x2﹣x+6=1+6=7.26.解:设通讯员出发前,学生队伍走了x小时,由题意得:,解之得:x=0.3,答:通讯员出发前,学生队伍走了0.3小时.。

2019-2020学年湖南省长沙市七年级上期末考试数学模拟试卷及答案解析

2019-2020学年湖南省长沙市七年级上期末考试数学模拟试卷及答案解析

2019-2020学年湖南省长沙市七年级上期末考试数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)
1.若海平面以上1045米,记作+1045米,则海平面以下155米,记作()A.﹣1200米B.﹣155米C.155米D.1200米
2.下列运算正确的是()
A.3a+2a=5a2B.2a2b﹣a2b=a2b
C.3a+3b=3ab D.a5﹣a2=a3
3.如图,平行线a、b被直线c所截,若∠1=50°,则∠2的度数是()
A.150°B.130°C.110°D.100°
4.下列各题正确的是()
A.由7x=4x﹣3移项得7x﹣4x=3
B .由=1+去分母得2(2x﹣1)=1+3(x﹣3)
C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1
D.由2(x+1)=x+7去括号、移项、合并同类项得x=5
5.下列结论中正确的是()
A .单项式的系数是,次数是4
B.单项式m的次数是1,没有系数
C.多项式2x2+xy2+3是二次三项式
D .在,2x+y ,,,,0中整式有4个
6.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()
第1 页共24 页。

湖南省长沙市2019-2020学年数学七上期末考试试题

湖南省长沙市2019-2020学年数学七上期末考试试题

注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.如图是某几何体的表面展开图,则该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱2.如图,从A地到B地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A.两点确定一条直线B.垂线段最短C.两点之间,线段最短D.两点之间,直线最短3.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cmB.3cmC.6cmD.7cm4.下列运用等式的性质,变形正确的是( )A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若a=b,则ac=bcD.若3x=2,则x=3 25.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为m厘米,宽为n厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.4m厘米B.4n厘米C.2(m+n)厘米D.4(m-n)厘米6.如图所示,a、b是有理数,则式子a b a b b a++++-化简的结果为()A.3a +bB.3a -bC.3b +aD.3b -a7.下列各组中两个单项式为同类项的是 A.23x 2y 与-xy 2 B.20.5a b 与20.5a cC.3b 与3abcD.20.1m n -与215nm 8.解方程1﹣362x x -=,去分母,得( ) A.1﹣x ﹣3=3xB.6﹣x ﹣3=3xC.6﹣x+3=3xD.1﹣x+3=3x 9.关于x 的方程2x m 3-=1的解为2,则m 的值是( ) A .2.5 B .1 C .-1 D .310.下列说法正确的是( )①两个正数中倒数大的反而小,②两个负数中倒数大的反而小,③两个有理数中倒数大的反而小,④两个符号相同的有理数中倒数大的反而小.A.①②④B.①C.①②③D.①④11.如图,在数轴上点M 表示的数可能是( )A. 3.5-B. 1.5-C.2.4D. 2.4- 12.计算(-3)2等于( )A.-9B.-6C.6D.9 二、填空题13.如图,已知C 为线段AB 的中点,D 在线段CB 上.若DA=6,DB=4,则CD=_____.14.如图,直线AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,如果∠FO D = 28°,那么∠AOG =______度.15.某通信公司的移动电话计费标准每分钟降低a 元后,再下调了20%,现在收费标准是每分钟b 元,则原来收费标准每分钟是_____元.16.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要 40h 完成.现在该小组全体同学一起先做 8h 后,有 2 名同学因故离开,剩下的同学再做 4h ,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有 x 名同学,根据题意可列方程为___________.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.18.单项式23x y -的系数是____. 19.∣x ∣=4, ∣y ∣=6,且xy >0,则∣x -y ∣=_____20.点A 在数轴上距原点5个单位长度,且位于原点的左侧,若将点A 向右移动4个单位长度,再向左移动1个单位长度,则此时点A 表示的数是________.三、解答题21.如图,直线 AB 、CD 相交于 O ,∠BOC =70°,OE 是∠BOC 的角平分线,OF 是OE 的反向延长线.(1)求∠1,∠2,∠3 的度数;(2)判断 OF 是否平分∠AOD ,并说明理由.22.如图1,在平面直角坐标系中,已知点A (0,a ),B (0,b )在y 轴上,点 C (m ,b )是第四象限内一点,且满足()2860a b -++=,△ABC 的面积是56;AC 交x 轴于点D ,E 是y 轴负半轴上的一个动点.(1)求C 点坐标;(2)如图2,连接DE ,若DE ⊥AC 于D 点,EF 为∠AED 的平分线,交x 轴于H 点,且∠DFE =90°,求证:FD 平分∠ADO ;(3)如图3,E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分 ∠AEC ,且PM ⊥EM 于M 点,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,MPQ ECA∠∠的大小是否发生变化,若不变,求出其值;若变化,请说明理由.23.方程x ﹣7=0与方程5x ﹣2(x+k )=2x ﹣1的解相同,求代数式k 2﹣5k ﹣3的值.24.用正方形硬纸板做三棱柱盒子,如图1,每个盒子由3个长方形侧面和2个三边均相等的三角形底面组成,硬纸板以如图2两种方法裁剪(裁剪后边角料不再利用),现有19 张硬纸板,裁剪时x张用了A方法,其余用B方法.(1)求裁剪出的侧面和底面的个数(分别用含x的代数式表示);(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?25.先化简,再求值(1)求代数式14(4a 2-2a-8)-(12a-1),其中a=1; (2)求代数式12x-2(x-13y 2)+(-32x+13y 2)的值,其中x=23,y=-2. 26.用“⊗”规定一种新运算:对于任意有理数a 和b ,规定a ⊗b=ab 2+2ab+a .如:1⊗3=1×32+2×1×3+1=16(1)求2⊗(-1)的值;(2)若(a+1)⊗3=32,求a 的值;(3)若m=2⊗x ,n=(14x )⊗3(其中x 为有理数),试比较m 、n 的大小. 27.(1)计算:﹣1+(﹣2)÷(﹣23)×13 (2)计算:(﹣34+16﹣38)×(﹣24) (3)计算:﹣24÷(﹣8)﹣14×(﹣2)2 28.计算:(1)()222202--÷- (2)()()1178245122-÷-+⨯--÷⨯ (3)()2012111 1.2512123⎛⎫--⨯+- ⎪⎝⎭ (4)()()()2221231x x x x x -+--++-【参考答案】***一、选择题1.B2.C3.D4.C5.B6.D7.D8.C9.B10.A11.D12.D二、填空题13.114.5915.(a+ SKIPIF 1 < 0b ). 解析:(a+54b ). 16. SKIPIF 1 < 0 解析:84(2)14040x x -+= 17.118.- SKIPIF 1 < 0 解析:-13 19.220.-2三、解答题21.(1)∠1=35°,∠2=110°,∠3=35°;(2)OF 平分∠AOD .22.(1)a=8,b=-6, AB=14, BC=8, C (8,-6);(2)见解析;(3)MPQ 1ECA 2∠∠= 23.-724.(1)侧面()276x +个,底面()955x -个;(2)3025.(1)-1(2)226.(1)0;(2)a=1;(3)m >n .27.(1)0;(2)23;(3)1.28.(1)原式9=-;(2)原式34=;(3)原式0=;(4)原式23x x =--+.。

2019—2020年新湘教版七年级数学上学期期末模拟质量检测及答案解析(试题).doc

2019—2020年新湘教版七年级数学上学期期末模拟质量检测及答案解析(试题).doc

湘教版七年级上学期期末模拟检测数学试卷一、精心选一选,旗开得胜(本大题共10道小题,每小题3分,共30分)1.|﹣3|的相反数是()A.B.﹣ C.3 D.﹣32.计算﹣3x2+4x2的结果为()A.﹣7x2B.7x2C.﹣x2 D.x23.下列各方程组中,属于二元一次方程组的是()A.B.C.D.4.下列说法正确的是()A.一个平角就是一条直线B.连接两点间的线段,叫做这两点的距离C.两条射线组成的图形叫做角D.经过两点有一条直线,并且只有一条直线5.下列立体图形中是圆柱的是()A.B.C.D.6.据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观了南湖红船(中共一大会址).数据2500万用科学记数法表示为()A.2.5×108 B.2.5×107 C.2.5×106 D.25×1067.为了解某市20000名考生的毕业会考数学成绩,从中抽出100名考生的数学成绩进行调查,抽出的100名考生的数学成绩是()A.总体 B.样本 C.个体 D.样本容量8.某船顺流航行的速度为20km/h,逆流航行的速度为16km/h,则水流的速度为()A.2km/h B.4km/h C.18km/h D.36km/h9.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为()A.330元B.210元C.180元D.150元10.若方程(m﹣3)x|m|﹣2=3y n+1+4是二元一次方程,则m,n的值分别为()A.2,﹣1 B.﹣3,0 C.3,0 D.±3,0二、用心填一填,再接再厉(本大题共8道小题,每小题3分,共24分)11.若海平面以上2000米记做“+2000米”,那么海平面以下3000米记做“”.12.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是.13.若|x+3|+(y﹣2)2=0,则(x+y)2015= .14.已知多项式﹣3x2y m﹣2﹣4x2y+xy﹣6是4次4项式,则m= .15.七八年级学生分别到雷锋、毛泽东纪念馆参观,共689人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为.16.已知一个角的余角为30°40′20″,则这个角的补角为.17.有理数a、b在数轴上的对应点的位置如图所示,|a﹣b|﹣|a+b|= .18.已知a为常数,方程组的解x、y的值互为相反数,则a= .三、细心做一做,慧眼识金(本大题共6道小题,每小题8分,共48分)19.计算下列各题:(1)(2).20.解下列方程:(1)6﹣4(x+2)=3(x﹣3)(2).21.先化简,再求值:4(﹣3a2﹣ab)﹣2(5ab﹣8b2),其中,b=﹣1.22.已知关于x,y的方程组的解为,求a,b的值.23.如图,已知∠AOB=140°,∠COF=30°,OE,OF分别为∠AOC,∠BOC的平分线,求∠BOE 的度数.24.网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中18﹣23岁部分的圆心角;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.25.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?四、耐心想一想,超越自我(本大题共1道小题,每小题10分,共10分)26.阅读材料:求1+2+22+23+…+22015的值.解:设S=1+2+22+23+…22015①,①×2得:2S=2+22+23+24+…+22016②,②﹣①得2S﹣S=22016﹣1,即S=1+2+22+23+…+22015=22016﹣1.请你仿照此法计算:(1)1+2+22+23+24+25= ;(2)求1+3+32+33+…+3n的值.(其中n为正整数)参考答案与试题解析一、精心选一选,旗开得胜(本大题共10道小题,每小题3分,共30分)1.|﹣3|的相反数是()A.B.﹣ C.3 D.﹣3【考点】绝对值;相反数.【专题】计算题.【分析】先根据绝对值的意义得到|﹣3|=3,然后根据相反数的定义求解.【解答】解:|﹣3|=3,3的相反数为﹣3,所以|﹣3|的相反数为﹣3.故选D.【点评】本题考查了绝对值:当a>0时,|a|=a;当a=0,|a|=0;当a<0时,|a|=﹣a.也考查了相反数.2.计算﹣3x2+4x2的结果为()A.﹣7x2B.7x2C.﹣x2 D.x2【考点】合并同类项.【分析】直接利用合并同类项法则求出答案.【解答】解:﹣3x2+4x2=x2.故选:D.【点评】此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.3.下列各方程组中,属于二元一次方程组的是()A.B.C.D.【考点】二元一次方程组的定义.【分析】二元一次方程组的定义的三要点:(1)只有两个未知数;(2)未知数的项最高次数都应是一次;(3)都是整式方程.据此可来逐项分析解题.【解答】解:A、xy是二次的,此选项错误;B、方程组含有3个未知数,是三元的,此选项错误;C、符合二元一次方程组的定义,此选项正确;D、是分式,此选项错误.故选:C.【点评】本题考查二元一次方程组的定义.解题过程中关键是要注意其三要点:1、只有两个未知数;2、未知数的项的最高次数都应是一次;3、都是整式方程.4.下列说法正确的是()A.一个平角就是一条直线B.连接两点间的线段,叫做这两点的距离C.两条射线组成的图形叫做角D.经过两点有一条直线,并且只有一条直线【考点】直线的性质:两点确定一条直线;两点间的距离;角的概念.【分析】分别利用角的概念以及两点间的距离分析得出答案.【解答】解:A、平角的两条边在一条直线上,故本选项错误;B、连接两点的线段的长度叫做两点间的距离,故此选项错误;C、有公共端点是两条射线组成的图形叫做角,故此选项错误;D、经过两点有一条直线,并且只有一条直线,正确;故选D【点评】此题主要考查了角的概念以及两点间的距离,正确把握相关定义是解题关键.5.下列立体图形中是圆柱的是()A.B.C.D.【考点】认识立体图形.【分析】利用圆柱的特征判定即可.【解答】解:由圆柱的特征判定D为圆柱.故选:D.【点评】本题主要考查了认识立体图形,解题的关键是熟记圆柱的特征.6.据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观了南湖红船(中共一大会址).数据2500万用科学记数法表示为()A.2.5×108 B.2.5×107 C.2.5×106 D.25×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2500万=2500 0000=2.5×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.为了解某市20000名考生的毕业会考数学成绩,从中抽出100名考生的数学成绩进行调查,抽出的100名考生的数学成绩是()A.总体 B.样本 C.个体 D.样本容量【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量..【解答】解:从中抽出100名考生的数学成绩进行调查,抽出的100名考生的数学成绩是样本,故选:B.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.某船顺流航行的速度为20km/h,逆流航行的速度为16km/h,则水流的速度为()A.2km/h B.4km/h C.18km/h D.36km/h【考点】一元一次方程的应用.【分析】先设未知数,设水流的速度为xkm/h,根据顺流航行的速度﹣水流的速度=静水速度,逆流航行的速度+水流的速度=静水速度,列方程可解得.【解答】解:设水流的速度为xkm/h,则20﹣x=16+x,x=2,则则水流的速度为2km/h,故选A.【点评】本题是一元一次方程的应用,属于水流航行问题,此类题要熟练掌握公式:①顺风速度=无风速度+风速度;②逆风速度=无风速度﹣风速度.9.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为()A.330元B.210元C.180元D.150元【考点】一元一次方程的应用.【分析】已知八折出售可获利90元,根据:进价=标价×8折﹣获利,可列方程求得该商品的进价.【解答】解:设每件的进价为x元,由题意得:300×80%﹣90=x解得x=150.故选D.【点评】本题考查了一元一次方程的应用,属于基础题,关键是仔细审题,根据等量关系:进价=标价×80%﹣获利,利用方程思想解答.10.若方程(m﹣3)x|m|﹣2=3y n+1+4是二元一次方程,则m,n的值分别为()A.2,﹣1 B.﹣3,0 C.3,0 D.±3,0【考点】二元一次方程的定义.【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:由(m﹣3)x|m|﹣2=3y n+1+4是二元一次方程,得,解得,故选:B.【点评】本题考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.二、用心填一填,再接再厉(本大题共8道小题,每小题3分,共24分)11.若海平面以上2000米记做“+2000米”,那么海平面以下3000米记做“﹣3000米”.【考点】正数和负数.【分析】根据相反意义的量,海平面以上2000米记做“+2000米”,那么海平面以下3000米记做﹣3000米即可.【解答】解:海平面以下3000米记做“﹣3000米”.故答案是:﹣3000米.【点评】本题考查了对正数和负数的理解和运用,关键是理解相反意义的量的记法.12.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是两点之间线段最短.【考点】线段的性质:两点之间线段最短.【分析】根据两点之间线段最短解答.【解答】解:把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是:两点之间线段最短.故答案为:两点之间线段最短.【点评】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.13.若|x+3|+(y﹣2)2=0,则(x+y)2015= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先利用偶次方的性质以及绝对值的性质得出x,y的值,进而求出答案.【解答】解:∵|x+3|+(y﹣2)2=0,∴x+3=0,y﹣2=0,则x=﹣3,y=2,故(x+y)2015=(﹣3+2)2015=﹣1.故答案为:﹣1.【点评】此题主要考查了偶次方的性质以及绝对值的性质,正确得出x,y的值是解题关键.14.已知多项式﹣3x2y m﹣2﹣4x2y+xy﹣6是4次4项式,则m= 4 .【考点】多项式.【分析】根据多项式为4次4项式,可得2+m﹣2=4,求出m的值即可.【解答】解:∵多项式﹣3x2y m﹣2﹣4x2y+xy﹣6是4次4项式,∴2+m﹣2=4,解得:m=4.故答案为:4.【点评】本题考查了多项式,注意多项式中次数最高的项的次数叫做多项式的次数.15.七八年级学生分别到雷锋、毛泽东纪念馆参观,共689人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为2x+56=689﹣x .【考点】由实际问题抽象出一元一次方程.【分析】根据到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人表示出到毛泽东纪念馆的人数,进而得出等式.【解答】解:设到雷锋纪念馆的人数为x人,根据题意可得:2x+56=689﹣x.故答案为:2x+56=689﹣x.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确得出等量关系是解题关键.16.已知一个角的余角为30°40′20″,则这个角的补角为120°40′20″.【考点】余角和补角;度分秒的换算.【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°可知一个角的补角比它的余角大90°,然后加上90°计算即可得解.【解答】解:30°40′20″+90°=120°40′20″.故答案为:120°40′20″.【点评】本题考查了余角和补角,是基础题,熟记余角与补角的概念是解题的关键.17.有理数a、b在数轴上的对应点的位置如图所示,|a﹣b|﹣|a+b|= 2a .【考点】绝对值;数轴.【分析】a,b都在原点的左侧,故都为负数,并且由a,b的位置可判断a>b.【解答】解:由于a>b,则|a﹣b|=a﹣b;由于a,b都为负数,则|a+b|=﹣(a+b);所以|a﹣b|﹣|a+b|=a﹣b+(a+b)=2a.故答案为:2a.【点评】本题关键是读懂数轴,得到a,b都为负数,并且a>b.18.已知a为常数,方程组的解x、y的值互为相反数,则a= 250 .【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】由x,y的值互为相反数,得到x+y=0,即y=﹣x,代入方程组消去x求出a的值即可.【解答】解:由题意得:x+y=0,即y=﹣x,代入方程组得:,②×10﹣①×11得:125=6a﹣,解得:a=250,故答案为:250【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.三、细心做一做,慧眼识金(本大题共6道小题,每小题8分,共48分)19.计算下列各题:(1)(2).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=(+)+(﹣﹣)=1﹣=;(2)原式=12﹣27﹣25=12﹣52=﹣40.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解下列方程:(1)6﹣4(x+2)=3(x﹣3)(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6﹣4x﹣8=3x﹣9,移项得:﹣4x﹣3x=﹣9﹣6+8,合并得:﹣7x=﹣7,解得:x=1;(2)去分母得:4(2x﹣1)﹣3(3x﹣4)=12,去括号得:8x﹣4﹣9x+12=12,移项得:8x﹣9x=12+4﹣12,合并得:﹣x=4,解得:x=﹣4.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.先化简,再求值:4(﹣3a2﹣ab)﹣2(5ab﹣8b2),其中,b=﹣1.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:4(﹣3a2﹣ab)﹣2(5ab﹣8b2)=﹣12a2﹣4ab﹣10ab+16b2=﹣12a2﹣14ab+16b2,当a=,b=﹣1时,原式=﹣3+7+16=20.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.已知关于x,y的方程组的解为,求a,b的值.【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】把x与y的值代入方程组得到关于a与b的方程组,求出方程组的解即可得到a与b的值.【解答】解:把代入方程组,可得,解得:.则a=4,b=3.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.23.如图,已知∠AOB=140°,∠COF=30°,OE,OF分别为∠AOC,∠BOC的平分线,求∠BOE 的度数.【考点】角平分线的定义.【分析】根据角平分线的定义得出∠AOC=2∠COE,∠BOC=2∠COF,由∠AOB=140°,∠COF=30°,得到∠BOC=2∠COF=60°,∠AOC=∠AOB﹣∠BOC=80°,则∠COE=∠AOC=40°,进而求出∠BOE=∠COE+∠BOC=100°.【解答】解:∵OE,OF分别为∠AOC,∠BOC的平分线,∴∠AOC=2∠COE,∠BOC=2∠COF,又∵∠AOB=140°,∠COF=30°,∴∠BOC=2∠COF=60°,∠AOC=∠AOB﹣∠BOC=80°,∴∠COE=∠AOC=40°,∴∠BOE=∠COE+∠BOC=100°.【点评】本题主要考查的是角平分线、角的比较与运算,准确识图得出角的和差关系是解题的关键.24.网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中18﹣23岁部分的圆心角;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)用30~35岁的人数除以所占的百分比求出被调查的人数,然后列式计算即可得解;(2)用360°乘以18~23岁的人数所占的百分比计算即可得解;(3)用网瘾总人数乘以12~35岁的人数所占的百分比计算即可得解.【解答】解:(1)被调查的人数=330÷22%=1500人,a=1500﹣450﹣420﹣330=1500﹣1200=300人;(2)360°××100%=108°;(3)∵12﹣35岁网瘾人数约为2000万,∴12~35岁的人数约为2000万×=1000万.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?【考点】二元一次方程组的应用;一元一次方程的应用.【专题】工程问题.【分析】本题需先根据题意设出未知数,再根据题目中的等量关系列出方程组,求出结果即可.【解答】解:设A饮料生产了x瓶,B饮料生产了y瓶,由题意得:,解得:,答:A饮料生产了30瓶,B饮料生产了70瓶.【点评】本题主要考查了二元一次方程组的应用,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.四、耐心想一想,超越自我(本大题共1道小题,每小题10分,共10分)26.阅读材料:求1+2+22+23+…+22015的值.解:设S=1+2+22+23+…22015①,①×2得:2S=2+22+23+24+…+22016②,②﹣①得2S﹣S=22016﹣1,即S=1+2+22+23+…+22015=22016﹣1.请你仿照此法计算:(1)1+2+22+23+24+25= 63 ;(2)求1+3+32+33+…+3n的值.(其中n为正整数)【考点】规律型:数字的变化类.【分析】(1)设S=1+2+22+23+24+25,则2S=2+22+…+26,两个式子相减即可解决问题.(2)设S=1+3+32+33+…+3n①,①×3得:3S=3+32+33+34+…+3n+1②,②﹣①即可解决问题.【解答】解:(1)设S=1+2+22+23+24+25,则2S=2+22+ (26)∴2S﹣S=26﹣1=63.故答案为63.(2)解:设S=1+3+32+33+…+3n①①×3得:3S=3+32+33+34+…+3n+1②②﹣①得:3S﹣S=3n+1﹣1则2S=3n+1﹣1即所以【点评】本题考查规律型﹣数字变化类题目,解题的关键是理解题意,学会模仿例题解法,记住这种解题的方法,属于中考常考题型.。

2019-2020学年湘教版七年级数学上册期末检测题(含答案)

2019-2020学年湘教版七年级数学上册期末检测题(含答案)

2019-2020学年湘教版数学精品资料期末检测题(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分)1.的相反数和绝对值分别是()A.B.C. D.2.如果和互为相反数,且,那么的倒数是()A.b21 B.b21 C.b2 D.3.计算的值是()A.0B.532 C.54 D.54-4.已知两数在数轴上的位置如图所示,则化简代数式12a b a b 的结果是()A.B.C.D.5.已知有一整式与的和为,则此整式为()A. B. C.D.6.某商店把一商品按标价的九折出售(即优惠),仍可获利,若该商品的标价为每件元,则该商品的进价为()A.元 B.元 C.元 D.元7.一杯可乐售价元,商家为了促销,顾客每买一杯可乐获一张奖券,每三张奖券可兑换一杯可乐,则每张奖券相当于()A.元B.元C.元D.元8.如图,则与之比为()A.B. C.D.9.如果与互补,与互余,则与的关系是()A. B.C.D.以上都不对10.如图,已知直线和相交于点,是直角,平分,,则的大小为() A. B.C. D.11.如图所示是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对全年ABC D E第8题图食品支出费用判断正确的是()A.甲户比乙户多B.乙户比甲户多C.甲、乙两户一样多D.无法确定哪一户多12.某中学开展“阳光体育活动”,九年级一班全体同学分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师统计了该班参加这三项活动的人数,并绘制了如图所示的频数直方图和扇形统计图.根据这两个统计图,可以知道该班参加乒乓球活动的人数是()A.50B.25C.15D.10二、填空题(每小题3分,共24分)13.如果的值与的值互为相反数,那么等于_____. 14.足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分.一队打14场,负5场,共得19分,那么这个队共胜了_____场.15.如图,,的中点与的中点的距离是,则______.16.定义,则_______. 17.当时,代数式的值为,则当时,代数式_____. 18.若关于的多项式中不含有项,则_____.19.甲、乙两家汽车销售公司根据近几年的销售量,分别制作如下统计图:A MBDCN第15题图从2002~2006年,这两家公司中销售量增长较快的是__________公司.20.如图,已知点是直线上一点,射线分别是的平分线,若则_________,__________.三、解答题(共60分)21.(4分)已知互为相反数,互为倒数,的绝对值是,求的值.22.(6分)(1)设,,求;(2)已知,,,求.23.(6分)已知:,且.(1)求等于多少?(2)若,求的值.24.(6分)用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少枚黑色棋子?(2)第几个图形有枚黑色棋子?请说明理由.25.(4分)一个三位数,它的百位上的数比十位上的数的倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数和个位上的数对调,那么得到的三位数比原来的三位数大99,求这个三位数. 26.(6分)如图,是直线上一点,为任一条射线,平分,平分.(1)指出图中与的补角;(2)试说明与具有怎样的数量关系.27.(6分)某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们1.522.53101234人数(万人)饮料数量(瓶)第27题图分别在A、B、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成统计图(如图).(1)在A出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A出口的被调查游客人数的______%.(2)试问A出口的被调查游客在园区内人均购买了多少瓶饮料?(3)已知B、C两个出口的被调查游客在园区内人均购买饮料的数量如下表所示出口 B C人均购买饮料数量(瓶) 3 2若C出口的被调查人数比B出口的被调查人数多2万,且B、C两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B出口的被调查游客有多少万人?28.(6分)如图,点在线段上,,,点分别是的中点.(1)求线段的长.(2)若为线段上任意一点,满足,其他条件不变,你能猜出线段的长度吗?并说明理由.(3)若在线段的延长线上,且满足,分别为的中点,你能猜想线段的长度吗?请画出图形,写出你的结论,并说明理由.第28题图29.(6分)某文具商店共有单价分别为元、元和元的种文具盒出售,该商店统计了年月份这种文具盒的销售情况,并绘制统计图如下:(1)请在图②中把条形统计图补充完整.(2)小亮认为:该商店3月份这3种文具盒总的平均销售价格为,你认为小亮的计算方法正确吗?如不正确,请计算出总的平均销售价格.30.(10分)某校为了了解本校七年级学生课外阅读的喜好,随机抽取该校七年级部分学生进行问卷调査(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了________名学生;度;(2)在扇形统计图中,“其他”所在扇形的圆心角等于__________(3)补全条形统计图;.(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是__________期末检测题参考答案1.B 解析:的相反数是,,故选 B.2.A 解析:因为和互为相反数,所以,故的倒数是ba 211. 3.B 4.B 解析:由数轴可知,且所以,故12(1)(2)1223a b a b a b a b a b a b b .5.B 解析:,故选B .6.A 解析:设该商品的进价是元,由题意,得,解得,故选A .7. C 解析:由题意可知,一杯可乐的实际价格一杯可乐的售价一张奖券的价值,3张奖券的价值一杯可乐的实际价格,因而设每张奖券相当于元,由此可列方程,解得.8.C 解析:设则所以,所以所以9.C 解析:因为,所以.又因为所以所以,即故选C .10.A 解析:因为是直角,所以又因为平分,所以因为所以所以.11.D 解析:根据扇形统计图的定义,本题中的总量不明确,所以在两个图中无法确定哪一户多,故选D .12.C 解析:25÷50%=50(人),50-25-10=15(人),即参加乒乓球的人数为15.13.解析:根据题意,得,解得.14.5 解析:设共胜了场.由题意,得,解得15.解析:设因为是的中点,是的中点,所以所以,所以,所以,即16.解析:根据题意可知,.17.7 解析:因为当时,,所以,即.所以当时,.18.解析:,由于多项式中不含有项,故,所以.19.甲解析:从折线统计图中可以看出:甲公司2006年的销售量约为510辆,2002年约为100辆,则2002~2006年甲公司销售量增长了;乙公司2006年的销售量为400辆,2002年的销售量为100辆,则2002~2006年乙公司销售量增长了.故甲公司销售量增长较快.20.解析:因为所以因为是的平分线,,所以所以因为是的平分线,所以21.解:由已知可得,,,.当时,;当时,.22.解:(1)(2)23.解:(1)因为,所以. (2)依题意,得,所以,.所以.24.解:(1)第一个图形有棋子6枚,第二个图形有棋子9枚,第三个图形有棋子12枚,第四个图形有棋子15枚,第五个图形有棋子18枚,…,第个图形有棋子枚.答:第5个图形有枚黑色棋子.(2)设第个图形有枚黑色棋子,根据(1)得,解得,所以第个图形有枚黑色棋子.25.解:由题意,设十位上的数为,则这个数是,把这个三位数的百位上的数和个位上的数对调后的数为,则,解得.所以这个数是.26.解:(1)与互补的角与互补的角(2).理由如下:又平分所以所以,所以25.(1)(2)解:购买饮料总数为,20210购买饮料总数万瓶瓶总人数万人/人.(3)解:设B 出口人数为万人,则C 出口人数为.则有,解得.所以B 出口的被调查游客有9万人. 28.解:(1)因为,,所以又因为点分别是的中点,所以,所以答:线段的长为.(2)若为线段上任意一点,满足,其他条件不变,则. 理由如下:因为点分别是的中点,所以因为,所以.(3)如图,第28题答图因为点分别是的中点,所以因为,所以29.解:(1). 如图.(2)小亮的计算方法不正确,正确计算为:.30.解:(1)80÷40%=200(人),故这次活动一共调查了200名学生.(2)20÷200×360°=36°,故在扇形统计图中,“其他”所在扇形的圆心角等于36°. (3)200-80-40-20=60(人),即阅读“科普常识”的学生有60人,补全条形统计图如图所示:(4)60÷200×100%=30%,600×30%=180(人),故估计该年级喜欢“科普常识”的人数为180.。

2019-2020年新湘教版七年级数学第一学期期末模拟试卷及答案解析

2019-2020年新湘教版七年级数学第一学期期末模拟试卷及答案解析

七年级(上)期末数学模拟试卷一、选择题(每小题3分,共24分)1.下列各组中两个式子的值相等的是( )A.﹣23与(﹣2)3B.32与﹣32C.(﹣2)2与﹣22D.|﹣2|与﹣|+2|2.下列各式中运算错误的是( )A.5x﹣2x=3x B.5ab﹣5ba=0C.4x2y﹣5xy2=﹣x2y D.3x2+2x2=5x23.下面的说法正确的是( )A.﹣2不是单项式B.﹣a表示负数C.的系数是3 D.不是多项式4.如果am=an,那么下列等式不一定成立的是( )A.am﹣3=an﹣3 B.5+am=5+an C.m=n D.5.下列说法正确的是( )A.要了解湖南卫视《快乐大本营》的采用普查的方法B.为了解某种灯泡的使用寿命,宜采用普查的方法C.为了解某班学生每天做作业的时间,宜采用普查的方法D.了解外地游客对湘菜美食文化的满意度,采用普查方法6.下列判断正确的是( )A.锐角的补角不一定是钝角B.一个角的补角一定大于这个角C.如果两个角是同一个角的补角,那么它们相等D.锐角和钝角互补7.如图所示,点O为直线AB上一点∠AOC=∠DOE=90°,那么图中互余角的对数为( )A.2对B.3对C.4对D.5对8.已知实数a在数轴上的位置如图所示,则化简|a﹣1|+|a|的结果为( )A.1 B.﹣1 C.1﹣2a D.2a﹣1二、填空题(每小题3分,共24分)9.国家游泳中心“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,用科学记数法表示是__________平方米.10.已知a4b2n与2a3m+1b6是同类项,则m=__________,n=__________.11.数轴上与表示﹣1的点的距离等于两个单位长度的点所表示的数是__________.12.为了了解一批电视机的使用寿命,从中抽取100台电视机进行测试,其中96台达到标准,这个问题的样本是__________,样本容量是__________.13.48°21′36〞的余角是__________(用度表示),补角是__________(用度、分、秒表示).14.若点C是直线AB上一点,AB=6,BC=10,M、N分别是AB和BC的中点,则MN=__________.15.某市按以下规定收取水费,若每月用水不超过5立方米,按每立方米0.8元收费;如果超过5立方米,超过部分按每立方米1.5元收费.已知7月份某用户的水费平均每立方米1.15元,那么7月份该用户应交水费__________元.16.某校学生列队以8千米/时的速度前进,队尾一名学生以12千米/时的速度跑步到队伍最前列传达通知,然后立即返回队尾,返回队尾时共用时9分钟.求队伍的长度.可设队伍长为x千米,依题意可列出方程__________.三、解答题(共52分)17.计算:(﹣2)2+[18﹣(﹣3)×2]÷4.18.解方程:.19.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣3.5,,﹣1,4,0,2.5.20.先化简下式,再求值:5a(3a2b﹣ab2)﹣4a(﹣ab2+3a2b)﹣(3ab)2;其中a=﹣2,b=3.21.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了__________名同学;(2)条形统计图中,m=__________,n=__________;(3)扇形统计图中,艺术类读物所在扇形的圆心角是__________度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?22.当x=2时,代数式ax3﹣bx+1的值等于﹣17,求:当x=﹣2时,代数式ax3﹣bx+1的值.23.小张开车去火车站,如果速度为30千米/时,则早到15分钟到达,如果18千米/时,则迟到5分钟,现在打算提前10分钟到达,那么他开车的速度是多少?24.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.25.观察下面一列单项式:﹣x,2x2,﹣3x3,4x4,…,﹣19x19,20x20,…(1)写出第99个,第2006个单项式;(2)写出第n个单项式.26.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一扇正门和两扇侧门,1分钟内可以通过280名学生;当同时开启一扇正门和一扇侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门的一道侧门各可以通过通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,则建造的这4道门是否符合安全规定?请你说明理由.七年级(上)期末数学模拟试卷答案解析一、选择题(每小题3分,共24分)1.下列各组中两个式子的值相等的是( )A.﹣23与(﹣2)3B.32与﹣32C.(﹣2)2与﹣22D.|﹣2|与﹣|+2|考点:有理数的乘方.分析:根据有理数的乘方,逐项化简,即可解答.解答:解:A、﹣23=﹣8,(﹣2)3=﹣8,故正确;B、32=9,﹣32=9,故错误;C、(﹣2)2=4,﹣22=﹣4,故错误;D、|﹣2|=2,﹣|+2|=﹣2,故错误;故选:A.点评:本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.2.下列各式中运算错误的是( )A.5x﹣2x=3x B.5ab﹣5ba=0C.4x2y﹣5xy2=﹣x2y D.3x2+2x2=5x2考点:合并同类项.专题:分类讨论.分析:根据合并同类项的法则,对各选项分析判断后利用排除法求解.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.解答:解:A、5x﹣2x=(5﹣2)x=3x,正确;B、5ab﹣5ba=(5﹣5)ab=0,正确;C、4x2y与5xy2不是同类项,不能合并,故本选项错误;D、3x2+2x2=(3+2)x2=5x2,正确.故选C.点评:本题考查了合并同类项,合并同类项时要注意以“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.3.下面的说法正确的是( )A.﹣2不是单项式B.﹣a表示负数C.的系数是3 D.不是多项式考点:单项式;多项式.专题:常规题型.分析:分别根据单项式和多项式的定义判断各选项即可.解答:解:A、﹣2是单项式,故本选项错误;B、﹣a可以表示任何数,故本选项错误;C、的系数是,故本选项错误;D、不一定是多项式,故本选项正确.故选D.点评:本题考查单项式和多项式的知识,属于基础题,关键是熟练掌握这两个概念.4.如果am=an,那么下列等式不一定成立的是( )A.am﹣3=an﹣3 B.5+am=5+an C.m=n D.考点:等式的性质.专题:计算题.分析:已知等式利用等式的性质变形得到结果,即可做出判断.解答:解:如果am=an,那么等式不一定成立的是m=n.故选C点评:此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.5.下列说法正确的是( )A.要了解湖南卫视《快乐大本营》的采用普查的方法B.为了解某种灯泡的使用寿命,宜采用普查的方法C.为了解某班学生每天做作业的时间,宜采用普查的方法D.了解外地游客对湘菜美食文化的满意度,采用普查方法考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、要了解湖南卫视《快乐大本营》的采用普查的方法,人数众多,应采用抽样调查;B、为了解某种灯泡的使用寿命,破坏性较强,应采用抽样调查;C、为了解某班学生每天做作业的时间,人数较少,宜采用普查的方法;D、了解外地游客对湘菜美食文化的满意度,人数众多,应采用抽样调查;故选:C.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.下列判断正确的是( )A.锐角的补角不一定是钝角B.一个角的补角一定大于这个角C.如果两个角是同一个角的补角,那么它们相等D.锐角和钝角互补考点:余角和补角.分析:要判断两角的关系,可根据角的性质,两角互余,和为90°,互补和为180°,据此可解出本题.解答:解:A、∵补角和为180°,∴设一个角为∠α,则与它互补的角为∠β=180°﹣∠α.当∠α为锐角时,∠α<90°,∴∠β>90°,所以∠β一定是钝角,故选项错误;B、∵补角和为180°,∴设一个角为∠α,则与它互补的角为∠β=180°﹣∠α.若∠α为钝角,则它的补角∠β为锐角,∠β<∠α,故选项错误;C、设∠α+∠β=180°,∠γ+∠β=180°,∴∠α=∠γ,故选项正确;D、中没有明确指出是什么角,故选项错误.故选:C.点评:此题考查的是对角的性质的理解,两角互余和为90°,互补和为180°,而两角的大小比较不可用互余与互补来判断.7.如图所示,点O为直线AB上一点∠AOC=∠DOE=90°,那么图中互余角的对数为( )A.2对B.3对C.4对D.5对考点:余角和补角.分析:根据余角的和等于90°,结合图形找出构成直角的两个角,然后再计算对数.解答:解:∵∠AOC=∠DOE=90°,∴∠AOD+∠COD=90°,∠AOD+∠BOE=90°,∠COD+∠COE=90°,∠COE+∠BOE=90°.∴互余角的对数共有4对.故选C.点评:本题结合图形考查了余角的和等于90°的性质,找出和等于90°的两个角是解题的关键.8.已知实数a在数轴上的位置如图所示,则化简|a﹣1|+|a|的结果为( )A.1 B.﹣1 C.1﹣2a D.2a﹣1考点:绝对值;数轴.专题:探究型.分析:先根据点a在数轴上位置确定a的取值范围,再根据绝对值的性质把原式化简即可.解答:解:∵由数轴上a点的位置可知,0<a<1,∴a﹣1<0,∴原式=1﹣a+a=1.故选A.点评:本题考查的是绝对值的性质及数轴的特点,能够根据已知条件正确地判断出a的取值范围是解答此题的关键.二、填空题(每小题3分,共24分)9.国家游泳中心“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,用科学记数法表示是2.6×105平方米.考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:260 000平方米用科学记数法表示是2.6×105平方米.点评:用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.10.已知a4b2n与2a3m+1b6是同类项,则m=1,n=3.考点:同类项.分析:根据同类项是字母相同,且相同字母的指数也相同,可得m、n的值,再根据有理数的加法运算,可得答案.解答:解:∵a4b2n与2a3m+1b6是同类项,∴3m+1=4,2n=6,∴m=1.n=3,故答案为:1,3.点评:本题考查了同类项,相同字母的指数也相同是解题关键.11.数轴上与表示﹣1的点的距离等于两个单位长度的点所表示的数是﹣3或1.考点:数轴.专题:计算题.分析:画出相应的数轴,找出与表示﹣1的点的距离等于两个单位长度的点所表示的数即可.解答:解:如图所示,与表示﹣1的点的距离等于两个单位长度的点所表示的数是﹣3或1,故答案为:﹣3或1.点评:此题考查了数轴,画出相应的数轴是解本题的关键.12.为了了解一批电视机的使用寿命,从中抽取100台电视机进行测试,其中96台达到标准,这个问题的样本是抽取100台电视机的使用寿命,样本容量是100.考点:总体、个体、样本、样本容量.分析:根据样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量进行分析.解答:解:为了了解一批电视机的使用寿命,从中抽取100台电视机进行测试,其中96台达到标准,这个问题的样本是抽取100台电视机的使用寿命,样本容量是100,故答案为:抽取100台电视机的使用寿命;100.点评:此题主要考查了样本和样本容量,解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”13.48°21′36〞的余角是41.64°(用度表示),补角是131°38′24(用度、分、秒表示).考点:余角和补角.分析:根据互余的两角之和为90°,互补的两角之和为180°,可得这个角的余角和补角;根据1°=60′,1′=60″,进行换算即可.解答:解:根据定义,48°21′36〞的余角90°﹣48°21′36〞=41°38′24〞=41.64°,补角的度数是180°﹣48°21′36°=131°38′24.故答案为:41.64°,131°38′24.点评:本题考查了余角和补角的知识,度分秒之间的换算,属于基础题.14.若点C是直线AB上一点,AB=6,BC=10,M、N分别是AB和BC的中点,则MN=2或8.考点:两点间的距离.分析:本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据题意正确地画出图形解题.解答:解:本题有两种情形:(1)当点C在点A的左侧时,如图,∵AC=BC﹣AB,AB=6cm,BC=10cm,∴AC=10﹣6=4,又∵M、N分别是AB、BC的中点,∴AM=AB=3,BN=BC=5,∴AN=5﹣4=1,∴MN=AM﹣AN=3﹣1=2;(2)当点C在线段AB的延长线上时,如图,∵AC=AB+BC,AB=16cm,BC=10cm,∴AC=6+10=16cm.又∵M、N分别是AB、BC的中点,∴BM=AB=3,BN=BC=5,∴MN=BM+BN=3+5=8,故MN的长度是2或8.故答案为:2或8.点评:本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.距离是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离.15.某市按以下规定收取水费,若每月用水不超过5立方米,按每立方米0.8元收费;如果超过5立方米,超过部分按每立方米1.5元收费.已知7月份某用户的水费平均每立方米1.15元,那么7月份该用户应交水费11.5元.考点:一元一次方程的应用.分析:根据题意可知,1.15大于0.8,所以这一个月的用水量超过了5立方米,利用水费的两种不同求法作为等量关系列方程求解解答:解:设他这一个月共用了x立方米的水,根据题意得:0.8×5+1.5(x﹣5)=1.15x,解得:x=10.∴7月份该用户应交水费为10×1.15=11.5元.故答案为11.5.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.此题中涉及的一个量的两种不同表示方法作为相等关系是解一元一次方程应用题中一个重要的相等关系,需要掌握.16.某校学生列队以8千米/时的速度前进,队尾一名学生以12千米/时的速度跑步到队伍最前列传达通知,然后立即返回队尾,返回队尾时共用时9分钟.求队伍的长度.可设队伍长为x千米,依题意可列出方程2×x×12=0.15×12+0.15×8.考点:由实际问题抽象出一元一次方程.分析:利用行驶的路程得出等式即可得到方程.解答:解:9分=时=0.15时,设该学生用了x时到达队首,则用(0.15﹣x)时返回队尾,根据题意,得2×x×12=0.15×12+0.15×8,故答案为:2×x×12=0.15×12+0.15×8.点评:此题主要考查了一元一次方程的应用,根据题意得出正确等量关系是解题关键.三、解答题(共52分)17.计算:(﹣2)2+[18﹣(﹣3)×2]÷4.考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:原式=4+24÷4=10.点评:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算.乘法和除法叫做二级运算;加法和减法叫做一级运算;(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级.有括号的先算括号里面的;同级运算按从左到右的顺序.18.解方程:.考点:解一元一次方程.专题:计算题.分析:原式去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=2x﹣2x﹣3,移项合并得:﹣3x=9,解得:x=﹣3.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.19.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣3.5,,﹣1,4,0,2.5.考点:有理数大小比较;数轴.分析:先在数轴上表示出来,再根据数轴上表示的数,右边的数总比左边的数大比较即可.解答:解:如图所示:用“<”连接为:﹣3.5<﹣1<0<<2.5<4.点评:本题考查了数轴和有理数的大小比较的应用,注意:在数轴上表示的数,右边的数总比左边的数大,难度不是很大.20.先化简下式,再求值:5a(3a2b﹣ab2)﹣4a(﹣ab2+3a2b)﹣(3ab)2;其中a=﹣2,b=3.考点:整式的混合运算—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解答:解:原式=15a3b﹣5a2b2+4a2b2﹣12a3b﹣9a2b2=3a3b﹣10a2b2,当a=﹣2,b=3时,原式=﹣72﹣360=﹣432.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了200名同学;(2)条形统计图中,m=40,n=60;(3)扇形统计图中,艺术类读物所在扇形的圆心角是72度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)结合两个统计图,根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,即可得出总人数;(2)利用科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,即可得出m的值;(3)根据艺术类读物所在扇形的圆心角是:×360°=72°;(3)根据喜欢其他类读物人数所占的百分比,即可估计6000册中其他读物的数量;解答:解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得(册).答:学校购买其他类读物900册比较合理.点评:此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键.22.当x=2时,代数式ax3﹣bx+1的值等于﹣17,求:当x=﹣2时,代数式ax3﹣bx+1的值.考点:代数式求值.分析:利用已知将x=2代入原式进而得出a,b的关系进而求出即可.解答:解:∵当x=2时,代数式ax3﹣bx+1的值等于﹣17,∴8a﹣2b+1=17,∴4a﹣b=8,∴当x=﹣2时,代数式ax3﹣bx+1=﹣8a+2b+1=﹣2(4a﹣b)+1=﹣15.点评:此题主要考查了代数式求值,正确应用已知条件求出是解题关键.23.小张开车去火车站,如果速度为30千米/时,则早到15分钟到达,如果18千米/时,则迟到5分钟,现在打算提前10分钟到达,那么他开车的速度是多少?考点:一元一次方程的应用.分析:可设开车到火车站准点所用的时间为x小时,根据等量关系:从家开车到火车站的路程是一定的,列出方程求解即可.解答:解:设开车到火车站准点所用的时间为x小时,依题意有30(x﹣)=18(x+),解得x=,则30(x﹣)÷(x﹣)=30×(﹣)÷(﹣)=.答:他开车的速度应该是千米/小时.点评:考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.考点:角平分线的定义.专题:计算题.分析:利用图中角与角的关系即可求得.解答:解:∵∠COE是直角,∠COF=34°∴∠EOF=90°﹣34°=56°又∵OF平分∠AOE∴∠AOF=∠EOF=56°∵∠COF=34°∴∠AOC=56°﹣34°=22°则∠BOD=∠AOC=22°.故答案为22°.点评:此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.25.观察下面一列单项式:﹣x,2x2,﹣3x3,4x4,…,﹣19x19,20x20,…(1)写出第99个,第2006个单项式;(2)写出第n个单项式.考点:单项式.专题:规律型.分析:(1)根据已知数据分析,第99个项的系数是﹣99,x的指数是99,第2006个项的系数是2006,x的指数是2006,即可得出答案;(2)利用已知单项式系数的绝对值是连续的正整数,x的次数是连续的正整数,第奇数个为负数,偶数个是正数,进而得出答案.解答:解:(1)∵﹣x,2x2,﹣3x3,4x4,…,﹣19x19,20x20,…∴第99个单项式为:﹣99x99,第2006个单项式为:2006x2006;(2)由已知可得:第n个单项式为:(﹣1)n nx n.点评:本题考查了单项式的有关内容的应用,主要考查学生的理解能力和观察能力,能找出规律是解此题的关键.26.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一扇正门和两扇侧门,1分钟内可以通过280名学生;当同时开启一扇正门和一扇侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门的一道侧门各可以通过通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,则建造的这4道门是否符合安全规定?请你说明理由.考点:二元一次方程组的应用.分析:(1)设平均每分钟一道正门可以通过x名学生,一道侧门可以通过y名学生,根据当同时开启一道正门和两道侧门时,每分钟可以通过280名学生;当同时开启一道正门和一道侧门时,每分钟可以通过200名学生.两个关系列方程组求解.(2)根据(1)的数据,可以求出拥挤时5分钟四道门可通过的学生人数,与这栋楼学生数比较得出答案.解答:解:(1)设一个正门平均每分钟通过x名学生,一个侧门平均每分钟通过y名学生,由题意,得,解得:.答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生.(2)共有学生:45×8×4=1440,在拥挤的状态下5分钟通过:(120+80)×80%×2×5=1600,∵1600>1440.建造的这4道门是符合安全规定.点评:此题考查的知识点是二元一次方程组的应用,关键是现根据已知列方程组求解,然后计算拥挤时,5分钟内4道门能通过的学生数与现有学生数比较.。

2019—2020年湘教版七年级数学上学期期末模拟综合试题及答案(试卷).docx

2019—2020年湘教版七年级数学上学期期末模拟综合试题及答案(试卷).docx

最新湘教版七年级数学上学期期末模拟试卷一、选择题(每题3分,共30分)1.(3分)﹣5的绝对值是()A.5B.C.﹣D.﹣52.(3分)下列运算正确的是()A.﹣3﹣(﹣)=4 B.0﹣2=﹣2 C.×(﹣)=1 D.﹣2÷(﹣4)=23.(3分)若(a﹣2)2+|b+3|=0,则(a+b)2014的值是()A.1B.0C.2014 D.﹣14.(3分)地球上陆地的面积约为148 000 000平方千米,用科学记数法表示为()A.148×106平方千米B.14.8×107平方千米C.1.48×108平方千米D.1.48×109平方千米5.(3分)下列各组两项中,是同类项的是()A.x y与﹣xy B.C.﹣2xy与﹣3ab D.3x2y与3xy26.(3分)下列说法正确的是()A.0.720有两个有效数字B.3.6万精确到个位C.5.078精确到千分位D.3000有一个有效数字7.(3分)已知|x|=3,y=2,且x<y,则x+y的值为()A.5B.﹣1 C.5或1 D. 1或﹣18.(3分)如图,共有线段()A.3条B.4条C.5条D. 6条9.(3分)如图,AB∥CD,EF⊥AB于E,EF交CD于F,EG平分∠AEF,则∠1的度数为()A.20°B.30°C.45° D.60°10.(3分)如图,直线AB和CD相交于点O,若∠AOD与∠BOC的和为236°,则∠AOC 的度数为()A.62°B.118°C.72° D.59°二、填空题(每题3分,共30分)11.(3分)﹣的倒数是.12.(3分)代数式a2+a+3的值为8,则代数式2a2+2a﹣3的值为.13.(3分)已知∠A=51°23′,则∠A的余角的度数是.14.(3分)如图,O为直线AB上一点,∠COB=26°24′,则∠1=度.15.(3分)若2x3y m与﹣3x n y2是同类项,则m+n=.16.(3分)已知线段AB=2cm,延长AB到点C,使BC=4cm,D为AB的中点,则线段DC=.17.(3分)若(a+1)y|a+2|﹣1是关于y的一次二项式,则a=.18.(3分)多项式按x的降幂排列为.19.(3分)如图,OC平分∠BOD,OE平分∠AOD,则与∠COD互余的角是.20.(3分)如图是一组有规律的图案,第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,…,第n(n是正整数)个图案中由个基础图形组成.(用含n的代数式表示)三、解答题(共60分)21.(16分)计算(1)4﹣8×(﹣)3(2)﹣5(x2﹣3)﹣2(3x2+5)(3)﹣12011+4×(﹣3)2÷(﹣2)(4)4a2+2(3ab﹣2a2)﹣(7ab﹣1)22.(8分)先化简,再求值:,其中x=﹣1,y=2.23.(8分)如图,已知∠1=∠2,∠D=60˚,求∠B的度数.24.(7分)已知1﹣=,﹣=,﹣=,﹣=…根据这些等式求值:+++…+.25.(9分)如图,AB∥CD,直线EF分别与AB、CD交于点G,H,GM⊥EF,HN⊥EF,交AB于点N,∠1=50°.(1)求∠2的度数;(2)试说明HN∥GM;(3)∠HNG=°.26.(12分)一副直角三角板(其中一个三角板的内角是45°,45°,90°,另一个是30°,60°,90°)(1)如图①放置,AB⊥AD,∠CAE=,BC与AD的位置关系是;(2)在(1)的基础上,再拿一个30°,60°,90°的直角三角板,如图②放置,将AC′边和AD边重合,AE是∠CAB′的角平分线吗,如果是,请加以说明,如果不是,请说明理由.(3)根据(1)(2)的计算,请解决下列问题:如图③∠BAD=90°,∠BAC=∠FAD=20°,将一个45°,45°,90°直角三角板的一直角边与AD边重合,锐角顶点A与∠BAD的顶点重合,AE是∠CAF的角平分线吗?如果是,请加以说明,如果不是,请说明理由.(4)如果将图③中的∠BAC=∠FAD=α(α是锐角),其它条件不变,那么(3)问中的结论还成立吗?只需回答是还是不是,不需要说明理由.参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)﹣5的绝对值是()A.5B.C.﹣D.﹣5考点:绝对值.分析:绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.解答:解:根据负数的绝对值是它的相反数,得|﹣5|=5.故选A.点评:本题考查了绝对值的定义和性质,解题的关键是掌握绝对值的性质.2.(3分)下列运算正确的是()A.﹣3﹣(﹣)=4 B.0﹣2=﹣2 C.×(﹣)=1 D.﹣2÷(﹣4)=2考点:有理数的除法;有理数的减法;有理数的乘法.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式=﹣3+=﹣3,错误;B、原式=﹣2,正确;C、原式=﹣1,错误;D、原式=,错误,故选B点评:此题考查了有理数的除法,有理数的减法,以及有理数的乘法,熟练掌握运算法则是解本题的关键.3.(3分)若(a﹣2)2+|b+3|=0,则(a+b)2014的值是()A.1B.0C.2014 D.﹣1考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.解答:解:根据题意得:,解得:.则原式=1.故选A.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.4.(3分)地球上陆地的面积约为148 000 000平方千米,用科学记数法表示为()A.148×106平方千米B.14.8×107平方千米C.1.48×108平方千米D.1.48×109平方千米考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:148 000 000=1.48×108平方千米.故选C.点评:用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.5.(3分)下列各组两项中,是同类项的是()A.x y与﹣xy B.C.﹣2xy与﹣3ab D.3x2y与3xy2考点:同类项.分析:根据同类项的定义(所含字母相同,并且相同字母的指数也相等的项,叫同类项)判断即可.解答:解:A、是同类项,故本选项正确;B、不是同类项,故本选项错误;C、不是同类项,故本选项错误;D、不是同类项,故本选项错误;故选A.点评:本题考查了对同类项的应用,注意:所含字母相同,并且相同字母的指数也相等的项,叫同类项.6.(3分)下列说法正确的是()A.0.720有两个有效数字B.3.6万精确到个位C.5.078精确到千分位D.3000有一个有效数字考点:近似数和有效数字.分析:一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.利用有关近似数的确定方法求解即可.解答:解:A、错误,有3个有效数字;B、错误,精确到千位;C、正确,精确到千分位;D、错误,有4个有效数字,故选C.点评:本题考查有效数字的概念和精确度,属于基础题,比较简单.7.(3分)已知|x|=3,y=2,且x<y,则x+y的值为()A.5B.﹣1 C.5或1 D. 1或﹣1考点:绝对值.专题:计算题.分析:先由|x|=3,得x=±3,又由y=2,x<y,得x=﹣3,从而求出x+y的值.解答:解:∵|x|=3,∴x=±3,又∵y=2,x<y,∴x=﹣3,∴x+y=﹣3+2=﹣1.故选:B.点评:本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.8.(3分)如图,共有线段()A.3条B.4条C.5条D. 6条考点:直线、射线、线段.分析:根据在一直线上有n点,一共能组成线段的条数的公式:,代入可直接选出答案.解答:解:线段AB、AC、AD、BC、BD、CD共六条,也可以根据公式计算,=6,故选D.点评:在线段的计数时,应注重分类讨论的方法计数,做到不遗漏,不重复.9.(3分)如图,AB∥CD,EF⊥AB于E,EF交CD于F,EG平分∠AEF,则∠1的度数为()A.20°B.30°C.45° D.60°考点:平行线的性质.分析:根据角平分线定义求出∠GEA,根据平行线的性质得出∠1=∠GEA,即可得出答案.解答:解:∵EF⊥AB,∴∠FEA=90°,∵GE平分∠FEA,∴∠GEA=∠FEA=45°,∵CD∥AB,∴∠1=∠GEA=45°,故选C.点评:本题考查了角平分线定义和平行线的性质的应用,注意:两直线平行,同位角相等.10.(3分)如图,直线AB和CD相交于点O,若∠AOD与∠BOC的和为236°,则∠AOC 的度数为()A.62°B.118°C.72° D.59°考点:对顶角、邻补角.分析:利用对顶角的定义以及周角定义得出∠AOC的度数.解答:解:∵直线AB和CD相交于点O,∠AOD与∠BOC的和为236°,∴∠AOC=∠BOD==62°.故选A.点评:此题主要考查了对顶角、邻补角的定义,熟练掌握相关定义是解题关键.二、填空题(每题3分,共30分)11.(3分)﹣的倒数是﹣2.考点:倒数.分析:根据倒数的定义直接解答即可.解答:解:∵(﹣)×(﹣2)=1,∴﹣的倒数是﹣2.点评:本题考查倒数的基本概念,即若两个数的乘积是1,我们就称这两个数互为倒数.属于基础题.12.(3分)代数式a2+a+3的值为8,则代数式2a2+2a﹣3的值为7.考点:代数式求值.专题:计算题.分析:由题意求出a2+a的值,原式变形后代入计算即可求出值.解答:解:由a2+a+3=8,得到a2+a=5,则原式=2(a2+a)﹣3=10﹣3=7,故答案为:7点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.13.(3分)已知∠A=51°23′,则∠A的余角的度数是38°37′.考点:余角和补角.专题:计算题.分析:根据余角、补角的定义计算.解答:解:∠A的余角的度数是90°﹣51°23′=38°37′.故填38°37′.点评:主要考查了余角的概念.互为余角的两角的和为90°.14.(3分)如图,O为直线AB上一点,∠COB=26°24′,则∠1=153.6度.考点:余角和补角;度分秒的换算.分析:根据邻补角互补可得∠1=180°﹣26°24′=153°36′.解答:解:∵∠COB=26°24′,∴∠1=180°﹣26°24′=153°36′=153.6°.故答案为:153.6.点评:此题主要考查了补角,关键是掌握邻补角互补.15.(3分)若2x3y m与﹣3x n y2是同类项,则m+n=5.考点:同类项.分析:此题考查同类项的概念(字母相同,字母的指数也相同的项是同类项)可得:n=3,m=2,再代入m+n求值即可.解答:解:根据同类项定义,有n=3,m=2.∴m+n=2+3=5.点评:结合同类项的概念,找到对应字母及字母的指数,确定待定字母的值,然后计算.16.(3分)已知线段AB=2cm,延长AB到点C,使BC=4cm,D为AB的中点,则线段DC=5cm.考点:两点间的距离.专题:计算题.分析:先根据题意找出各点的位置,然后直接计算即可.解答:解:画出图形如下所示:则DC=DB+BC=AB+BC=1+4=5cm.故答案为:5cm.点评:利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.17.(3分)若(a+1)y|a+2|﹣1是关于y的一次二项式,则a=﹣4或0.考点:单项式.分析:由于(a+1)y|a+2|﹣1是关于y的一次二项式,所以a+1≠0,|a+2|=1,求出a的值即可.解答:解:∵(a+1)y|a+2|﹣1是关于y的一次二项式,∴|a+2|=1,所以a+2=±1,∴a=﹣1或a=﹣3,∵a+1≠0,∴a≠﹣1,∴a=﹣3.点评:本题考查了一次二项式的定义,根据定义确定y的系数和次数是解题的关键.18.(3分)多项式按x的降幂排列为.考点:多项式.分析:按x的降幂排列即按照x的指数从大到小的顺序进行排列.解答:解:多项式按x的降幂排列为.点评:关于某一字母的升降幂排列,注意与多项式中每一项的次数无关,只与要求的字母有关.19.(3分)如图,OC平分∠BOD,OE平分∠AOD,则与∠COD互余的角是∠DOE和∠AOE.考点:余角和补角.分析:答题是首先知道余角的概念,由∠AOD+∠BOD=180°,又知OC平分∠BOD,OE 平分∠AOD,故知∠COE=90°.解答:解:∵∠AOD+∠BOD=180°,∵OC平分∠BOD,OE平分∠AOD,∴∠DOE+∠COD=90°,∠DOE=∠AOE,∴与∠COD互余的角是∠DOE和∠AOE.点评:本题主要考查角的比较与运算,还涉及到角平分线等知识点.20.(3分)如图是一组有规律的图案,第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,…,第n(n是正整数)个图案中由(5n+1)个基础图形组成.(用含n 的代数式表示)考点:规律型:图形的变化类.专题:规律型.分析:观察图形不难发现,后一个图形比前一个图形多5个基础图形,根据此规律写出第n个图案的基础图形个数即可.解答:解:第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,11=5×2+1,第3个图案由16个基础图形组成,16=5×3+1,…,第n个图案由5n+1个基础图形组成.故答案为:5n+1.点评:本题是对图形变化规律的考查,观察图形得到后一个图形比前一个图形多5个基础图形是解题的关键.三、解答题(共60分)21.(16分)计算(1)4﹣8×(﹣)3(2)﹣5(x2﹣3)﹣2(3x2+5)(3)﹣12011+4×(﹣3)2÷(﹣2)(4)4a2+2(3ab﹣2a2)﹣(7ab﹣1)考点:有理数的混合运算;整式的加减.分析:(1)先算乘方,再算乘法,最后算减法;(2)(4)先去括号,再合并同类项即可;(3)先算乘方,再算乘除,最后算加法.解答:解:(1)原式=4﹣8×(﹣)=4+1=5;(2)原式=﹣5x2+15﹣6x2﹣10=﹣11x2+5;(3)原式=﹣1+4×9÷(﹣2)=﹣1﹣18=﹣19;(4)原式=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.点评:此题考查有理数的混合运算与整式的加减混合运算,掌握运算顺序与符号的判定是解决问题的关键.22.(8分)先化简,再求值:,其中x=﹣1,y=2.考点:整式的混合运算—化简求值.分析:原式中含有括号,则化简时先去括号,然后合并同类项得到最简式,将x,y的值代入最简式即可得到原式的值.解答:解:,=xy2+2x2y﹣1﹣xy2﹣x2y,=﹣xy2+x2y﹣1,当x=﹣1,y=2时,原式=﹣×(﹣1)×4+×1×2﹣1=1.点评:本题考查了去括号法则,合并同类项的法则,去括号时要注意符号的变化,也是容易出错的地方.23.(8分)如图,已知∠1=∠2,∠D=60˚,求∠B的度数.考点:平行线的判定与性质.分析:根据平行线的判定求出AB∥CD,推出∠D+∠B=180°,代入求出即可.解答:解:∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴AB∥CD,∴∠D+∠B=180°,∵∠D=60°,∴∠B=120°.点评:本题考查了对平行线的性质和判定的应用,主要考查学生的推理能力.24.(7分)已知1﹣=,﹣=,﹣=,﹣=…根据这些等式求值:+++…+.考点:有理数的混合运算.专题:规律型.分析:原式利用拆项法变形,抵消合并即可得到结果.解答:解:原式=1﹣+﹣+﹣+…+﹣=1﹣=.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(9分)如图,AB∥CD,直线EF分别与AB、CD交于点G,H,GM⊥EF,HN⊥EF,交AB于点N,∠1=50°.(1)求∠2的度数;(2)试说明HN∥GM;(3)∠HNG=40°.考点:平行线的判定与性质.专题:计算题.分析:(1)根据平行线的性由AB∥CD得到∠EHD=∠1=50°,再根据对顶角相等可得到∠2的度数;(2)根据垂直的定义得到∠MGH=90°,∠NHF=90°,然后根据平行线的判定有HN∥GM;(3)先由HN⊥EF得到∠NHG=90°,再根据对顶角相等得∠NGH=∠1=50°,然后根据互余可计算出∠HNG=40°.解答:解:(1)∵AB∥CD,∴∠EHD=∠1=50°,∴∠2=∠EHD=50°;(2)∵GM⊥EF,HN⊥EF,∴∠MGH=90°,∠NHF=90°,∴∠MGH=∠NHF,∴HN∥GM;(3)∵HN⊥EF,∴∠NHG=90°∵∠NGH=∠1=50°,∴∠HNG=90°﹣50°=40°.故答案为40.点评:本题考查了平行线的判定与性质:同位角相等,两直线平行;两直线平行,同位角相等.同旁内角互补.26.(12分)一副直角三角板(其中一个三角板的内角是45°,45°,90°,另一个是30°,60°,90°)(1)如图①放置,AB⊥AD,∠CAE=15°,BC与AD的位置关系是相互平行;(2)在(1)的基础上,再拿一个30°,60°,90°的直角三角板,如图②放置,将AC′边和AD边重合,AE是∠CAB′的角平分线吗,如果是,请加以说明,如果不是,请说明理由.(3)根据(1)(2)的计算,请解决下列问题:如图③∠BAD=90°,∠BAC=∠FAD=20°,将一个45°,45°,90°直角三角板的一直角边与AD边重合,锐角顶点A与∠BAD的顶点重合,AE是∠CAF的角平分线吗?如果是,请加以说明,如果不是,请说明理由.(4)如果将图③中的∠BAC=∠FAD=α(α是锐角),其它条件不变,那么(3)问中的结论还成立吗?只需回答是还是不是,不需要说明理由.考点:角的计算;角平分线的定义.分析:(1)如图①,∠CAE=90°﹣∠BAC﹣∠EAD;由平行线的判定定理推知BC∥AD;(2)欲证明AE是∠CAB′的角平分线,只需推知∠EAB′=15°;(3)根据等量代换推知AE是∠CAF的角平分线;(4)利用(3)的解题思路解答即可.解答:解:(1)如图①,∵AB⊥AD,∴∠BAD=90°.又∠BAC=30°,∠EAD=45°,∴∠CAE=90°﹣∠BAC﹣∠EAD=15°;∵∠ABC=90°,∴∠ABC+∠BAD=180°,∴BC∥AD.故答案是:15°;相互平行;(2)AE是∠CAB′的角平分线.理由如下:如图②,∵∠EAD=45°,∠B′AC′=30°,∴∠EAB′=∠EAD﹣∠B′AC′=15°.又由(1)知,∠CAE=15°,∴∠CAE=∠EAB′,即AE是∠CAB′的角平分线;(3)AE是∠CAF的角平分线.理由如下:如图③,∵∠EAD=45°,∠BAD=90°,∴∠BAE=∠DAE=45°,又∵∠BAC=∠FAD=20°,∴∠BAE﹣∠BAC=25°∠DAE﹣∠FAD=25°,∴∠CAE=∠FAE,即AE是∠CAF的角平分线;(4)AE是∠CAF的角平分线.理由如下:如图③,∵∠EAD=45°,∠BAD=90°,∴∠BAE=∠DAE=45°,又∵∠BAC=∠FAD=20°,∴∠BAE﹣∠BAC=∠DAE﹣∠FAD,∴∠CAE=∠FAE,即AE是∠CAF的角平分线.点评:本题考查了角的计算和角平分线的定义.解题时,利用了“数形结合”的数学思想.。

2019-2020学年七年级数学上学期期末原创卷A卷(湖南)(参考答案)

2019-2020学年七年级数学上学期期末原创卷A卷(湖南)(参考答案)

2019-2020学年上学期期末原创卷A 卷七年级数学·参考答案13.–514.>15.20% 16.017.218.26或5或519.【解析】(1)原式=357(36)(36)(36)4912-⨯--⨯-+⨯- =272021+- =26.(3分) (2)原式=4169(2)(1)3-+⨯+-⨯- =-16+12+2 =-2.(6分)20.【解析】(1)原式=3a 2-4a 2+2a -7a=-a 2–5a .(3分)(2)原式=–3a 2+4ab +a 2–4a –4ab=–2a 2–4a .(6分)21.【解析】(1)移项合并得:2x =-3,(2分)解得:x =-32.(4分) (2)去分母得:9y -3-10y +14=12, 移项合并得:-y =1, 解得:y =-1.(8分)22.【解析】(1)∵AOB ∠与BOC ∠互补,∴180AOB BOC ∠+∠=︒,∴18040140BOC ∠=︒-︒=︒,(2分) ∵OD 是BOC ∠的平分线, ∴1702COD BOC ∠=∠=︒.(4分) (2)∵AOB ∠与BOC ∠互余, ∴90AOB BOC ∠+∠=︒,∴904050BOC ∠=︒-︒=︒,(6分) ∵OD 是BOC ∠的平分线, ∴1252COD BOC ∠=∠=︒.(8分) 23.【解析】(1)根据题意得:(4x 2-3-6x )+2(-x 2+2x +5)=4x 2-3-6x -2x 2+4x +10=2x 2-2x +7.(3分)(2)原式=12x -2x +23y 2-32x +13y 2=-3x +y 2,当x =-2,y =23时,原式=649.(6分)(3)根据题意得:A =3x 2-2x +10-(-2x 2+5x -3)=3x 2-2x +10+2x 2-5x +3=5x 2-7x +13,则A -B =5x 2-7x +13+2x 2-5x +3=7x 2-12x +16.(9分)24.【解析】(1)200;40;36°.(3分)本次统计共抽取书籍40÷20%=200本, 扇形统计图中m %=80200×100%=40%,即m =40; ∠α=360°×20200=36°, 故答案为:200;40;36°.(2)B 类别人数为200–(40+80+20)=60,(4分) 补全图形如下:(6分)(3)估计全校师生共捐赠文学类书籍6000×60200=1800本.(9分) 25.【解析】(1)100x +8000;90x +9000.(4分)方案一购买,需付款:20×500+100(x –20)=100x +8000(元), 按方案二购买,需付款:0.9(20×500+100x )=90x +9000(元). (2)当x =30时,方案一费用:100x +8000=100×30+8000=11000(元);方案二费用:90x+9000=90×30+9000=11700(元).∵11000<11700,∴按方案一购买较合算.(7分)(3)先按方案一购买20套西装获赠20条领带,再按方案二购买10条领带.20×500+100×0.9×10=10900(元).故此方案需要付款10900元.(10分)26.【解析】(1)如图,(3分)(2)6.(6分)CA=4−(−2)=4+2=6 cm.(3)不变,理由如下:当移动时间为t秒时,点A、B、C分别表示的数为−2+t、−5−2t、4+4t,则CA=(4+4t)−(−2+t)=6+3t,AB=(−2+t)−(−5−2t)=3+3t,∵CA−AB=(6+3t)−(3+3t)=3,∴CA−AB的值不会随着t的变化而改变.(10分)。

2019-2020学年湖南省长沙市浏阳市七年级(上)期末数学试卷(教师版)

2019-2020学年湖南省长沙市浏阳市七年级(上)期末数学试卷(教师版)

2019-2020学年湖南省长沙市浏阳市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米.将2500000用科学记数法表示应为()A.0.25×107B.2.5×107C.2.5×106D.25×105【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.【解答】解:根据题意:2500000=2.5×106.故选:C.【点评】把一个数写成a×10n的形式,叫做科学记数法,其中1≤|a|<10,因此不能写成25×105而应写成2.5×106.2.(3分)下列说法中,错误的是()A.射线AB和射线BA是同一条射线B.直线AB和直线BA是同一条直线C.线段AB和线段BA是同一条线段D.连结两点间的线段的长度叫两点间的距离【分析】根据射线的表示方法判断A;根据直线的表示方法判断B;根据线段的表示方法判断C;根据两点间的距离的定义判断D.【解答】解:A、射线AB和射线BA是同一条射线,说法错误;B、直线AB和直线BA是同一条直线,说法正确;C、线段AB和线段BA是同一条线段,说法正确;D、连结两点间的线段的长度叫两点间的距离,说法正确;故选:A.【点评】本题考查了直线、射线、线段的表示方法:①直线:用一个小写字母表示,如:直线l,或用两个大些字母(直线上的)表示,如直线AB(或直线BA).②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).同时考查了两点间的距离的定义.3.(3分)如图,在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.159°B.141°C.111°D.69°【分析】利用方向角的定义求解即可.【解答】解:∠AOB=90°﹣54°+90°+15°=141°.故选:B.【点评】本题主要考查了方向角,解题的关键是正确理解方向角.4.(3分)x、y、z在数轴上的位置如图所示,则化简|x﹣y|+|z﹣y|的结果是()A.x﹣z B.z﹣x C.x+z﹣2y D.以上都不对【分析】根据x、y、z在数轴上的位置,先判断出x﹣y和z﹣y的符号,在此基础上,根据绝对值的性质来化简给出的式子.【解答】解:由数轴上x、y、z的位置,知:x<y<z;所以x﹣y<0,z﹣y>0;故|x﹣y|+|z﹣y|=﹣(x﹣y)+z﹣y=z﹣x.故选:B.【点评】此题借助数轴考查了用几何方法化简含有绝对值的式子,能够正确的判断出各数的符号是解答此类题的关键.5.(3分)如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,则∠MON的度数为()A.30°B.45°C.60°D.75°【分析】根据角平分线的定义得到∠MOC=∠AOC,∠NOC=∠BOC,则∠MON=∠MOC﹣∠NOC=(∠AOC﹣∠BOC)=∠AOB,然后把∠AOB的度数代入计算即可.【解答】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,∵∠AOC=∠AOB+∠BOC,∴∠MON=∠MOC﹣∠NOC=(∠AOB+∠BOC﹣∠BOC)=∠AOB,∵∠AOB=90°,∴∠MON=×90°=45°.故选:B.【点评】本题考查了角平分线的定义,做这类题时学生总会认为条件不够,其实只要把这些等量关系合并化简即可求出角的度数,所以学生做题时有是不要急于计算,而是要先化简后再合并,属于基础题.6.(3分)下列运算正确的是()A.B.C.3a+5b=8ab D.3a2b﹣4ba2=﹣a2b【分析】分别根据有理数的混合运算法则,幂的定义,合并同类项法则逐一判断即可.【解答】解:A,故本选项不合题意;B.,故本选项不合题意;C.3a与5b不是同类项,所以不能合并,故本选项不合题意;D.3a2b﹣4ba2=﹣a2b,正确.故选:D.【点评】本题主要考查了有理数的混合运算以及合并同类项,熟记相关运算法则是解答本题的关键.7.(3分)如图几何体的展开图形最有可能是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题,注意带图案的三个面有一个公共顶点.【解答】解:选项A能折叠成原正方体的形式,而选项A带图案的三个面没有一个公共顶点,不能折叠成原正方体的形式;选项B折叠后带圆圈的面在右面时,带三角形的面在上面与原正方体中的位置不同,选项D中带图案的三个面位置相同,但图案对应的方向不同.故选:C.【点评】本题主要考查了几何体的展开图.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.8.(3分)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg【分析】根据题意给出三袋面粉的质量波动范围,并求出任意两袋质量相差的最大数.【解答】解:根据题意从中找出两袋质量波动最大的(25±0.3)kg,则相差0.3﹣(﹣0.3)=0.6kg.故选:B.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.9.(3分)登山队员攀登珠穆朗玛峰,在海拔3000m时,气温为﹣20℃,已知每登高1000m,气温降低6℃,当海拔为5000m时,气温是()℃.A.﹣50B.﹣42C.﹣40D.﹣32【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:﹣20﹣(5000﹣3000)÷1000×6=﹣20﹣12=﹣32(℃),故选:D.【点评】此题考查了有理数的混合运算,列出正确的算式是解本题的关键.10.(3分)下列各组数中,互为相反数的是()A.与﹣5B.|﹣5|与5C.与D.与【分析】根据互为相反数的两个数的和是0,逐项判断即可.【解答】解:∵﹣+(﹣5)=﹣5≠0,∴选项A不符合题意;∵|﹣5|+5=10≠0,∴选项B不符合题意;∵|﹣|+(﹣)=0,∴选项C符合题意;∵﹣+(﹣|﹣|)=﹣≠0,∴选项D不符合题意.故选:C.【点评】此题主要相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”;互为相反数的两个数的和是0.11.(3分)解方程2(x﹣3)﹣3(x﹣4)=5时,下列去括号正确的是()A.2x﹣3﹣3x+4=5B.2x﹣6﹣3x﹣4=5C.2x﹣3﹣3x﹣12=5D.2x﹣6﹣3x+12=5【分析】方程利用去括号法则计算即可得到结果.【解答】解:由原方程去括号,得2x﹣6﹣3x+12=5.故选:D.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.12.(3分)a、b、c是三个有理数,且abc<0,a+b<0,a+b+c=1,下列结论一定成立的是()A.|a|>|b+c|B.c﹣1<0C.b+c>0D.|a+b﹣c|﹣|a+b﹣1|=c﹣1【分析】由a+b+c=1,表示出a+b=1﹣c,再由a+b小于0,列出关于c的不等式,求出不等式的解集确定出c大于1,将a+b=1﹣c,a+b﹣1=c代入|a+b﹣c|﹣|a+b+1|中,利用绝对值的代数意义化简,去括号合并得到结果为c﹣1,从而得出答案.【解答】解:∵a+b+c=1,a+b<0,∴a+b=1﹣c<0,即c>1,则|a+b﹣c|﹣|a+b﹣1|=|1﹣2c|﹣|c|=2c﹣1﹣c=c﹣1.故选:D.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)比较大小:>【分析】根据正数大于0,0大于负数,正数大于负数,两个负数,绝对值大的其值反而小,比较即可.【解答】解:因为+(﹣)=﹣=﹣,﹣|﹣|=﹣=﹣,所以+(﹣)>﹣|﹣|,故答案为:>.【点评】本题考查了有理数大小比较,要熟练掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.14.(3分)写出单项式﹣3xy2的一个同类项:xy2(答案不唯一:形如Zxy2,Z≠0且Z为常数).【分析】直接利用同类项的定义分析得出答案.【解答】解:单项式xy2的一个同类项可以为:xy2(答案不唯一:形如Zxy2,Z≠0且Z 为常数).故答案为:xy2(答案不唯一:形如Zxy2,Z≠0且Z为常数).【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.15.(3分)∠1与∠2互为余角,若∠1=34°20',则∠2=55°40′.【分析】若两个角的和为90°,则这两个角互余.根据一个角的余角等于90°减去这个角的度数进行计算.【解答】解:∵∠1与∠2互为余角,且∠1=34°20',∴∠2=90°﹣∠1=90°﹣34°20'=55°40′.故答案为55°40′.【点评】此题考查了余角和补角的意义.互为余角的两角的和为90°,互为补角的两角之和为180°.16.(3分)关于x的方程2x+m=1﹣x的解是x=﹣2,则m的值为7.【分析】方程的解就是能够使方程左右两边相等的未知数的值,把x=﹣2代入方程2x+m =1﹣x就得到关于m的方程,从而求出m的值.【解答】解:把x=﹣2代入方程2x+m=1﹣x,得:﹣4+m=1+2,解得:m=7.故答案为:7.【点评】本题考查了一元一次方程的解,解决本题的关键是代入法解答.17.(3分)古代埃及人在进行分数运算时,只使用分子是1的分数,因此这种分数也叫做埃及分数.我们注意到,某些真分数恰好可以写成两个埃及分数之和,例如:.请将写成两个埃及分数和的形式:+或+.【分析】根据埃及分数的定义,即可解答.【解答】解:写成两个埃及分数和的形式:+或+.故答案为:+或+.【点评】本题考查了有理数的加法,解决本题的关键是明确埃及分数的定义.18.(3分)如图,一副直角三角板中,∠A=60°,∠D=45°,在同一平面内,将∠A和∠D的顶点重合,边AC和边DF重合,可以得到∠BAE,则∠BAE的度数为15°或105°.【分析】利用直角三角板的知识和角的和差关系计算即可求解.【解答】解:∠BAE的度数为60°﹣45°=15°或60°+45°=105°.故答案为:15°或105°.【点评】本题主要考查了角的计算,解题的关键是熟练掌握角的和差计算.三、解答题(本大题共8小题,共66分)19.(6分)计算:(1)(﹣2)+(﹣3)﹣(﹣7)(2)【分析】(1)先化简,再计算加减法;(2)先算乘方,再算乘除;同级运算,应按从左到右的顺序进行计算.【解答】解:(1)原式=﹣2﹣3+7=2;(2)原式==﹣8.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.(6分)解方程:【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:3(3x+1)=8(2x﹣1)﹣24,去括号得:9x+3=16x﹣8﹣24,移项合并得:7x=35,解得:x=5.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(8分)如图所示,线段CD的长度为y厘米,线段DB的长度比线段CD长度的2倍少3厘米,线段AC的长度比线段DB长度的2倍多4厘米.(1)写出用y表示的线段AB的长度l;(2)当y=4时,求l的值.【分析】(1)根据题意用代数式表示线段的长度即可;(2)将y等于4代入(1)所求代数式即可.【解答】解:(1)由已知CD=y,DB=2y﹣3,AC=2DB+4=4y﹣2∴AB=AC+CD+DB=4y﹣2+y+2y﹣3=7y﹣5即:l=7y﹣5(厘米)(2)y=4时,l=23(厘米).【点评】本题考查了两点间的距离、列代数式,解决本题的关键是根据题意用代数式表示线段的长度.22.(8分)先化简,再求值:,其中x=2,y=﹣1.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=2,y=﹣1时,原式=﹣6+1=﹣5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(9分)某公路检修队乘车从A地出发,在南北走向的公路上检修道路,规定向南走为正,向北走为负,从出发到收工时所行驶的路程记录如下(单位:千米):+2,﹣8,+5,+7,﹣8,+6,﹣7,+13.(1)问收工时,检修队在A地哪边?距A地多远?(2)问从出发到收工时,汽车共行驶多少千米?(3)在汽车行驶过程中,若每行驶1千米耗油0.3升,则检修队从A地出发到回到A地,汽车共耗油多少升?【分析】(1)把所有行驶路程相加,再根据正负数的意义解答;(2)求出所有行驶路程的绝对值的和即可;(3)用行驶的路程加上返回A地的距离,然后乘以0.3计算即可得解.【解答】解:(1)2﹣8+5+7﹣8+6﹣7+13=2+5+7+6+13﹣8﹣8﹣7=33﹣23=10千米.答:收工时,检修队在A地南边,距A地10千米;(2)2+8+5+7+8+6+7+13=56千米.答:从出发到收工时,汽车共行驶56千米;(3)0.3×(56+10)=0.3×66=19.8升.答:检修队从A地出发到回到A地,汽车共耗油19.8升.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.(9分)某车间接到一批限期(可以提前)完成的零件加工任务.如果每天加工150个,则恰好按期完成;如果每天加工200个,则可比原计划提前5天完成.(1)求这批零件的个数;(2)车间按每天加工200个零件的速度加工了m个零件后,提高了加工速度,每天加工250个零件,结果比原计划提前6天完成了生产任务,求m的值.【分析】(1)设这批零件有x个,则由题意得列出方程即可求出答案.(2)根据题意列出方程即可求出答案.【解答】解:(1)设这批零件有x个,则由题意得:﹣=5,解得:x=3000,答:设这批零件有3000个.(2)由题意得:,解得:m=2000答:m的值是2000.【点评】本题考查一元一次方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.25.(10分)对于任意有理数a、b、c、d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)⊗(c,d)=ac﹣bd.例如:(﹣2,6)⊗(1,3)=﹣2×1﹣6×3=﹣20.根据上述规定,解决下列问题:(1)有理数对(2,4)⊗(5,﹣6)=34;(2)若有理数对(﹣3,x)⊗(2,4)=10,则x=﹣4;(3)当满足等式(1,x﹣1)⊗(x﹣2y,2y)=9中的x是整数时,求整数y的值.【分析】(1)原式利用题中的新定义计算即可求出值;(2)已知等式利用题中的新定义化简,计算即可求出x的值;(3)已知等式利用题中的新定义化简,计算即可求出整数y的值.【解答】解:(1)(2,4)⊗(5,﹣6)=2×5﹣4×(﹣6)=10+24=34;(2)(﹣3,x)⊗(2,4)=10,﹣3×2﹣x×4=10,解得x=﹣4;(3)由(1,x﹣1)⊗(x﹣2y,2y)=9 得x﹣2y﹣2y(x﹣1)=9,即(1﹣2y)x=9,∵x是整数,∴1﹣2y=±1或±3或±9,∴y=0或y=1或y=﹣1或y=2或y=﹣4或y=5.故答案为:34;﹣4.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.26.(10分)已知点O是直线AB上一点,∠COE=60°,OF是∠AOE的平分线.(1)当点C,E在直线AB的同侧,且OF在∠COE的内部时(如图1所示),设∠BOE ﹣2∠COF=α,求α的大小;(2)当点C与点E,F在直线AB的两旁(如图2所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由;(3)将图2中的射线OF绕点O顺时针旋转m°(0<m<180),得到射线OD,设∠AOC =n°,若,则∠DOE的度数是(用含n的式子表示).【分析】(1)设∠AOC=β,用β的代数式表示出∠BOE,再根据角平分线的定义以及角的和差关系解答即可;(2)(1)中的结论不变,根据角平分线的定义以及角的和差关系解答即可;(3)通过比较,可判断出射线OD只可能在∠BOE的内部,据此计算即可.【解答】解:(1)设∠AOC=β,则∠BOE=180°﹣(60°+β)=120°﹣β,∵OF是∠AOE的平分线,,∴,即α=60°;(2)(1)中的结论不变,即α=60°,∠BOE=180°﹣∠AOE,∵OF是∠AOE的平分线,∴,∴∠BOE﹣2∠COF=60°;(3)通过比较,可判断出射线OD只可能在∠BOE的内部,如图3所示∠DOE=180°﹣∠BOD﹣∠AOE,=180°﹣()°﹣(60°﹣n°),=.故答案为:.【点评】本题考查角的计算,角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

2019-2020学年湖南省长沙市长沙县七年级(上)期末数学试卷(附详解)

2019-2020学年湖南省长沙市长沙县七年级(上)期末数学试卷(附详解)

2019-2020学年湖南省长沙市长沙县七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1. 下列数−10,+312,−0.9,1,0,35,π,−4.95中,正分数有( ) A. 5个B. 4个C. 3个D. 2个2. −3的相反数是( ) A. −3 B. 3 C. −13 D. 13 3. 据长沙市气象部门数据记录,长沙市的历史最高气温出现在7月份为40℃,历史最低气温出现在12月份为−6℃,则长沙市的历史最高气温比历史最低气温要高( )A. 34℃B. 46℃C. −34℃D. −46℃4. 现在网购越来越多地成为人们的一种消费方式,刚刚过去的2018年天猫“双11”全球狂欢节某网店的总交易额超过1207000元,1207000用科学记数法表示( )A. 1.207×106B. 0.1207×107C. 12.07×105D. 1.207×1055. 下列说法正确的是( )A. 多项式ab +c 是三项式B. 1是单项式C. 多项式2x 2+3y +1的次数是3D. 单项式a 既没有系数,也没有次数6. 下列计算正确的是( )A. 3x 2⋅2x 3=5x 5B. 4y 2−y 2=3C. 3x 2y +yx 2=4x 2yD. x +2y =3xy7. 已知a ,b 为有理数,它们在数轴上的对应位置如图所示,把a ,−b ,a +b ,a −b 按从小到大的顺序排列,正确的是( )A. a <a −b <−b <a +bB. a −b <a +b <−b <aC. a −b <a <−b <a +bD. a −b <−b <a <a +b8. 下列方程变形正确的是( )A. 方程3x−2=2x+1,移项可得3x−2x=1+2B. 方程3−x=2−5(x−1)去括号,得3−x=2−5x−1C. 方程32t=23,未知数的系数化为1,得t=1D. 方程x−10.2−x0.5=1可化成10x−102−10x5=109.如果x=2是方程12x+a=−1的解,那么a的值是()A. 0B. 2C. −2D. −610.点A、B、C在同一直线上,AB=3cm,BC=1cm,点D为AC的中点,则AD长为()A. 2cmB. 1cmC. 2cm或1cmD. 无法确定11.轮船A在海上航行,从轮船A处观测灯塔B在其北偏东45°,观测灯塔C在其南偏东70°,则此时∠BAC度数是()A. 65°B. 110°C. 115°D. 135°12.如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()A. 4B. 6C. 12D. 15二、填空题(本大题共6小题,共18.0分)13.化简:|π−3.15|+π=______ .14.将8.7654用四舍五入法精确到百分位的近似数是______.15.在a2+(3k−6)ab+b2+9中,不含ab项,则k=______.16.若∠α的余角为54°37′,则∠α的补角为______.17.某种商品零售价为每件900元,为了适应市场竞争,商店按零售价的9折降价,并让利40元销售,仍可获利10%(相对进价),设这种商品进货每件为x元,则根据题意可列一元一次方程为______.18.“二十四点”游戏的规则是这样的,任取四个1到13之间的自然数,将这四个数(每个数都要用到且只用一次)进行加减乘除四则运算,使其结果等于24.例如:1、2、3、4,可做运算(1+2+3)×4=24,其中1、2、3、4都用到了且只用一次(注意,上述运算与4×(1+2+3)应视为相同方法).现有四个有理数:3、4、6、10,运用上述规则写出2种不同方式的运算,使其结果等于24.可以表示为:(1)______;(2)______.三、解答题(本大题共8小题,共66.0分)19.计算下列各式:(1)6+(−15)−2−(−1.4);(2)(−4.5)×(−2)÷(−13)×3.20.计算下列各式,尽量使用简便方法:(1)(−2)3×322−(−22)÷14;(2)−16×5+(−5)×(−216).21.解下列方程:(1)x−2(3x−6)=7;(2)1−2x3−3x+16=1.22.如图,平面上有四个点A、B、C、D,根据下列语句用尺规作图.(1)画直线AB;(2)作射线CB;(3)连接线段BD、AC,相交于点E(需标注);(4)连接AD,并延长至F,使得DF=AD.23.如图,OA、OB、OC是从O出发的三条射线,射线OM平分∠AOB,射线ON平分∠BOC.(1)已知∠AOB=90°,∠BOC=30°,求∠MON的度数;(2)如果不知道∠AOB与∠BOC的度数,只知道∠AOC=120°,你能求出∠MON的度数吗?如果能,请写出解答过程;如果不能,说明理由.24. 已知M =3a 2b −[2ab 2−6(ab −12a 2b)+4ab]−2ab .(1)化简代数式M ;(2)若|2a +3|+(b −2)2=0,试求M 的值.25. 某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.(1)如果某产品要求甲种零件与乙种零件每天生产的个数按照3:4配比,那么应该安排几名工人加工甲种零件,几名工人加工乙种零件?(2)已知每加工一个甲种零件可获利15元,每加工一个乙种零件可获利20元.若此车间某天一共获利1240元,求这一天有几名工人加工甲种零件.26. 符号“G ”表示一种运算,它对一些数的运算结果,分2种类型表示如下:运算类型①:G(1)=1,G(2)=3,G(3)=5,G(4)=7,G(5)=9,……运算类型②:G(12)=2,G(13)=4,G(14)=6,G(15)=8,G(16)=10,……请同学们认真观察运算规律,并利用以上2种类型的运算规律,解决下列问题:(1)求值:G(6)=______;G(17)=______;G(20)−G(120)=______;(2)填空:若G(a)=99,则a =______;若G(b)=50,则b =______;(3)小明按照运算类型①的规律,计算出G(3x +2)−G(2x −1)的值为4046,试求有理数x 的值.答案和解析1.【答案】D【解析】解:在−10,+312,−0.9,1,0,35,π,−4.95中,正分数有+312,35,共2个. 故选:D .利用正分数的定义(大于0的分数是正分数)解答即可得出答案.此题考查了有理数,熟练掌握正分数的定义是解本题的关键.2.【答案】B【解析】解:−3的相反数是3.故选:B .依据相反数的定义求解即可.本题主要考查的是相反数的定义,熟练掌握相反数的定义是解题的关键.3.【答案】B【解析】解:由题意得:40−(−6)=40+6=46℃,故选:B .利用有理数的减法进行计算即可.本题考查了有理数的减法,熟练掌握有理数的减法法则是解题的关键.4.【答案】A【解析】【分析】本题考查了科学记数法,科学记数法中a 的要求和10的指数n 的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1207000用科学记数法表示1.207×106,故选A.5.【答案】B【解析】解:A、多项式ab+c是二次二项式,故此选项错误;B、1是单项式,故此选项正确;C、多项式2x2+3y的次数是2,故此选项错误;D、单项式a的系数是1,次数是1,故此选项错误.故选:B.直接利用多项式的次数与项数确定方法和单项式次数与系数确定方法分别判断即可.此题主要考查了多项式的次数与项数和单项式得出与系数,正确把握相关定义是解题关键.6.【答案】C【解析】解:3x2⋅2x3=6x5,故A不正确,不符合题意;4y2−y2=3y2,故B不正确,不符合题意;3x2y+yx2=4x2y,故C正确,符合题意;x+2y中没有同类项,不能合并,故D不正确,不符合题意;故选:C.根据单项式乘法、合并同类项逐个判断即可.本题考查单项式的乘法和合并同类项,解题的关键是掌握单项式乘法和合并同类项的法则.7.【答案】D【解析】解:根据数轴可以得到a<0<b,且|a|<|b|,设a=−1,b=3,则a−b=−1−3=−4,−b=−3,a+b=−1+3=2,∴a−b<−b<a<a+b,故选:D.先根据a,b两点在数轴上的位置判断出其符号,进而可得出结论.本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大的特点是解答此题的关键.8.【答案】A【解析】解:A、方程3x−2=2x+1,移项可得3x−2x=1+2,符合题意;B、方程3−x=2−5(x−1)去括号,得3−x=2−5x+5,不符合题意;C、方程32t=23,未知数系数化为1,得t=49,不符合题意;D、方程x−10.2−x0.5=1可化为10x−102−10x5=1,不符合题意.故选:A.各方程整理得到结果,即可作出判断.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.9.【答案】C【解析】解:将x=2代入方程12x+a=−1得1+a=−1,解得:a=−2.故选:C.此题可将x=2代入方程,然后得出关于a的一元一次方程,解方程即可得出a的值.此题考查的是一元一次方程的解法,方程两边可同时减去1,即可解出a的值.10.【答案】C【解析】解:∵AB=3cm,BC=1cm,∴AC=AB+BC=4cm或AC=AB−BC=2cm.∵点D为线段AC的中点,∴AD=12AC=2cm或1cm,故选:C.由AB、BC的长度可得出AC的长度,由点D为线段AC的中点可得出AD的长度.本题考查了两点间的距离,利用线段之间的关系求出线段AC的长度是解题的关键.11.【答案】A【解析】解:如图:由题意得:∠BAC=180°−45°−70°=65°,故选:A.用平角180°减去两个角度的和即可.本题考查了方向角,根据题目的已知条件画出图形是解题的关键.12.【答案】B【解析】解:盒子的容积为3×2×1=6.故选B.由图可知,无盖长方体盒子的长是3,宽是2,高是1,所以盒子的容积为3×2×1=6.正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.13.【答案】3.15【解析】解:|π−3.15|+π,=3.15−π+π,=3.15.故答案为:3.15.根据负数的绝对值等于它的相反数去掉绝对值号,然后解答即可.本题考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.14.【答案】8.77【解析】解:将8.7654用四舍五入法精确到百分位的近似数是8.77.故答案为:8.77.把千分位上的数字5进行四舍五入即可.本题考查了近似数与精确度.经过四舍五入得到的数称为近似数;近似数精确到哪一位,应当看末位数字实际在哪一位.近似数与精确数的接近程度,可以用精确度表示.15.【答案】2【解析】解:∵多项式a2+(3k−6)ab+b2+9不含ab项,∴3k−6=0,解得:k=2,故答案为:2.根据多项式不含ab项得出3k−6=0,再求出k即可.本题考查了整式的加减和解一元一次方程,能得出关于k的方程是解此题的关键.16.【答案】144°37′【解析】解:∠A的补角为:180°−(90°−54°37′)=90°+54°37′=144°37′.故答案为:144°37′.根据余角和补角的定义可知∠A的补角比∠A的余角大90°,列式解答即可.本题考查的是余角及补角的定义,比较简单.如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.进行计算即可求解.17.【答案】x×(1+10%)=900×90%−40【解析】解:设进价为x元,可列方程:x×(1+10%)=900×90%−40,故答案为:x×(1+10%)=900×90%−40.通过理解题意可知商店按零售价的九折且让利40元销售即销售价=900×90%−40,得出等量关系为x×(1+10%)=900×90%−40,解答即可.此题主要考查了一元一次方程的应用,解决本题的关键是得到商品售价的等量关系.18.【答案】3×(4−6+10)=2410−4+3×6=24【解析】解:(1)3×(4−6+10)=24;(2)10−4+3×6=24.故答案为:(1)3×(4−6+10)=24;(2)10−4+3×6=24.利用“二十四点”游戏的规则判断即可.此题考查了有理数的混合运算,弄清“二十四点”游戏的规则是解本题的关键.19.【答案】解:(1)原式=6−0.2−2+1.4=(6+1.4)−(0.2+2)=7.4−2.2=5.2;(2)原式=9×(−3)×3=−81.【解析】(1)减法转化为加法,再利用加法交换律和结合律计算即可;(2)先计算乘法、将除法转化为乘法,进一步计算乘法即可.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.+4×420.【答案】解:(1)原式=−8×92=−36+16=−20;(2)原式=−5×(6−216)=−5×(−200)=1000.【解析】(1)先计算乘方、将除法转化为乘法,再计算乘法,最后计算加法即可;(2)先提取公因数−5,再计算括号内的减法,继而计算乘法即可.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.21.【答案】解:(1)x−2(3x−6)=7,x−6x+12=7,x−6x=7−12,−5x=−5,x=1;(2)1−2x3−3x+16=1,2(1−2x)−(3x+1)=6,2−4x−3x−1=6,−4x−3x=6+1−2,−7x=5,x=−57.【解析】(1)先去括号,再移项、合并同类项,最后将系数化为1即可;(2)先去分母,然后去括号,再移项、合并同类项,最后将系数化为1即可.本题考查一元一次方程的解,熟练掌握一元一次方程的解法是解题的关键.22.【答案】解:(1)如图,直线AB即为所求;(2)如图,射线CB即为所求;(3)如图,线段BD、AC即为所求(4)如图,DF即为所求.【解析】根据射线,直线,线段的定义作出图形即可.本题考查作图−复杂作图直线,射线,线段的定义等知识,解题的关键是熟练直线,射线,线段的定义,属于中考常考题型.23.【答案】解:(1)∵射线OM平分∠AOB,∠AOB=90°,∴∠BOM=12∠AOB=45°,∵射线ON平分∠BOC,∠BOC=30°,∴∠BON=12∠BOC=15°,∴∠MON=∠BOM+∠BON=45°+15°=60°;(2)∵射线OM平分∠AOB,∴∠BOM=12∠AOB,∵射线ON平分∠BOC,∴∠BON=12∠BOC,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOC=12(∠AOB+∠BOC)=12∠AOC,∵∠AOC=120°,∴∠MON=60°.【解析】(1)首先根据角平分线定义可得∠BOM=12∠AOB=45°,再根据角平分线定义可得∠BON=12∠BOC=15°,即可得∠MON的度数;(2)根据角平分线定义可得∠BOM=12∠AOB,再根据角平分线定义可得∠BON=12∠BOC,即可得∠MON=12∠AOC=120°.此题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分.24.【答案】解:(1)M=3a2b−[2ab2−6(ab−12a2b)+4ab]−2ab=3a2b−[2ab2−6ab+3a2b+4ab]−2ab=3a2b−2ab2+6ab−3a2b−4ab−2ab=−2ab2;(2)∵|2a+3|+(b−2)2=0,∴2a+3=0且b−2=0,,b=2,解得:a=−32,b=2时,当a=−32M=−2×(−3)×222=3×4=12.【解析】(1)先去小括号,再去中括号,最后合并同类项即可;(2)根据绝对值和偶次方的非负性求出a、b的值,再代入求出答案即可.本题考查了绝对值和偶次方的非负性,整式的加减等知识点,能正确根据整式的加减法则进行计算是解此题的关键.25.【答案】解:(1)设生产甲种零件的工人有x人,根据题意得:5x×4=4(16−x)×3,解得x=6,16−x=16−6=10,答:安排生产甲零件的工人为6人、安排生产乙种零件的工人为10人;(2)设这一天有y名工人加工甲种零件,则这天加工甲种零件有5y个,乙种零件有4(16−y)个,根据题意得:根据题意,得15×5y+20×4(16−y)=1240,解得y=8.答:这一天有8名工人加工甲种零件.【解析】(1)根据题意可以列出相应的一元一次方程,从而可以解答本题;(2)等量关系为:加工甲种零件的总利润+加工乙种零件的总利润=1240,把相关数值代入求解即可.本题考查一次方程的应用,解题的关键是读懂题意,找出等量关系列方程.26.【答案】1112150126【解析】解:(1)G(6)=6+(6−1)=6+5=11,G(17)=(6+1)+(6−1)=7+5=12,G(20)−G(120)=20+(20−1)−[(19+1)+(19−1)]=20+19−(20+18)=39−38=1,故答案为:11,12,1;(2)当G(a)=99时,如是运算①,则a+a−1=99,解得:a=50;如是运算②,99是奇数,不符合题意;当G(b)=50时,如是运算①,50是偶数,不符合题意;如是运算②,则1b −1+1+1b−1−1=50,解得:b=126,故答案为:50,126;(3)由题意得:G(3x+2)−G(2x−1)=4046,∴3x+2+3x+2−1−[2x−1+2x−1−1]=4046,解得:x=2020,故有理数x的值是2020.(1)根据所给的两种运算进行求解即可;(2)分两种运算进行求解即可;(3)利用运算①的规律进行求解即可.本题主要考查代数式求值,解答的关键是理解清楚题意,分析出运算的规律.。

2019-2020学年七年级上学期期末考试数学试卷含解析版

2019-2020学年七年级上学期期末考试数学试卷含解析版

2019-2020学年七年级上学期期末考试数学试卷一、选择題(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高3℃时气温变化记作+3℃,那么气温下降3℃时气温变化记作( )A .﹣6℃B .﹣3℃C .0℃D .+3℃2.在﹣6,﹣5.01,﹣5,这四个数中,最大的数是( )A .﹣6B .﹣5.01C .﹣5D . 3.|﹣2|的倒数是( )A .2B .﹣2C .D .4.下列各式中,次数为5的单项式是( )A .5abB .a 5bC .a 5+b 5D .6a 2b 35.多项式﹣2x 2+2x +3中的二次项系数是( )A .﹣1B .2C .﹣2D .36.三个立体图形的展开图如图①②③所示,则相应的立体图形是( )A .①圆柱,②圆锥,③三棱柱B .①圆柱,②球,③三棱柱C .①圆柱,②圆锥,③四棱柱D .①圆柱,②球,③四棱柱 7.在数轴上表示有理数a ,﹣a ,﹣b ﹣1的点如图所示,则( )A .﹣b <﹣aB .|b +1|<|a |C .|a |>|b |D .b ﹣1<a8.已知等式3a =b +2c ,那么下列等式中不一定成立的是( )A .3a ﹣b =2cB .4a =a +b +2cC .a =b +cD .3=+9.某商店以每件a 元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店卖出这两件衣服总的情况是()A.盈利0.05a元B.亏损0.05a元C.盈利0.15a元D.亏损0.15a元10.若关于x的方程有无数解,则3m+n的值为()A.﹣1B.1C.2D.以上答案都不对二、填空题(本大题共6小题,每小题3分,满分18分)11.﹣2019的相反数是.12.目前我国年可利用的淡水资源总量约为38050亿立方米,是世界上严重缺水的国家之一.38050用科学记数法表示为.13.若x与3的积等于x与﹣16的和,则x=.14.若﹣x m y4与x3y n是同类项,则(m﹣n)9=.15.如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为.16.如图,第n个图形是由正n+2边形“扩展”而来(n=1,2,3,4…),第n个图形中共有个顶点(结果用含n的式子表示).三、解答題(本大题共8小题,满分72分,解答须写出文字说明、推理过程)17.计算:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)(2)﹣(﹣1)10×2+(﹣2)3÷418.先化简,再求值:,其中x=﹣2,y=﹣319.解下列方程:(1)2(x+3)=5(x﹣3)(2)20.有理数a,b,c在数轴上的位置如图所示请化简:﹣|a|﹣|b+2|+2|c|﹣|a+b|+|c﹣a|.21.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.22.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为30元,乙平均每本书的价格为15元,优惠后甲乙两人的书费共283.5元(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场7.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?23.如图1,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,求∠MON的度数;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<126且n≠54),求∠MON的度数.24.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.参考答案与试题解析一、选择題(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高3℃时气温变化记作+3℃,那么气温下降3℃时气温变化记作()A.﹣6℃B.﹣3℃C.0℃D.+3℃【分析】根据负数的意义,可得气温上升记为“+”,则气温下降记为“﹣”,据此解答即可.【解答】解:因为气温上升3℃,记作+3℃,所以气温下降3℃,记作﹣3℃.故选:B.【点评】此题主要考查了负数的意义及其应用,要熟练掌握,解答此题的关键是要明确:气温上升记为“+”,则气温下降记为“﹣”.2.在﹣6,﹣5.01,﹣5,这四个数中,最大的数是()A.﹣6B.﹣5.01C.﹣5D.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣6<﹣5.01<﹣5<﹣,∴这四个数中,最大的数是﹣.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.|﹣2|的倒数是()A.2B.﹣2C.D.【分析】根据绝对值和倒数的定义作答.【解答】解:∵|﹣2|=2,2的倒数是,∴|﹣2|的倒数是.故选:C.【点评】一个负数的绝对值是它的相反数.若两个数的乘积是1,我们就称这两个数互为倒数.4.下列各式中,次数为5的单项式是()A.5ab B.a5b C.a5+b5D.6a2b3【分析】直接利用单项式以及多项式次数确定方法分别分析得出答案.【解答】解:A、5ab是次数为2的单项式,故此选项错误;B、a5b是次数为6的单项式,故此选项错误;C、a5+b5是次数为5的多项式,故此选项错误;D、6a2b3是次数为5的单项式,故此选项正确.故选:D.【点评】此题主要考查了单项式以及多项式次数,正确把握单项式次数确定方法是解题关键.5.多项式﹣2x2+2x+3中的二次项系数是()A.﹣1B.2C.﹣2D.3【分析】根据多项式的概念即可求出答案.【解答】解:二次项系数为﹣2,故选:C.【点评】本题考查多项式的概念,解题的关键熟练运用多项式的概念,本题属于基础题型.6.三个立体图形的展开图如图①②③所示,则相应的立体图形是()A.①圆柱,②圆锥,③三棱柱B.①圆柱,②球,③三棱柱C.①圆柱,②圆锥,③四棱柱D.①圆柱,②球,③四棱柱【分析】根据圆柱、圆锥、三棱柱表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是圆柱、圆锥、三棱柱.故选:A.【点评】本题考查圆锥、三棱柱、圆柱表面展开图,记住这些立体图形的表面展开图是解题的关键.7.在数轴上表示有理数a,﹣a,﹣b﹣1的点如图所示,则()A.﹣b<﹣a B.|b+1|<|a|C.|a|>|b|D.b﹣1<a【分析】因为a与﹣a互为相反数,所以根据图示知,a<0<﹣a<﹣b﹣1,由此对选项进行一一分析.【解答】解:∵a与﹣a互为相反数,∴根据图示知,a<0<﹣a<﹣b﹣1,∴|﹣a|=|a|<|﹣b﹣1|=|b+1|,则|b+1|>|a|,故B选项错误;∴﹣b>﹣a,故A选项错误;∴|a|>|b|,故C选项错误;∴b﹣1<a,故D选项正确.故选:D.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.8.已知等式3a=b+2c,那么下列等式中不一定成立的是()A.3a﹣b=2c B.4a=a+b+2c C.a=b+c D.3=+【分析】根据等式的基本性质逐一判断即可得.【解答】解:A、原等式两边都减去b即可得3a﹣b=2c,此选项正确;B、原等式两边都加上a即可得4a=a+b+2c,此选项正确;C、原等式两边都除以3即可得a=b+c,此选项正确;D、在a≠0的前提下,两边都除以a可得3=+,故此选项不一定成立;故选:D.【点评】本题主要考查等式的性质,解题的关键是掌握等式两边加同一个数(或式子)结果仍得等式、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9.某商店以每件a元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店卖出这两件衣服总的情况是()A.盈利0.05a元B.亏损0.05a元C.盈利0.15a元D.亏损0.15a元【分析】设盈利的衣服的进价为x元/件,亏损的衣服的进价为y元/件,根据售价﹣进价=利润,可得出关于x(y)的一元一次方程,解之即可得出x(y)的值,再利用总利润=两件衣服的售价﹣两件衣服的进价,即可得出结论.【解答】解:设盈利的衣服的进价为x元/件,亏损的衣服的进价为y元/件,依题意,得:a﹣x=25%x,a﹣y=﹣20%y,解得:x=0.8a,y=1.25a,∴2a﹣x﹣y=﹣0.05a,∴商店卖出这两件衣服总的情况是亏损0.05a元.故选:B.【点评】本题考查了一元一次方程的应用以及列代数式,找准等量关系,正确列出一元一次方程是解题的关键.10.若关于x的方程有无数解,则3m+n的值为()A.﹣1B.1C.2D.以上答案都不对【分析】原方程经过移项,合并同类项,根据“该方程有无数解”,得到关于m和关于n的一元一次方程,解之,代入3m+n,计算求值即可得到答案.【解答】解:mx+=﹣x,移项得:mx+x=﹣,合并同类项得:(m+1)x=,∵该方程有无数解,∴,解得:,把m=﹣1,n=2代入3m+n得:原式=﹣3+2=﹣1,故选:A.【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.二、填空题(本大题共6小题,每小题3分,满分18分)11.﹣2019的相反数是2019.【分析】直接利用相反数的定义进而得出答案.【解答】解:﹣2019的相反数是:2019.故答案为:2019.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.12.目前我国年可利用的淡水资源总量约为38050亿立方米,是世界上严重缺水的国家之一.38050用科学记数法表示为 3.805×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:38050=3.805×104.故答案为:3.805×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.若x与3的积等于x与﹣16的和,则x=﹣8.【分析】由题意列出方程进而解方程得出答案.【解答】解:由题意可得:3x=x﹣16,解得:x=﹣8.故答案为:﹣8.【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.14.若﹣x m y4与x3y n是同类项,则(m﹣n)9=﹣1.【分析】首先根据同类项定义可得m=3,n=4,再代入(m﹣n)9进行计算即可.【解答】解:由题意得:m=3,n=4,则(m﹣n)9=﹣1,故答案为:﹣1.【点评】此题主要考查了同类项,关键是掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.15.如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为2.【分析】根据设计的程序进行计算,找到循环的规律,根据规律推导计算.【解答】解:由设计的程序,知依次输出的结果是50,25,32,16,8,4,2,1,8,4,2,1…,发现从8开始循环.则2019﹣4=2015,2015÷4=503…3,故第2019次输出的结果是2.故答案为:2【点评】此题主要考查了数字的变化规律,正确发现循环的规律,根据循环的规律进行推广.该题中除前4次不循环外,后边是4个一循环.16.如图,第n个图形是由正n+2边形“扩展”而来(n=1,2,3,4…),第n个图形中共有(n+2)(n+3)个顶点(结果用含n的式子表示).【分析】由已知图形得出顶点的个数是序数分别与2、3和的乘积,据此可得.【解答】解:由图形知,当n=1时,顶点的个数为12=3×4;当n=2时,顶点的个数20=4×5;当n=3时,顶点的个数30=5×6;当n=4时,顶点的个数42=6×7;……所以第n个图形中顶点的个数为(n+2)(n+3)(个),故答案为:(n+2)(n+3).【点评】本题主要考查图形的变化规律,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.三、解答題(本大题共8小题,满分72分,解答须写出文字说明、推理过程)17.计算:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)(2)﹣(﹣1)10×2+(﹣2)3÷4【分析】(1)先化简,再计算加减法即可求解;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)=﹣7﹣5+13﹣10=﹣22+13=﹣9;(2)﹣(﹣1)10×2+(﹣2)3÷4=﹣1×2+(﹣8)÷4=﹣2﹣2=﹣4.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:,其中x=﹣2,y=﹣3【分析】先去掉括号,然后合并同类项,再把x、y的值代入进行计算即可得解.【解答】解:原式==﹣3x+y2,把x=﹣2,y=﹣3代入﹣3x+y2=﹣3×(﹣2)+(﹣3)2=6+9=15.【点评】本题考查了整式加减,先化简然后再代入数据进行求值更加简便,整式的加减实质就是去括号,合并同类项的运算.19.解下列方程:(1)2(x+3)=5(x﹣3)(2)【分析】(1)直接去括号进而合并同类项解方程即可;(2)直接去分母进而移项合并同类项解方程即可.【解答】解:(1)2(x+3)=5(x﹣3)2x+6=5x﹣15,则3x=21,解得:x=7;(2)45﹣5(2x﹣1)=3(4﹣3x)﹣15x,整理得:14x=38,解得:x=.【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.20.有理数a,b,c在数轴上的位置如图所示请化简:﹣|a|﹣|b+2|+2|c|﹣|a+b|+|c﹣a|.【分析】根据数轴上点的位置,判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】根据题意得:a=﹣2.5,b=﹣0.5,c=1.5,则b+2>0,a+b<0,c﹣a<0,则化简得:a﹣(b+2)+2c+(a+b)﹣(c﹣a)=3a+c代入数值a=﹣2.5,b=﹣0.5,c=1.5,原式=﹣6.【点评】本题考查了合并同类项,利用绝对值的性质化简绝对值,利用合并同类项,代数数值得出答案.21.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.【分析】(1)根据和解方程的定义即可得出关于m的一元一次方程,解之即可得出结论;(2)根据和解方程的定义即可得出关于m、n的二元二次方程组,解之即可得出m、n的值.【解答】解:(1)∵方程3x=m是和解方程,∴=m+3,解得:m=﹣.(2)∵关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,∴﹣2n=mn+n,且mn+n﹣2=n,解得m=﹣3,n=﹣.【点评】本题考查了一元一次方程的解、解一元一次方程以及二元二次方程组,解题的关键是:根据“和解方程“的定义列出关于m的一元一次方程;根据和解方程的定义列出关于m、n的二元二次方程组.22.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为30元,乙平均每本书的价格为15元,优惠后甲乙两人的书费共283.5元(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场7.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【分析】(1)设甲购书x本,则乙购书为(15﹣x)本,再根据总价格列出方程即可;(2)先计算7.5折后的价格,加上办卡的费用,与原来的价格差即为节省的钱数.【解答】解:(1)甲购书x本,则乙购书为(15﹣x)本,由题意得30x×0.9+15(15﹣x)×0.9=283.5解得x=6则15﹣x=9答:甲购书6本,乙购书9本.(2)购书7.5折的应付款表示为283.5÷0.9×0.75=236.25办卡节省的费用为283.5﹣236.25﹣20=22.25答:办卡购书比不办卡购书共节省22.25元.【点评】本题考查的是一元一次方程应用中的打折销售问题,明确等量关系,并正确列出方程是解题的关键.23.如图1,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,求∠MON的度数;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<126且n≠54),求∠MON的度数.【分析】(1)根据∠MON=∠BOM+∠BON计算即可;(2)分两种情形分别计算即可.【解答】解:(1)由题意;∠MON=∠AOB+∠COD=86°+28°=114°;(2)①当0<n<54°时,如图1中,∠AOC=126°﹣n°,∠BOD=54°﹣n°,∴∠MON=∠MOC+∠COB+∠BON=(126°﹣n°)+n°+(54°﹣n°)=114°,②当60°<n<120°时,如图2中,∠AOC=126°﹣n°,∠COD=54°,∠BOD=n°﹣54°∴∠MON=∠MOC+∠COD+∠DON=(126°﹣n°)+54°+(n°﹣54°)=114°.综上所述,∠MON=114°【点评】本题考查角的和差定义,解题的关键是学会用分类讨论的思想思考问题,学会利用参数解决问题.24.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x<﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB =PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.【解答】解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.(1)设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【点评】本题考查了一元一次方程的应用、数轴以及绝对值的非负性,解题的关键是:(1)分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况,找出关于x的一元一次方程;(2)利用两点间的距离公式求出AB﹣BC=6.。

2019-2020学年度上学期期末考试七年级试题解析版

2019-2020学年度上学期期末考试七年级试题解析版

2019-2020学年度上学期期末考试题七 年 级 数 学把符合题意的选项代号填在题后括号内,每小题3分,共36分.)1.如果一个物体向右移动2米记作移动+2米,那么这个物体又移动了-2米的意思是( C )(教材P3练习2改编)A .物体又向右移动了2米B . 物体又向右移动了4米C .物体又向左移动了2米 D .物体又向左移动了4米 2.计算32---的结果为(A )(教材P51习题6(2)) A .-5 B .-1 C .1 D .5 3.平方等于9的数是( A )(教材P47习题7) A .±3 B .3 C .﹣3D .±94.一天有41064.8⨯秒,一年按365天计算,一年有(D )秒(教材P48习题10) A .4101536.3⨯ B .5101536.3⨯ C .6101536.3⨯ D .7101536.3⨯5.下列说法错误的是(B )(教材P59习题3)A . ab 15-的系数是-15B .532y x 的系数是51C .224b a 的次数是4D .42242b b a a +-的次数是4 6.下列计算中,正确的是( C )(教师用书P141测试题5) A .b a b a +-=+-2)(2B .b a b a --=+-2)(2C .b a b a 22)(2--=+-D .b a b a 22)(2+-=+-7.长方形的长是x 3,宽是y x -2,则长方形的周长是( A )(教师用书P140测试题1) A .y x 210-B .y x 210+C .y x 26-D .y x -108.下列方程,是一元一次方程的是( B )(教师用书P214测试题1) A .342=-a aB .213a a =- C .12=+b a D .53=-ab9.已知等式323+=y x ,则下列变形不一定成立的是(D )(教师用书P214测试题3改编) A .y x 233=- B .132+=y x C .4213+=+y x D .523+=yz xz10.一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,这家商店(A )(教材P102探究1改编)A .亏损3元B .盈利3元C .亏损8元D .不盈不亏 11.下列说法中错误的是( C )(教材P126练习1改编)A .线段AB 和射线AB 都是直线的一部分 B .直线AB 和直线BA 是同一条直线C .射线AB 和射线BA 是同一条射线D .线段AB 和线段BA 是同一条线段 12.已知∠α的补角的一半比∠α小30°,则∠α等于( D ) (教材P148复习题8改编)A .50°B .60°C .70°D .80°二、填空题(本大题有6个小题,把各题的正确答案填在题后的横线上,每小题3分,共18分.)13.数轴上表示-5和-14的两点之间的距离是 . (教师用书P90测试题8) 14.已知代数式a a 22-值是-4,则代数式a a 6312-+的值是 . (-11) 15.若单项式b am 15+和1425-n b a 是同类项,则n m 的值为 .(9)16.若方程6x +2=0与关于y 的方程3y +m =15的解互为相反数,则m =________.(16) 17.点A ,B ,C 在同一条直线上,AB=5 cm ,BC=2cm ,则AC 的长为 __ _cm .(3或 7) (教材P130习题10改编)18.南偏东50°的射线与西南方向的射线组成的角(小于平角)的度数是 .(95°) 三、解答题(本题有9个小题,共66分.) 19.(本题满分8分,每小题4分)计算: (1)43512575)522(75÷-⨯--÷ (2) ()())31(34252232-⨯+÷--⨯- (教师用书P90测试题11(1)) (教材P51复习题5(13)、(14)改编)解:(1)原式=848512584258425413512575)125(75-=---=⨯-⨯--⨯.……………4分(2)原式=)2(94)8(54-⨯+÷--⨯=418220)18()2(20=-+=-+--.………8分20.(本题满分8分,每小题4分)解方程: (1) )1(25)10(2-+=+-x x x x (2)3713321-+=-x x (教材P94例题1(1)) (教材P111复习题2(3))解:(1) 去括号,得:225102-+=--x x x x移项,得:102252--=---x x x x 合并同类项,得:86=-x 系数化为1,得:34-=x .……………………………………………4分 (2) 去分母,得:63)13(3)21(7-+=-x x 去括号,得:6339147-+=-x x 移项,得:7633914--=--x x 合并同类项,得:6723-=-x系数化为1,得:2367=x ……………………………………………8分 21.(本题满分6分)化简求值:]2)321(5[322x x x x +---,其中4=x .解:原式=222)321(53x x x x --+-=22232153x x x x --+-………………………………2分=3292--x x ……………………………………………………4分当4=x 时,原式=5342942-=-⨯-.………………………………6分22.(本题满6分)如图,BD 平分∠ABC ,BE 把∠ABC 分成的两部分∠ABE ∶∠EBC =2∶5,∠DBE =21°,求∠ABC 的度数.解:设∠ABE =2x °,则∠CBE =5x °,∠ABC =7x °.……………………1分∵BD 为∠ABC 的平分线,∴∠ABD =12∠ABC =72x °.…………………2分∴∠DBE =∠ABD -∠ABE =72x °-2x °=32x °=21°.……………………4分∴x =14.……………………………5分∴∠ABC =7x °=98°.……………………………6分23.(本题满6分)列方程解应用题:机械加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排多少名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套?解:设安排x 名工人加工大齿轮,根据题意得…………1分3×16x =2×10(85-x )或16x :10(85-x )=2:3………………………………3分 解得x =25…………………………………………………5分答:安排5名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套.………………6分24. (本题满7分)如图,点A 、B 都在数轴上,O 为原点. (1)点B 表示的数是________;(2)若点B 以每秒3个单位长度的速度沿数轴运动,则1秒后点B 表示的数是______; (3)若点A 、B 都以每秒3个单位长度的速度沿数轴向右运动,而点O 不动,t 秒后有一个点是一条线段的中点,求t 的值.解:(1)-6.………………1分(2) -9或-3.………………3分(填对一个得1分) (3)由题意可知有两种情况:①O 为BA 的中点时,由题意可得:(-6+3t )+(2+3t )=0.解得t =32.……………5分 ②B 为OA 的中点时,由题意可得:2+3t =2(-6+3t ) . 解得t =314. 综上所述,t =32或314 .………………7分25.(本题满7分)用“※”定义一种新运算:对于任意有理数a 和b ,规定a ※b =ab 2+2ab +a .如:1※3=1×32+2×1×3+1=16.(1)求3 ※(-2)的值;(2)若(21+a ※3)※(21-)=4,求a 的值. 解:(1)根据题中定义的新运算得:3)※(-2)=3×(-2)2+2×3×(-2)+3=12-12+3=3.………………3分 (2)根据题中定义的新运算得:21+a ※3=21+a ×32+2×21+a ×3+21+a =8(a +1) .………………4分 8(a +1) ※(21-)=8(a +1)×(21-)2+2×8(a +1)×(21-)+8(a +1)=2(a +1) .………………5分所以2(a +1)=4,解得a =1.………………7分26.(本题满8分)小刚和小强从A ,B 两地同时出发,小刚骑自行车,小强步行,沿同一 条路线相向匀速而行.出发后两小时两人相遇.相遇时小刚比小强多行进24千米.相遇后0.5 小时小刚到达B 地.(1)两人的行进速度分别是多少?(2)相遇后经过多少时间小强到达A 地?(3)AB 两地相距多少千米? (教材P107习题10改编)解:(1)设小强的速度为x 千米/小时,则小刚的速度为(x +12)千米/小时.根据题意得:2x =0.5(x +12). 解得:x =4. x +12=4+12=16.答:小强的速度为4千米/小时,小刚的速度为16千米/小时.………………3分O B A(2)设在经过y小时,小强到达目的地.根据题意得:4y=2×16.解得:y=8.答:在经过8小时,小强到达目的地.………………6分(3)2×4+2×16=40(千米).答:AB两地相距40千米.………………8分27.(本题满10分)如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°) .(1)若∠BOC=35°,求∠MOC的大小.(2)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON 是否平分∠AOC?请说明理由.(3)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=50°,则∠BOM与∠NOC之间存在怎样的数量关系? 请说明理由.解:(1) ∵∠MON=90°,∠BOC=35°,∴∠MOC=∠MON+∠BOC= 90°+35°=125°.………………2分(2)ON平分∠AOC.理由如下:………………3分∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.………………4分又∵OM平分∠BOC,∴∠BOM=∠MOC.………………5分∴∠AON=∠NOC.∴ON平分∠AOC.………………6分(3)∠BOM=∠NOC+40°.理由如下:………………7分∵∠CON+∠NOB=50°,∴∠NOB=50°-∠NOC.………………8分∵∠BOM+∠NOB=90°,∴∠BOM=90°-∠NOB=90°-(50°-∠NOC)=∠NOC-40°.………………10分。

2019-2020学年湖南省长沙市浏阳市七年级(上)期末数学试卷

2019-2020学年湖南省长沙市浏阳市七年级(上)期末数学试卷

2019-2020学年湖南省长沙市浏阳市七年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米.将2500000用科学记数法表示应为( ) A .70.2510⨯B .72.510⨯C .62.510⨯D .52510⨯2.(3分)下列说法中,错误的是( ) A .射线AB 和射线BA 是同一条射线 B .直线AB 和直线BA 是同一条直线 C .线段AB 和线段BA 是同一条线段 D .连结两点间的线段的长度叫两点间的距离3.(3分)如图,在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为( )A .159︒B .141︒C .111︒D .69︒4.(3分)x 、y 、z 在数轴上的位置如图所示,则化简||||x y z y -+-的结果是( )A .x z -B .z x -C .2x z y +-D .以上都不对5.(3分)如图所示,已知90AOB ∠=︒,30BOC ∠=︒,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数为( )A .30︒B .45︒C .60︒D .75︒6.(3分)下列运算正确的是( )A .11(7)()7177⨯-+-⨯=B .239()55-=C .358a b ab +=D .22234a b ba a b -=-7.(3分)如图几何体的展开图形最有可能是( )A .B .C .D .8.(3分)某粮店出售的三种品牌的面粉袋上,分别标有质量为(250.1)kg ±、(250.2)kg ±、(250.3)kg ±的字样,从中任意拿出两袋,它们的质量最多相差( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg9.(3分)登山队员攀登珠穆朗玛峰,在海拔3000m 时,气温为20C ︒-,已知每登高1000m ,气温降低6C ︒,当海拔为5000m 时,气温是( )C ︒. A .50-B .42-C .40-D .32-10.(3分)下列各组数中,互为相反数的是( )A .15-与5-B .|5|-与5C .1||5-与15-D .15-与1||5--11.(3分)解方程2(3)3(4)5x x ---=时,下列去括号正确的是( ) A .23345x x --+= B .26345x x ---= C .233125x x ---=D .263125x x --+=12.(3分)a 、b 、c 是三个有理数,且0abc <,0a b +<,1a b c ++=,下列结论一定成立的是( ) A .||||a b c >+ B .10c -<C .0b c +>D .|||1|1a b c a b c +--+-=-二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)比较大小:5()6+- 8||9--14.(3分)写出单项式23xy -的一个同类项: .15.(3分)1∠与2∠互为余角,若13420'∠=︒,则2∠= .16.(3分)关于x 的方程21x m x +=-的解是2x =-,则m 的值为 .17.(3分)古代埃及人在进行分数运算时,只使用分子是1的分数,因此这种分数也叫做埃及分数.我们注意到,某些真分数恰好可以写成两个埃及分数之和,例如:8111535=+.请将1336写成两个埃及分数和的形式: . 18.(3分)如图,一副直角三角板中,60A ∠=︒,45D ∠=︒,在同一平面内,将A ∠和D ∠的顶点重合,边AC 和边DF 重合,可以得到BAE ∠,则BAE ∠的度数为 .三、解答题(本大题共8小题,共66分) 19.(6分)计算: (1)(2)(3)(7)-+---(2)32422()93-÷⨯-20.(6分)解方程:3121183x x +-=- 21.(8分)如图所示,线段CD 的长度为y 厘米,线段DB 的长度比线段CD 长度的2倍少3厘米,线段AC 的长度比线段DB 长度的2倍多4厘米. (1)写出用y 表示的线段AB 的长度l ; (2)当4y =时,求l 的值.22.(8分)先化简,再求值:2211312()()2323x x y x y --+-+,其中2x =,1y =-.23.(9分)某公路检修队乘车从A 地出发,在南北走向的公路上检修道路,规定向南走为正,向北走为负,从出发到收工时所行驶的路程记录如下(单位:千米):2+,8-,5+,7+,8-,6+,7-,13+.(1)问收工时,检修队在A 地哪边?据A 地多远? (2)问从出发到收工时,汽车共行驶多少千米?(3)在汽车行驶过程中,若每行驶1千米耗油0.3升,则检修队从A 地出发到回到A 地,汽车共耗油多少升?24.(9分)某车间接到一批限期(可以提前)完成的零件加工任务.如果每天加工150个,则恰好按期完成;如果每天加工200个,则可比原计划提前5天完成. (1)求这批零件的个数;(2)车间按每天加工200个零件的速度加工了m 个零件后,提高了加工速度,每天加工250个零件,结果比原计划提前6天完成了生产任务,求m 的值.25.(10分)对于任意有理数a 、b 、c 、d ,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(a ,)(b c ⊗,)d ac bd =-.例如:(2-,6)(1⊗,3)216320=-⨯-⨯=-. 根据上述规定,解决下列问题:(1)有理数对(2,4)(5⊗,6)-= ;(2)若有理数对(3-,)(2x ⊗,4)10=,则x = ;(3)当满足等式(1,1)(2x x y --⊗,2)9y =中的x 是整数时,求整数y 的值. 26.(10分)已知点O 是直线AB 上一点,60COE ∠=︒,OF 是AOE ∠的平分线. (1)当点C ,E 在直线AB 的同侧,且OF 在COE ∠的内部时(如图1所示),设2BOE COF α∠-∠=,求α的大小;(2)当点C 与点E ,F 在直线AB 的两旁(如图2所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由;(3)将图2中的射线OF 绕点O 顺时针旋转(0180)m m ︒<<,得到射线OD ,设AOC n ∠=︒,若3(45)4nBOD ∠=-︒,则DOE ∠的度数是 (用含n 的式子表示)2019-2020学年湖南省长沙市浏阳市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米.将2500000用科学记数法表示应为()A.72.510⨯D.52510⨯⨯C.62.5100.2510⨯B.7【解答】解:根据题意:6=⨯.2500000 2.510故选:C.2.(3分)下列说法中,错误的是()A.射线AB和射线BA是同一条射线B.直线AB和直线BA是同一条直线C.线段AB和线段BA是同一条线段D.连结两点间的线段的长度叫两点间的距离【解答】解:A、射线AB和射线BA是同一条射线,说法错误;B、直线AB和直线BA是同一条直线,说法正确;C、线段AB和线段BA是同一条线段,说法正确;D、连结两点间的线段的长度叫两点间的距离,说法正确;故选:A.3.(3分)如图,在灯塔O处观测到轮船A位于北偏西54︒的方向,同时轮船B在南偏东15︒的方向,那么AOB∠的大小为()A.159︒B.141︒C.111︒D.69︒【解答】解:90549015141∠=︒-︒+︒+︒=︒.AOB故选:B.4.(3分)x、y、z在数轴上的位置如图所示,则化简||||x y z y-+-的结果是()A .x z -B .z x -C .2x z y +-D .以上都不对【解答】解:由数轴上x 、y 、z 的位置,知:x y z <<; 所以0x y -<,0z y ->;故||||()x y z y x y z y z x -+-=--+-=-. 故选:B .5.(3分)如图所示,已知90AOB ∠=︒,30BOC ∠=︒,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数为( )A .30︒B .45︒C .60︒D .75︒【解答】解:OM Q 平分AOC ∠,ON 平分BOC ∠,12MOC AOC ∴∠=∠,12NOC BOC ∠=∠,AOC AOB BOC ∠=∠+∠Q ,11()22MON MOC NOC AOB BOC BOC AOB ∴∠=∠-∠=∠+∠-∠=∠,90AOB ∠=︒Q ,190452MON ∴∠=⨯︒=︒.故选:B .6.(3分)下列运算正确的是( )A .11(7)()7177⨯-+-⨯=B .239()55-=C .358a b ab +=D .22234a b ba a b -=-【解答】解:11(7)()711277A ⨯-+-⨯=--=-,故本选项不合题意;239.()525B -=,故本选项不合题意; .3C a 与5b 不是同类项,所以不能合并,故本选项不合题意;222.34D a b ba a b -=-,正确.故选:D .7.(3分)如图几何体的展开图形最有可能是( )A .B .C .D .【解答】解: 选项A 能折叠成原正方体的形式, 而选项A 带图案的三个面没有一个公共顶点, 不能折叠成原正方体的形式;选项B 折叠后带圆圈的面在右面时, 带三角形的面在上面与原正方体中的位置不同,选项D 中带图案的三个面位置相同, 但图案对应的方向不同 . 故选:C .8.(3分)某粮店出售的三种品牌的面粉袋上,分别标有质量为(250.1)kg ±、(250.2)kg ±、(250.3)kg ±的字样,从中任意拿出两袋,它们的质量最多相差( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg【解答】解:根据题意从中找出两袋质量波动最大的(250.3)kg ±,则相差0.3(0.3)0.6kg --=. 故选:B .9.(3分)登山队员攀登珠穆朗玛峰,在海拔3000m 时,气温为20C ︒-,已知每登高1000m ,气温降低6C ︒,当海拔为5000m 时,气温是( )C ︒. A .50-B .42-C .40-D .32-【解答】解:根据题意得:20(50003000)10006201232(C)︒---÷⨯=--=-, 故选:D .10.(3分)下列各组数中,互为相反数的是( )A .15-与5-B .|5|-与5C .1||5-与15-D .15-与1||5--【解答】解:11(5)5055-+-=-≠Q ,∴选项A 不符合题意;|5|5100-+=≠Q , ∴选项B 不符合题意;11||()055-+-=Q ,∴选项C 符合题意;112(||)0555-+--=-≠Q ,∴选项D 不符合题意.故选:C .11.(3分)解方程2(3)3(4)5x x ---=时,下列去括号正确的是( ) A .23345x x --+= B .26345x x ---= C .233125x x ---=D .263125x x --+=【解答】解:由原方程去括号,得263125x x --+=.故选:D .12.(3分)a 、b 、c 是三个有理数,且0abc <,0a b +<,1a b c ++=,下列结论一定成立的是( ) A .||||a b c >+ B .10c -<C .0b c +>D .|||1|1a b c a b c +--+-=-【解答】解:1a b c ++=Q ,0a b +<,10a b c ∴+=-<,即1c >,则|||1|a b c a b +--+- |12|||c c =-- 21(1)c c =---21c c =--1c =-.故选:D .二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)比较大小:5()6+- > 8||9--【解答】解:因为5535()6654+-=-=-,8848||9954--=-=-,所以58()||69+->--,故答案为:>.14.(3分)写出单项式23xy -的一个同类项: 2xy (答案不唯一:形如2Zxy ,0Z ≠且Z 为常数) .【解答】解:单项式2xy 的一个同类项可以为:2xy (答案不唯一:形如2Zxy ,0Z ≠且Z 为常数).故答案为:2xy (答案不唯一:形如2Zxy ,0Z ≠且Z 为常数). 15.(3分)1∠与2∠互为余角,若13420'∠=︒,则2∠= 5540︒' . 【解答】解:1∠Q 与2∠互为余角,且13420'∠=︒,29019034205540'∴∠=︒-∠=︒-︒=︒'.故答案为5540︒'.16.(3分)关于x 的方程21x m x +=-的解是2x =-,则m 的值为 7 . 【解答】解:把2x =-代入方程21x m x +=-, 得:412m -+=+, 解得:7m =. 故答案为:7.17.(3分)古代埃及人在进行分数运算时,只使用分子是1的分数,因此这种分数也叫做埃及分数.我们注意到,某些真分数恰好可以写成两个埃及分数之和,例如:8111535=+.请将1336写成两个埃及分数和的形式: 1149+或11363+ .【解答】解:1336写成两个埃及分数和的形式:1149+或11363+.故答案为:1149+或11363+.18.(3分)如图,一副直角三角板中,60A ∠=︒,45D ∠=︒,在同一平面内,将A ∠和D ∠的顶点重合,边AC 和边DF 重合,可以得到BAE ∠,则BAE ∠的度数为 15︒或105︒ .【解答】解:BAE ∠的度数为604515︒-︒=︒或6045105︒+︒=︒. 故答案为:15︒或105︒.三、解答题(本大题共8小题,共66分) 19.(6分)计算: (1)(2)(3)(7)-+---(2)32422()93-÷⨯-【解答】解:(1)原式237=--+2=;(2)原式94849=-⨯⨯8=-.20.(6分)解方程:3121183x x +-=- 【解答】解:去分母得:3(31)8(21)24x x +=--, 去括号得:9316824x x +=--, 移项合并得:735x =, 解得:5x =.21.(8分)如图所示,线段CD 的长度为y 厘米,线段DB 的长度比线段CD 长度的2倍少3厘米,线段AC 的长度比线段DB 长度的2倍多4厘米. (1)写出用y 表示的线段AB 的长度l ; (2)当4y =时,求l 的值.【解答】解:(1)由已知CD y =,23DB y =-,2442AC DB y =+=-AB AC CD DB ∴=++4223y y y =-++-75y =-即:75l y =-(厘米)(2)4y =时,23l =(厘米).22.(8分)先化简,再求值:2211312()()2323x x y x y --+-+,其中2x =,1y =-. 【解答】解:原式2221231232323x x y x y x y =-+-+=-+, 当2x =,1y =-时,原式615=-+=-.23.(9分)某公路检修队乘车从A 地出发,在南北走向的公路上检修道路,规定向南走为正,向北走为负,从出发到收工时所行驶的路程记录如下(单位:千米):2+,8-,5+,7+,8-,6+,7-,13+.(1)问收工时,检修队在A 地哪边?据A 地多远?(2)问从出发到收工时,汽车共行驶多少千米?(3)在汽车行驶过程中,若每行驶1千米耗油0.3升,则检修队从A 地出发到回到A 地,汽车共耗油多少升?【解答】解:(1)285786713-++-+-+257613887=++++---3323=-10=千米.答:收工时,检修队在A 地北边,距A 地10千米;(2)28578671356+++++++=千米.答:从出发到收工时,汽车共行驶56千米;(3)0.3(5610)0.36619.8⨯+=⨯=升.答:检修队从A 地出发到回到A 地,汽车共耗油19.8升.24.(9分)某车间接到一批限期(可以提前)完成的零件加工任务.如果每天加工150个,则恰好按期完成;如果每天加工200个,则可比原计划提前5天完成.(1)求这批零件的个数;(2)车间按每天加工200个零件的速度加工了m 个零件后,提高了加工速度,每天加工250个零件,结果比原计划提前6天完成了生产任务,求m 的值.【解答】解:(1)设这批零件有x 个,则由题意得:5150200x x -=, 解得:300x =,答:设这批零件有3000个.(2)由题意得:300030006200250150m m -+=-, 解得:2000m =答:m 的值是2000.25.(10分)对于任意有理数a 、b 、c 、d ,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(a ,)(b c ⊗,)d ac bd =-.例如:(2-,6)(1⊗,3)216320=-⨯-⨯=-. 根据上述规定,解决下列问题:(1)有理数对(2,4)(5⊗,6)-= 34 ;(2)若有理数对(3-,)(2x ⊗,4)10=,则x = ;(3)当满足等式(1,1)(2x x y --⊗,2)9y =中的x 是整数时,求整数y 的值.【解答】解:(1)(2,4)(5⊗,6)-254(6)=⨯-⨯- 1024=+34=;(2)(3-,)(2x ⊗,4)10=,32410x -⨯-⨯=,解得4x =-;(3)由(1,1)(2x x y --⊗,2)9y = 得22(1)9x y y x ---=,即(12)9y x -=, x Q 是整数,121y ∴-=±或3±或9±,0y ∴=或1y =或1y =-或2y =或4y =-或5y =.故答案为:34;4-.26.(10分)已知点O 是直线AB 上一点,60COE ∠=︒,OF 是AOE ∠的平分线.(1)当点C ,E 在直线AB 的同侧,且OF 在COE ∠的内部时(如图1所示),设2BOE COF α∠-∠=,求α的大小;(2)当点C 与点E ,F 在直线AB 的两旁(如图2所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由;(3)将图2中的射线OF 绕点O 顺时针旋转(0180)m m ︒<<,得到射线OD ,设AOC n ∠=︒,若3(45)4n BOD ∠=-︒,则DOE ∠的度数是 7(75)4n +︒ (用含n 的式子表示)【解答】解:(1)设AOC β∠=,则180(60)120BOE ββ∠=︒-︒+=︒-, OF Q 是AOE ∠的平分线,111(60)30222COF AOE AOC βββ∠=∠-∠=︒+-=︒-, ∴12(120)2(30)602BOE COF ββ∠-∠=︒--︒-=︒, 即60α=︒;(2)(1)中的结论不变,即60α=︒,180BOE AOE ∠=︒-∠,OF Q 是AOE ∠的平分线,∴1602COF COE EOF AOE ∠=∠-∠=︒-∠, 260BOE COF ∴∠-∠=︒;(3)通过比较,可判断出射线OD 只可能在BOE ∠的内部,如图3所示180DOE BOD AOE ∠=︒-∠-∠,3180(45)(60)4n n =︒--︒-︒-︒, 7(75)4n =+︒. 故答案为:7(75)4n +︒.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年湖南省长沙市浏阳市七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米.将2500000用科学记数法表示应为()A. 0.25×107B. 2.5×107C. 2.5×106D. 25×1052.下列说法中,错误的是()A. 射线AB和射线BA是同一条射线B. 直线AB和直线BA是同一条直线C. 线段AB和线段BA是同一条线段D. 连结两点间的线段的长度叫两点间的距离3.如图,在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A. 159°B. 141°C. 111°D. 69°4.x、y、z在数轴上的位置如图所示,则化简|x−y|+|z−y|的结果是()A. x−zB. z−xC. x+z−2y D. 以上都不对5.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,则∠MON的度数为()A. 30°B. 45°C. 60°D. 75°6.下列运算正确的是()A. 17×(−7)+(−17)×7=1 B. (−35)2=95C. 3a+5b=8abD. 3a2b−4ba2=−a2b7.如图几何体的展开图形最有可能是()A. B. C. D.8.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A. 0.8kgB. 0.6kgC. 0.5kgD. 0.4kg9. 登山队员攀登珠穆朗玛峰,在海拔3000m 时,气温为−20℃,已知每登高1000m ,气温降低6℃,当海拔为5000m 时,气温是( )℃.A. −50B. −42C. −40D. −32 10. 下列各组数中,互为相反数的是( )A. −15与−5B. |−5|与5C. |−15|与−15D. −15与−|−15|11. 解方程2(x −3)−3(x −4)=5时,下列去括号正确的是( )A. 2x −3−3x +4=5B. 2x −6−3x −4=5C. 2x −3−3x −12=5D. 2x −6−3x +12=512. a 、b 、c 是三个有理数,且abc <0,a +b <0,a +b +c =1,下列结论一定成立的是( )A. |a|>|b +c|B. c −1<0C. b +c >0D. |a +b −c|−|a +b −1|=c −1二、填空题(本大题共6小题,共18.0分) 13. 比较大小:+(−56)______−|−89| 14. 写出单项式−3xy 2的一个同类项:______.15. ∠1与∠2互为余角,若∠1=34°20′,则∠2=______.16. 关于x 的方程2x +m =1−x 的解是x =−2,则m 的值为______.17.古代埃及人在进行分数运算时,只使用分子是1的分数,因此这种分数也叫做埃及分数.我们注意到,某些真分数恰好可以写成两个埃及分数之和,例如:815=13+15.请将1336写成两个埃及分数和的形式:______.18. 如图,一副直角三角板中,∠A =60°,∠D =45°,在同一平面内,将∠A 和∠D 的顶点重合,边AC 和边DF 重合,可以得到∠BAE ,则∠BAE 的度数为______.三、计算题(本大题共2小题,共14.0分)19. 计算:(1)(−2)+(−3)−(−7);(2)−23÷49×(−23)220.先化简,再求值:12x−2(x−13y2)+(−32x+13y2),其中x=2,y=−1.四、解答题(本大题共6小题,共52.0分)21.解方程:3x+18=2x−13−122.如图所示,线段CD的长度为y厘米,线段DB的长度比线段CD长度的2倍少3厘米,线段AC的长度比线段DB长度的2倍多4厘米.(1)写出用y表示的线段AB的长度l;(2)当y=4时,求l的值.23.某公路检修队乘车从A地出发,在南北走向的公路上检修道路,规定向南走为正,向北走为负,从出发到收工时所行驶的路程记录如下(单位:千米):+2,−8,+5,+7,−8,+6,−7,+13.(1)问收工时,检修队在A地哪边?据A地多远?(2)问从出发到收工时,汽车共行驶多少千米?(3)在汽车行驶过程中,若每行驶1千米耗油0.3升,则检修队从A地出发到回到A地,汽车共耗油多少升?24.某车间接到一批限期(可以提前)完成的零件加工任务.如果每天加工150个,则恰好按期完成;如果每天加工200个,则可比原计划提前5天完成.(1)求这批零件的个数;(2)车间按每天加工200个零件的速度加工了m个零件后,提高了加工速度,每天加工250个零件,结果比原计划提前6天完成了生产任务,求m的值.25.对于任意有理数a、b、c、d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)⊗(c,d)=ac−bd.例如:(−2,6)⊗(1,3)=−2×1−6×3=−20.根据上述规定,解决下列问题:(1)有理数对(2,4)⊗(5,−6)=______;(2)若有理数对(−3,x)⊗(2,4)=10,则x=______;(3)当满足等式(1,x−1)⊗(x−2y,2y)=9中的x是整数时,求整数y的值.26.已知点O是直线AB上一点,∠COE=60°,OF是∠AOE的平分线.(1)当点C,E在直线AB的同侧,且OF在∠COE的内部时(如图1所示),设∠BOE−2∠COF=α,求α的大小;(2)当点C与点E,F在直线AB的两旁(如图2所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由;(3)将图2中的射线OF绕点O顺时针旋转m°(0<m<180),得到射线OD,设)°,则∠DOE的度数是______(用含n的式子表示)∠AOC=n°,若∠BOD=(45−3n4答案和解析1.【答案】C【解析】【分析】本题考查科学记数法表示较大的数的方法,把一个数写成a×10n的形式,叫做科学记数法,其中1≤|a|<10,因此不能写成25×105而应写成2.5×106.【解答】解:根据题意:2500000=2.5×106.故选:C.2.【答案】A【解析】解:A、射线AB和射线BA是同一条射线,说法错误;B、直线AB和直线BA是同一条直线,说法正确;C、线段AB和线段BA是同一条线段,说法正确;D、连结两点间的线段的长度叫两点间的距离,说法正确;故选A.根据射线的表示方法判断A;根据直线的表示方法判断B;根据线段的表示方法判断C;根据两点间的距离的定义判断D.本题考查了直线、射线、线段的表示方法:①直线:用一个小写字母表示,如:直线l,或用两个大些字母(直线上的)表示,如直线AB(或直线BA).②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).同时考查了两点间的距离的定义.3.【答案】B【解析】解:∠AOB=90°−54°+90°+15°=141°.故答案为:B.利用方向角的定义求解即可.本题主要考查了方向角,解题的关键是正确理解方向角.4.【答案】B【解析】[分析]根据x、y、z在数轴上的位置,先判断出x−y和z−y的符号,在此基础上,根据绝对值的性质来化简给出的式子.此题借助数轴考查了用几何方法化简含有绝对值的式子,能够正确的判断出各数的符号是解答此类题的关键.[详解]解:由数轴上x、y、z的位置,知:x<y<z;所以x−y<0,z−y>0;故|x−y|+|z−y|=−(x−y)+z−y=z−x.故选B.5.【答案】B【解析】解:∵OM 平分∠AOC ,ON 平分∠BOC , ∴∠MOC =12∠AOC ,∠NOC =12∠BOC ,∵∠AOC =∠AOB +∠BOC ,∴∠MON =∠MOC −∠NOC =12(∠AOB +∠BOC −∠BOC)=12∠AOB , ∵∠AOB =90°,∴∠MON =12×90°=45°.故选:B .根据角平分线的定义得到∠MOC =12∠AOC ,∠NOC =12∠BOC ,则∠MON =∠MOC −∠NOC =12(∠AOC −∠BOC)=12∠AOB ,然后把∠AOB 的度数代入计算即可.本题考查了角平分线的定义,做这类题时学生总会认为条件不够,其实只要把这些等量关系合并化简即可求出角的度数,所以学生做题时有是不要急于计算,而是要先化简后再合并,属于基础题. 6.【答案】D【解析】解:A 17×(−7)+(−17)×7=−1−1=−2,故本选项不合题意; B .(−35)2=925,故本选项不合题意;C .3a 与5b 不是同类项,所以不能合并,故本选项不合题意;D .3a 2b −4ba 2=−a 2b ,正确. 故选:D .分别根据有理数的混合运算法则,幂的定义,合并同类项法则逐一判断即可. 本题主要考查了有理数的混合运算以及合并同类项,熟记相关运算法则是解答本题的关键.7.【答案】C【解析】解:选项A 能折叠成原正方体的形式,而选项A 带图案的三个面没有一个公共顶点,不能折叠成原正方体的形式;选项B 折叠后带圆圈的面在右面时,带三角形的面在上面与原正方体中的位置不同, 选项D 中带图案的三个面位置相同,但图案对应的方向不同. 故选C .由平面图形的折叠及正方体的展开图解题,注意带图案的三个面有一个公共顶点. 本题主要考查了几何体的展开图.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力. 8.【答案】B【解析】 【分析】根据题意给出三袋面粉的质量波动范围,并求出任意两袋质量相差的最大数. 解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量. 【解答】 解:根据题意从中找出两袋质量波动最大的(25±0.3)kg ,则相差0.3−(−0.3)=0.6kg . 故选B .9.【答案】D【解析】【分析】此题考查了有理数的混合运算,列出正确的算式是解本题的关键.根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:−20−(5000−3000)÷1000×6=−20−12=−32(℃),故选D10.【答案】C【解析】解:∵−15+(−5)=−515≠0,∴选项A不符合题意;∵|−5|+5=10≠0,∴选项B不符合题意;∵|−15|+(−15)=0,∴选项C符合题意;∵−15+(−|−15|)=−25≠0,∴选项D不符合题意.故选:C.根据互为相反数的两个数的和是0,逐项判断即可.此题主要相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“−”;互为相反数的两个数的和是0.11.【答案】D【解析】【分析】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.方程利用去括号法则计算即可得到结果.【解答】解:由原方程去括号,得2x−6−3x+12=5.故选:D.12.【答案】D【解析】解:∵a+b+c=1,a+b<0,∴a+b=1−c<0,即c>1,则|a+b−c|−|a+b−1|=|1−2c|−|c|=2c−1−c=c −1. 故选:D .由a +b +c =1,表示出a +b =1−c ,再由a +b 小于0,列出关于c 的不等式,求出不等式的解集确定出c 大于1,将a +b =1−c ,a +b −1=c 代入|a +b −c|−|a +b −1|中,利用绝对值的代数意义化简,去括号合并得到结果为c −1,从而得出答案. 此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算. 13.【答案】>【解析】解:因为+(−56)=−56=−3554,−|−89|=−89=−4854, 所以+(−56)>−|−89|,故答案为:>.根据正数大于0,0大于负数,正数大于负数,两个负数,绝对值大的其值反而小,比较即可.本题考查了有理数大小比较,要熟练掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小. 14.【答案】xy 2(答案不唯一:形如Zxy 2,Z ≠0且Z 为常数)【解析】解:单项式xy 2的一个同类项可以为:xy 2(答案不唯一:形如Zxy 2,Z ≠0且Z 为常数).故答案为:xy 2(答案不唯一:形如Zxy 2,Z ≠0且Z 为常数). 直接利用同类项的定义分析得出答案.此题主要考查了同类项,正确把握同类项的定义是解题关键. 15.【答案】55°40′【解析】解:∵∠1与∠2互为余角,且∠1=34°20′, ∴∠2=90°−∠1=90°−34°20′=55°40′. 故答案为55°40′.若两个角的和为90°,则这两个角互余.根据一个角的余角等于90°减去这个角的度数进行计算.此题考查了余角和补角的意义.互为余角的两角的和为90°,互为补角的两角之和为180°. 16.【答案】7【解析】解:把x =−2代入方程2x +m =1−x , 得:−4+m =1+2, 解得:m =7. 故答案为:7.方程的解就是能够使方程左右两边相等的未知数的值,把x =−2代入方程2x +m =1−x 就得到关于m 的方程,从而求出m 的值.本题考查了一元一次方程的解,解决本题的关键是代入法解答.17.【答案】14+19或136+13【解析】解:1336写成两个埃及分数和的形式:14+19或136+13. 故答案为:14+19或136+13.根据埃及分数的定义,即可解答.本题考查了有理数的加法,解决本题的关键是明确埃及分数的定义. 18.【答案】15°或105°【解析】解:∠BAE 的度数为60°−45°=15°或60°+45°=105°. 故答案为:15°或105°.利用直角三角板的知识和角的和差关系计算即可求解.本题主要考查了角的计算,解题的关键是熟练掌握角的和差计算. 19.【答案】解:(1)原式=−2−3+7 =2;(2)原式=−8×94×49=−8.【解析】(1)先化简,再计算加减法;(2)先算乘方,再算乘除;同级运算,应按从左到右的顺序进行计算.考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.【答案】解:原式=12x −2x +23y 2−32x +13y 2=−3x +y 2,当x =2,y =−1时,原式=−6+1=−5.【解析】原式去括号合并得到最简结果,将x 与y 的值代入计算即可求出值. 此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键. 21.【答案】解:去分母得:3(3x +1)=8(2x −1)−24, 去括号得:9x +3=16x −8−24, 移项合并得:7x =35, 解得:x =5.【解析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.【答案】解:(1)由已知CD =y ,DB =2y −3,AC =2DB +4=4y −2 ∴AB =AC +CD +DB =4y −2+y +2y −3 =7y −5即:l =7y −5(厘米)(2)y =4时,l =23(厘米).【解析】(1)根据题意用代数式表示线段的长度即可; (2)将y 等于4代入(1)所求代数式即可.本题考查了两点间的距离、列代数式,解决本题的关键是根据题意用代数式表示线段的长度.23.【答案】解:(1)2−8+5+7−8+6−7+13=2+5+7+6+13−8−8−7=33−23=10千米.答:收工时,检修队在A地北边,距A地10千米;(2)2+8+5+7+8+6+7+13=56千米.答:从出发到收工时,汽车共行驶56千米;(3)0.3×(56+10)=0.3×66=19.8升.答:检修队从A地出发到回到A地,汽车共耗油19.8升.【解析】(1)把所有行驶路程相加,再根据正负数的意义解答;(2)求出所有行驶路程的绝对值的和即可;(3)用行驶的路程加上返回A地的距离,然后乘以0.3计算即可得解.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.【答案】解:(1)设这批零件有x个,则由题意得:x 150−x200=5,解得:x=300,答:设这批零件有3000个.(2)由题意得:m200+3000−m250=3000150−6,解得:m=2000答:m的值是2000.【解析】(1)设这批零件有x个,则由题意得列出方程即可求出答案.(2)根据题意列出方程即可求出答案.本题考查分式方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.25.【答案】34 −4【解析】解:(1)(2,4)⊗(5,−6)=2×5−4×(−6)=10+24=34;(2)(−3,x)⊗(2,4)=10,−3×2−x×4=10,解得x=−4;(3)由(1,x−1)⊗(x−2y,2y)=9得x−2y−2y(x−1)=9,即(1−2y)x=9,∵x是整数,∴1−2y=±1或±3或±9,∴y=0或y=1或y=−1或y=2或y=−4或y=5.故答案为:34;−4.(1)原式利用题中的新定义计算即可求出值;(2)已知等式利用题中的新定义化简,计算即可求出x的值;(3)已知等式利用题中的新定义化简,计算即可求出整数y的值.此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.26.【答案】(75+7n4)°【解析】解:(1)设∠AOC=β,则∠BOE=180°−(60°+β)=120°−β,∵OF是∠AOE的平分线,∠COF=12∠AOE−∠AOC=12(60°+β)−β=30°−12β,∴∠BOE−2∠COF=(120°−β)−2(30°−12β)=60°,即α=60°;(2)(1)中的结论不变,即α=60°,∠BOE=180°−∠AOE,∵OF是∠AOE的平分线,∴∠COF=∠COE−∠EOF=60°−12∠AOE,∴∠BOE−2∠COF=60°;(3)通过比较,可判断出射线OD只可能在∠BOE的内部,如图3所示∠DOE=180°−∠BOD−∠AOE,=180°−(45−3n4)°−(60°−n°),=(75+7n4)°.故答案为:(75+7n4)°.(1)设∠AOC=β,用β的代数式表示出∠BOE,再根据角平分线的定义以及角的和差关系解答即可;(2)(1)中的结论不变,根据角平分线的定义以及角的和差关系解答即可;(3)通过比较,可判断出射线OD只可能在∠BOE的内部,据此计算即可.本题考查角的计算,角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.第11页,共11页。

相关文档
最新文档