轴对称单元检测试题
数学八年级上册《轴对称》单元检测(含答案)
![数学八年级上册《轴对称》单元检测(含答案)](https://img.taocdn.com/s3/m/d777ef8d31b765ce0408145f.png)
9.如图,在 中, , , 平分 , ,则图中共有等腰三角形( )
A. 个B. 个C. 个D. 个
[答案]D
[解析]
[分析]
根据等腰三角形性质和三角形内角和定理求出∠A C B=∠B= (180°−∠A)=72°,求出∠A C D=∠B C D= ∠A C B=36°,求出∠C D B=∠A+∠A C D=72°,根据平行线的性质得出∠ED B=∠A=36°,∠DEB=∠A C B=72°,∠C DE=∠A C D=36°,推出∠A=∠A C D=∠B C D=∠C DE=36°,∠B=∠A C D=∠DEB=∠C D B=72°即可.
A. B. C. D.
3.一个角是 等腰三角形是( )
A.等腰直角三角形B.等边三角形C.直角三角形D.上述都正确
4.如图,在一个规格为 (即 个小正方形)的球台上,有两个小球 , .若击打小球 ,经过球台边的反弹后,恰好击中小球 ,那么小球 击出时,应瞄准球台边上的点( )
A. B. C. D.
5.如图,桌面上有M、N两球,若要将M球射向桌面的任意一边,使一次反弹后击中N球,则4个点中,可以瞄准的是( )
[详解]解:∵A B=A C,
∴∠A B C=∠C,
∵B D=B A,
∴∠A=∠B D A,
∴∠A>∠C,
∴2∠A<180°且3∠A>180°,
∴60°<∠A<90°,即60<x<90.
故选C.
[点睛]此题考查了等腰三角形的性质,三角形内角和为180°和三角形外角的性质,关键是得到2∠A<180°且3∠A>180°.
[答案]D
[解析]
[分析]
此题根据△A B C中∠A为锐角与钝角分为两种情况解答.
第13章 轴对称 单元同步检测试题 2022—2023学年人教版数学八年级上册
![第13章 轴对称 单元同步检测试题 2022—2023学年人教版数学八年级上册](https://img.taocdn.com/s3/m/7620e253842458fb770bf78a6529647d26283440.png)
第十三章《轴对称》单元检测题题号一二三 总分 19 202122 23 24分数一、选择题(每题3分,共30分) 1.下列说法错误的是( ) A .等边三角形有3条对称轴 B .正方形有4条对称轴 C .角的对称轴有2条 D .圆有无数条对称轴2.下列四句话中的文字有三句具有对称规律,其中没有这种规律的一句是( ) A .上海自来水来自海上 B .保卫钓鱼岛 C .清水池里池水清D .蜜蜂酿蜂蜜3.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,则下列结论不一定成立的是( )A .AD =BDB .BD =CDC .∠1=∠2D .∠B =∠C4.如图,直线m 是多边形ABCDE 的对称轴,其中∠A=120°,∠B=110°,那么∠BCD 的度数为( )A .50°B .60°C .70°D .80°5.如图,ABC △在平面直角坐标系的第二象限内,顶点A 的坐标是2,3-(),先把ABC △向右平移4个单位得到111A B C △,再作111A B C △,关于x 轴的对称图形222A B C △,则顶点2A 坐标是( )A.3,2-()B.2,3-()C.1,2-()D.3,1-()6.如图,ABC △是等边三角形,D ,E 分别在BC 和AC 上,BD CE =,连接BE 、AD 交于P 点,则APB ∠的度数是( )A.60︒B.90︒C.120︒D.150︒7.如图,E 是等边ABC △中AC 边上的点,12∠=∠,BE CD =,则对ADE △的形状判断最准确的( ) A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状8.如图,分别以线段AB的两端点A,B为圆心,大于AB长为半径画弧,在线段AB的两侧分别交于点E,F,作直线EF交AB于点O.在直线EF上任取一点P (不与O重合),连接PA,PB,则下列结论不一定成立的是()A.PA=PB B.OA=OB C.OP=OF D.PO⊥AB9.如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°10.如图,△ABC中,D点在BC上,将D点分别以AB、AC为对称轴,画出对称点E、F,并连接AE、AF.根据图中标示的角度,求∠EAF的度数为何?()A.113°B.124°C.129°D.134°二、填空题(每题3分,共24分)11.若等边三角形的周长为24cm,则它的面积为.12.如图,在△ABC中,DE垂直平分AC,若△BCD的周长是12,BC=4,则AB 的长.13.如图在长度为1个单位长度的小正方形组成的正方形中,点A,B,C在小正方形的顶点上.画出关于l成轴对称图形的△AB′C,五边形ACBB′C′的周长为.14.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,则PQ=.15.如图,现要利用尺规作图作△ABC关于BC的轴对称图形△A′BC.若AB=5cm,AC=6cm,BC=7cm,则分别以点B、C为圆心,依次以cm、cm为半径画弧,使得两弧相交于点A′,再连接A′C、A′B,即可得△A′BC.16.若点A(1﹣m,6)与B(2+n,6)关于某坐标轴对称,则m﹣n=.17.如图所示,在Rt△ABC中,∠A=30°,∠B=90°,AB=12,D是斜边AC 的中点,P是AB上一动点,则PC+PD的最小值为.18.如图,△PDE的周长是8cm,BP,CP分别是△ABC中∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则BC=cm.三.解答题(共46分,19题6分,20 ---24题8分)19如图,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线分别与BC,AB 交于点M、N.试说明MB与AC的大小关系.20如图,已知AD平分△ABC的外角∠EAC,且∠EAD=∠C,求证:AB=AC.21.如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积S△A1B1C1=________.22.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.23.如图,过等边△ABC的顶点A,B,C依次作AB,BC,CA的垂线MG,MN,NG,三条垂线围成△MNG.求证:△MNG是等边三角形.24.操作实验:如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.所以△ABD≌△ACD,所以∠B=∠C.归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.根据上述内容,回答下列问题:思考验证:如图(4),在△ABC中,AB=AC.试说明∠B=∠C的理由;探究应用:如图(5),CB⊥AB,垂足为B,DA⊥AB,垂足为A.E为AB的中点,AB=BC,CE⊥BD.(1)BE与AD是否相等,为什么?(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由;(3)∠DBC与∠DCB相等吗?试说明理由.答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 C B A D D D A B D D二、填空题(每题3分,共24分)11.若等边三角形的周长为24cm,则它的面积为16.【分析】根据等边三角形三线合一的性质,即可求D为BC中点,根据勾股定理即可求AD的值,根据AD、BC即可计算△ABC的面积.【解答】解:∵△ABC周长为24,∴边长AB=8,AD为等边△ABC的高,则D为BC中点,即BD=DC=4,∴AD=,故△ABC的面积为BC•AD==16,故答案为:1612.如图,在△ABC中,DE垂直平分AC,若△BCD的周长是12,BC=4,则AB 的长.【答案】见试题解答内容【分析】先根据线段垂直平分线的性质得出AD=CD,进而根据等腰三角形的性质可得出结论.【解答】解:∵DE垂直平分AC,∴AD=CD.∵△BCD的周长是12,BC=4,∴AB=BD+CD=12﹣4=8,故答案为:8.13.如图在长度为1个单位长度的小正方形组成的正方形中,点A,B,C在小正方形的顶点上.画出关于l成轴对称图形的△AB′C,五边形ACBB′C′的周长为.【分析】根据题意画出图形,进而利用勾股定理得出答案.【解答】解:如图所示:五边形ACBB′C′的周长为:AC+BC+BB′+B′C′+AC′=2++2++2=4+2+2.故答案为:4+2+2.14.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,则PQ=.【分析】连OQ,由点P关于直线OB的对称点是Q,根据轴对称的性质得到OB 垂直平分PQ,则∠POB=∠QOB=30°,OP=OQ,得到△POQ为等边三角形,根据等边三角形的性质得PQ=PO=2.【解答】解:如图,连OQ,∵点P关于直线OB的对称点是Q,∴OB垂直平分PQ,∴∠POB=∠QOB=30°,OP=OQ,∴∠POQ=60°,∴△POQ为等边三角形,∴PQ=PO=2.故答案为2.15.如图,现要利用尺规作图作△ABC关于BC的轴对称图形△A′BC.若AB=5cm,AC=6cm,BC=7cm,则分别以点B、C为圆心,依次以cm、cm为半径画弧,使得两弧相交于点A′,再连接A′C、A′B,即可得△A′BC.【分析】根据轴对称的性质画出图形即可.【解答】解:∵AB=5cm,AC=6cm,BC=7cm,∴分别以点B、C为圆心,依次以5cm、6cm为半径画弧,使得两弧相交于点A′,再连接A′C、A′B,即可得△A′BC故答案为:5,6.16.若点A(1﹣m,6)与B(2+n,6)关于某坐标轴对称,则m﹣n=.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n 的值,根据移项、合并同类项,可得答案.【解答】解:由点A(1﹣m,6)与B(6+n,得1﹣m=﹣2﹣n,移项,得m﹣n=4,故答案为:3.17.如图所示,在Rt△ABC中,∠A=30°,∠B=90°,AB=12,D是斜边AC 的中点,P是AB上一动点,则PC+PD的最小值为.【分析】作C关于AB的对称点C',连接C′D,易求∠ACC'=60°,则AC=AC',且△ACC'为等边三角形,CP+PD=DP+PC'为C'与直线AC之间的连接线段,其最小值为C'到AC的距离=AB=12,所以最小值为12.【解答】解:作C关于AB的对称点C',连接C′D,∵∠B=90°,∠A=30°,∴∠ACB=60°,∵AC=AC',∴△ACC'为等边三角形,∴CP+PD=DP+PC'为C'与直线AC之间的连接线段,∴最小值为C'到AC的距离=AB=12,故答案为:1218.如图,△PDE的周长是8cm,BP,CP分别是△ABC中∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则BC=cm.【分析】分别利用角平分线的性质和平行线的判定,求得△DBP和△ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么△PDE的周长就转化为BC边的长,即为8cm.【解答】解:∵BP、CP分别是∠ABC和∠ACB的角平分线,∴∠ABP=∠PBD,∠ACP=∠PCE,∵PD∥AB,PE∥AC,∴∠ABP=∠BPD,∠ACP=∠CPE,∴∠PBD=∠BPD,∠PCE=∠CPE,∴BD=PD,CE=PE,∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=8cm.故答案是:8.三.解答题(共46分,19题6分,20 ---24题8分)19如图,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线分别与BC,AB 交于点M、N.试说明MB与AC的大小关系.【考点】垂线段最短;线段垂直平分线的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;运算能力.【答案】见试题解答内容【分析】根据线段垂直平分线得出AM=BM,求出∠B=∠MAB=15°,求出∠AMC=30°,根据含30度角的直角三角形性质求出AM=2AC=BM.【解答】解:MB=2AC,理由:连接AM,∵MN为AB的垂直平分线,∴MA=MB,∴∠MAB=∠B=15°,∴∠AMC=30°,∵∠C=90°,∴MA=2AC,∴MB=2AC.20如图,已知AD平分△ABC的外角∠EAC,且∠EAD=∠C,求证:AB=AC.【考点】等腰三角形的判定.【专题】等腰三角形与直角三角形;推理能力.【答案】见试题解答内容【分析】根据角平分线定义可得∠EAD=∠DAC,然后证明AD∥BC,再利用平行线的性质结合等量代换证明∠B=∠C,根据等角对等边可得AB=AC.【解答】证明:∵AD平分△ABC的外角∠EAC,∴∠EAD=∠CAD,∵∠EAD=∠C,∴∠C=∠CAD,∴AD∥CB,∴∠EAD=∠B,∴∠B=∠C,∴AB=AC.21.解:(1)如图.(第23题)(2)A1(0,-4),B1(-2,-2),C1(3,0).(3)722:(1)∵DE垂直平分AC,∴AE=CE,∴∠ECD=∠A=36°.(2)∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵∠BEC=∠A+∠ACE=72°,∴∠B=∠BEC,∴BC=CE=5. 23明:∵△ABC是等边三角形,∴∠BAC=∠ABC=∠BCA=60°.又∵AB⊥MG,∴∠BAG=90°.∴∠CAG=30°.∵AC⊥NG,∴∠ACG=90°.∴∠G=60°.同理,∠M=60°,∠N=60°.∴△MNG是等边三角形.24.解:思考验证:过A点作AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,,∴△ABD≌△ACD(HL),∴∠B=∠C;探究应用:(1)说明:因为BD⊥EC,∴∠CEB+∠1=90°,∠1+∠ADB=90°,∴∠ADB=∠BEC,在△ADB和△BEC中,∴△DAB≌△EBC(AAS).∴DA=BE.(2)∵E是AB中点,∴AE=BE.∵AD=BE,∴AE=AD.在△ABC中,因为AB=BC,∴∠BAC=∠BCA.∵AD∥BC,∴∠DAC=∠BCA.∴∠BAC=∠DAC.在△ADC和△AEC中,,∴△ADC≌△AEC(SAS).∴DC=CE.∴C在线段DE的垂直平分线上.∵AD=AE,∴A在线段DE的垂直平分线上.∴AC垂直平分DE.(3)∵AC是线段DE的垂直平分线,∴CD=CE.∵△ADB≌△BEC,∴DB=CE.∴CD=BD.∴∠DBC=∠DCB.。
第2章图形的轴对称单元质量检测 2024-2025学年青岛版八年级数学上学期
![第2章图形的轴对称单元质量检测 2024-2025学年青岛版八年级数学上学期](https://img.taocdn.com/s3/m/c0dfee37a88271fe910ef12d2af90242a995ab64.png)
青岛版八年级数学第2章图形的轴对称单元质量检测一、选择题1. 下列标志中,是轴对称图形的是()A. B. C. D.2. 已知:点A(m-1,3)与点B(2,n-1)关于x轴对称,则(m+n)2023的值为()A. 0B. 1C. -1D. 2013. 小颖的爸爸要在某条街道l上修建一个奶站P,向居民区A、B提供牛奶,要使点P 到A、B的距离之和最短,则下列作法正确的是()A. B. C. D.4. 某小区的三个出口A、B、C的位置如图所示,物业公司计划在不妨碍小区规划的建设下,想在小区内修建一个电动车充电桩,以方便业主,要求到三个出口的距离都相等,则充电桩应该在()A. 三条边的垂直平分线的交点处B. 三个角的平分线的交点处C. 三角形三条高线的交点处D. 三角形三条中线的交点处5. 定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为()A. 1.5B. 4C. 6D. 1.5或66. 如图,在△ABC中,分别以点B和点C为圆心,大于12BC长为半径画弧,两弧相交于点M、N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为()A. 25B. 22C. 19D. 187. 如下图,∠AOB是一钢架,∠AOB=18°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…,添加的钢管长度都与OE的长度相等,则最多能添加的钢管根数为()A. 4B. 5C. 6D. 无数8. 下列说法中,正确的个数是()个.①腰长相等的两个等腰三角形是全等图形;②角是轴对称图形,角平分线是它的对称轴;③角的内部到角的两边距离相等的点,在这个角的平分线上;④等腰三角形的中线、高线、角平分线重合;⑤到线段两端距离相等的点在线段的垂直平分线上A. 1B. 2C. 3D. 49. 如图,已知三角形纸片ABC中,∠A=69°,∠B=76°,将纸片的一角折叠,使点C落则在△ABC内,若∠1=22°,则∠2的度数为()A. 38°B. 48°C. 58°D. 68°10. 如图,点I是4ABC三条角平分线的交点,△ABI的面积记为S1,△ACI的面积记为S2,△BCI的面积记为S3,关于S1+S2与S3的大小关系,正确的是()A. S1+S2=S3=53B. S1+S2<S3C. S1+S2>S3D. 无法确定二、填空题11. 下列图形中是轴对称图形的有__________.①线段;②等腰三角形;③等边三角形;④扇形;⑤圆;⑥平行四边形.12. 已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是__________.13. 如图,在直角坐标系中,直线a∥x轴,且经过y轴上(0,2)点,点A的坐标为(2,3)则点A关于直线a对称的点的坐标为__________.14. 如图,点P为∠AOB内部任意一点,点P、P1关于OA对称,点P、P2关于OB对称,OP=6,∠AOB=45°,则△OP1P2的面积为__________.15. 如图,在△ABC中,DE垂直平分AB,交AC于点E,连接BE,△ABC的周长为23,△BCE的周长为17,则AD的长为________.16. 在等腰三角形中,一腰上的中线将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为________.17. 如图,在△ABC中,∠ABC与∠ACB的平分线交于点D,EF经过点D,分别交AB、AC于点E、F,BE=DE,DF=6,点D到AB的距离为4,则△DFC的面积为________.18. 如图,△ABC中,AB=AC=2,P是BC上任意一点,PE⊥AB于点E,PF⊥AC于点F,若S△ABC =3,则PE+PF=__________.三、解答题19. 如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA、OB两条公路的距离相等,请你利用尺规作图找到点P的位置。
第十三章 轴对称 单元检测
![第十三章 轴对称 单元检测](https://img.taocdn.com/s3/m/c82b7c3487c24028915fc3b8.png)
第十三章 轴对称一、选择题(每题3分,共36分)1. 下列图形中,是轴对称图形的是2. 下列几何图形:角;平行四边形;扇形;正方形。
其中轴对称图形是A .①②③B . ②③④ C. ①③④ D . ①②③④3. 如图所示,△ABC 是由△A |B |C |经过变换得到的,则这个变换过程是A. 平移B. 轴对称C. 旋转D.全等4. 已知点P ()32,1-+a a 关于x 轴的对称点在第一象限,则的取值范围是A. 1-<aB. 231<<-aC. 123<-aD. 23>a 5. 如图所示,△ABC 在平面直角坐标系中第二象限内,顶点A 的坐标是(-2,3),先把△ABC 向右平移4个单位得到△A 1B 1C 1,再作△A 1B 1C 1关于轴对称图形△A 2B 2C 2,则顶点A 2的坐标是 A.(-3,2) B. (2,-3) C.(1,2) D.(3,-1)6. 如图所示,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点已知线段PA=5,则线段PB 的长为 A. 6 B. 5 C. 4 D. 37. 在三角形中,若有两个角的平分线都垂直于对边,则此三角形是A. 等腰三角形B. 等边三角形C. 直角三角形D.等腰直角三角形8. 如图所示,在△ABC 中,AB=AC,点D 在AC 上,且BD=BC=AD,则∠A 等于A. 300B. 40 0C. 450D. 3609. 如图所示,在△ABC 中,AB=AC, ∠A=360,BD,CE 分别为∠ABC, ∠ACB 的平分线,则图中等腰三角形共有A. 5 个B. 6个C. 7 个D. 8个10. 已知等腰三角形ABC 中,AD ⊥BC 于点D ,且AD=BC,则△ABC 的底角度数为A. 450B. 75 0C. 450 或150D. 600B'A'C'第3题BA第8题第9题第5题11. 如图扭,在R △ABC 中,∠CAB=90,ADBC 于点D, ∠ACB 的平分线交AD 于点E ,交AB 于点F ,则△AEF 是A. 等边三角形B. 等腰三角形C. 不等边角三角形D.无法确定12. 如图,△ABC 中,∠C=90,AC=3, ∠B=30,点P 是BC 边上的动点,则AP 的长不可能是A. 3.5B. 4.2C. 5.8D.7二、填空题(每题3分,共18分)13. 已知点A(a,5)与点B(3,b)关于y 轴对称,则a+b= .14. 如图所示,∠A=300, ∠C /=600, △ABC 与△A /B /C /关于直线l 对称,则∠B= .15. 如图,在△ABC 中,AB=5cm,AC=3cm,BC 的垂直平分线分别交AB,BC 于D ,E,则△ACD 的周长为 cm.16. 如图所示,在△ABC 中,AD ⊥BC 于D.请你再添加一个条件,就可以确定△ABC 是等腰三角形。
第13章《轴对称》全章检测题(含答案)
![第13章《轴对称》全章检测题(含答案)](https://img.taocdn.com/s3/m/38f664a349649b6648d747e2.png)
第十三章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2015·遵义)观察下列图形,是轴对称图形的是( A )2.点P(5,-4)关于y 轴的对称点是( D )A .(5,4)B .(5,-4)C .(4,-5)D .(-5,-4)3.如图,△ABC 与△ADC 关于AC 所在的直线对称,∠BCD =70°,∠B =80°,则∠DAC 的度数为( B )A .55°B .65°C .75°D .85°,第3题图) ,第4题图),第5题图) ,第6题图)4.如图,在Rt △ABC 中,∠C =90°,∠B =15°,DE 垂直平分AB 交BC 于点E ,BE =4,则AC 长为( A )A .2B .3C .4D .以上都不对5.如图,AB =AC =AD ,若∠BAD =80°,则∠BCD =( C )A .80°B .100°C .140°D .160°6.如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( A )A .①B .②C .⑤D .⑥7.(2015·玉林)如图,在△ABC 中,AB =AC ,DE ∥BC ,则下列结论中不正确的是( D )A .AD =AEB .DB =EC C .∠ADE =∠CD .DE =12BC,第7题图) ,第8题图) ,第9题图) ,第10题图)8.如图,D 为△ABC 内一点,CD 平分∠ACB ,BE ⊥CD ,垂足为D ,交AC 于点E ,∠A =∠ABE ,AC =5,BC =3,则BD 的长为( A )A .1B .1.5C .2D .2.59.如图,已知S △ABC =12,AD 平分∠BAC ,且AD ⊥BD 于点D ,则S △ADC 的值是( C )A.10 B.8 C.6 D.410.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC 和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.其中正确的结论的个数是( C )A.2个B.3个C.4个D.5个二、填空题(每小题3分,共24分)11.正方形是轴对称图形,它共有__4__条对称轴.12.如图,D,E为△ABC两边AB,AC的中点,将△ABC沿线段DE折叠,使点A 落在点F处,若∠B=55°,则∠BDF等于__70°__.,第12题图),第13题图),第14题图)13.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有__5__种.14.如图,在△ABC中,AB=AC,AB的垂直平分线交BC于点D,垂足为E.若∠B =35°,则∠DAC的度数为__75°__.15.在△ABC中,AC=BC,过点A作△ABC的高AD,若∠ACD=30°,则∠B=__75°或15°__.16.如图,△ABC中,D,E分别是AC,AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出一种情形):__①③或②③__.,第16题图),第17题图),第18题图)17.如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是2,则六边形的周长是__60__.18.如图,已知∠AOB=30°,OC平分∠AOB,在OA上有一点M,OM=10 cm,现要在OC,OA上分别找点Q,N,使QM+QN最小,则其最小值为__5_cm__.三、解答题(共66分)19.(7分)如图,某校准备在校内一块四边形草坪内栽上一棵银杏树,要求银杏树的位置点P到边AB,BC的距离相等,并且点P到点A,D的距离也相等.请用尺规作图作出银杏树的位置点P.(不写作法,保留作图痕迹)解:作∠B的平分线与线段AD的垂直平分线,它们的交点即为点P20.(9分)如图,在平面直角坐标系中,A(-2,2),B(-3,-2).(1)若点D 与点A 关于y 轴对称,则点D 的坐标为__(2,2)__;(2)将点B 先向右平移5个单位再向上平移1个单位得到点C ,则点C 的坐标为__(2,-1)__;(3)求A ,B ,C ,D 组成的四边形ABCD 的面积.解:(3)31221.(9分)如图,在△ABC 中,AB =AC ,D 为BC 为上一点,∠B =30°,∠DAB =45°.(1)求∠DAC 的度数;(2)求证:DC =AB.解:(1)∠DAC =120°-45°=75°(2)∵∠ADC =180°-75°-30°=75°,∴∠DAC =∠ADC ,∴DC =AC ,又AB =AC ,∴DC =AB22.(9分)(2015·潜江)我们把两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AB =CB ,AD =CD ,请你写出与筝形ABCD 的角或者对角线有关的一个结论,并证明你的结论.解:(答案不唯一)AC ⊥BD.理由:证△ABD ≌△CBD (SSS ),∴∠ABO =∠CBO ,∵AB=CB ,∴BD ⊥AC23.(10分)如图,△ABC ,△ADE 是等边三角形,B ,C ,D 在同一直线上.求证:(1)CE=AC+DC;(2)∠ECD=60°.解:(1)∵△ABC,△ADE是等边三角形,∴AE=AD,BC=AC=AB,∠BAC=∠DAE =60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=EC.∵BD=BC+CD=AC +CD,∴CE=BD=AC+CD(2)由(1)知△BAD≌△CAE,∴∠ACE=∠ABD=60°,∴∠ECD=180°-∠ACB-∠ACE=60°24.(10分)如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.解:(1)∵BF∥AC,∠ACB=90°,∴∠CBF=90°,∵∠ABC=45°,DE⊥AB,∴∠BDF=45°,从而∠BFD=45°=∠BDF,∴BD=BF=CD,又AC=BC,∴△ACD≌△CBF(SAS),∴∠CAD=∠BCF,∴∠CGD=∠CAD+∠ACF=∠BCF+∠ACF=90°,∴AD⊥CF(2)△ACF是等腰三角形.理由:由(1)知BD=BF,又DE⊥AB,∴AB是DF的垂直平分线,∴AD=AF,由(1)知△ACD≌△CBF,∴AD=CF,∴AF=CF,∴△ACF是等腰三角形25.(12分)如图,已知AE⊥FE,垂足为E,且E是DC的中点.(1)如图①,如果FC⊥DC,AD⊥DC,垂足分别为C,D,且AD=DC,判断AE是∠FAD 的角平分线吗?(不必说明理由)(2)如图②,如果(1)中的条件“AD=DC”去掉,其余条件不变,(1)中的结论仍成立吗?请说明理由;(3)如图③,如果(1)的条件改为“AD∥FC”,(1)中的结论仍成立吗?请说明理由.解:(1)AE是∠FAD的角平分线(2)成立.理由如下:延长FE交AD的延长线于G.∵E为CD的中点,∴CE=DE.证△CEF≌△DEG(ASA),∴EF=EG.∵AE⊥FG,∴AF=AG,∴AE是∠FAD的平分线(3)结论仍成立,证明方法同(2)。
人教版数学八年级上册《轴对称》单元检测卷带答案
![人教版数学八年级上册《轴对称》单元检测卷带答案](https://img.taocdn.com/s3/m/f5ba443a0508763230121204.png)
《轴对称》单元测试
(时间:120分钟 满分:150分)
一、选择题(本大题共10小题,共40.0分)
1.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,是整个阴影部分组成的图形成轴对称图形,那么符合条件的小正方形共有()
A 4个B.3个C.2个D.1个
故答案为两,一.
【点睛】考查轴对称和轴对称图形的概念,熟练掌握它们的概念,找到它们的区别与联系是解题的关键.
12.点 与点 关于______对称.
【答案】y轴
【解析】
【分析】
根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可以直接得到答案.
【详解】∵点A(−3,2),点B(3,2),
纵坐标相等,横坐标互为相反数,
【详解】如图:△ABC中,AB=AC,BD是边AC上的高.
∵ 且AB=AC,
∴
在Rt△BDC中,
∴
故答案为
【点睛】考查等腰三角形的性质,熟练掌握等腰三角形两个底角相等是解题的关键.
14.在等边三角形ABC中,点D在AB边上,点E在BC边上,且 连接AE、CD交于点P,则 ______.
【答案】
【解析】
解:将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,
由折叠特性可得,CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,
∵∠ABE+∠EBF=∠C′BF+∠EBF=90°
∴∠ABE=∠C′BF
在△BAE和△BC′F中,
∴△BAE≌△BC′F(ASA),
13.已知等腰三角形的顶角为40°,则它一腰上的高与底边的夹角为____.
北师七年级生活中的轴对称单元检测
![北师七年级生活中的轴对称单元检测](https://img.taocdn.com/s3/m/4cad4517f12d2af90242e668.png)
第五章生活中的轴对称轴对称图形轴对称分类轴对称角平分线轴对称实例线段的垂直平分线等腰三角形等边三角形生活中的轴对称轴对称的性质轴对称的性质镜面对称的性质图案设计轴对称的应用镶边与剪纸一、轴对称图形1、如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、理解轴对称图形要抓住以下几点:(1)指一个图形;(2)存在一条直线(对称轴);(3)图形被直线分成的两部分互相重合;(4)轴对称图形的对称轴有的只有一条,有的则存在多条;(5)线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形;二、轴对称1、对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。
可以说成:这两个图形关于某条直线对称。
2、理解轴对称应注意:(1)有两个图形;(2)沿某一条直线对折后能够完全重合;(3)轴对称的两个图形一定是全等形,但两个全等的图形不一定是轴对称图形;三、角平分线的性质1、角平分线所在的直线是该角的对称轴。
2、性质:角平分线上的点到这个角的两边的距离相等。
四、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。
五、等腰三角形1、有两条边相等的三角形叫做等腰三角形;2、相等的两条边叫做腰;另一边叫做底边;3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;4、三条边都相等的三角形也是等腰三角形。
5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴。
6、等腰三角形的三条重要线段不是它的对称轴,它们所在的直线才是等腰三角形的对称轴。
7、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”。
8、“三线合一”是等腰三角形所特有的性质,一般三角形不具备这一重要性质。
数学八年级上册《轴对称》单元检测题附答案
![数学八年级上册《轴对称》单元检测题附答案](https://img.taocdn.com/s3/m/f5d45081a417866fb94a8ee8.png)
A.40°B.55°C.70°D.110°
[答案]C
[解析]
试题解析:∵m∥n,
∴
∵A B=B C,
∴
故选C.
点睛:平行线的性质:两直线平行,内错角相等.
5.如图,已知DE∥B C,A B=A C,∠1=125°,则∠C的度数是( )
一、选择题(共12小题,总分36分)
1.下列图案是轴对称图形的有 个.
A.1B.2C.3D.4
[答案]B
[解析]
试题分析:根据轴对称图形的概念(延某条直线对折,两部分能够完全重合)可知第一和第四个是轴对称图形.
故选B
考点:轴对称图形
2.点A(-2,5)关于x轴对称的点的坐标是( )
A.(2,5)B.(-2,-5)C.(2,-5)D.(5,-2)
(1)试判定△ODE的形状,并说明你的理由;
(2)线段B D、DE、EC三者有什么关系,写出你的判断过程.
25.如图所示,点O是等边三角形A B C内一点,∠AOB=110°,∠BOC=α,以OC为边作等边三角形OC D,连接A D.
(1)当α=150°时,试判断△AOD 形状,并说明理由;
(2)探究:当A为多少度时,△AOD是等腰三角形?
A. 31°B. 32°C. 59°D. 62°
11.如图,等边三角形A B C与互相平行的直线A,B相交,若∠1=25°,则∠2的大小为( )
A. 25°B. 35°C. 45°D. 55°
12.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=( )
人教版八年级上册数学《轴对称》单元检测(附答案)
![人教版八年级上册数学《轴对称》单元检测(附答案)](https://img.taocdn.com/s3/m/b2963408700abb68a882fb8c.png)
人教版数学八年级上学期《轴对称》单元测试满分120分时间100分钟一.选择题(每题3分,共计30分)1.(2020•泰兴市一模)如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.2.(2020•大丰区期末)如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B 度数为()A.30°B.60°C.90°D.120°3.(2020•顺德区四模)若点A(﹣3,2)与点B关于x轴对称,则点B的坐标是() A.(﹣3,2) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)4.(2020•忻州期末)如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位5.(2020•宿豫区期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12 B.10 C.8 D.66.(2020•碑林区模拟)如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°7.(2020 •北镇市期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm8.(2020•上城区二模)若等腰三角形的一个外角度数为100°,则该等腰三角形顶角的度数为()A.80°B.100° C.20°或100°D.20°或80°9.(2020•方城县期末)如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根 B.8根C.9根D.10根10.(2020•射阳县期末)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)二.填空题(每题3分,共计15分)11.(2020•萧山区期末)在平面直角坐标系xOy中,点(﹣3,2)与点(3,2)关于(填写x或y)轴对称.12.(2020•厦门模拟)如图,AB=AC,AD∥BC,∠DAC=50°,则∠B的度数是.13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.14.(2020•宿豫区期中)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为.15.(2020•平潭县期末)已知A(0,2)和B(4,2),点P在x轴上,若要使PA+PB最小,则点P的坐标为.三.解答题(共75分)16.(8分)(2020 •南岗区期中)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.17.(9分)(2020•平谷区期末)如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN 如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是三角形;(2)补全下面证明过程:∵OC平分∠AOB∴=∵DN∥EM∴=∴=∴=18.(9分)(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.19.(9分)(2020黑河期末)如图,在正方形网格中,△ABC的三个顶点都在格点上,A(2,3),B(1,1),C(4,2).结合所给的平面直角坐标系解答下列问题:(1)直接写出△ABC的面积;(2)请在图中作出与△ABC关于x轴对称的△A'B'C';(3)在(2)的条件下,若M(x,y)是△ABC内部任意一点,请直接写点M在△A'B'C'内部的对应点M'的坐标.20.(9分)(2020•兴化市期中)△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于点E、F.(1)求证:EF=BE+FC;(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.21.(10分)(2020•曹县期末)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.22.(10分)(2020•永安市期末)已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.23.(11分)(2020•济源期末)如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)参考答案一.选择题(每题3分,共计30分)1.(2020•泰兴市一模)如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.【解析】D【解答】A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.2.(2020•大丰区期末)如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B 度数为()A.30°B.60°C.90°D.120°【解析】C【解答】∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠C=∠C′=60°,∵∠A=30°,∴∠B=180°﹣∠A﹣∠C=90°,故选:C.3.(2020•顺德区四模)若点A(﹣3,2)与点B关于x轴对称,则点B的坐标是() A.(﹣3,2) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)【解析】B【解答】∵点A(﹣3,2)与点B关于x轴对称,∴点B的坐标是(﹣3,﹣2).故选:B.4.(2020•忻州期末)如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位【解析】A【解答】∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.5.(2020•宿豫区期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12 B.10 C.8 D.6【解析】B【解答】∵DE是AB的垂直平分线,∴EA=EB,由题意得,BC+CE+BE=18,则BC+CE+AE=18,即BC+AC=18,又BC=8,∴AC=10,故选:B.6.(2020•碑林区模拟)如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°【解析】B【解答】∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.7.(2020 •北镇市期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm【解析】D【解答】∵CD是斜边AB上的高,∴∠ADC=90°,∵∠A=60°,∠ACB=90°,∴∠B=180°﹣∠ACB﹣∠A=30°,∠ACD=180°﹣∠ADC﹣∠A=30°,∵AD=3cm,∴AC=2AD=6cm,∴AB=2AC=12cm,故选:D.8.(2020•上城区二模)若等腰三角形的一个外角度数为100°,则该等腰三角形顶角的度数为()A.80°B.100° C.20°或100°D.20°或80°【解析】D【解答】当100°的角是顶角的外角时,顶角的度数为180°﹣100°=80°;当100°的角是底角的外角时,底角的度数为180°﹣100°=80°,所以顶角的度数为180°﹣2×80°=20°;故顶角的度数为80°或20°.故选:D.9.(2020•方城县期末)如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根 B.8根C.9根D.10根【解析】B【解答】∵添加的钢管长度都与BD相等,∠ABC=10°,∴∠DBE=∠DEB=10°,∴∠EDF=∠DBE+∠DEB=20°,∵DE=EF,∴∠EDF=∠EFD=20°,∴∠FEG=∠ABC+∠EFD=30°,…由此思路可知:第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,第四个是40°,第五个是50°,第六个是60°,第七个是70°,第八个是80°,第九个是90°(与三角形内角和为180°相矛盾)就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.10.(2020•射阳县期末)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)【解析】D【解答】由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.二.填空题(每题3分,共计15分)11.(2020•萧山区期末)在平面直角坐标系xOy中,点(﹣3,2)与点(3,2)关于(填写x或y)轴对称.【解析】y【解答】∵点(﹣3,2)与点(3,2)的横坐标互为相反数,纵坐标相同,∴点(﹣3,2)与点(3,2)关于y轴对称,故答案为y.12.(2020•厦门模拟)如图,AB=AC,AD∥BC,∠DAC=50°,则∠B的度数是.【解析】50°【解答】∵AD∥BC,∠DAC=50°,∴∠C=∠DAC=50°,∵AB=AC,∴∠B=∠C=50°,故答案为:50°.13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.【解析】6【解答】∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.14.(2020•宿豫区期中)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为.【解析】18【解答】∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠ABO=∠MOB,∴BM=OM,同理CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=10+8=18.故答案为:18.15.(2020•平潭县期末)已知A(0,2)和B(4,2),点P在x轴上,若要使PA+PB最小,则点P的坐标为.【解析】(2,0)【解答】如图,∵A(0,2)∴点A关于x轴的对称点A′(0,﹣2),∵B(4,2),连接A′B交x轴于点P, ∵AB=4,AB∥x轴,O是AA′中点,∴P是A′B的中点,∴OP是△A′AB的中位线,∴OP=12AB=2,若要使PA+PB最小,则点P的坐标为(2,0).故答案为(2,0).三.解答题(共75分)16.(8分)(2020 •南岗区期中)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.解:(1)当等腰三角形的腰长为4,∴底边长为18﹣4×2=10,∵4+4<10,∴4、4、10不能组成三角形,当等腰三角形的底边长为4,∴腰长为(18﹣4)÷2=7,∵4+7>7,∴4、7、7能组成三角形,综上所述,其他两边分别为4和7.(2)设等腰三角形的三边长为x、x、y,由题意可知:2x+y=18,且2x>y,∴y<9,∵x=18−y2=9−y2,x与y都是整数,∴y是2的倍数, ∴y=2时,x=8, y=4时,x=7,y=8,x=5.17.(9分)(2020•平谷区期末)如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN 如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB∴∠DOP=∠BOP∵DN∥EM∴∠DPO=∠BOP∴∠DOP=∠DPO∴OD=PD解:(1)我们猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB,∴∠DOP=∠BOP,∵DN∥EM,∴∠DPO=∠BOP,∴∠DOP=∠DPO,∴OD=PD.故答案为:等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DPO,OD,PD.18.(9分)(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.证明:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∠A=36°,∴BD=AD,即△ABD是等腰三角形;(2)∵点E是AB的中点,∴AE=EB,∴∠DEB=90°,∴∠BDE=90°﹣36°=54°.19.(9分)(2020黑河期末)如图,在正方形网格中,△ABC的三个顶点都在格点上,A(2,3),B(1,1),C(4,2).结合所给的平面直角坐标系解答下列问题:(1)直接写出△ABC的面积;(2)请在图中作出与△ABC关于x轴对称的△A'B'C';(3)在(2)的条件下,若M(x,y)是△ABC内部任意一点,请直接写点M在△A'B'C'内部的对应点M'的坐标.解:(1)△ABC的面积为2×3−12×1×2−12×1×2−12×1×3=52;(2)如图所示,△A'B'C'即为所求.(3)点M在△A'B'C'内部的对应点M'的坐标为(x,﹣y).20.(9分)(2020•兴化市期中)△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于点E、F.(1)求证:EF=BE+FC;(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.解:(1)∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵∠ABC和∠ACB的平分线交于点O,∴∠EBO=∠OBC,∠OCB=∠FCO,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,OF=FC;∴EF=BE+FC;(2)由(1)证得BE=OE,OF=CF,∴△AEF的周长=AE+EF+AF=AE+EO+OF+AF=AE+BE+FC+AF=AB+AC,∵△ABC的周长比△AEF的周长大10,∴BC=AB+AC+BC﹣AB+AC=10.21.(10分)(2020•曹县期末)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,点P即为所求.22.(10分)(2020•永安市期末)已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.解:(1)∵△ABC是等边三角形,∴∠B=∠A=∠C=60°,∵∠B+∠1+∠DEB=180°,∠DEB+∠DEF+∠2=180°,∵∠DEF=60°,∴∠1+∠DEB=∠2+∠DEB,∴∠2=∠1=50°;(2)∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°,又∵∠B=60°,∠DEF=60°,∠1=∠3,∴∠FDE=∠DEB,∴DF∥BC.23.(11分)(2020•济源期末)如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)解:(1)①△BMN≌△CDM.理由如下:∵V N=V M=3厘米/秒,且t=2秒,∴CM=2×3=6(cm)BN=2×3=6(cm)BM=BC﹣CM=10﹣6=4(cm)∴BN=CM∵CD=4(cm)∴BM=CD∵∠B=∠C=60°,∴△BMN≌△CDM.(SAS)②设运动时间为t秒,△BMN是直角三角形有两种情况:Ⅰ.当∠NMB=90°时,∵∠B=60°,∴∠BNM=90°﹣∠B=90°﹣60°=30°.∴BN=2BM,∴3t=2×(10﹣3t)∴t=209(秒);Ⅱ.当∠BNM=90°时,∵∠B=60°,∴∠BMN=90°﹣∠B=90°﹣60°=30°.∴BM=2BN,∴10﹣3t=2×3t∴t=109(秒).∴当t=209秒或t=109秒时,△BMN是直角三角形;(2)分两种情况讨论:I.若点M运动速度快,则3×25﹣10=25V N,解得V N=2.6;Ⅱ.若点N运动速度快,则25V N﹣20=3×25,解得V N=3.8.故答案是3.8或2.6.。
人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)
![人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)](https://img.taocdn.com/s3/m/aa50577471fe910ef02df82a.png)
【解析】
【分析】
首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.
【详解】本题可分两种情况:
①当70°角为底角时,顶角为180°−2×70°=40°;
②70°角为等腰三角形的顶角;
因此这个等腰三角形的顶角为40°或70°.
故选C
【点睛】考查等腰三角形的性质,注意分类讨论,不要漏解.
∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,
∵BC=9cm,∴MN=3cm.
故答案为3cm.
考点:1.线段垂直平分线的性质;2.等腰三角形的性质;
【点睛】考查等边三角形 性质,熟练掌握等边三角形的性质是解题的关键.
4.等腰三角形的周长为16,其一边长为6,则另两边为_____.
【答案】6和4或5和5.
【解析】
当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;
当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.
故该等腰三角形的另两边为6和4或5和5.
A. B. C. D. 7
【答案】A
【解析】
【分析】
根据轴对称性质可得出PM=MQ,PN=RN,因此先求出QN的长度,然后根据QR=QN+NR进一步计算即可.
【详解】由轴对称性质可得:PM=MQ=2.5cm,PN=RN=3cm,
∴QN=MN−MQ=1.5cm,
∴QR=QN+RN=4.5cm,
八年级上册数学《轴对称》单元检测题(含答案)
![八年级上册数学《轴对称》单元检测题(含答案)](https://img.taocdn.com/s3/m/73114c1ee009581b6ad9eb4e.png)
∠A B C=∠A C B=72°, ∠A=36°,A D=B D=B C;
②原三角形是直角三角形,最大角是90°的情况如图所示:
∠A B C=90°, ∠A=36°,A D=C D=B D;
③原三角形是钝角三角形,最大角是108°的情况如图所示:
如图,过点D作DF⊥A B于F,DG⊥A C的延长线于G,
∵BE、CE分别为∠A B C、∠A C B的平分线,
∴A D为∠B A C的平分线,
∴DF=DG,
∴∠FDG=360°-90°×2-60°=120°,
又∵∠B D C=120°,
∴∠B DF+∠C DF=120°,∠C DG+∠C DF=120°,
11.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围是_____.
12.若一个等腰三角形中有两边长分别为2和5,则这个等腰三角形的周长为_________.
13.如下图,在Rt△A B C中,∠C=90°,DE垂直平分A B,垂足为E,D在B C上,已知∠C A D=32°,则∠B=_____度.
人教版八年级上册《轴对称》单元测试卷
(时间:120分钟 满分:150分)
一、选择题(共7小题,满分35分,每小题5分)
1.下列体育运动标志中,从图案看不是轴对称图形的有( )个.
A.4B.3C.2D.1
2.在平面直角坐标系中Biblioteka 点(1,1)关于y轴对称的点的坐标是
A (-1,-1)B. (1,-1)C. (-1,1)D. (1,1)
4.已知:如图,在△A B C中,边A B 垂直平分线分别交B C、A B于点G、D,若△AGC的周长为31Cm,A B=20Cm,则△A B C的周长为( )
北师大版五年级数学上册第二单元《轴对称和平移》检测卷(含答案)
![北师大版五年级数学上册第二单元《轴对称和平移》检测卷(含答案)](https://img.taocdn.com/s3/m/18eb474400f69e3143323968011ca300a7c3f673.png)
北师大版五年级数学上册第二单元《轴对称和平移》检测卷满分:100分时间:60分钟一、选择题(每小题2分,共16分)1.下列图形中,对称轴最多的是()。
A.B.C.D.2.下列图形中,对称轴最多的是哪个图形?()。
A.B.C.3.像下边这样把一张纸连续对折三次,剪出来的是图()。
A.B.C.4.在下图中轴对称图形()个。
A.3B.4C.5D.65.图案是从()上剪下来的。
A.B.C.D.6.把一个图形在方格纸上先向下平移2格,再向右平移6格;与先向右平移6格,再向下平移2格的位置()。
A.相同B.不相同C.不一定相同7.下面的图形中,()不是轴对称图形。
A.B.C.D.8.下列图形中不可能通过将图形平移或旋转得到的是()。
A.B.C.D.二、填空题(每小题2分,共16分)9.在方格图中,如何平移乙图,使它和甲图刚好拼成一个完整的汽车图。
先把乙图向_________平移________格,再向_________平移_________格。
10.说出下面图形各是由哪个基本图案经过什么变换得来的?_________ _________ _________11.如图中,笑脸图1号先向上平移1格,再向右平移3格得到的图形是_____号,不能通过平移得到的图形是_____号。
12.小强下午放学回家,在镜子中看到钟面上的时间是3:00,实际时间是_______。
13.平移只改变图形的________,不改变图形的_________和形状。
14.“E、P、中、☆、L、T”中轴对称图形有__________个。
15.在对称图形中,对称轴两侧相对的点到对称轴的________相等。
16.下面的剪纸用到了________原理。
三、判断题(每小题2分,共8分)()17.一架飞机先向下平移飞行,再向左平移飞行,机翼所指的方向不会发生改变。
()18.正方形是轴对称图形且有无数条对称轴。
()19.轴对称图形有不止一条对称轴。
()20.公共汽车在公路上行驶是平移现象。
第二单元 轴对称和平移 过关检测卷一
![第二单元 轴对称和平移 过关检测卷一](https://img.taocdn.com/s3/m/f2cd031f03d8ce2f00662364.png)
第二单元 轴对称和平移 过关检测卷一一、填空。
1.把一个图形沿着一条直线( ),两边的部分能够完全重合,则这个图形是( )图形,这条直线是它的( )。
2.长方形有( )条对称轴,正方形有( )条对称轴,等腰三角形(非等边)有( )条对称轴,等腰梯形有( )条对称轴,圆有( )条对称轴。
3.平移只改变图形的( ),不改变图形的( )和( )。
4.看图填空。
(1)图A 先向下平移( )格,再向右平移( )格得到图B 。
(2)图1先向( )平移( )格,再向( )平移( )格得到图2。
二、 判断。
1.对称轴两边的对称点到对称轴的距离相等。
( )2.一个图形向右平移后,数一数它与原图形之间有几个空格,它就向右平移了几格。
( ) 3.我国国旗上的五角星是轴对称图形,有5条对称轴。
( )4.因为长方形、正方形是特殊的平行四边形,所以平行四边形都是轴对称图形。
( ) 5.凡是轴对称图形至少有一条对称轴。
( ) 6.正方形是轴对称图形,它有4条对称轴。
( ) 7.圆不是轴对称图形。
( )8.利用平移、对称可以设计许多美丽的图案。
( )(1)向( ) 平移了( ) 格。
(2)向( )平移了( )格。
(3)向 ( )平移了( ) 格。
方格纸上的梯形①先向( )平移( )格得到图形②,再向( )平移( )格得到图形③。
1.图A 中的三角形向( )平移( )格变成了( )形。
2.图B 中的三角形向( )平移( )格变成了( )形。
9.风吹动的小风车是平移现象。
( ) 三、选择。
1.下列几种图形中,一定是轴对称图形的是( )。
A .三角形B .四边形C .正方形D .梯形 2.下列说法正确的是( )。
A .一般的等腰三角形只有一条对称轴B .两个能够重合的图形一定对称C .一个轴对称图形只有一条对称轴D .一个图形平移后与原图形对称 3.下图中的向右平移了( )格。
A .4B .6C .9D .124.下面四组图形中,( )通过平移可以重合;( )是轴对称图形。
八年级数学人教版上册同步练习5轴对称(单元检测)(解析版)
![八年级数学人教版上册同步练习5轴对称(单元检测)(解析版)](https://img.taocdn.com/s3/m/b8c13d68b207e87101f69e3143323968001cf45f.png)
13.5轴对称(单元检测)一、单选题(共36分)1.(本题3分)如图所示的正方形网格中,网格线的交点为格点,已知A、B是两个定格点,如果C也是图中的格点,且使得ABC为等腰三角形,则点C的个数是()A.6个B.7个C.8个D.9个【答案】C【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【详解】①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.具体如图所示:故选:C.【点评】本题考查了等腰三角形的判定,熟练掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.,连结BF,2.(本题3分)如图,AD是ABC的中线,E,F分别是AD和AD延长线上的点,且DE DFCE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个【答案】C∆≅∆,则可对④进行判断;利用全等三角形的性质可对①进行判【分析】根据“SAS”可证明CDE BDF断;由于AE与DE不能确定相等,则根据三角形面积公式可对②进行判断;根据全等三角形的性质得到∠=∠,则利用平行线的判定方法可对③进行判断.ECD FBD∆的中线,【详解】AD是ABCCD BD∴=,∠=∠,=,CDE BDFDE DF∴∆≅∆,所以④正确;()CDE BDF SAS∴=,所以①正确;CE BF∵与DE不能确定相等,AE∆面积不一定相等,所以②错误;ACE∴∆和CDE∆≅∆,CDE BDF∴∠=∠,ECD FBD∴,所以③正确;BF CE//故选:C.【点评】本题考查了全等三角形的判定,熟悉全等三角形的5种判定方法是解题的关键.3.(本题3分)如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是()A.1 号袋B.2 号袋C.3 号袋D.4 号袋【答案】B【分析】根据轴对称的性质画出图形即可得出正确选项.【详解】根据轴对称的性质可知,台球走过的路径为:∴最后落入2号球袋,故选B.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴;画出图形是正确解答本题的关键.4.(本题3分)下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形底边上的中线与底边上的高相等;③等腰三角形的两底角相等;④等腰三角形两底角的平分线相等.A.1个B.2个C.3个D.4个【答案】D【解析】分析:等腰三角形中顶角平分线,底边中线及高互相重合,即三线合一,两腰上的角平分线、中线及高都相等.详解:①等腰三角形的两腰相等;正确;②等腰三角形底边上的中线与底边上的高相等;正确;③等腰三角形的两底角相等;正确;④等腰三角形两底角的平分线相等.正确.故选D.点睛:本题主要考查了等腰三角形的性质以及命题与定理的概念,能够熟练掌握.,D是BC中点,下列结论,不一定正确的是()5.(本题3分)如图,△ABC中,AB ACA .AD BC ⊥B .AD 平分BAC ∠ C .2AB BD = D .B C ∠=∠【答案】C 【分析】根据等边对等角和等腰三角形三线合一的性质解答.【详解】∵AB=AC ,∴∠B=∠C ,∵AB=AC ,D 是BC 中点,∴AD 平分∠BAC ,AD ⊥BC ,所以,结论不一定正确的是AB=2BD .故选:C .【点评】本题考查了等腰三角形的性质,主要利用了等边对等角的性质以及等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.6.(本题3分)等腰三角形ABC 中,AB AC =,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为( )A .7B .7或11C .11D .7或10【答案】B【分析】根据已知条件中的15或12两个部分,哪一部分是腰长与腰长一半的和不明确,则需分两种情况讨论.【详解】根据题意,如图所示:①当AC+12AC=15,解得AC=10,所以底边长=12-12×10=7; ②当AC+12AC=12,解得AC=8, 所以底边长=15-12×8=11. 所以底边长等于7或11.故选:B .【点评】考查了等腰三角形的性质和三角形的三边关系,解题关键抓住在已知条件没有明确给出哪一部分长要一定要想到两种情况,需采用分类进行讨论,还应验证各种情况是否能构成三角形.7.(本题3分)如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点P 1、P 2,连接P 1,P 2交 OA 于M ,交OB 于N ,若P 1P 2=6,则△PMN 的周长为( )A .4B .5C .6D .7【答案】C【解析】 试题分析:根据对称图形的性质可得:PM=1P M ,PN=2P N ,则△PMN 的周长=PM+MN+PN=1P M+MN+2P N=1P 2P =6.考点:对称的性质8.(本题3分)如果一个三角形的外角平分线与这个三角形一边平行,则这个三角形一定是( ) A .锐角三角形B .等腰三角形C .等边三角形D .等腰直角三角形 【答案】B【分析】可依据题意线作出图形,结合图形利用平行线的性质和角平分线的定义可得∠B=∠A ,利用“等角对等边”可得其为等腰三角形.【详解】如图,DC 平分∠ACE ,且AB ∥CD ,∴∠ACD =∠DCE ,∠A =∠ACD ,∠B =∠DCE ,∴∠B =∠A ,∴△ABC 为等腰三角形.故选B .【点评】本题考查了平行线的性质和等腰三角形的判定,进行角的等量代换是正确解答本题的关键. 9.(本题3分)将点A (2,3)向左平移2个单位长度得到点A’,点A’关于x 轴的对称点是A’’,则点A’’的坐标为( )A .(0,-3)B .(4,-3)C .(4,3)D .(0,3)【答案】A【详解】试题解析:∵点A (2,3)向左平移2个单位长度得到点A′,∴点A′的横坐标为2-2=0,纵坐标不变,即点A′的坐标为(0,3).点A ′关于x 轴的对称点是A ″,则点A ″的坐标为(0,-3).故选A .10.(本题3分)已知,在△ABC 中,AB AC =,如图,(1)分别以B ,C 为圆心,BC 长为半径作弧,两弧交于点D ; (2)作射线AD ,连接BD ,CD .根据以上作图过程及所作图形,下列结论中错误..的是( )A .BAD CAD ∠=∠B .△BCD 是等边三角形C .AD 垂直平分BCD .ABDC S AD BC =【答案】D 【分析】根据作图过程及所作图形可知BD BC CD ==,得出△BCD 是等边三角形;又因为AB AC =,,BD CD AD AD ==,推出ABD ACD ≅,继而得出BAD CAD ∠=∠;根据,BAD CAD ∠=∠,可知AD 为BAC ∠的角平分线,根据三线合一得出AD 垂直平分BC ;四边形ABCD 的面积等于ABD △的面积与ACD △的面积之和,为12AD BC ⋅. 【详解】∵BD BC CD ==∴△BCD 是等边三角形故选项B 正确;∵AB AC =,,BD CD AD AD ==∴ABD ACD ≅∴BAD CAD ∠=∠故选项A 正确;∵BAD CAD ∠=∠,AB AC =∴据三线合一得出AD 垂直平分BC故选项C 正确;∵四边形ABCD 的面积等于ABD △的面积与ACD △的面积之和 ∴12ABCD S AD BC =⋅ 故选项D 错误.故选:D .【点评】本题考查的知识点是等边三角形的判定、全等三角形的判定及性质、线段垂直平分线的判定以及四边形的面积,考查的范围较广,但难度不大.11.(本题3分)如图,在ABC ∆中,4BC =,BD 平分ABC ∠,过点A 作AD BD ⊥于点D ,过点D 作//DE CB ,分别交AB 、AC 于点E 、F ,若2EF DF =,则AB 的长为( )A .10B .8C .7D .6【答案】D【分析】延长AD 、BC 交于点G ,根据三线合一性质推出ABG ∆是等腰三角形,从而可得D 是AG 的中点,E 是AB 的中点,再利用中位线定理即可得.【详解】如图,延长AD 、BC 交于点G∵BD 平分ABC ∠,AD BD ⊥于点D,90ABD GBD ADB GDB ∴∠=∠∠=∠=︒∴BAD G ∠=∠AB BG ∴=,D 是AG 的中点∵//DE BG∴E 是AB 的中点,F 是AC 的中点,DE 是ABG ∆的中位线,EF 是ABC ∆的中位线 ∴12,22EF BC BG DE === 又∵2EF DF =∴1DF =∴3DE EF DF =+=∴26BG DE ==∴6AB =故选:D.【点评】本题考查了等腰三角形的判定定理与性质、中位线定理,通过作辅助线,构造等腰三角形是解题关键.错因分析:容易题.失分原因是对特殊三角形的性质及三角形的重要线段掌握不到位.12.(本题3分)如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG =2∠ABF ;②BA 平分∠CBG ;③∠ABG =∠ACB ;④∠CFB =135°,其中正确的结论有( )个A.1 B.2 C.3 D.4【答案】C【分析】由已知条件可知∠ABC+∠ACB=90°,又因为CD、BE分别是△ABC的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB,∠BAG=2∠ABF.所以可知选项①③④正确.【详解】∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF 故①正确.∵AB⊥AC,∴∠ABC+∠ACB=90°,∵AG⊥BG,∴∠ABG+∠GAB=90°∵∠BAG=∠ABC,∴∠ABG=∠ACB 故③正确.故选C.【点评】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.二、填空题目(共12分)13.(本题3分)如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移2个单位后,得到A B C ''',连接A C ',则A B C ''的周长为________.【答案】12【分析】根据平移的性质得2BB '=,4A B AB ''==,=60A B C B ∠''∠=︒,则可计算624B C BC BB '=-'=-=,则4A B B C ''='=,可判断A B C ''△为等边三角形,继而可求得A B C ''△的周长.【详解】ABC 平移两个单位得到的A B C ''',2BB ∴'=,AB A B ='',4AB =,6BC =,4A B AB ∴''==,624B C BC BB '=-'=-=,4A B B C ∴''='=,又60B ∠=︒,60A B C ∴∠''=︒,A B C ∴''是等边三角形,A B C ∴''的周长为4312⨯=.故答案为:12.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.14.(本题3分)如图,在Rt △ACB 中,∠ACB =90°,∠A =25°,D 是AB 上一点,将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B ′处,则∠ADB ′等于_____.【答案】40°.【详解】∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案为40°.15.(本题3分)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为_______.【答案】18【分析】由在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,易证得△BOM与△CON是等腰三角形,继而可得△AMN的周长等于AB+AC.【详解】∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠ABO=∠MOB,∴BM=OM,同理CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=10+8=18.故答案为:18.【点评】本题考查等腰三角形的判定与性质,角平分线的性质,平行线的判定,三角形周长的求法,等量代换等知识点.16.(本题3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若,则BC的长是_____.【解析】【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.【详解】∵AB=AC,∠A=36°,∴∠B=∠ACB=180362︒-︒=72°,∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴,【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.三、解答题(共72分)17.(本题8分)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.【答案】(1)其他两边分别为4和7;(2)y =2时,x =8,y =4时,x =7,y =8时,x =5.【分析】(1)根据等腰三角形的性质即可求出答案.(2)设等腰三角形的三边长为x 、x 、y ,根据题意可知y <9,y 是2的倍数,从而可求出答案.【详解】(1)当等腰三角形的腰长为4,∴底边长为18﹣4×2=10,∵4+4<10,∴4、4、10不能组成三角形,当等腰三角形的底边长为4,∴腰长为(18﹣4)÷2=7,∵4+7>7,∴4、7、7能组成三角形,综上所述,其他两边分别为4和7.(2)设等腰三角形的三边长为x 、x 、y ,由题意可知:2x +y =18,且2x >y ,∴y <9,∵x =18y 2-=9﹣y 2,x 与y 都是整数, ∴y 是2的倍数,∴y =2时,x =8,y =4时,x =7,y =8,x =5.【点评】本题考查等腰三角形,解题的关键是熟练运用等腰三角形的性质,本题属于基础题型. 18.(本题8分)如图,一个四边形纸片ABCD ,90B D ∠=∠=︒,把纸片按如图所示折叠,使点B 落在AD 边上的'B 点,AE 是折痕.(1)判断'B E 与DC 的位置关系,并说明理由;(2)如果130C ∠=︒,求AEB ∠的度数.【答案】(1)B′E ∥DC ,理由见解析;(2)65°【分析】(1)由于AB '是AB 的折叠后形成的,可得90AB E B D ∠'=∠=∠=︒,可得B′E ∥DC ; (2)利用平行线的性质和全等三角形求解.【详解】(1)由于AB '是AB 的折叠后形成的,90AB E B D ∠'=∠=∠=︒,//B E DC ∴';(2)折叠,ABE ∴∆≅△AB E ',AEB AEB ∴∠'=∠,即12AEB BEB ∠=∠', //B E DC ',130BEB C ∴∠'=∠=︒,1652AEB BEB ∴∠=∠'=︒. 【点评】本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B 落在AD 边上的B ′点,则ABE ∆≅△AB E ',利用全等三角形的性质和平行线的性质及判定求解.19.(本题8分)如图,点D ,E 在△ABC 的边BC 上,AB =AC ,AD =AE ,求证:BD =CE.【答案】见解析【分析】如图,过点 A 作 ⊥AP BC 于 P ,根据等腰三角形的三线合一得出BP=PC ,DP=PE ,进而根据等式的性质,由等量减去等量差相等得出BD=CE .【详解】如图,过点A 作⊥AP BC 于 P .∵AB AC =,∴BP PC =;∵AD AE =,∴DP PE =,∴BP DP PC PE -=-,∴BD=CE .【点评】本题考查了等腰三角形的性质,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.20.(本题8分)如图所示,一个四边形纸片ABCD ,∠B=∠D=90°,把纸片按如图所示的方式折叠,使点B 落在AD 边上的B′点,AE 是折痕.(1)试判断B′E 与DC 的位置关系;(2)如果∠C=130°,求∠AEB 的度数.【答案】(1)B 'E//DC ;(2)∠AEB=65°【分析】(1)先由折叠性质可知90AB E B '∠=∠=︒,再由∠D=90°可得AB E D ∠'=∠,进而求解即可; (2)先运用平行线的性质可得130B EB C ∠=∠='︒,再由折叠的性质可得AEB AEB '∠=∠,进而求解即可.【详解】(1)B 'E ∥DC由折叠可知∠A B 'E=∠B=90°∵∠D=90°∴∠A B 'E=∠D∴B 'E ∥DC(2)∵B′E ∥DC∴∠B'EB=∠C=130°由折叠可知∠AEB=∠AE B',∴∠AEB=12∠B'EB=12×130°=65°故答案为:65°【点评】本题主要是折叠的性质以及平行线的判定和性质,根据折叠的性质,找到折叠后相等的角和边;同位角相等,两直线平行,两直线平行,同位角相等.21.(本题8分)如图,点P是∠AOB外的一点,点Q与P关于OA对称,点R与P关于OB对称,直线QR 分别交OA、OB于点M、N,若PM=PN=4,MN=5.(1)求线段QM、QN的长;(2)求线段QR的长.【答案】(1)4,1;(2)5【分析】(1)利用轴对称的性质求出MQ即可解决问题;(2)利用轴对称的性质求出NR即可解决问题.【详解】(1)∵P,Q关于OA对称,∴OA垂直平分线段PQ,∴MQ=MP=4,∵MN=5,∴QN=MN﹣MQ=5﹣4=1.(2)∵P,R关于OB对称,∴OB垂直平分线段PR,∴NR=NP=4,∴QR=QN+NR=1+4=5.【点评】本题考查轴对称的性质,解题的关键是理解题意,熟练掌握轴对称的性质属于中考常考题型. 22.(本题10分)如图,点O 是等边ABC 内一点,AOB 110∠=,BOC α∠=.将BOC 绕点C 逆时针旋转60得ADC ,连接OD .()1求证:DOC 是等边三角形;()2当AO 5=,BO 4=,α150=时,求CO 的长; ()3探究:当α为多少度时,AOD 是等腰三角形.【答案】()1证明见解析;()23CO =;()3125α=、110α=或140α=.【分析】()1由旋转的性质可以知道CO CD =,D 60OC ∠=,可判断COD 是等边三角形; ()2由()1可知D 60OC ∠=,当α150=时,90ADO ADC CDO ∠∠∠=-=,可判断AOD 为直角三角形; ()3?根据AOD 是等腰三角形,推出两腰相等,分三种情况进行讨论,利用旋转和全等的性质即可得出答案. 【详解】()1∵将BOC 绕点C 按顺时针方向旋转60得ADC ,∴BOC ADC ≅,D 60OC ∠=,∴CO CD =.∴COD 是等边三角形;()2∵ADC BOC ≅,∴4DA OB ==,∵COD 是等边三角形,∴60CDO ∠=,又150ADC ∠∠α==,∴90ADO ADC CDO ∠∠∠=-=,∴AOD 为直角三角形.又5AO =,4AD =,∴3OD =,∴3CO OD ==;()3若AOD 是等腰三角形,所以分三种情况:①AOD ADO ∠∠=②ODA OAD ∠∠=③AOD DAO ∠∠=,∵110AOB ∠=,60COD ∠=,∴36011060190BOC AOD AOD ∠∠∠=---=-,而BOC ADC ADO CDO ∠∠∠∠==+,由①AOD ADO ∠∠=可得60BOC AOD ∠∠=+,求得125α=;由②ODA OAD ∠∠=可得11502BOC AOD ∠∠=-求得110α=;由③AOD DAO ∠∠=可得2402BOC AOD ∠∠=-,求得140α=; 综上可知125α=、110α=或140α=.【点评】本题主要考查旋转的性质,全等三角形的判定与性质,等腰(边)三角形的判定与性质,掌握图形的关系是解题的关键.23.(本题10分)如图,在△ABC 中,AB=AC ,∠BAC 和∠ACB 的平分线相交于点D ,∠ADC=125°.求∠ACB 和∠BAC 的度数.【答案】70°、40°.【详解】试题分析:根据等腰三角形三线合一的性质可得AE ⊥BC ,再求出∠CDE ,然后根据直角三角形两锐角互余求出∠DCE ,根据角平分线的定义求出∠ACB ,再根据等腰三角形两底角相等列式进行计算即可求出∠BAC.试题解析:∵AB=AC,AE平分∠BAC,∴AE⊥BC(等腰三角形三线合一),∵∠ADC=125°,∴∠CDE=55°,∴∠DCE=90°﹣∠CDE=35°,又∵CD平分∠ACB,∴∠ACB=2∠DCE=70°,又∵AB=AC,∴∠B=∠ACB=70°,∴∠BAC=180﹣(∠B+∠ACB)=40°.【点睛】本题考查了等腰三角形三线合一的性质,等腰三角形两底角相等的性质,角平分线的定义,是基础题,准确识图并熟记性质是解题的关键.24.(本题12分)已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=;如图2,若∠ACD=90°,则∠AFB=;如图3,若∠ACD=120°,则∠AFB=;(2)如图4,若∠ACD=α,则∠AFB=(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.【答案】(1)120°,90°,60°;(2)180°﹣α;(3)∠AFB=180°﹣α,证明详见解析.【分析】(1)如图1,证明△ACE≌△DCB,根据全等三角形的性质可得∠EAC=∠BDC,再根据∠AFB是△ADF的外角求出其度数即可;如图2,证明△ACE≌△DCB,得出∠AEC=∠DBC,又有∠FDE=∠CDB,进而得出∠AFB=90°;如图3,证明△ACE≌△DCB,得出∠EAC=∠BDC,又有∠BDC+∠FBA=180°-∠DCB得到∠FAB+∠FBA=120°,进而求出∠AFB=60°;(2)由∠ACD=∠BCE得到∠ACE=∠DCB,再由三角形的内角和定理得∠CAE=∠CDB,从而得出∠DFA=∠ACD,得到结论∠AFB=180°-α;(3)由∠ACD=∠BCE得到∠ACE=∠DCB,通过证明△ACE≌△DCB得∠CBD=∠CEA,由三角形内角和定理得到结论∠AFB=180°-α.【详解】(1)如图1,CA=CD,∠ACD=60°,所以△ACD是等边三角形.∵CB=CE,∠ACD=∠BCE=60°,所以△ECB是等边三角形.∵AC=DC,∠ACE=∠ACD+∠DCE,∠BCD=∠BCE+∠DCE,又∵∠ACD=∠BCE,∴∠ACE=∠BCD.∵AC=DC,CE=BC,∴△ACE≌△DCB.∴∠EAC=∠BDC.∠AFB是△ADF的外角.∴∠AFB=∠ADF+∠FAD=∠ADC+∠CDB+∠FAD=∠ADC+∠EAC+∠FAD=∠ADC+∠DAC=120°.如图2,∵AC=CD,∠ACE=∠DCB=90°,EC=CB,∴△ACE≌△DCB.∴∠AEC=∠DBC,又∵∠FDE=∠CDB,∠DCB=90°,∴∠EFD=90°.∴∠AFB=90°.如图3,∵∠ACD=∠BCE,∴∠ACD﹣∠DCE=∠BCE﹣∠DCE.∴∠ACE=∠DCB.又∵CA=CD,CE=CB,∴△ACE≌△DCB.∴∠EAC=∠BDC.∵∠BDC+∠FBA=180°﹣∠DCB=180°﹣(180﹣∠ACD)=120°,∴∠FAB+∠FBA=120°.∴∠AFB=60°.故填120°,90°,60°.(2)∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE.∴∠ACE=∠DCB.∴∠CAE=∠CDB.∴∠DFA=∠ACD.∴∠AFB=180°﹣∠DFA=180°﹣∠ACD=180°﹣α.(3)∠AFB=180°﹣α;证明:∵∠ACD=∠BCE=α,则∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,则△ACE≌△DCB(SAS).则∠CBD=∠CEA,由三角形内角和知∠EFB=∠ECB=α.∠AFB=180°﹣∠EFB=180°﹣α.【点评】本题考查了全等三角形的性质和判定、三角形的外角性质及三角形的内角和定理,熟练运用三角形全等的判定方法证明三角形全等,利用全等三角形的性质解决问题是解决这类题目的基本思路.祝福语祝你考试成功!。
第12章 轴对称单元质量检测题2
![第12章 轴对称单元质量检测题2](https://img.taocdn.com/s3/m/a188e1c26137ee06eff9188e.png)
一、选择题(共6小题,每小题3分,满分18分)1、下列各数中,成轴对称图形的有()A 、B 、C 、D 、考点:轴对称图形。
分析:根据轴对称图形的概念求解.解答:解:A、C、都不是轴对称图形,只有B是轴对称图形.故选B,D.点评:掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2、等腰三角形的顶角等于70°,则它的底角是()A、70°B、55°C、60°D、70°或55°考点:等腰三角形的性质;三角形内角和定理。
专题:计算题。
分析:根据三角形的内角和定理以及等腰三角形的性质求解.解答:解:∵等腰三角形∴底角是:(180°﹣70°)÷2=55°,故选B.点评:考查了三角形的内角和定理以及等腰三角形的性质.3、小明从镜子中看到对面电子钟示数如图所示,这时的时刻应是()A、21:10B、10:21C、10:51D、12:01考点:镜面对称。
分析:根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面对称.解答:解:根据镜面对称的性质,题中所显示的时刻与10:51成轴对称,所以此时实际时刻为10:51.故选C.点评:本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.4、桌面上有A,B两球,若要将B球射向桌面任意一边,使一次反弹后击中A球,则如图所示8个点中,可以瞄准的点有()个.A、1B、2C、4D、6考点:生活中的轴对称现象。
专题:应用题。
分析:根据题意分析可得:分别作B关于四个边对称的点,与A连接,可得有且只有2个点在A与B的对称的点的连线上;故可以瞄准的点有2个.解答:解:由图可知可以瞄准的点有2个.故选B.点评:本题考查轴对称图形的定义.如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.5、下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;第12章轴对称单元质量检测题2 答案与评分标准②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A、1B、2C、3D、4考点:轴对称的性质。
第13章轴对称单元同步检测试题2022—2023学年人教版数学八年级上册
![第13章轴对称单元同步检测试题2022—2023学年人教版数学八年级上册](https://img.taocdn.com/s3/m/5b8938363069a45177232f60ddccda38376be1a2.png)
第十三章《轴对称》单元检测题题号 一 二三总分1920 21 22 23 24 分数一、选择题(每题3分,共30分)1.下列交通安全标志中,是轴对称图形的是( )A .B .C .D .2.如图,ABC ∆与DEF ∆关于直线MN 轴对称,则下列结论中错误的是( )A .//AB DF B .B E ∠=∠C .AB DE =D .AD 的连线被MN 垂直平分3.如图,ABC ∆中边AB 的垂直平分线分别交BC ,AB 于点D ,E ,3AE cm =,ADC ∆的周长为9cm ,则ABC ∆的周长是( )A .10cmB .12cmC .15cmD .17cm4.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是( )A.B.C.D.5.如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10B.12C.14D.166.平面直角坐标系中,点(﹣2,4)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限7.等腰三角形的一个外角的度数是,则它的顶角的度数为()A. B. 或 C. D. 或8.如图,中,D、E两点分别在AC、BC上,且AB=AC,CD=DE.若,,则()A. B. C. D.9.如图,点P是外的一点,点M,N分别是两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若,,,则线段QR的长为()A. B. C. D.10.如图,等边和等边,其中B、C、E三点共线,连接AE、BD、CF、GH,下列说法中:平分;;;正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题(每题3分,共24分)11.在平面直角坐标系中点P(﹣2,3)关于x轴的对称点在第象限.12.一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:.13.点(2+a,3)关于y轴对称的点的坐标是(﹣4,2﹣b),则a b =.14.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为.15.△ABC为等边三角形,D、E、F分别在边BC、CA、AB上,且AE=CD=BF,则△DEF为三角形.16.如图,在等腰三角形ABC中,AB=AC,BC=3cm,△ABC的面积是18cm2,腰AB的垂直平分线EF交AC于点F,若点D为BC边上的中点,M为EF 上的动点,则△BDM周长的最小值为.17.如图,△ABC中,AD为角平分线,若∠B=∠C=60°,AB=8,则CD的长度为.18.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为.三.解答题(共46分,19题6分,20 ---24题8分)19.如图△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD.求证:DB=DE.20.已知:如图,OA平分∠BAC,∠1=∠2,求证:△ABC是等腰三角形.21.如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积S△A1B1C1=________.22.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.23.已知,如图,P是平分线上的一点,,,垂足分别为C,D.求证:(1)OC=OD;(2)OP是CD的垂直平分线.24.如图,ABC===,现有两点M、N分别从点A、点B同AB BC AC cm∆中,12时出发,沿三角形的边运动,已知点M的速度为1/cm s,点N的速度为2/cm s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒时,M、N两点重合?(2)点M、N运动几秒时,可得到等边三角形AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.答案一、选择题(每题3分,共30分)题号12345678910答案D A C C C C B C A D二、填空题(每题3分,共24分)11.解:点P(﹣2,3)满足点在第二象限的条件.关于x轴的对称点的横坐标与P点的横坐标相同,是﹣2;纵坐标互为相反数,是﹣3,则P关于x轴的对称点是(﹣2,﹣3),在第三象限.故答案是:三12.解:实际车牌号是K62897.故答案为:K62897.13.解:∵点(2+a,3)关于y轴对称的点的坐标是(﹣4,2﹣b),∴2+a=4,2﹣b=3,解得a=2,b=﹣1,所以,a b=2﹣1=.故答案为:.14.解:要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,∴∠1=60°.故答案为:60°.15.解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,又AE=CD=BF,∴AF=BD=CE,∴△EAF≌△FBD≌△DCE(ASA),∴EF=FD=DE,即△DEF为等边三角形.故填等边.16.解:∵D为BC的中点,BC=3cm,∴BD=1.5cm,连接AD,∵AB=AC,D为BC的中点,∴AD为等腰三角形的高,设AD=hcm,∵△ABC的面积是18cm2,∴S△ABC=×BC×AD=18cm2,即×3×h=18,解得:h=12,∴AD=12cm,∵EF为线段AB的垂直平分线,∴A、B关于EF对称,∴BM+DM的最小值为线段AD的长度,即12cm,∴△BDM周长的最小值为12cm+1.5cm=13.5cm,故答案为:13.5cm.17.解∵∠B=∠C=60°,∴∠BAC=180°﹣60°﹣60°=60°,∴△ABC为等边三角形,∵AB=8,∴BC=AB=8,∵AD为角平分线,∴BD=CD,∴CD=4,故答案为:4.18.解:∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=60°,∴∠CAD=30°,∴AD为∠BAC的角平分线,∵∠C=90°,DE⊥AB,∴DE=CD=3,∵∠B=30°,∴BD=2DE=6,故答案为:6.三.解答题(共46分,19题6分,20 ---24题8分)19.证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).20.证明:作OE⊥AB于E,OF⊥AC于F,∵AO平分∠BAC,∴OE=OF(角平分线上的点到角两边的距离相等).∵∠1=∠2,∴OB=OC.∴Rt△OBE≌Rt△OCF(HL).∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形.21.解:(1)如图.(第23题)(2)A1(0,-4),B1(-2,-2),C1(3,0).(3)722:(1)∵DE垂直平分AC,∴AE=CE,∴∠ECD=∠A=36°.(2)∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵∠BEC=∠A+∠ACE=72°,∴∠B=∠BEC,∴BC=CE=5.23.证明:(1)鈭礟是鈭燗OB平分线上的一点,PC鈯A,PD鈯B,鈭碢C=PD,在Rt鈻砅OC与Rt鈻砅OD中,,(2)如图,设OP与CD相交于点E,是鈭燗OB平分线上的一点,鈭粹垹CCC=鈭燚CC由(1)知,OC=OD,在鈻矯OE与鈻矰OE中,,(SAS)鈭碈E=DE,,是CD的垂直平分线.【解析】本题考查的是角平分线的性质,垂直平分线的性质,全等三角形的判定与性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.(1)先根据P是鈭燗OB平分线上的一点,PC鈯A,PD鈯B得出PC=PD,由HL 定理得出Rt鈻砅OC≌Rt鈻砅OD,故可得出OC=OD;(2)根据P是鈭燗OB平分线上的一点得出,根据SAS定理得出鈻矯OE≌鈻矰OE,由此可得出结论.24.解:(1)设点M、N运动x秒时,M、N两点重合,1122x x⨯+=,解得:12x=;(2)设点M、N运动t秒时,可得到等边三角形AMN∆,如图①,1AM t t=⨯=,122AN AB BN t=-=-,三角形AMN∆是等边三角形,122t t∴=-,解得4t=,∴点M、N运动4秒时,可得到等边三角形AMN∆.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设AMN∆是等腰三角形,AN AM∴=,AMN ANM∴∠=∠,AMC ANB∴∠=∠,AB BC AC==,ACB∴∆是等边三角形,C B∴∠=∠,在ACM∆和ABN∆中,AMC ANBB CAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACM ABN AAS∴∆≅∆,CM BN∴=,设当点M、N在BC边上运动时,M、N运动的时间y秒时,AMN∆是等腰三角形,∴=-,362=-,CM NBNB yCM y12=,-=-,y y12362解得:16y=.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N运动的时间为16秒.。
八年级上册数学《轴对称》单元综合检测(附答案)
![八年级上册数学《轴对称》单元综合检测(附答案)](https://img.taocdn.com/s3/m/a98f32e5cc7931b764ce15ef.png)
A.1B.2C.3D.4
12. 如图,过边长为1的等边△A B C的边A B上一点P,作PE⊥A C于E,Q为B C延长线上一点,当PA=CQ时,连PQ交A C边于D,则DE的长为()
故选C.
4.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是()
A.1号袋B.2号袋C.3号袋D.4号袋
[答案]B
[解析]
[分析]
根据轴对称的性质画出图形即可得出正确选项.
[详解]解:根据轴对称的性质可知,台球走过的路径为:
(1)请用尺规作图法作出B C的垂直平分线DE,垂足为D,交A C于点E,(保留作图痕迹,不写作法);
(2)请用尺规作图法作出∠C 角平分线CF,交A B于点F,(保留作图痕迹,不写作法);
(3)请用尺规作图法在B C上找出一点P,使△PEF的周长最小.(保留作图痕迹,不写作法).
四、解答题:
20.已知点A(2A-B,5+A),B(2B-1,-A+B).
∴∠NMC=15°+15°=30°,
∴BM所在的直线是△C DM的角平分线,
又∵CM=DM,
∴BM所在的直线垂直平分C D;
(4)根据(2)同理可求∠D A B=105°,∠B C D=75°,
∴∠D A B+∠A B C=180°,
∴A D∥B C,
24.如图点O是等边 内一点, ,∠A C D=∠B CO,OC=C D,
第二单元《轴对称和平移》(学生版)--五年级数学上册单元检测卷 北师大版
![第二单元《轴对称和平移》(学生版)--五年级数学上册单元检测卷 北师大版](https://img.taocdn.com/s3/m/43cfbc2a8f9951e79b89680203d8ce2f01666549.png)
2024-2025学年北师大版数学五年级上册单元培优冲关检测卷第二单元《轴对称和平移》时间:90分钟满分:100分难度系数:0.52(较难)班级:姓名:学号:一.慎重选择(共5小题,满分10分,每小题2分)1.(2分)(2024春•盐都区期末)下面图形都是由相同的小正方形拼成,其中()是轴对称图形。
A.B.C.D.2.(2分)(2024春•泰兴市期末)如图,如果再补画一个小正方形,使补画后的图形成为轴对称图形,一共有()种不同的补画方法。
A.2 B.3 C.4 D.53.(2分)(2024春•邛崃市期末)奇思在对折好的纸上剪了两个圆孔(如图),打开后的图形是()A.B.C.4.(2分)(2024春•怀安县期末)图中若把镜子放在虚线位置处,镜子中的图形是() A.B.C.5.(2分)(2024春•大厂县期末)平移后的图形发生变化的是()A.形状B.面积的大小C.周长的大小D.位置二.仔细想,认真填(共8小题,满分21分)6.(2分)(2024春•罗山县期末)将图中上面的图形平移后和下面的图形拼成一个长方形,应先向平移格,再向平移格。
7.(2分)(2024春•安阳期末)如图,将平行四边形中涂色的三角形向右平移cm,可以使平行四边形转化为长方形。
8.(3分)(2024•登封市)观察如图,把图①拼成图②用到的运动方式有、,图②中的笑脸有条对称轴。
9.(3分)(2024•横山区)如图,三角形甲先绕点O时针旋转°,再向右平移格可以与三角形乙拼成一个长方形。
10.(2分)(2024春•未央区期末)如图,图形①先向平移格到达图形②的位置,再向平移格到达图形③的位置。
11.(5分)(2024春•晋源区期末)数一数,填一填,你发现了什么?(1)方格图中的三个图形都是图形。
(2)点A与点A′到对称轴的距离都是小格。
(3)点B与点到对称轴的距离相等,都是小格。
(4)点与点到对称轴的距离都是4小格。
12.(2分)(2024春•秦都区期中)要铺满最下面一层,如图中的应该怎样移动?填一填。
人教版数学八年级上册《轴对称》单元检测卷(含答案)
![人教版数学八年级上册《轴对称》单元检测卷(含答案)](https://img.taocdn.com/s3/m/d8ef9bb369eae009591becdd.png)
4.在平面直角坐标系中,点P(2,1)向右平移3个单位得到点P1,点P1关于x轴的对称点是点P2,则点P2的坐标是( )
A. (5,1)B. (5,﹣1)C. (﹣5,1)D. (﹣5,﹣1)
5.已知等腰三角形两边长分别为6cm、2cm,则这个三角形的周长是( )
12.如图,△ABC中,∠C=90°,DE是AB的垂直平分线,且BC=8,AC=6,则△ACD的周长为_____.
13.已知点P关于y轴的对称点P1的坐标是(﹣1,2),则点P的坐标是_____.
14.在等腰三角形ABC中,∠A=110°,则∠B=_______.
15.等腰三角形的一个底角比顶角大30°,那么顶角度数为_____.
【详解】若2cm为腰长,6cm为底边长,
∵2+2=4<6,不能组成三角形,
∴不合题意,舍去;
若2cm为底边长,6cm为腰长,
则此三角形的周长为:2+6+6=14cm.
故选A.
【点睛】此题考查了等腰三角形的性质与三角形的三边关系.此题比较简单,注意掌握分类讨论思想的应用.
6.如图,已知△ABC中,AB=7,AC=5,BC=3,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()
2.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=( )
A. 25°B. 45°C. 30°D. 20°
【答案】B
【解析】
【分析】
首先根据对称的两个图形全等求得∠C的度数,然后在△ABC中利用三角形内角和求解.
【详解】∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C'=30°,则△ABC中,∠B=180°﹣105°﹣30°=45°.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 1 第十章、《轴对称》单元检测试题 一、填空题:每小题3分,共36分。
1、等腰三角形一个底角为40°,则此等腰三角形顶角为____________。
2、观察下列图形:
其中是轴对称图形的有________个.
3、下列图形:①角;②线段;③等边三角形;④有一个角为30°的直角三角形中是轴对称图形的有(填序号) 。
4、在∠AOB 中,OP 是其角平分线,且PE ⊥OA 于E ,PF ⊥OB 于F ,则PE 与PF 的关系是 。
5、如右图,这个轴对称图形有 条对称轴。
6、到一个角的两边距离相等的点在 。
7、如图,等腰三角形的两腰长分别为x 和62-x ,则x 的值为: 。
8、如图,在∆ABC 中,∠ABC ,∠ACB 的平分线相交于D ,EF 过点D 且EF//BC ,若BE=3cm ,CF=5cm ,则 EF=_____cm 。
9、如图,△ABC 中,AB=AC , BD ⊥AC ,垂足为D ,若∠CBD=20º,则∠A= 。
10、如图所示卡通人物是一个轴对称图形,请你画出它的对称轴。
11、聪明的亮亮用含有0
30的两个完全相同的三角板拼成如图所示的图案,并发现图中有等腰三角形,你能帮助他找出两个等腰三角形吗? 。
12、如图,在△ABC 中,∠A=90°,BD 是∠ABC 的平分线,DE 是BC 的垂直平分线, 则 ∠C=________.
二、选择题:每小题3分,共24分。
13、如果等腰三角形一底角为a ,那么其顶角度数用a 的代数式表示为:( )
1 / 1
A 、a
-
180 B、a2
1800- C、a
-
90 D、a
2
1
900-
14、如图是一个风筝的图案,它是轴对称图形,量得0
30
=
∠B,则E
∠的大小为()
A、0
30 B、0
35 C、0
40 D、0
45
15、下列结论不正确的是()
A、等腰三角形底边上的高线、中线、角平分线互相重合
B、等边三角形是特殊的等腰三角形
C、等腰三角形的底角只能是锐角
D、等腰三角形的底角可以是钝角
16、等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为()
A、7cm
B、3cm
C、7cm或3cm
D、5cm
17、下图四幅图片是四个国家的国旗,其中不是轴对称图形的是:()
A、加拿大
B、乌拉圭
C、中国
D、瑞典
18、下列给出的几种三角形,其中是等边三角形的个数是:()
○1有两个角为0
60的三角形;○2三个外角都相等的三角形;
○3三条边都相等的三角形;○4有一个角是0
60的等腰三角形。
A、1个
B、2个
C、3个
D、4个
19、在ABC
∆中,AC
AB=,那么在这个三角形中,“三线合一”的线段是:()A、BAC
∠的平分线,AC上的高,AC上的中线
B、ABC
∠的平分线,BC上的高,BC上的中线
C、BAC
∠的平分线,BC上的高,BC上的中线
D、ABC
∠的平分线,AC上的高,AC上的中线
20、小明照镜子的时候,发现T恤上的英文单词在镜子中呈现“”的样子,
请你判断这个英文单词是()
A、 B、 C、 D、
三、解答题:每小题6分,共18分。
21、如图,在正三角形ABC中,D是BC的中点。
求∠l的度数.
A
B
1
D C
1 / 1
22、如图,梯形ABCD 和梯形D C B A ''''关于直线l 对称。
○1、请你写出其中相等的线段和角。
○2、若梯形ABCD 的面积为102
cm ,cm AD 4=,cm BC 6=,求梯形D C B A ''''的面积和高。
23、如图,AD//BC ,点E 在AB 的延长线上,CB=CE ,∠A 与∠E 大小相等吗,为什么。
四、解答题:每小题8分,共24分。
24、如图,ABC ∆中,090=∠A ,BD 是ABC ∠的平分线,过点D 作BC DE ⊥,垂足为E ,若0
45=∠C ,你能探究出AD 与CE 的数量关系吗?试通过推理说明你的猜测。
25、已知:如图,求作△ABC 关于对称轴L 的轴对称图形C B A '''∆。
1 / 1
26、认真观察前面四个图中阴影部分构成的图案,回答下列问题:
○1、请写出这四个图案都具有的两个特征:
;。
○2请在第五个图形上设计出你心中最美丽的图形,使它也具备你所写出的特征。
五、解答题:每小题9分,共18分。
27、如图,AB =AC ,FD ⊥BC 于D ,DE ⊥AB 于E ,若0145=∠AFD ,求EDF ∠的度数.
28、请你认真阅读例题的解决过程,并仿照例题解决问题:
例题:如图1所示,在ABC ∆中,AD CD BD ==,AC AB =,试探究并求出BAC ∠的度数。
分析:根据
CAD BAD C B C B ABC AC AB CAD
C AC
D AD CD BAD B ABD AD BD ∠=∠=∠=∠⇒⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧∠=∠⇒∆⇒=∠=∠⇒∆⇒=∠=∠⇒∆⇒=等腰等腰等腰,设其为x ,根据三角形的内角和可以解决问题。
解: 在ABD ∆中,AD BD =
∴BAD B ∠=∠ 设0x BAD B =∠=∠ 同理可得: 在ABC ∆中,C B ∠=∠
在ACD ∆中,CAD C ∠=∠ ∴0x CAD BAD C B ==∠=∠=∠ 在ABC ∆中,根据三角形的内角和
可知:0180=∠+∠+∠C B BAC
即:1802=++x x x
解得:45=x ∴0090245=⨯=∠BAC
1 / 1
问题:如图所示,AC AB =,BC BD AD ==,试探究并求出A ∠的度数。