在小学阶段数学思想方法有分类
小学数学思想有哪些
小学数学教材体系中包含的数学思想有哪些,具体内容是什么?最佳答案所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。
通过数学思想的培养,数学的能力能才会有一个大幅度的提高。
掌握数学思想,就是掌握数学的精髓。
1.函数思想:把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。
这是最基本、最常用的数学方法。
2.数形结合思想:“数无形,少直观,形无数,难入微”,利用“数形结合”可使所要研究的问题化难为易,化繁为简。
把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。
例如求根号((a-1)^2+(b-1)^2)+根号(a^2+(b-1)^2)+根号((a-1)^2+b^2)+根号(a^2+b^2)的最小值,就可以把它放在坐标系中,把它转化成一个点到(0,1)、(1,0)、(0,0)、(1,1)四点的距离,就可以求出它的最小值。
3.分类讨论思想:当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论。
比如解不等式|a-1|>4的时候,就要讨论a的取值情况。
4.方程思想:当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。
例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。
5.整体思想:从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。
整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。
小学数学教材中蕴涵的7种常见数学思想方法
小学数学教材中蕴涵了几种常见的数学思想方法,梳理一下,大概有以下七种:1.归纳。
归纳是通过特例的分析引出普遍的结论。
在研究一般性问题时,先研究几个简单、个别的、特殊的情况,从中概括出一般的规律和性质,这种由部分到整体、由特殊到一般的推理被称为归纳。
小学数学中的有些数学问题是直接建立在类比之上的归纳,有些数学问题是建立在抽象分析之上的归纳。
小学阶段学生接触较多的是不完全归纳推理。
加法结合律,我们就采用了不完全归纳推理展开教学。
例如,28个男生在跳绳,17个女生在跳绳,23个女生在踢毽子。
求跳绳和踢毽子的一共有多少人,可以先求跳绳的人数列出算式(28+17)+23计算,也可以先求女生的人数列出算式28+(17+23)计算。
这两道算式的算理是等价的,得数也相同,因此可以写成等式(28+17)+23=28+(17+23)。
在这第一个实例中,学生看到的数学现象是不是普遍性的规律,需要在类似的情况中验证。
于是,我们让学生分别算一算(45+25)+13和45+(25+13)、(36+18)+22和36+(18+22),看看每组的两道算式是不是相等,两道算式中间能不能填上等号,再看看这些相等的算式有什么结构上的特点,猜想有这种结构特点的算式结果是否一定相等,通过实验发现第一个实例中的数学现象在类似的情况中同样存在。
接着,鼓励学生自己写出类似的几组算式,进行更多的验证,体验现象的普遍性。
学生通过进行类似的实验,在实验中概括出加法结合律,并用字母a、b、c分别表示三个加数,写成(a+b)+c= a+(b+c)。
这样,学生在学习加法结合律等的过程中,就经历了由具体到一般的抽象、概括过程,不仅可以发现数学规律、定理,而且能够初步感受归纳的思想方法,使思维水平得到提升。
2.演绎。
演绎与归纳相反,是从普遍性结论或一般性的前提推出个别或特殊的结论。
在研究个别问题时,以一般性的逻辑假设为基础,推出特定结论,这种从一般到特殊的推理被称为演绎。
小学数学思想方法有哪些
小学数学思想方法有哪些数学作为一门重要的学科,对于小学生来说,既是一种学习工具,也是一种思维方式的培养。
在学习数学的过程中,培养学生的数学思想方法至关重要。
那么,小学数学思想方法有哪些呢?下面我们来一一探讨。
首先,小学数学思想方法之一是逻辑思维。
数学是一门严谨的学科,逻辑思维是数学思维的基础。
在学习数学的过程中,学生需要培养严密的逻辑思维能力,学会分析问题、归纳规律、推理论证。
例如,在解决数学题目时,学生需要按部就班地进行思考,找出问题的关键点,进行逻辑推理,找出解题的正确方法。
这种逻辑思维方法不仅能够帮助学生解决数学问题,也能够培养学生的严谨思维能力,对学习其他学科也大有裨益。
其次,小学数学思想方法之二是抽象思维。
数学是一门抽象的学科,学生需要具备一定的抽象思维能力。
在学习数学的过程中,学生需要将具体的问题进行抽象,找出其中的共性和规律。
例如,在学习几何图形的时候,学生需要将具体的图形进行抽象,找出它们的共同特点,从而得出一般性的结论。
这种抽象思维方法不仅能够帮助学生理解数学知识,也能够培养学生的抽象思维能力,提高学生的综合分析问题的能力。
再次,小学数学思想方法之三是直观思维。
数学是一门具有直观性的学科,学生需要具备一定的直观思维能力。
在学习数学的过程中,学生需要通过观察、感觉、想象等方式来理解数学概念和规律。
例如,在学习数学几何的时候,学生需要通过观察图形、感受形状、想象变化等方式来理解几何概念。
这种直观思维方法不仅能够帮助学生理解数学知识,也能够培养学生的直观思维能力,提高学生的空间想象能力。
最后,小学数学思想方法之四是创新思维。
数学是一门富有创造性的学科,学生需要具备一定的创新思维能力。
在学习数学的过程中,学生需要通过灵活的思维方式来解决问题,发现新的方法和规律。
例如,在解决数学问题的时候,学生可以通过不同的思路,找出不同的解题方法,培养自己的创新思维能力。
这种创新思维方法不仅能够帮助学生提高解决问题的能力,也能够培养学生的创新意识,激发学生对数学的兴趣和热情。
小学数学的数学思想
小学数学的数学思想小学阶段的数学教程中,学生体验到的数学思想有:数形结合思想、符号化思想、假设思想、转化思想、对应思想、归纳思想、类比思想、统计思想等等。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
小学数学教学思想
数学思想是从某些具体数学理解过程中提炼和概括,在小学数学教育中有意识地向学生渗透一些基本数学思想方法是提升学生数学水平和思维品质的重要手段,是数学教育中实现从传授知识到培养学生分析问题、解决问题水平的重要思维活动。
在小学阶段,数学思想主要有符号思想、类比思想、分类思想、数形结合思想、方程与函数思想、建模思想等。
一、符号思想用符号化的语言(包括字母、数字、图形和各种特定的符号)来描绘数学的内容,这就是符号思想。
在数学中各种量的关系,量的变化以及量与量之间实行推导和演算,都是用小小的字母表示数,以符号的浓缩形式来表达大量的信息,如乘法分配律(a +b)×c =a×c +b×c ,这里的a 、b 、c 不但能够表示1、2、3,也能够表示4、5、6、7……长方形的面积计算公式s =a×b ,不管世界上有多少个不同的长方形,都可用它计算出来。
又如在“有余数的除法”教学中,最后出现一道思考题:“新年”联欢会上,小明按照3个红气球、2个黄气球、1个蓝气球的顺序把气球串起来装饰教室。
你能知道第24个气球是什么颜色的吗?解决这个问题,学生能够有多种方法。
如,用书写简便的字母a 、b 、c 分别表示红、黄、蓝气球,则按照题意能够转化成如下符号形式:aaabbc aaabbc aaabbc……从而能够直观地找出气球的排列规律,并推出第24个气球是蓝色的。
上例所分析的这些都是符号思想的具体表达,它们将所有的数据实例集为一体,把复杂的语言文字表达用简洁明了的字母公式表示出来,便于记忆,便于使用,正如华罗庚所说的“数学的特点是抽象,正因为如此,用符号表示就更具有广泛的应用性与优越性”。
这种用符号来表达的数学语言是世界性语言,是一个人数学素养的综合反映。
把客观存有的事物和现象及它们相互之间的关系抽象概括为数学符号和公式,有一个从具体到表象再抽象符号化的过程,小学生在数学学习中,从接受到使用会遇到较多的困难,需要我们在平时地教学中,从介绍字母使用的历史入手,循循善诱,增强培养和训练。
小学十大数学思想方法
小学十大数学思想方法数学是一门抽象而又具体的学科,它是一种思维方式,也是一种解决问题的工具。
在小学阶段,数学思想方法的培养尤为重要,它不仅能够帮助学生更好地理解数学知识,还能够培养学生的逻辑思维能力和解决问题的能力。
下面,我们就来介绍小学十大数学思想方法。
1. 观察法。
观察是数学思维的起点,通过观察,学生可以发现问题的规律和特点,从而更好地解决问题。
例如,通过观察不同形状的图形,学生可以总结出它们的特点和性质,从而更好地理解几何知识。
2. 比较法。
比较是一种重要的思维方式,通过比较不同的数学对象,学生可以找出它们的相同点和不同点,从而更好地理解数学概念。
例如,比较不同大小的数值,可以帮助学生理解数值的大小关系。
3. 分类法。
分类是整理和归纳的一种重要方式,通过分类,学生可以将问题进行归类,找出其中的规律和特点。
例如,将不同形状的图形进行分类,可以帮助学生更好地理解图形的性质和特点。
4. 推理法。
推理是数学思维的核心,通过推理,学生可以从已知的条件出发,得出未知的结论。
例如,通过已知的几何定理,可以推导出一些未知的几何性质。
5. 归纳法。
归纳是从具体到一般的思维方式,通过归纳,学生可以从具体的事例中总结出一般的规律和结论。
例如,通过观察一系列数列的规律,学生可以总结出数列的通项公式。
6. 演绎法。
演绎是从一般到具体的思维方式,通过演绎,学生可以从一般的规律出发,得出具体的结论。
例如,通过已知的数学定理,可以推导出一些具体的数学问题的解法。
7. 抽象法。
抽象是数学思维的重要特点,通过抽象,学生可以将具体的问题转化为符号或者图形,从而更好地进行推理和计算。
例如,将实际问题转化为代数方程式,可以帮助学生更好地解决问题。
8. 反证法。
反证是一种重要的证明方法,通过反证,学生可以通过假设反命题,从而推导出矛盾,从而证明原命题的正确性。
例如,通过反证法可以证明平行线的性质。
9. 递归法。
递归是数学思维的一种重要方式,通过递归,学生可以通过递推关系得出数列的通项公式。
小学数学课堂中渗透的数学思想方法
小学数学课堂中渗透的数学思想方法小学数学课堂中,渗透的数学思想方法涵盖了很多方面,包括但不限于以下几个方面: 1. 视觉思维视觉思维是小学数学教育中非常重要的一个方面。
通过观察、感知、分析、比较等视觉感知活动,培养学生的视觉思维能力。
例如,通过几何图形的绘制、立体图形的拼装、面积、周长、体积等概念的讲解,让学生在观察中感受数学,把看到的数学现象转化成数学概念和思维方式,不仅开发了他们的智力潜能,而且更好地帮助学生在数学领域内发挥自己的能力和潜力。
2. 归纳和演绎归纳和演绎是数学中常用的两种推理方法。
通过观察和实践,学生可以归纳出数学问题的规律和特点,进而应用演绎推理,发现并解决新问题。
例如,学生可以通过观察一个数列的规律,推导出这个数列下一个数的值,并应用到其他数列中去。
3. 分类和归类分类和归类方法是构建数学概念体系的基础。
在初中数学教育中,就通过概念体系的分类和归类来帮助学生建立科学的数学知识体系。
例如,教师可以在教学中让学生通过观察、比较、分类、归类等方式,理解和掌握数学公式、定理等的概念和性质,并将其应用于实际问题中去。
4. 反证法反证法是一种常见的数学证明方法。
通过反证法,可以证明一个命题是成立的。
在小学数学教育中,教师通过举例子、分析、比较等方式来教学生如何应用反证法进行数学证明。
例如,当学生在思考某个数学问题时,可以考虑它的反面,从而更好地理解和掌握数学概念。
综上所述,小学数学课堂中涉及的数学思想方法包括视觉思维、归纳和演绎、分类和归类、反证法等。
通过这些方法,学生能够更好地理解和掌握数学知识,为将来的数学学习打下坚实基础。
小学十大数学思想方法
小学十大数学思想方法
1. 预测和推论:预测和推论是数学思想方法的重要部分。
小学生可以通过观察数据和图表来做出预测,并据此推断出结果。
2. 抽象和分类:数学思维可以通过分类和抽象来提高。
小学生可以按照特定的属性将事物分组,并将它们视为一个整体。
3. 排列和组合:排列和组合是掌握初级数学思维的重要步骤。
小学生可以利用排列和组合来解决问题,从而提高他们的思维能力。
4. 逻辑推理:数学思维方法中的逻辑推理是使小学生思考的关键。
通过逻辑推理,小学生可以理解和解决问题的思考逻辑。
5. 连续性和平滑性:在数学思维中,连续性和平滑性很重要。
小学生应能够察觉到不同形状和尺寸之间的变化。
6. 比较与对比:比较和对比可让小学生看到不同事物之间的共性和差异。
这种思维方式可以在计算能力和问题解决方面帮助他们。
7. 建模与测量:建模以及测量纪录对于小学生的数学思维发展也是至关重要的。
他们可以用模型来表示数学规律,并通过测量和比较得出结论。
8. 模式发现:模式发现是小学生学习数学的关键之一。
他们应该能够看到形式之间的关系,并识别出有规律的模式。
9. 变化和变形:变化和变形是数学思维方法中的关键。
小学生应该能够理解数学概念和数据之间的变化和变形。
10. 探索和发现:小学生应该主动去探索和发现,发现新的数学规律和规则。
在探索和发现过程中,他们可以更好地理解数学规律并得到更深刻的体验。
小学数学常用的16种解题思想方法
数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
小学数学思想
小学数学思想1.数形结合思想数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。
“数形结合”能够借助简单的图形、符号和文字所作的示意图,促动学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。
它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。
例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。
我们又能够通过代数方法来研究几何图形的周长、面积、体积等,这些都表达了数形结合的思想。
2.集合思想把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定水准抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。
集合思想作为一种思想,在小学数学中就有所表达。
在小学数学中,集合概念是通过画集合图的办法来渗透的。
如用圆圈图(韦恩图)向学生直观的渗透集合概念。
让他们感知圈内的物体具有某种共同的属性,能够看作一个整体,这个整体就是一个集合。
利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。
3.对应思想对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。
小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。
如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,实行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。
4.函数思想我们知道,运动、变化是客观事物的本质属性。
函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。
学生对函数概念的理解有一个过程。
在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。
小学数学中常见的数学思想方法有哪些
小学数学中罕有的数学思惟办法有哪些?1.对应思惟办法对应是人们对两个聚集身分之间的接洽的一种思惟办法,小学数学一般是一一对应的直不雅图表,并以此孕伏函数思惟.如直线上的点(数轴)与暗示具体的数是一一对应.2.假设思惟办法假设是先对标题中的已知前提或问题作出某种假设,然后按照题中的已知前提进行推算,根据数目消失的抵触,加以恰当调剂,最后找到准确答案的一种思惟办法.假设思惟是一种有意义的想象思维,控制之后可以使要解决的问题更形象.具体,从而丰硕解题思绪.3.比较思惟办法比较思惟是数学中罕有的思惟办法之一,也是促进学生思维成长的手腕.在教授教养分数应用题中,教师擅长引诱学生比较题中已知和未知数目变更前后的情形,可以帮忙学生较快地找到解题门路.4.符号化思惟办法用符号化的说话(包含字母.数字.图形和各类特定的符号)来描写数学内容,这就是符号思惟.如数学中各类数目关系,量的变更及量与量之间进行推导和演算,都是用小小的字母暗示数,以符号的浓缩情势表达大量的信息.如定律.公式.等.5.类比思惟办法类比思惟是指根据两类数学对象的类似性,有可能将已知的一类数学对象的性质迁徙到另一类数学对象上去的思惟.如加法交换律和乘法交换律.长方形的面积公式.平行四边形面积公式和三角形面积公式.类比思惟不但使数学常识轻易懂得,并且使公式的记忆变得顺水推舟的天然和简练.6.转化思惟办法转化思惟是由一种情势变换成另一种情势的思惟办法,而其本身的大小是不变的.如几何的等积变换.解方程的同解变换.公式的变形等,在盘算中也经常应用到甲÷乙=甲×1/乙.7.分类思惟办法分类思惟办法不是数学独有的办法,数学的分类思惟办法表现对数学对象的分类及其分类的尺度.如天然数的分类,若按可否被2整除分奇数和偶数;按约数的个数分质数和合数.又如三角形可以按边分,也可以按角分.不合的分类尺度就会有不合的分类成果,从而产生新的概念.对数学对象的准确.合理分类取决于分类尺度的准确.合理性,数学常识的分类有助于学生对常识的梳理和建构.8.聚集思惟办法聚集思惟就是应用聚集的概念.逻辑说话.运算.图形等来解决数学问题或非纯数学问题的思惟办法.小学采取直不雅手腕,应用图形和什物渗入渗出聚集思惟.在讲述公约数和公倍数时采取了交集的思惟办法.9.数形联合思惟办法数和形是数学研讨的两个重要对象,数离不开形,形离不开数,一方面抽象的数学概念,庞杂的数目关系,借助图形使之直不雅化.形象化.简略化.另一方面庞杂的形体可以用简略的数目关系暗示.在解应用题中经常借助线段图的直不雅帮忙剖析数目关系.10.统计思惟办法:小学数学中的统计图表是一些根本的统计办法,求平均数应用题是表现出数据处理的思惟办法.11.极限思惟办法:事物是从量变到质变的,极限办法的本质恰是经由过程量变的无穷进程达到质变.在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限朋分思绪,在不雅察有限朋分的基本上想象它们的极限状况,如许不但使学生控制公式还能从曲与直的抵触转化中萌发了无穷逼近的极限思惟.12.代换思惟办法:他是方程解法的重要道理,解题时可将某个前提用此外前提进行代换.如黉舍买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价格正好相等,桌子和椅子的单价各是若干?13.可逆思惟办法:它是逻辑思维中的根本思惟,当顺向思维难于解答时,可以从前提或问题思维寻求解题思绪的办法,有时可以借线段图逆推.如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距.14.化归思维办法:把有可能解决的或未解决的问题,经由过程转化进程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”.而数学常识接洽慎密,新常识往往是旧常识的引申和扩大.让学生面临新知会用化归思惟办法去思虑问题,对自力获得新知才能的进步无疑是有很大帮忙.15.变中抓不变的思惟办法:在纷纷庞杂的变更中若何掌控数目关系,抓不变的量为冲破口,往往问了就水到渠成.如:科技书和文艺书共630本,个中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书若干本?16.数学模子思惟办法:所谓数学模子思惟是指对于实际世界的某一特定对象,从它特定的生涯原型动身,充分应用不雅察.试验.操纵.比较.剖析分解归纳分解等所谓进程,得到简化和假设,它是把生涯中实际问题转化为数学问题模子的一种思惟办法.造就学生用数学的眼力熟悉和处理四周事物或数学问题乃数学的最高境界,也是学生高数学素养所寻求的目的.17.整体思惟办法:对数学问题的不雅察和剖析从宏不雅和大处着手,整体掌控化零为整,往往不掉为一种更便捷更省时的办法.2. 小学生应当形成的根本运动经验有哪些?1.收集信息.提出问题的经验2.收集交换.剖析问题的经验3.收集着手操纵.懂得问题的经验4.收集积聚自立摸索.解决问题的经验5.收集积聚生涯中的经验6.收集着手操纵.懂得问题的经验7.收集着手操纵.懂得问题的经验3. 扼要谈谈学业评价具有哪些功效?一方面要强调评价对学科教师教授教养的鼓励感化.诊断感化和促进感化.另一方面要留意弱化评价的提拔与甄别功效.评价成果要有利于激发学生的内涵进修念头,帮忙学生明白本身的缺少和尽力偏向,促进学生进一步的成长.要尽量弱化评价对学生的提拔与甄别功效,减轻评价对学生造成的压力.教师也要根据评价的反馈成果,反思教授教养进程,改良教授教养办法,进步教授教养才能.慢慢地形成评价与教授教养的互相促进感化.4. 具体谈谈学业评价具有哪些特点?一要尊敬每一个学生,帮忙每一个学生形成健康的价值不雅我们体育先生在教授教养中,要积极地应用多种教授教养手腕创设情境,调动学生积极介入实践运动和互相交换,鼓励学生勇于表达自已的不雅念和倾听他人的思惟.实践运动为学生的合作与交换供给了充分的机遇,学生可以根椐本身的专长和兴致自由联合,选择本身爱好的方法开展实践运动,充分展现情绪.立场和价值不雅.教师要在学生的实践运动中实时评价学生的情绪.立场和价值不雅,以引诱学生在实践运动中可以或许得到很好教练和收成.二要承认个别的差别,帮忙每一个学生成长自身的多元潜能每一个学生都具有不合于他人的先天本质和生涯情形,都有本身的快活爱好.长处和缺少.学生的差别不但表示在学业成绩上,还表示在心理特色.心理特点.念头兴致.快活爱好专长等各个方面.是以,我们在对每一个学生进行评价时应多看他的长处,为每一个学生提出合适他本身的有针对性的建议.三要进步自身的程度,帮忙每一个学生科学健康快活地成长新课程请求我们体育教师在教授教养中帮忙学生树立优越的进修立场,造就学生的进修自动性和创造性.为此教师应把鼓励性评价贯串于教授教养的每一个环节,如教师对学生的一个微笑.一个眼神.这些看似微缺少到的神色赐与学生的倒是信念和动力.实施鼓励性评价,可以充分施展每一个学生的主体意识和才能,加强学生进修的自负念,激发学生自立进修的积极性,对学生的心理健康有很大的促进感化.5. 教师若何经由过程学业评价促进学生公平成长?(1)改变教室教授教养不雅念.教室教授教养不雅念是教师教室行动的指点思惟,要建构公平的教室就必须改变教室教授教养的不雅念,由“选择合适教导的学生”到“创造合适学生的教导”是现代教导不雅念的重大改变.(2)加强师德扶植.英语教师在实施学业评价时,要做到公平忘我,要周全收集反应学生进修状况的原始材料,如学生的功课.磨练试卷.问卷查询拜访表.小论文.运动进程记录等.评价者要明白学业评价对学生的鼓励和促进感化,要意识到学业评价对学生的重要影响,要卖力规范.谨严过细地做好评价工作,使每个学生都得到客不雅.真实的评价.在学业评价中,要杜绝轻视.压抑.排斥.成见等评价行动.(3)树立科学的学业评价系统.①强调成长性评价,表现学业评价的鼓励性.②凸起分解性评价,表现学业评价的科学性.③实施弹性评价,表现学业评价的灵巧性.6. 数学功课有哪些功效?一.设计功课时,要有味味性,让学生在快活中求知.兴致是进修的最好先生,当学生的兴致进步了,进修愿望天然而然就进步了.是以,教师在设计功课时,特殊要在“寓做于兴致之中”高低工夫,也就是说最好把数学常识编成故事.童话.游戏等情势,使学生一看到功课的内容就来劲,就伎痒,激发了学生的求知欲.有味,使学生同意做.乐于做.二.设计功课时,要有实践性,让学生在实践中求知.“纸上得来终觉浅,绝知此事要躬行”,获取常识非要逼真的体验不成.为此,教师要联合有关的教授教养内容,接洽实际生涯中的实际问题,安插有实践性的功课,让学生在亲自实践中去体验所学的常识,在实践中应用常识.盘活常识,经由过程实践使之再进修.再摸索.再进步最终使学生形成解决实际问题的才能.让学生用所学的常识解决实际生涯中的问题,同时在实践中巩固所学的常识.学生在完成这一系列实践功课的进程中,不但造就了与人合作.收集信息.学乃至用等多种才能,并且学生的创造性思维也得到了不合程度的进步.三.设计功课时,要具有凋谢性,让学生在运动中求知.教师在设计功课时要擅长探讨常识中的潜在身分,合理.恰当.奇妙.灵巧地设计一些凋谢性功课,对学生的思维进行求“新”.求“全”.求“活”的调控,让学生发散思维,敢于别具一格,提出各类问题,大胆创新.凋谢性的功课,能让学生对所获信息采纳不合的处理办法,会得到不合的解决成果,并从中发明最有用的解决问题的办法,闪耀着学生奇特的创新精力,从而造就学生的创新才能. 7. 简述试题的编制进程.试题编制必须根据国度课程尺度,杜绝设置偏题.怪题,要采取情势多样的测验方法,周全斟酌学生的基本性成长目的和学科进修目的,既要看重学生的进修成绩,也要看重学生的思惟品格以及多方面潜能的成长,重视学生的创新才能和实践才能,尽力拓展试题思维的空间,增长试题的多样性和选择性,多给学生自立选择的权力,让不合层次.进修才能有差别的学生各取所需,力图让每个学生的专长和潜能在测验中都能得到充分地展现,以周全呵护他们进修的自负念和积极性,促进学生的共性成长.要充分应用测验促进每个学生的进步,进而使其整体本质得到晋升.(1) 制订测验解释.(2) 拟定编题筹划.(3) 肯定双向细目表 .(4) 草拟试题.(5) 筛选组卷.(6) 拟定参考答案及评分细则.8. 若何做好分解本质评价?在进行分解本质评价时,先生会给学生们分发测评表,起首学生须要给本身打分,然后撰写自我评价和学期总结.随后,全班同窗会依次上台朗读自我评价,朗读完毕后,台下的同窗们就会开端给被测评同窗提看法或给五个维度打分.班干部或班主任会记录全班同窗的打分,最终数据成果是全班同窗评分的平均数.或为了公平起见,班主任会分发给学生一张打分表,上面记录着全班同窗的姓名和五个维度,以匿名的方法给全班同窗(包含本身)打分,然后上交至班主任,整顿数据.然后,学生们还要去请求班主任或代课先生为本身撰写学期评价.九年级的”分解本质评价“数据将计入中考档案和学生档案,作为中考和升学的帮助参考数据.最终成果的组成来自于50%的同窗互评和50%的师评.自评不算入个中,只能作为测评参考数据但存档.9. 盘算题命题时的要点.选择题因为其题短小.检讨面宽.解法灵巧.评分客不雅.批阅便利.宜于机读等特色越来越多地为人们所采取.本文给出选择题命题的要点, 1题干要简练.清楚明了,防止应用学生未接触过的或难明的名词或术语. 2题干与备选答案(或称选择支)之间要有独一的对应性.10. 若何盘算试题的难度系数?把试题收录到试题库前,往往须要先辈行多次测试,相符请求的才录入.而断定的根据重要有二:难度系数和差别系数. 别的,每一次考完试后,先生也应当对试卷从难度和差别力长进行剖析,以帮忙找出教授教养和命题中的缺少. 什么是试题难度系数?难度系数反应试题的难易程度,即考生在一个试题或一份试卷中的掉分程度. 测验难度系数盘算公式如下: Dc=1-A/T Dc:难度系数A:考生平均得分(如盘算总体难度系数,则为全卷平均分;如盘算单题难度系数,则为本题平均分) T:满分举例:总体难度系数:一份满分100分的试卷,考生平均得分78分,则难度系数为1-78/100=0.22 单题难度系数:一道题值2分的试题,考生平均得分1.5分,则难度系数为1-1.5/2=0.25 至于一道题或一份试卷的难度系数到底若干为宜,要根据不合的命题须要来选择.并且,即使统一套试题,不合的答题人群做完后盘算出的难度系数也是不合的.幻想的难度系数以控制在0.2阁下为宜. 什么是试题差别系数?区分系数反应试题区分不合程度受试者的才能,即可否考出学生的不合程度,把优良.一般.差三个层次的学生真正分别开. 试题差别系数盘算公式如下:先把成绩从高到低排序,前50%的考生为高分组,后50%为低分组,(样本大的时刻,也可以取前.后各20%.) Dr=2(Ah-Al)/T Dr:差别系数 Ah:高分组平均分 Al:低分组平均分 T:满分举例:总体差别系数:一份满分100分的试卷,高分组平均得分90分,低分组平均得分60分,则差别系数为2(90-60)/100=1.7 单题难度系数:一道题值2分的试题,高分组平均得分1.5分,低分组平均得分0.5分,则差别系数为2(1.5-0.5)/2=1 因为受多种随机身分如:遗传.智力.共性.时光.教师.尽力的程度等的影响,测验成绩一般应呈正态散布.区分系数高的测验,优良.一般.差三个层次的学生都有必定比例,假如某一分数区间学生相对分散,高分太多或不合格太多的测验,区分系数则低.幻想的差别系数以控制在1.5阁下为宜.某些重要的.学生应知应会的必考常识点,单题难度系数许可为“0”.。
小学二年级下册数学数学小学数学常用的16种思想方法
数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
小学生教学中有哪些常见的数学思想与方法如何应用
小学教学中有哪些常见的数学思想与方法?如何应用?小学一年级数学是基础,养成良好的学习习惯运用良好的学习方法,让小朋友们拥有扎实的语文知识是关键!这是一篇语文学习方法归纳的文章,欢迎大家阅读!小结一下小学数学学习方法:1.求教与自学相结合在学习过程中,既要争取教师的指导和帮助,但是又不能处处依靠教师,必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。
2。
学习与思考相结合在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。
对每一个概念、公式、定理都要弄清其、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。
在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。
3.学用结合,勤于实践在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。
4。
博观约取,由博返约课本是学生获得知识的主要来源,但不是唯一的来源。
在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域.同时在广泛阅读的基础上,进行认真研究。
掌握其知识结构。
5.既有模仿,又有创新模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。
6.及时复习,增强记忆课堂上学习的内容,必须当天消化,要先复习,后做练习.复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。
7.总结学习经验,评价学习效果学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。
在学习过程中,应注意总结听课、阅读和解题中的收获和体会。
小学教学中有哪些常见的数学思想与方法?如何应用?数学思想是宏观的,它更具有普遍的指导意义.而数学方法是微观的,它是解决数学问题的直接具体的手段.一般来说,前者给出了解决问题的方向,后者给出了解决问题的策略。
符号化思想──小学数学思想方法的梳理
符号化思想──小学数学思想方法的梳理数学思想和数学方法既有区别又有密切联系。
数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。
人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法,又要以一定的数学思想为依据。
因此,二者是有密切联系的。
我们把二者合称为数学思想方法。
数学思想方法是数学的灵魂,那么,要想学好数学、用好数学,就要深入到数学的“灵魂深处”。
数学课程标准在总体目标中明确提出:“学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能。
”这一总体目标贯穿于小学和初中,这充分说明了数学思想方法的重要性。
在小学数学阶段有意识地向学生渗透一些基本的数学思想方法可以加深学生对数学概念、公式、法则、定律的理解,提高学生解决问题的能力和思维能力,也是小学数学进行素质教育的真正内涵之所在。
同时,也能为初中数学思想方法的学习打下较好的基础。
在小学阶段,数学思想方法主要有符号化思想、化归思想、类比思想、归纳思想、分类思想、方程思想、集合思想、函数思想、一一对应思想、模型思想、数形结合思想、演绎推理思想、变换思想、统计与概率思想等等。
为了使广大小学数学教师在教学中能很好地渗透这些数学思想方法,笔者把这些思想方法比较系统地进行概括和梳理,明晰这些思想方法的概念,整理它们在小学数学各个知识点中的应用,以及了解每个思想方法的适当拓展。
一、符号化思想1.符号化思想的概念。
数学符号是数学的语言,数学世界是一个符号化的世界,数学作为人们进行表示、计算、推理和解决问题的工具,符号起到了非常重要的作用;因为数学有了符号,才使得数学具有简明、抽象、清晰、准确等特点,同时也促进了数学的普及和发展;国际通用的数学符号的使用,使数学成为国际化的语言。
符号化思想是一般化的思想方法,具有普遍的意义。
2.如何理解符号化思想。
数学课程标准比较重视培养学生的符号意识,并提出了几点要求。
小学数学思想方法有哪些
小学数学思想方法有哪些数学是一门重要的学科,而数学思想方法的培养对于小学生来说尤为重要。
那么,小学数学思想方法有哪些呢?下面就让我们一起来探讨一下。
首先,小学数学思想方法之一就是观察问题。
观察是数学思维的起点,通过观察可以发现问题的规律和特点。
例如,观察一个图形的形状、大小、颜色等特征,可以帮助学生理解图形的性质和特点。
因此,培养学生的观察力对于数学学习至关重要。
其次,小学数学思想方法还包括分类思维。
分类是数学问题解决的基本方法之一,它可以帮助学生将复杂的问题分解成若干个简单的部分,从而更好地理解和解决问题。
比如,学生可以将数字按照奇数和偶数进行分类,通过这种分类思维可以更好地理解数字的性质和规律。
另外,小学数学思想方法还包括抽象思维。
抽象是数学思维的核心,它可以帮助学生将具体的事物抽象成符号或概念,从而更好地进行数学推理和计算。
例如,学生可以将实际问题抽象成代数表达式,通过这种抽象思维可以更好地解决实际问题。
此外,小学数学思想方法还包括逻辑思维。
逻辑思维是数学问题解决的关键,它可以帮助学生建立正确的数学思维模式,从而更好地理解和解决数学问题。
例如,学生可以通过逻辑推理来解决数学证明题,通过这种逻辑思维可以更好地理解数学定理和公式。
最后,小学数学思想方法还包括实践思维。
实践是数学学习的重要手段,它可以帮助学生将抽象的数学知识转化为具体的实际问题,从而更好地理解和运用数学知识。
例如,学生可以通过实际测量来理解长度、面积和体积的概念,通过这种实践思维可以更好地掌握数学知识。
总之,小学数学思想方法包括观察、分类、抽象、逻辑和实践等多种思维方法,这些方法相辅相成,共同促进学生数学思维能力的全面发展。
因此,教师在教学中应该注重培养学生的数学思维方法,引导他们通过多种途径来理解和解决数学问题,从而提高数学学习的效果。
小学数学中常见的数学思想方法有哪些
1.小学数学中常见的数学思想方法有哪些?答:小学数学中常见的数学思想方法有:转化思想、集合思想、数形结合思想、函数思想、符号化思想、对应思想、分类思想、归纳思想、模型思想、统计思想等。
2.小学生应该形成的基本活动经验有哪些?答:小学生应该形成的基本活动经验有操作、观察、实验、猜测、度量、验证、推理、交流。
(1)、基本数学活动经验。
我们大致把数学基本经验分为:日常生活中的数学经验,社会科学文化情境中的数学经验,以及纯粹数学活动累积的数学经验。
(2)、日常生活中的数学经验。
第一类:可以直接拿来促进学生数学学习的生活经验。
第二类;可以通过类比来促进学生数学学习的生活经验。
第三类:可能对学生的数学学习产生负面影响的生活经验。
第四类:包含着一搬规律的生活经验。
(3)、关注学生生活经验、积累生活中的数学活动经验。
(4)、围绕新课程下的数学教学,我们要帮助学生积累生活中数学活动经验,应该依据学生生活经验、利用学生生活经验、提升学生生活经验。
(一)依据学生生活经验(二)利用学生生活经验(三)提升学生生活经验3.简要谈谈学业评价具有哪些功能?答:(一)学业评价的基本功能:巩固功能、反馈功能、矫正功能。
(二)学业评价的新增功能:发展功能、激励功能、沟通功能另外,学业评价的功能还有选拔功能、自测功能、展美功能、育人功能等、这些功能不是单一的、孤立的,而是相互联系、相互促进的,有时还是相互转化的。
4、具体谈谈学业评价具有哪些特征?答:学业评价呈现以下基本特征:一、学业评价具有系统性(1)前测性的学业评价。
前测性的学业评价可以是一节课开始之初的评价,也可以是一个教学单元甚至一门课程开始之前的评价。
这种评价的主要目的是想弄清楚学生是否具备即将开始学习所必需的知识和技能,即确定学生的学习准备情况,它是进行教学活动的基础,直接关系到教学目标是否能够达成。
(2)形成性的学业评价。
形成性的学业评价可以是一节课之中的评价,也可以是一个教学单元之中甚至一门课程实施之中的评价。
小学数学教学中分类思想的具体运用方法
小学数学教学中分类思想的具体运用方法
1. 知识分类法:
在数学教学中,可以根据不同的数学概念、性质和定理,将知识进行分类。
可以将数的四则运算、图形的性质、几何体的关系等进行分类。
分类的好处是可以让学生更好地理解和记忆知识点,并且有助于学生建立正确的数学思维模式。
2. 解题方法分类法:
在解决数学题目时,可以根据不同的解题方法进行分类。
可以将题目分为四则运算、面积计算、方程求解等不同的解题类型。
通过分类,可以帮助学生掌握不同的解题思路和方法,提高解题能力。
5. 教学策略分类法:
在教学过程中,可以根据不同的教学策略进行分类。
可以将教学分为讲述、示范、引导、合作等不同的教学方法。
通过分类,可以使教学更加有针对性和灵活性,让学生更好地理解和掌握知识。
在数学教学中,可以根据学生的不同能力进行分类。
可以将学生分为基础知识薄弱、解题能力较强、思维能力发达等不同的类型。
通过分类,可以针对不同类型的学生制定不同的教学策略,使每个学生都能达到最好的学习效果。
在数学教学中,可以根据知识点之间的联系进行分类。
将面积和周长的计算,平方和开方的计算进行分类。
通过分类,可以帮助学生更好地理解知识点之间的关系,提高数学综合应用能力。
小学数学教学中,运用分类思想可以帮助学生更好地理解和掌握数学知识,提高解题能力和思维能力。
通过分类,可以将抽象的数学知识进行概念化和分类化,使学生能够系统性地学习和应用知识,培养学生的数学思维和解决问题的能力。
分类思想也可以帮助教师更好地进行教学设计和教学组织,提高教学效果和学生的学习兴趣,促进学生全面发展。
数学小学 数学思想方法分类思想
分类讨论思想
分析:任意一个整数除以3,余数只有 三种可能:0、1和2。运用分类思想, 构造这样的三个抽屉:除以3余数分别 是0、1和2 的整数。根据抽屉原理, 必有一个抽屉里至少放了两个数。这两 个数除以3的余数相等,设这两个数分 别为3m+r和3n+r(m、n都是整数 ),他们的差=3(m-n),必是3的 倍数。
分类讨论思想
第二,在平时教学中注意经常性地 渗透分类思想,如平面图形和立体图形 的分类、数的分类。
第三,注意从数学思维和解决问题 的方法上渗透分类思想,如排列组合、 概率的计算、抽屉原理等问题经常运用 分类讨论思想解决。
分类讨论思想
抽屉原理:有n+1个元素放到n个集 合中去,其中必定有一个集合里至少 有两个元素。
分类讨论思想
例1:学校建花坛余下24米漂亮的小围 栏,经总务部门同意,六年级五班的同 学准备在自己教室后的空地上建一个一 面靠墙,三面利用这些围栏的花圃,请 你设计一下,使花圃的长比宽多3米, 求出花圃的面积是多少?
分类讨论思想的意义
分类讨论既是解决问题的一般的思 想方法,适应于各种科学的研究;同时 也是数学领域问题较常用的思想方法。
分 的认 直角三角形、钝角三角形
类 识 三角形按边可以分为:不等边三角
讨
形、等腰三角形
论
四边形按对边是否平行可以分为:
平行四边形、梯形和两组对边都不 平行的四边形
统计 数据的分类整理和描述
分类讨论思想
分类讨论思想的教学应注意: 第一,在分类单元的教学中,注意
渗透分类思想,一方面是一般物体的分 类,如柜台上的商品、文具等;另一方 面要注意从数学的角度分类,如立体图 形、平面图形、数的认识和运算等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学阶段的数学课程中学生体验到的数学思想有哪些?请结合自己的实际教学,说说你是怎样培养学生的数学思想的?
在小学阶段数学思想方法有分类、转化、归纳、数形结合、数学建模、猜想、符号化、方程与函数、类比等数学思想方法。
数学基本思想方法有利于完善学生的数学认知结构,可以提升学生的原认识水平,发展学生的思维能力,有利于培养学生解决问题的能力。
分类是教学中常用的数学思想方法,例如:在教学“三角形分类”时按照角度数的大小,可分为钝角三角形、直角三角形和锐角三角形。
而三角形以边的长短关系分类,又可分为等腰三角形和等边三角形,通过分类,建构了知识网络,不同的分类标准会有不同的分类结果,从而产生新的数学概念和数学知识的结构。
教学中还可以在自主、合作探究学习过程中领悟和掌握数学思想方法,例如,在学习“可能性”时要通过学生亲身掷骰子等活动来理解“发生可能性很大”、“发生可能性很小”等知识,在此探索过程中渗透了类比、转化等数学思想,我让学生通过动手实践、与同伴合作交流、讨论,结合自身的理解消化,对比得出它们的异同。
增强了学生对知识的理解。
总之,在教学中,如果我们注意从数学思想方法的角度去启发、引导学生思考,就会使学生对新知识不但能快速学会,而且能加深理解、应用,从而提高解决问题的能力,发展学生的思维能力.在平时教学中,我们要努力挖掘数学知识中所蕴涵的转化思想及其它数学思
想,把握运用数学思想解决问题的机会,增强学生主动运用数学思想的意识,以此提高学生的数学能力,提升学生的数学素养,促进学生的全面发展。