计算机图形学总结
计算机图形学心得体会
计算机图形学心得体会计算机图形学是一门非常有趣的学科,它涉及到计算机图像的生成、处理和显示等方面。
在学习计算机图形学的过程中,我深刻地体会到了它的重要性和应用价值,同时也收获了不少心得体会。
计算机图形学的应用计算机图形学在现代社会中有着广泛的应用,它不仅可以用于电影、游戏等娱乐产业,还可以应用于医学、工程、建筑等领域。
例如,在医学领域中,计算机图形学可以用于三维重建和可视化,帮助医生更好地诊断和治疗疾病;在工程领域中,计算机图形学可以用于模拟和优化设计,提高工程效率和质量。
计算机图形学的基础知识学习计算机图形学需要掌握一些基础知识,例如向量、矩阵、坐标系等。
这些知识是计算机图形学的基础,也是其他高级知识的基础。
在学习这些知识的过程中,我深刻地体会到了它们的重要性和应用价值。
例如,向量可以用于表示图像中的方向和距离,矩阵可以用于表示图像的变换和投影,坐标系可以用于表示图像的位置和方向。
计算机图形学的算法计算机图形学涉及到很多算法,例如线段裁剪、多边形填充、光照模型等。
这些算法是计算机图形学的核心,也是实现各种图像效果的基础。
在学习这些算法的过程中,我深刻地体会到了它们的复杂性和实用性。
例如,线段裁剪可以用于剪裁图像中的线段,多边形填充可以用于填充图像中的多边形,光照模型可以用于模拟图像中的光照效果。
计算机图形学的实践学习计算机图形学需要进行实践,例如编写程序实现各种图像效果。
在实践的过程中,我深刻地体会到了计算机图形学的实用性和挑战性。
例如,实现线段裁剪需要考虑到各种情况,例如线段与裁剪窗口的位置关系、线段的方向和长度等;实现多边形填充需要考虑到各种算法,例如扫描线算法、边界填充算法等。
计算机图形学的未来计算机图形学在未来有着广阔的发展前景,它将会应用于更多的领域,例如虚拟现实、增强现实等。
在未来的发展中,计算机图形学将会面临更多的挑战和机遇,需要不断地进行创新和发展。
总结学习计算机图形学是一件非常有趣的事情,它不仅可以帮助我们更好地理解计算机图像的生成、处理和显示等方面,还可以应用于各种领域,为人类的生活带来更多的便利和创新。
计算机图形学基础知识重点整理
计算机图形学基础知识重点整理一、图形学的概念计算机图形学简单来说,就是让计算机去生成、处理和显示图形的学科。
它就像是一个魔法世界,把一堆枯燥的数字和代码变成我们眼睛能看到的超酷图形。
你看那些超炫的3D游戏里的场景、超逼真的动画电影,那可都是计算机图形学的功劳。
这个学科就是想办法让计算机理解图形,然后把图形按照我们想要的样子呈现出来。
二、图形的表示1. 点点是图形里最基本的元素啦。
就像盖房子的小砖头一样,很多个点组合起来就能变成各种图形。
一个点在计算机里就是用坐标来表示的,就像我们在地图上找一个地方,用经度和纬度一样,计算机里的点就是用x和y坐标(如果是3D图形的话,还有z坐标呢)来确定它在空间里的位置。
2. 线有了点,就能连成线啦。
线有各种各样的类型,直线是最简单的,它的方程可以用我们学过的数学知识来表示。
比如说斜截式y = kx + b,这里的k就是斜率,b就是截距。
还有曲线呢,像抛物线、双曲线之类的,在图形学里也经常用到。
这些曲线的表示方法可能会复杂一点,但也很有趣哦。
3. 面好多线围起来就形成了面啦。
面在3D图形里特别重要,因为很多3D物体都是由好多面组成的。
比如说一个正方体,就有六个面。
面的表示方法也有不少,像多边形表示法,就是用好多条边来围成一个面。
三、图形变换1. 平移平移就是把图形在空间里挪个位置。
这就像我们把桌子从房间的这头搬到那头一样。
在计算机里,平移一个图形就是把它每个点的坐标都加上或者减去一个固定的值。
比如说把一个点(x,y)向右平移3个单位,向上平移2个单位,那这个点就变成(x + 3,y + 2)啦。
2. 旋转旋转就更有意思啦。
想象一下把一个图形像陀螺一样转起来。
在计算机里旋转图形,需要根据旋转的角度和旋转中心来计算每个点新的坐标。
这就得用到一些三角函数的知识啦,不过也不难理解。
比如说以原点为中心,把一个点(x,y)逆时针旋转θ度,新的坐标就可以通过一些公式计算出来。
3. 缩放缩放就是把图形变大或者变小。
计算机图形学复习总结
一、名词解释:1、计算机图形学:用计算机建立、存储、处理某个对象的模型,并根据模型产生该对象图形输出的有关理论、方法与技术,称为计算机图形学。
3、图形消隐:计算机为了反映真实的图形,把隐藏的部分从图中消除。
4、几何变换:几何变换的基本方法是把变换矩阵作为一个算子,作用到图形一系列顶点的位置矢量,从而得到这些顶点在几何变换后的新的顶点序列,连接新的顶点序列即可得到变换后的图形。
6、裁剪:识别图形在指定区域内和区域外的部分的过程称为裁剪算法,简称裁剪。
7、透视投影:空间任意一点的透视投影是投影中心与空间点构成的投影线与投影平面的交点。
8、投影变换:把三维物体变为二维图形表示的变换称为投影变换。
9、走样:在光栅显示器上绘制非水平且非垂直的直线或多边形边界时,或多或少会呈现锯齿状。
这是由于直线或多边形边界在光栅显示器的对应图形都是由一系列相同亮度的离散像素构成的。
这种用离散量表示连续量引起的失真,称为走样(aliasing )。
10、反走样:用于减少和消除用离散量表示连续量引起的失真效果的技术,称为反走样。
二、问答题:1、简述光栅扫描式图形显示器的基本原理。
光栅扫描式图形显示器(简称光栅显示器)是画点设备,可看作是一个点阵单元发生器,并可控制每个点阵单元的亮度,它不能直接从单元阵列中的—个可编地址的象素画一条直线到另一个可编地址的象素,只可能用尽可能靠近这条直线路径的象素点集来近似地表示这条直线。
光栅扫描式图形显示器中采用了帧缓存,帧缓存中的信息经过数字/模拟转换,能在光栅显示器上产生图形。
2、分别写出平移、旋转以及缩放的变换矩阵。
平移变换矩阵:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡1010000100001z y xT T T (2分) 旋转变换矩阵: 绕X 轴⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-10000cos sin 00sin cos 00001θθθθ(2分) 绕Y 轴⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-10000cos 0sin 00100sin 0cos θθθθ(2分)绕Z 轴⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1000010000cos sin 00sin cos θθθθ(2分) 缩放变换矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000000000000zy x S S S (2分) 3、图形变换有什么特点?最基本的几何变换有哪些?答:图形变换的特点:大多数几何变换(如平移、旋转和变比)是保持拓扑不变的,不改变图形的连接关系和平行关系。
计算机图形学-总结
计算机图形学:利用计算机生成、处理、显示图形的学科。
计算机图形标准:指图形系统及其相关应用程序中各界面之间进行数据传送通信的接口标准。
图形消隐:计算机为了反映真实的图形,把隐藏的部分从图中消除。
单色(彩色)显示器:光栅图形显示器可以看作一个像素的矩阵,每个像素可以用一种(多种)颜色显示,称为单色(彩色)显示器。
扫描转换(光栅化):确定一个像素集合及其颜色,用于显示一个图形的过程。
裁剪:确定一个图形哪些部分在窗口内必须显示;哪些部分在窗口之外,不该显示的过程。
图形输入设备:鼠标器、光笔、触摸屏、坐标数字化仪、图形扫描仪。
图形显示设备:阴极射线管、彩色阴极射线管、随机扫描的图形显示器、存储管式的图形显示器、光栅扫描式图形显示器、液晶显示器、等离子显示器。
图形绘制设备:喷墨打印机、激光打印机、静电绘图仪、笔式绘图仪。
图形处理器:简单图形处理器、单片图像处理器、个人计算机图形卡、图形并行处理器。
交互式计算机图形系统发展阶段:字符。
矢量、二位光栅图形、三维图形。
图形学研究主要内容:①几何造型技术②图形生成技术③图形处理技术④图形信息的存储,检索与交换技术⑤人机交互技术⑥动画技术⑦图形输入输出技术⑧图形标准与图形软件包的研发。
计算机图形学的基本任务:如何利用计算机硬件来实现图形处理功能;如何利用好的图形软件;如何利用数学方法及算法解决实际应用中的图形处理。
计算机图形系统功能:计算、存储、对话、输入、输出。
常用的面向应用的用户接口形式:子程序库,专用语言,交互命令。
最基本的交互任务:定位,字串,选择,取数。
交互过程中任务分为:定位、选择任务、文本、定向、定路径、定量、三维交互任务、组合交互任务。
常用坐标系:建模坐标系、用户坐标系、观察坐标系、规格化设备坐标系、设备坐标系。
常用的PC图形显示子系统主要由3个部件组成:帧缓冲存储器、显示控制器、ROM BIOS。
基本的几何变换:平移、旋转、比例、错切、投影等。
图形扫描转换:确定最佳逼近图形的象素几何,并用指定的颜色和灰度设置象素的过程。
计算机图形学基础知识重点整理
计算机图形学基础知识重点整理一、图形学基础知识1、图形学的定义:图形学是一门研究图形的计算机科学,它研究如何使用计算机来生成、处理和显示图形。
2、图形学的应用:图形学的应用非常广泛,它可以用于计算机游戏、虚拟现实、图形用户界面、图形设计、图形处理、图形建模、图形分析等。
3、图形学的基本概念:图形学的基本概念包括图形、坐标系、变换、光照、纹理、投影、深度缓冲、抗锯齿等。
4、图形学的基本算法:图形学的基本算法包括几何变换、光照计算、纹理映射、投影变换、深度缓冲、抗锯齿等。
5、图形学的基本技术:图形学的基本技术包括OpenGL、DirectX、OpenCL、CUDA、OpenGL ES等。
二、图形学的基本原理1、坐标系:坐标系是图形学中最基本的概念,它是一种用来表示空间位置的系统,它由一系列的坐标轴组成,每个坐标轴都有一个坐标值,这些坐标值可以用来表示一个点在空间中的位置。
2、变换:变换是图形学中最重要的概念,它指的是将一个图形从一个坐标系变换到另一个坐标系的过程。
变换可以分为几何变换和光照变换,几何变换包括平移、旋转、缩放等,光照变换包括颜色变换、照明变换等。
3、光照:光照是图形学中最重要的概念,它指的是将光照投射到物体表面,从而产生颜色和纹理的过程。
光照可以分为环境光照、漫反射光照和镜面反射光照。
4、纹理:纹理是图形学中最重要的概念,它指的是将一张图片映射到物体表面,从而产生纹理的过程。
纹理可以分为纹理映射、纹理坐标变换、纹理过滤等。
5、投影:投影是图形学中最重要的概念,它指的是将一个三维图形投射到二维屏幕上的过程。
投影可以分为正交投影和透视投影,正交投影是将三维图形投射到二维屏幕上的过程,而透视投影是将三维图形投射到二维屏幕上,从而产生透视效果的过程。
计算机图形学基础知识重点整理
计算机图形学基础知识重点整理一、图形学基本概念1. 图形学是啥呢?它就像是一个魔法世界,研究怎么在计算机里表示图形,然后对这些图形进行各种操作。
比如说,我们玩的那些超酷炫的游戏,里面的人物、场景都是通过计算机图形学搞出来的。
2. 图形在计算机里可不是随便存着的哦。
有矢量图形,就像我们数学里的向量一样,用数学公式来描述图形的形状、颜色等信息。
还有光栅图形,这个就和屏幕上的像素点有关啦,它是把图形表示成一个个小格子(像素)的组合。
二、图形的变换1. 平移是最基础的啦。
就好比你在一个平面上把一个图形从一个地方挪到另一个地方,很简单对吧。
比如一个三角形,从左边移到右边,它的每个顶点的坐标都按照一定的规则发生变化。
2. 旋转也很有趣。
想象一下把一个正方形绕着一个点转圈圈。
在计算机里,要根据旋转的角度,通过数学公式来计算图形每个点旋转后的新坐标。
这就像我们小时候玩的陀螺,不停地转呀转。
3. 缩放就更直观了。
把一个小图形变大或者把一个大图形变小。
不过要注意哦,缩放的时候可不能让图形变得奇奇怪怪的,得保持它的形状比例之类的。
三、颜色模型1. RGB模型是最常见的啦。
红(Red)、绿(Green)、蓝(Blue),这三种颜色就像三个小魔法师,通过不同的组合可以创造出各种各样的颜色。
就像我们画画的时候,混合不同颜色的颜料一样。
2. CMYK模型呢,主要是用在印刷方面的。
青(Cyan)、品红(Magenta)、黄(Yellow)、黑(Black),这几种颜色的混合可以印出我们看到的书本、海报上的各种颜色。
四、三维图形学1. 在三维图形学里,多了一个维度,事情就变得更复杂也更有趣啦。
我们要考虑物体的深度、透视等。
比如说,我们看远处的山,它看起来就比近处的树小很多,这就是透视的效果。
2. 三维建模是个很厉害的技能。
可以通过各种软件来创建三维的物体,像做一个超级逼真的汽车模型,从车身的曲线到车轮的纹理,都要精心打造。
五、图形渲染1. 渲染就像是给图形穿上漂亮衣服的过程。
计算机图形学学习总结
计算机图形学学习总结学院:计算机与通信工程学院班级:学号:姓名:日期:2010/12/11目录计算机图形学学习总结 (3)一、实验系统 (3)实验一 (3)(1)画点 (3)(2)画直线和折线 (3)(3)画弧线和曲线 (4)(4)画封闭曲线 (5)(5) 画笔与画刷 (5)实验二 (9)任务一:实现DDA画线程序 (9)任务二、放大10倍后,算法演示程序 (10)任务三、加入鼠标功能,实现交互式画直线 (11)实验三 (13)任务一:中点画圆法的扫描转换算法 (14)任务二:添加鼠标程序,实现交互式画圆 (15)任务三:编写中点画椭圆法的扫描转换程序 (16)实验四 (19)实验五 (21)任务一:编码裁剪算法的程序设计 (22)任务二:用鼠标实现交互式裁剪效果 (24)实验七 (26)任务一:抛物线程序设计 (26)任务二:Hermite 曲线程序设计 (27)任务三:Bezier曲线的算法实现 (27)实验八 (31)任务一:根据数学模型,编写几何变换程序 (31)任务二:利用鼠标实现交互式移动图形 (34)实验特色 (35)二、学习总结 (38)三、评价和总结 (40)计算机图形学学习总结一、实验系统实验一一、实验目的Visual C++是在Microsoft C的基础上发展而来的,随着计算机软、硬件技术的快速发展,如今Visual C++已成为集编辑、编译、运行、调试于一体功能强大的集成编程环境。
本章以Visual C++ 6.0为对象,主要介绍Visual C++集成编成环境的使用、图形设备接口和常用图形程序设计、鼠标编程以及菜单设计等基础,目的是通过对Visual C++的学习,掌握Visual C++图形程序设计的方法,为计算机图形学原理部分的算法实现提供程序工具和方法。
二、实验任务1.学习Visual C++图形程序设计的方法;2.掌握Visual C++集成编成环境的使用、图形设备接口和常用图形程序设计、鼠标编程、橡皮筋交互技术、画刷与画笔以及菜单设计等;三、实验内容:(1)画点SetPixel()函数可以在指定的坐标位置按指定的颜色画点。
计算机图形学内容总结
1 .计算机图形学及其相关概念2 .学科发展历史3 .计算机图形学的应用用户接口、计算机辅助设计与制造、娱乐、计算机辅助绘图、计算机辅助教学、科学计算可视化、计算机艺术4 .计算机图形系统(硬件部分)计算机图形系统:计算机图形系统的五大功能:六种逻辑输入设备:CRT 基本部件:屏幕分辨率及光点的定义;帧缓冲区容量的计算6 .图形工作站与虚拟现实系统1 .图形软件类型通用编程软件包和专用应用软件包、通用图形软件包的功能:属性描述、几何变换、观察变换、交互输入、控制操作2.坐标表示建模坐标、世界坐标系、规范化坐标系和设备坐标系的定义和关系;3.图形标准ISO&ANSI 定义的图形标准:GKS、PHIGS、CGI、CGM 4.窗口系统1.用户接口的常用形式子程序库、专用语言、交互命令2.交互设备、交互任务和交互技术:基本的交互任务有哪些3.交互设备有六种;交互设备、交互任务和交互技术之间的关系;4.输入控制输入模式:请求模式、取样模式、事件模式5.如何构造一个交互系统用户接口设计的手段:显示屏幕的有效利用、反馈、一致性原则、减少记忆量、回退和出错处理、联机帮助、视觉效果设计、适应不同的用户;基本交互绘图技术:回显、约束、网格、引力域、橡皮筋技术、草拟技术、拖动、旋转、变形1 .图形扫描转换的定义;2 .直线的扫描转换:DDA 画线法、中点画线法、Bresenham画线法;3 .圆的扫描转换:中点画圆法、Bresenham 画圆法;4 .椭圆的扫描转换:中点画椭圆法;5 .多边形的扫描转换与区域填充: (1) 扫描线填充算法:扫描线多边形填充算法;(2)递归填充:边界填充算法、泛填充算法; (4-连通/8—连通)6 .2D 裁剪:(1)直线段:Cohen—Sutherland 算法、Liang-Barsky算法; (2)多边形:Sutherland-Hodgeman 多边形裁剪算法;7 .字符的处理字库分为点阵式/矢量式线形处理、线宽处理、线帽:方帽、突方帽、圆帽8 .属性处理9 .反走样走样:用离散量表示连续量引起的失真常见的走样现象:(1)光栅图形产生的阶梯形边界;(2)图形细节失真;(3) 狭小图形的遗失与动态图形的闪烁:在动画序列中时隐时现,产生闪烁。
总结图形学
/*******************************************************************/ 为方便大家复习,本人呕心沥血,废寝忘食将老师上课时讲的东西做了一个系统的总结。
然而,人吃的是五谷杂粮,并非圣人,所以总结中难免有疏漏之处。
另外,此文档无任何法律责任,如有不足之处,纯属巧合,敬请谅解,并把错误通知本人。
yongheng5871qq:459872317/*******************************************************************/一问答题1.什么是计算机图形学计算机图形学的内容计算机图形学是一种使用数学算法,将二维三维图形转化为计算机显示器栅格形式的科学。
计算机图形学的主要内容就是研究如何在计算机中表示图形,以及利用计算机进行图形的计算、处理和显示的相关原理与算法。
2.图形系统组成计算机图形系统是为了支持图形应用程序便于实现图形的输入、处理、输出而设计的计算机硬件和软件的组合体。
计算机图形系统由硬件和软件两部分组成。
计算机图形系统的基本物理设备统称为硬件,它包括主机及大容量外存储器、显示处理器、图形输出和图形输入设备。
软件包括图形应用软件、支撑软件、图形应用数据结构。
3.图形包括哪两个方面要素图形信息包括形状参数属性参数形状参数描述图形的方程或分析表达式的系数,线段,多边形坐标。
属性参数包括颜色,线型等。
4.列出计算机图形学的5个应用领域计算机辅助设计与制造(CAD/CAM) 计算机绘图科学计算可视化计算机模拟与仿真过程控制办公室自动化与电子出版技术计算机辅助教学计算机动画计算机艺术人体造型与动画用户界面医疗卫生方面的应用5.图形学与数字图像处理关系数字图像处理将客观世界中原来存在的物体映像处理成新的数字化图像。
如对照片图像扫描采样、量化、模/数转换后送入计算机,由计算机按应用的需要,对数字图像信息进行加工处理,从而改善图像的视觉效果。
计算机图形学基础知识重点整理
目录一、图形表示与构成 (3)(一)构成要素 (3)(二)计算机表示 (3)二、图形处理流程 (3)(一)应用阶段 (3)(二)几何阶段 (3)(三)光栅化阶段 (3)(四)输出合并阶段 (3)三、与图像处理的关系 (4)(一)计算机图形学 (4)(二)图像处理 (4)(三)相互交融 (4)四、图形扫描转换 (4)(一)直线扫描转换 (4)(二)圆扫描转换 (4)(三)椭圆扫描转换与线宽处理 (4)五、计算机图形系统功能 (4)(一)计算功能 (4)(二)存储功能 (4)(三)输入功能 (5)(四)输出功能 (5)(五)对话功能 (5)六、坐标系 (5)(一)世界坐标系 (5)(二)建模坐标系(局部坐标系) (5)(三)观察坐标系 (5)(四)设备坐标系 (5)(五)标准化坐标系 (5)(六)笛卡尔坐标系 (5)(七)齐次坐标系 (5)(八)自动驾驶领域坐标系 (6)七、图形的几何变换 (6)1. 基本变换类型 (6)2. 变换矩阵表示 (6)八、光照模型与渲染技术 (6)1. 光照模型分类 (6)2. 渲染技术概述 (6)九、图形裁剪与消隐 (6)1. 图形裁剪算法 (6)2. 消隐技术 (7)十、可见性判定与遮挡处理 (7)1. 可见性判定算法 (7)2. 遮挡处理方法 (7)十一、图形硬件加速技术 (8)1. 图形处理单元(GPU)原理 (8)2. 硬件加速技术应用 (8)十二、计算机图形学的应用领域 (8)1. 游戏开发 (8)2. 影视特效制作 (9)3. 虚拟现实(VR)与增强现实(AR) (9)4. 计算机辅助设计(CAD)与计算机辅助制造(CAM) (9)5. 科学可视化 (9)十三、计算机图形学的发展趋势 (9)1. 实时全局光照与物理模拟 (9)2. 人工智能与计算机图形学的融合 (10)3. 虚拟现实与增强现实的拓展 (10)4. 多学科交叉与创新应用 (10)十四、图形交互技术 (10)1. 手势识别与交互 (10)2. 语音交互与图形系统 (10)3. 眼动追踪与图形交互 (11)十五、图形压缩与传输技术 (11)1. 图形压缩算法分类 (11)2. 图形数据传输优化 (11)十六、图形学中的性能优化策略 (12)1. 算法优化 (12)2. 数据结构优化 (12)3. 多线程与并行计算优化 (12)十七、计算机图形学中的艺术与审美 (12)1. 图形设计原则 (12)2. 色彩理论在图形学中的应用 (13)3. 创意与灵感来源 (13)十八、三维模型的构建与优化 (13)1. 建模方法概述 (13)2. 模型优化技术 (13)十九、动画技术基础 (14)1. 关键帧动画 (14)2. 骨骼动画 (14)3. 物理动画 (15)二十、计算机图形学中的数学基础 (15)1. 线性代数基础 (15)2. 微积分基础 (15)二十一、计算机图形学中的伦理问题 (16)1. 虚假信息与误导性图形 (16)2. 隐私侵犯与数据安全 (16)二十二、新兴技术对计算机图形学的影响 (16)1. 量子计算与图形学 (16)2. 深度学习与图形生成 (17)3. 虚拟现实与增强现实技术的新进展 (17)二十三、计算机图形学在不同行业中的实践案例 (17)1. 影视特效行业 (17)2. 游戏开发行业 (18)3. 建筑设计行业 (18)4. 汽车设计行业 (18)二十四、计算机图形学学习资源与学习方法建议 (19)1. 学习资源推荐 (19)2. 学习方法建议 (19)计算机图形学基础知识重点整理一、图形表示与构成(一)构成要素·图形是客观事物的抽象呈现,包含几何与非几何信息。
计算机图形学概念总结
计算机图形学概念总结1. 计算机图形学研究怎样利用计算机来显示、生成和处理图形的原理、方法和技术的一门学科。
研究通过计算机将数据转换为图形,并在专门的显示设备上显示的原理、方法和技术的学科。
3. 计算机图形学的应用计算机辅助设计与制造(CAD/CAM)计算机辅助绘图计算机辅助教学(CAI)办公自动化和电子出版技术(Electronic Publication)计算机艺术在工业控制及交通方面的应用在医疗卫生方面的应用图形用户界面4.计算机图形系统:计算机硬件+图形输入输出设备+计算机系统软件+图形软件5. 图形系统的基本功能和计算机图形系统的结构图形系统的基本功能:6:典型的图形输入设备:鼠标器、操纵杆、跟踪球、空间球、数字化仪的触笔或手动光标,图形扫描仪数据手套。
7:逻辑输入设备:定位、比划、数值、字符串、选择、拾取设备8:输入模式:如何管理、控制多种输入设备进行工作。
常用的输入模式:请求(request)采样(sample)事件(event)组合形式9:图形显示设备:显示器、显示控制器(卡)10:阴极射线管CRT 从外形上看,CRT为:管颈部分、锥体部分、屏幕部分从结构上看,CRT为:电子枪、偏转系统、荧光屏余辉时间:从电子束停止轰击到发光亮度下降到初始值的1%所经历时间。
CRT图形显示器包括:随机扫描的图形显示器直视存储管图形显示器光栅扫描的图形显示器平板显示器包括:液晶显示器等离子体显示板薄片光电显示器发光二极管显示器 平板CRT 显示器 激光显示器. 分辨率光点一般是指电子束打在显示器的荧光屏上,显示器能够显示的最小的发光点。
象素点是指图形显示在屏幕上时候,按当前的图形显示分辨率所能提供的最小元素点。
1)屏幕分辨率,也称为光栅分辨率,它决定了显示系统最大可能的分辨率,任何显示控制器所提供的分辨率也不能超过这个物理分辨率。
屏幕分辨率=水平方向上的光点数*垂直方向上的光点数显示分辨率,是计算机显示控制器所能够提供的显示模式分辨率,实际应用中简称为显示模式存储分辨率是指帧缓冲区的大小,一般用缓冲区的字节数表示。
计算机图形学课程总结
计算机图形学报告前言计算机图形学(Computer Graphics,简称CG)是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学。
简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。
其从狭义上是来说是一种研究基于物理定律、经验方法以及认知原理,使用各种数学算法处理二维或三维图形数据,生成可视数据表现的科学。
广义上来看,计算机图形学不仅包含了从三维图形建模、绘制到动画的过程,同时也包括了对二维矢量图形以及图像视频融合处理的研究。
由于计算机图形学在许多领域的成功运用,特别是在迅猛发展的动漫产业中,带来了可观的经济效益。
另一方面,由于这些领域应用的推动,也给计算机图形学的发展提供了新的发展机遇与挑战。
计算机图形学的发展趋势包括以下几个方面:1、与图形硬件的发展紧密结合,突破实时高真实感、高分辨率渲染的技术难点;2、研究和谐自然的三维模型建模方法;3、利用日益增长的计算性能,实现具有高度物理真实的动态仿真;4、研究多种高精度数据获取与处理技术,增强图形技术的表现;5、计算机图形学与图像视频处理技术的结合;6、从追求绝对的真实感向追求与强调图形的表意性转变。
1、三维物体的表示计算机图形学的核心技术之一就是三维造型三维物体种类繁多、千变万化,如树、花、云、石、水、砖、木板、橡胶、纸、大理石、钢、玻璃、塑料和布等等。
因此,不存在描述具有上述各种不同物质所有特征的统一方法。
为了用计算机生成景物的真实感图形,就需要研究能精确描述物体特征的表示方法。
根据三维物体的特征,可将三维物体分为规则物体和非规则物体两类。
三维实体表示方法通常分为两大类:边界表示和空间分割表示,尽管并非所有的表示都能完全属于这两类范畴中的某一类。
边界表示(B-reps)用一组曲面来描述三维物体,这些曲面将物体分为内部和外部。
边界表示的典型例子是多边形平面片和样条曲面。
计算机图形学超强总结
计算机图形学超强总结第1章:简答和名词解释图形:是人类传达知识、表达感情的重要手段,它通常指能在人的视觉系统中产生视觉印象的客观对象,包括自然景物、拍摄到的图片、用数学方法描述的图形等等。
计算机图形:是指能够通过计算机加以表示、存储、处理、显示并作用于人的视觉系统的客观对象。
构成图形的要素:形状构成要素、属性控制要素形状构成要素:是指利用欧氏几何或过程式方法所表示的有关图形对象的轮廓、形状等,如点、线、面、体或分形、粒子系统等属性控制要素:指的是对图形对象的显示方式有控制作用的属性信息,如宽度、线型、填充模式、颜色、材质等图形的表示方法:点阵表示法、参数表示法点阵表示法:通过枚举出图形中所有的点来表示图形,它强调图形由哪些点构成,这些点具有什么样的颜色。
通常称点阵法描述的图形为像素图或位图(bitmap)。
参数表示法由图形的形状参数和属性参数来表示图形。
形状参数:描述图形的方程或分析表达式的系数,线段或多边形的端点坐标等。
计算机中的图形按绘制方式分为:线框图(wire frame)、真实感图形线框图:利用点、线描绘图形外部框架的图形,如工程图、等高线地图、曲面的线框图;真实感图形:在线框图的基础上利用填色、纹理贴图、光照处理等技术处理后具有与真实图形外观接近的图形。
计算机图形学的权威定义:研究利用计算机进行数据和图形之间相互转换的方法和技术。
图形软件研究的主体内容:图形生成、处理和显示的原理和算法。
(1)图形数据结构及点、线、圆、多边形等基本图元生成;(2)基本图元的几何变换、投影变换、窗口裁减;(3)曲线和曲面;(4)三维对象的表示与三维造型;(5)隐藏线及隐藏面的消除与真实感图形显示; (6)计算机动画;(7)数据场的可视化及虚拟现实;(8)图形开发技术与综合应用;(9)图形的实时显示及并行算法。
图形用户界面(graphical user interface,GUI)是人机交互的主要形式和接口,是人们使用计算机的第一观感。
计算机图形学主要知识点归纳
计算机图形学主要知识点归纳第一章计算机图形学是:研究怎么利用计算机来显示、生成和处理图形的原理、方法和技术的一门学科。
计算机图形学的研究对象是图形。
构成图形的要素有两类:一类是几何要素(刻画图形状的点、线、面、体),另一类是非几何要素(反映物体表面属性或材质的明暗、灰度、色彩).。
计算机表示图和形常有两种方法:点阵法和参数法。
软件的标准:SGI等公司开发的OpenGL,微软开发的Direct X,Adobe的Postscript 等。
计算机辅助设计与制造(CAD/CAM)计算机图形系统可以定义为计算机硬件、图形输入输出设备、计算机系统软件和图形软件的集合。
交互式计算机图形系统应具有计算、存储、对话、输入和输出等五方面的功能。
真实感图形的生成一般须经历场景造型、取景变换、视域裁剪、消除隐藏面及可见面光亮度计算等步骤。
虚拟现实系统又称虚拟现实环境,是指由计算机生成的一个实时三维空间。
用户可以在其“自由地”运动,随意观察周围的景物,并可通过一些特殊的设备与虚拟物体进行交互操作。
科学计算可视化是指运用计算机图形学和图像处理技术,将科学计算过程及计算结果的数据转换为图形及图像在屏幕上显示出来并进行交互处理的理论、方法和技术。
第二章鼠标器是用来产生相对位置。
鼠标器按键数分为两种:MS型鼠标(双按键鼠标)和PC型鼠标(三按键鼠标)。
触摸屏也叫触摸板,分为:光学的红外线式触摸屏、电子的电阻式触摸屏和电容式触摸屏、声音的声波式触摸屏。
数据手套是由一系列检测手和手指运动的传感器的构成。
来自手套的输入可以用来给虚拟场景的对象定位或操纵该场景。
显示设备的另一个重要组成部分的是显示控制器。
它是控制显示器件和图形处理、转换、信号传输的硬件部分,主要完成CRT的同步控制、刷新存储器的寻址、光标控制以及图形处理等功能。
阴极射线管CRT由电子枪、偏转系统及荧光屏3个基本部分组成。
电子枪的主要功能是产生一个沿管轴(Z轴)方向前进的高速的细电子束(轰击荧光屏)。
计算机图形学学习的心得体会
计算机图形学学习的心得体会计算机图形学学习的心得体会对计算机图形学课程学习的心得体会通过一个学期的学习,了解了什么是计算机图形学、什么是图形API、为什么需要计算机图形学以及计算机图形学在各个领域的应用。
计算机图形学是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学,研究的是应用计算机产生图像的所有工作,不管图像是静态的还是动态的,可交互的还是固定的,等等。
图形API是允许程序员开发包含交互式计算机图形操作的应用而不需要关注图形操作细节或任务系统细节的工具集。
计算机图形学有着广泛的应用领域,包括物理、航天、电影、电视、游戏、艺术、广告、通信、天气预报等几乎所有领域都用到了计算机图形学的知识,这些领域通过计算机图形学将几何模型生成图像,将问题可视化从而为各领域更好的服务。
计算机图形学利用计算机产生让人赏心悦目的视觉效果,必须建立描述图形的几何模型还有光照模型,再加上视角、颜色、纹理等属性,再经过模型变换、视图变换、投影操作等,通过这些步骤从而实现一个完整的OpenGL程序效果。
OpenGL是一个开放的三维图形软件包,它独立于窗口系统和操作系统,以它为基础开发的应用程序可以十分方便地在各种平台间移植。
计算机图形学通过应用OpenGL的功能,使得生成的图形效果具有高度真实感。
学习计算机图形学的重点是掌握OpenGL在图形学程序中的使用方法。
21世纪是信息的时代,在日新月异的科技更新中相信计算机会发挥越来越重要的作用,计算机图形学也会在更多的领域所应用,虽然我国在这方面还比较薄弱,但相信会有越来越好的时候的。
扩展阅读:计算机图形学学习心得体会计算机图形学学习心得体会计算机科学与技术与技术班学号:1.计算机图形学计算机图形学(ComputerGraphics,简称CG),狭义上是一种研究基于物理定律、经验方法以及认知原理,使用各种数学算法处理二维或三维图形数据,生成可在计算机等显示设备上显示的可视化数据的科学。
计算机图形学 总结
计算机图形学总结科学计算的可视化:CT;真实感图形实时绘制与自然景物仿真;地理信息系统(GIS);Virtual Reality(虚拟现实、灵境);事务和商务数据的图形显示;地形地貌和自然资源的图形显示过程控制及系统环境模拟;电子出版及办公自动化;计算机动画及广告计算机艺术;科学计算的可视化;工业模拟;计算机辅助教学当前研究热点:1、真实感图形实时绘制2、野外自然景物的模拟3 与计算机网络技术的紧密结合4 计算机动画5 用户接口6 计算机艺术7 并行图形处理所熟悉的图形软件包图形软件的标准K GKS (Graphics Kernel System) (第一个官方标准,1977)K PHIGS(Programmer’s Herarchical Iuteractive Graphics system)K 一些非官方图形软件,广泛应用于工业界,成为事实上的标准K DirectX (MS)K Xlib(X-Window系统)K OpenGL(SGI)K Adobe公司PostscriptCAGD (Computer Aided Geometric Design)图形系统的功能1、计算功能2、存储功能3、对话功能4、输入功能5、输出功能图形输入设备1 键盘和鼠标2 跟踪球和空间球3 光笔4 数字化仪5 触摸板6 扫描仪图形输出设备显示器1 阴极射线管显示器2 液晶显示器(LCD)3 发光二极管显示器4 等离子显示器5 等离子显示器6发光聚合物技术图形绘制设备针式打印机喷墨打印机激光打印机静电绘图仪笔式绘图仪143章多边形3、4 多边形的扫描转换与区域填充o 多边形扫描转换与区域填充可以统称区域填充,就是如何用颜色或图案来填充一个二维区域。
填充主要做两件工作:一是确定需要填充的范围,二是确定填充的内容。
一般区域填充指的是已知区域内一个种子,然后由种子向周围蔓延填充规定区域。
o 方法:n 扫描线法:x-扫描线法-〉有序边表法,边填充算法n 种子填充算法(区域填充)多边形扫描转换与区域填充方法比较:联系:都是光栅图形面着色,用于真实感图形显示。
计算机图形学基础知识点总结
计算机图形学基础知识点总结计算机图形学是一门研究如何利用计算机生成、处理和显示图形的学科。
它在许多领域都有着广泛的应用,如游戏开发、动画制作、虚拟现实、计算机辅助设计等。
下面将为大家总结一些计算机图形学的基础知识点。
一、图形的表示与存储1、位图(Bitmap)位图是由像素组成的图像,每个像素都有自己的颜色值。
优点是能够表现丰富的色彩和细节,但放大时会出现锯齿和失真。
常见的位图格式有 BMP、JPEG、PNG 等。
2、矢量图(Vector Graphics)矢量图使用数学公式来描述图形,由点、线、面等几何元素组成。
优点是无论放大或缩小都不会失真,文件大小相对较小。
常见的矢量图格式有 SVG、EPS 等。
二、坐标系统1、二维坐标系统常见的二维坐标系统有直角坐标系和极坐标系。
在直角坐标系中,通过横纵坐标(x, y)来确定点的位置。
在极坐标系中,通过极径和极角(r, θ)来确定点的位置。
2、三维坐标系统三维坐标系统通常使用笛卡尔坐标系,由 x、y、z 三个轴组成。
点的位置用(x, y, z)表示,用于描述三维空间中的物体。
三、图形变换1、平移(Translation)将图形沿着指定的方向移动一定的距离。
在二维中,通过改变坐标值实现平移;在三维中,需要同时改变三个坐标值。
2、旋转(Rotation)围绕某个中心点或轴旋转图形。
二维旋转可以通过三角函数计算新的坐标值;三维旋转较为复杂,需要使用矩阵运算。
3、缩放(Scaling)放大或缩小图形。
可以对图形在各个方向上进行均匀或非均匀的缩放。
四、颜色模型1、 RGB 颜色模型基于红(Red)、绿(Green)、蓝(Blue)三原色的混合来表示颜色。
每个颜色通道的取值范围通常是 0 到 255。
2、 CMYK 颜色模型用于印刷,由青(Cyan)、品红(Magenta)、黄(Yellow)和黑(Black)四种颜色组成。
3、 HSV 颜色模型由色调(Hue)、饱和度(Saturation)和明度(Value)来描述颜色。
计算机图形学概念总结
图形的两个要素:几何信息:点、线、面图形处理:针对图形几何、非几何要素进行的处理各界面间进行数据传送和通信的接口标准。
包括:CGI(Computer Graphics Interface)计算机图形接口CGM(Computer Graphic Metafile)计算机图形元数据IGES(Initial Graphics Exchange Specification)基本图形交换规范STEP(STandard for the Exchange of Product model data)产品模型数据交换标准供图形应用程序调用的子程序功能及格式标准。
包括:GKS(Graphics Kernel System)图形核心系统PHIGS(Programmer’s Hierarchical Interactive Graphics System)程序员层次交互图形系统影响显示效果的几个因素1.颜色数(The number of different colors)2.分辨率(The resolution)3.帧缓存大小(The volume of frame buffer memory)帧缓存容量与可显示颜色数、分辨率之间存在冲突解决:查色表,隔行扫描参数等图形交互任务的界面环境交互技术:开发用户接口、完成交互任务的技术基本交互任务定位The position interaction task数量The quantify interaction task文本The text interaction task选择The select interaction task交互构图技术:橡皮筋、拖动、操作柄技术、文件维护任意大小的选择相对固定大小的选择交互式用户接口的构造主要目标加速系统学习过程提高系统使用速度降低系统错误率加速反馈提高对潜在用户的吸引力关键因素界面视觉设计界面风格(WYSIWYG)人机对话框(User-Computer Dialogues)的形式与内容其它:若干重要的设计考虑(design consideration三种输入控制方式⏹取样方式程序和设备同时工作,应用程序在需要时取得输入设备的当前值⏹请求方式由应用程序启动数据输入⏹事件驱动方式输入设备启动数据输入并交给应用程序若干重要的设计考虑⏹一致性⏹提供反馈⏹最小化出错可能性⏹提供错误恢复⏹最小化内存占用MidpointLine(x0,y0,x1,y1,color) int x0,y0,x1.y1,color;{int x,y,a,b,d,delta1,delta2;a=y0-y1; b=x1-x0;d=2a+b;delta1=2a+2b;delta2=2a;x=x0;while(x<x1){if(d<0){y++; d+=delta1;}else{d+=delta2;}x++;putpixel(x,y,color);}}Bresenham_Line(x0,y0,x1,y1,color) Int x0,y0,x1,y1,color;{int x,y,dx,dy,e;dx=x1-x0;dy=y1-y0;e=2*(y1-y0)-(x1-x0);x=x0+1;while(x<=x1){if(e<0){e=e+2*(y1-y0);}else{y++;e=e+2*(y1-y0)-2(x1-x0);}putpixel(x,y,color);x++;}}种子填充算法原理在多边形内部找到一个已知的象素点作为种子点,由此开始,利用区域的连通性找到多边形内部的其它所有象素点进行填充。
计算机图形学总结
1、图形学简介1.1、解释计算机图形学中图形与图像两个概念的区别。
答:图形是指由外部轮廓线条构成的矢量图。
即由计算机绘制的直线、圆、矩形、曲线、图表等;而图像是由扫描仪、摄像机等输入设备捕捉实际的画面产生的数字图像,是由像素点阵构成的位图。
(百度知道)·从广义上说,凡是能够在人的视觉系统中形成视觉印象的客观对象都称为图形。
它包括人年说观察到的自然界的景物,用照相机等设别所获得的图片,用绘图工具绘制的工程图,各种人工美术绘画和用数学方法描述的图形等。
·图形学中的图形一般是指由点、线、面、体等几何要素(geometric attribute)和明暗、灰度(亮度)、色彩等视觉要素(visual attribute)构成的,从现实世界中抽象出来的图或形。
图形强调所表达对象的点、线、面、结构等几何要素。
·而图像则只是指一个二维的像素集合,至于这个集合所构成的图案的意义、几何元素等,计算机并不知晓。
可以一条直线作比方来说明。
1.2、解释“计算机图形学” 研究的主要内容。
答:是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学。
简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。
(百度百科)·Modeling建模构建三维模型的场景·Rendering 绘制(渲染) 渲染的三维模型,计算每个像素的颜色。
颜色是有关照明,环境,对象材料等。
·Animation动画1.3、能列举计算机图形学的一些应用实例。
答:CAD工业制造仿真、电影特效合成、3D动画、3D游戏……2、Graphic Devices in Computer System2.1、了解图形输出设备中“阴极射线管(CRT)”的主要工作原理。
答:显示屏、电子枪、和偏转控制装置三部分组成。
当灯丝被加热时,电子枪阴极释放出电子,电子经过聚焦系统和加速系统后形成电子束,经过偏转控制装置时轨迹发生变化,打在显示屏磷粉涂层上发光。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、图形学简介1.1、解释计算机图形学中图形与图像两个概念的区别。
答:图形是指由外部轮廓线条构成的矢量图。
即由计算机绘制的直线、圆、矩形、曲线、图表等;而图像是由扫描仪、摄像机等输入设备捕捉实际的画面产生的数字图像,是由像素点阵构成的位图。
(百度知道)·从广义上说,凡是能够在人的视觉系统中形成视觉印象的客观对象都称为图形。
它包括人年说观察到的自然界的景物,用照相机等设别所获得的图片,用绘图工具绘制的工程图,各种人工美术绘画和用数学方法描述的图形等。
·图形学中的图形一般是指由点、线、面、体等几何要素(geometric attribute)和明暗、灰度(亮度)、色彩等视觉要素(visual attribute)构成的,从现实世界中抽象出来的图或形。
图形强调所表达对象的点、线、面、结构等几何要素。
·而图像则只是指一个二维的像素集合,至于这个集合所构成的图案的意义、几何元素等,计算机并不知晓。
可以一条直线作比方来说明。
1.2、解释“计算机图形学” 研究的主要内容。
答:是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学。
简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。
(百度百科)·Modeling建模构建三维模型的场景·Rendering 绘制(渲染)渲染的三维模型,计算每个像素的颜色。
颜色是有关照明,环境,对象材料等。
·Animation动画1.3、能列举计算机图形学的一些应用实例。
答:CAD工业制造仿真、电影特效合成、3D动画、3D游戏……2、Graphic Devices in Computer System2.1、了解图形输出设备中“阴极射线管(CRT)”的主要工作原理。
答:显示屏、电子枪、和偏转控制装置三部分组成。
当灯丝被加热时,电子枪阴极释放出电子,电子经过聚焦系统和加速系统后形成电子束,经过偏转控制装置时轨迹发生变化,打在显示屏磷粉涂层上发光。
·Storing: 为每个象素设置一个电容维持一定的电压,使象素持续发光。
·Refresh: 不断重复轰击像素,使其不断重复发光;由于人眼的视觉暂留效应,就会产生象素持续发光的印象。
2.2、解释“随机扫描显示器”与“光栅扫描显示器”的不同。
答:随机扫描显示器显示图形时,电子束的移动方式是随机的,电子束可以在任意方向上自由移动,按照显示命令用画线的方式绘出图形,因此也称矢量显示器。
而光栅扫描显示器显示图形时,电子束依照固定的扫描线和规定的扫描顺序进行扫描。
电子束先从荧光屏左上角开始,向右扫一条水平线,然后迅速地回扫到左边偏下一点的位置,再扫第二条水平线,照此固定的路径及顺序扫下去,直到最后一条水平线,即完成了整个屏幕的扫描。
随机扫描显示器依靠显示文件对屏幕图形进行刷新;光栅扫描显示器则依靠帧缓存实现对屏幕图形的刷新。
·随机扫描显示器(向量显示器):控制电路比较复杂,不适于显示非常复杂的图像,已基本被淘汰。
·光栅扫描显示器:似乎很笨,但控制简单,可绘制任意复杂的图像,故远远优于vector display;出现以后迅速成为主流,并大大促进了图形学的发展(因其能够绘制任意复杂的图像)。
也有采用隔行扫描的,即先扫描所有偶数行,再扫描所有奇数行。
2.3、理解有关光栅扫描显示器的一些主要概念:光栅、像素、扫描线、分辨率(resolusion)、帧缓存(frame buffer)、刷新频率(refresh rate)。
光栅:一个点或点的矩形阵列像素:一个点或图片元素的光栅扫描线:一个像素行分辨率:该点没有可显示的最大数目重叠的CRT被称为该决议帧缓存:图片定义存储在一个称为帧缓冲区或刷新缓冲区的内存区刷新率:在其中一张照片是在屏幕上绘制频率称为刷新率3、Algorithms for Drawing 2D Primitives答:取整void line DDA (int xs, int ys, int x e, int y e){int k = abs(xe–xs);if (abs(ye–ys)>k) then k = abs(ye–ys);float xincre = (xe–xs)/k;float yincre = (ye–ys)/k;float x, y;for(i=1; i<=k; i++) {setPixel(round(x), round(y));x = x + xincre;y = y + yincre;}}3.2解释Bresenham直线算法的基本原理3.3解释Bresenham画圆算法的基本原理3.4解释中点圆算法(Midpoint circle algorithm)的基本原理4、Scan-line Conversion and Area Filling4.1解释何为扫描转换,解释何为区域填充,两者的区别是什么?答:光栅图形的一个基本问题是把多边形的顶点表示转换为点阵表示,这种转换称为多边形的扫描转换。
区域填充指先将区域的一点赋予指定的颜色,然后将该颜色扩展到整个区域的过程。
多边形的扫描转换主要是通过确定穿越区域的扫描线的覆盖区间来填充。
区域填充是从给定的位置开始涂描直到指定的边界条件为止。
1.基本思想不同: 多边形的扫描转换是指将多边形的顶点表示转换成点阵表示。
在扫描转换过程中利用了多边形各种形式的连贯性。
区域填充只改变区域的颜色,不改变区域的表示方法。
在填充过程中利用了区域的连通性。
2.算法的要求不同: 在区域填充中要求指定区域内的一点为种子点,然后从这点开始对区域进行着色。
对多边形的扫描转换没有这个要求。
3.对边界的要求不同: 在多边形的扫描转换中要求每一条扫描线与多边形边界的交点个数是偶数。
在区域填充中要求4连通区域的边界为封闭的8连通区域,而8连通区域的边界为封闭的4连通区域。
4.2理解扫描线填充算法(Scan-line Polygon Fill Algorithm)的基本步骤答:求出扫描线与多边形边的交点2)将交点按照x升序排列3)将排好序的交点两两配对,然后绘制相应线段。
4.2.1数据结构的使用答:边的分类表(Edge Table, ET);边的活化链表(Active Edge List, AEL)4.2.2奇点的处理方法一是当扫描线与顶点相交时,交点的取舍。
当与那个顶点关联的边在扫描线同侧时,交点自然算两次,当与那个顶点关联的边在扫描线两侧时,交点只能算一次。
我们使用“下闭上开”的办法。
二是多边形边界上的像素取舍,我们采用“左闭右开”的办法。
4.3理解何为四连通区域和八连通区域答:4-连通区域:从区域上的一点出发,通过访问已知点的4-邻接点,在不越出区域的前提下,遍历区域内的所有象素点。
8-连通区域:从区域上的一点出发,通过访问已知点的8-邻接点,在不越出区域的前提下,遍历区域内的所有象素点。
4.4解释在光栅化显示中,何为走样?走样的原因是什么?列举出“走样”可能造成的显示问题定义:用离散量表示连续量引起的失真,就叫做走样(Aliasing)。
原因:数学意义上的图形是由无线多个连续的、面积为零的点构成;但在光栅显示器上,用有限多个离散的,具有一定面积的象素来近似地表示他们。
走样造成的显示问题:一是光栅图形产生的阶梯形。
一是图形中包含相对微小的物体时,这些物体在静态图形中容易被丢弃或忽略,在动画序列中时隐时现,产生闪烁。
4.5解释克服“走样”的两类方法以面积采样代替点采样(边界使用过度色阶)超采样(高分辨率计算,低分辨率显示)5、Graphics Pipeline (图形流程)5.1、画出目前计算机中图形显示的主要流程(Graphics Pipeline ),并解释各模块的主要任务。
答:流程:变换(Transformation)、光栅化(Rasterization)、片元处理(Fragment operations)、帧缓存(Frame buffer)3D model ◊ 2D graph ---- transformation (vertex operations)2D graph ◊ 2D image ---- rasterization and fragment operations5.2图形流程中Transformation所要完成的任务是什么,它包含哪几个主要过程?任务是将三维模型转换为二位图表主要过程有:几何变换、投影变换、裁减、窗口到视口的变换5.2.1、写出平移变换(Translation)与放缩变换(Scaling)的矩阵表达式平移变换:放缩变换:5.2.2、能够推出图形绕某一坐标轴旋转的矩阵表达式Rotation relative to the y-axis and x-axis5.2.3、解释几何变换中为何需要采用齐次坐标系,能够写出上述变换矩阵的齐次坐标表达形式许多图形应用涉及到几何变换,主要包括平移、旋转、缩放。
以矩阵表达式来计算这些变换时,平移是矩阵相加,旋转和缩放则是矩阵相乘,综合起来可以表示为p' = m1*p + m2(m1旋转缩放矩阵,m2为平移矩阵,p为原向量,p'为变换后的向量)。
引入齐次坐标的目的主要是合并矩阵运算中的乘法和加法,表示为p' = M*p的形式。
即它提供了用矩阵运算把二维、三维甚至高维空间中的一个点集从一个坐标系变换到另一个坐标系的有效方法。
平移:→缩放:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡'''zyxssszyxzyx⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆∆∆+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡'''zyxzyxzyx111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆∆∆+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡'''zyxzyxzyx111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∆∆∆=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'''111111zyxzyxzyx旋转:5.2.4、能够写出物体经过连续变换后的组合矩阵5.2.5、理解全局变换与局部变换的区别,解释OpenGL中所采用的变换矩阵结合方式◆Global transformation1.每一次变换均可以看成是相对于原始坐标系执行的2.我们前面讲的平移、放缩和旋转矩阵实现的都是全局变换◆Local transformation1.每一次变换均可以看成是在上一次变换所形成的新的坐标系中进行2.可以通过颠倒矩阵相乘的顺序来实现局部变换每次的变换矩阵都乘在原矩阵的右侧,而最后变换顶点时,顶点也乘在总体变换矩阵的右侧。