高考数学:导数压轴题的学习方法

合集下载

2024年高考数学 二轮复习第49讲 洛必达法则解高考导数压轴题

2024年高考数学 二轮复习第49讲  洛必达法则解高考导数压轴题

第49讲 洛必达法则解高考导数压轴题确界如果分离参数后相应的函数不存在最值,为了能够利用分离参数思想【解析】决含参不等式恒成立的问题,我们利用如下的函数确界的概念:函数()()y f x x D =∈的上确界为(){}min ,Mf x M x D ∈∣,记作.M 上函数()()y f x x D =∈的下确界为()max{Mf x ∣,}M x D ∈,记作M 下.于是,有如下结论:(1)若()f x 无最大值,而有上确界,这时要使()()f x g a <恒成立,只需()M g a 上. (2)若()f x 无最小值,而有下确界,M 下,这时要使()()f x g a >恒成立,只需()M g a 下. 确界通俗地说就是,知道函数不会超过某个值(这个值其实就是确界),但就是在定义域内取不到这个值,举个【例】子:在()()1,21x f x x a ∈=+>恒成立,求a 的取值范围.x 取不到1,但()f x 为单调递增,()()12f x f ∴>=,即2就是()f x 的下确界,于是我们可以得到2a .可以简单地理解为确界就是函数取不到的最值,需要用极限来逼近,下面举例子来说明.【例1】 设函数()21x f x e x ax =−−−,0x 时,()0f x ,求a 的取值范围. 分析:由()0f x 对所有的0x 成立,可得 (1)当0x =时,a R ∈.(2)当0x >时,21x e x a x −−.设()21x e x g x x −−=,把问题转化为求()g x 的最小值或下确界. ()()2222422,22,x x x x x e xe x xg x h x x e xe x x x'−++==−++令 则()2e 2e 22,0x x h x x x x '=−++>.又()h x 的二阶导数()22x x h x xe x e =+−''()22x e h x +的三阶导数()()240x h x e x x '+'=>',()h x ∴''是增函数.()()00h x h ''''∴>=.()h x ∴'增函数.()()00h x h ''∴>=.()h x ∴是增函数.()()00h x h ∴>=,从而()0g x '>,于是()g x 在()0,+∞上单调递增,故()g x 无最小值. 此时,由于()0g 无意义,分析可知()g x 是有下确界的,运用极限表述为:()g x >()0lim x g x +→,关键是这个极限值或者说确界如何求出呢?这就是本章的重点:洛必达法则.由洛必达法则即可得()0lim x g x +→=2000111lim lim lim 222x x x x x x e x e e x x +++→→→−−−===. 故0x >时,()12g x >,因而12a ,综上知a 的取值范围为1,2⎛⎤−∞ ⎥⎝⎦.那什么是洛必达法则呢?洛必达法则(一)型不定式 定理1 设函数()(),f x F x 满足下列条件: (1)()()0lim 0,lim 0x x x x f x F x →→==.(2)()f x 与()F x 在0x 的某一去心邻域内可导,且()0F x '≠. (3)()()limx x f x F x →''存在(或为无穷大),则()()()()00lim limx x x x f x f x F x F x →→''=. 【例1】计算极限01lim x x e x →−.【解析】 该极限属于00型不定式,于是由洛必达法则得001limlim 1.1x xx x e e x→→−== (二)∞∞型不定式定理2设函数()(),f x F x 满足下列条件: (1)()()0lim ,lim x x x x f x F x →→=∞=∞.(2)()f x 与()F x 在0x 的某一去心邻域内可导,且()0F x '≠. (3)()()limx x f x F x →''存在(或为无穷大), 则()()()()00limlimx x x x f x f x F x F x →→''=. 【例2】 计算极限lim nx x x e→+∞【解析】 所求问题是∞∞型不定式,连续n 次实行洛必达法则,有()211!lim lim lim lim0n n n x x xxx x x x n n x x nx n e e e e −−→+∞→+∞→+∞→+∞−=====.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于00型和∞∞型的不定式,其他的不定式须先化简变形成00型或∞∞型才能运用该法则.对于∞−∞型与0⋅∞型的未定式,可通过通分或者取倒数的形式化为基本形式.对于00型,1∞型与0∞型的未定式,可通过取对数等手段化为00型或∞∞型未定式. (2)只要条件具备,就可以连续应用洛必达法则.(3)洛必达法则的条件是充分的,但不必要,因此,在该法则失效时并不能断定原极限不存在.洛必达法则求参数取值范围洛必达法则求参数取值范围的一般步骤和前面参变分离的解题步骤一致,只不过是最后无法直接求解最值,只能用洛必达法则求解确界.【例1】已知函数()()21x f x x e ax =−−,当0x 时,()0f x ,求a 的取值范围. 【解析】 证明 第一步:分类讨论,参变分离.当0x 时,()0f x ,即()21x x e ax −.①当0x =时,a R ∈.②当0x >时,()21xx e ax −等价于1xe ax −,即1x e a x−.第二步:构造函数,求导,并把分子提出,再次构造函数,求导并研究出原函数单调性.记()()1,0,x e g x x x −=∈+∞,则()g x '=()211x x e x −+.记()()()11,0,x h x x e x =−+∈+∞, 则()e 0x h x x =>',因此()()11x h x x e =−+在()0,+∞上单调递增,且()()00h x h >=,()()20h x g x x ='∴>,()e 1x g x x−=从而在()0,+∞上单调递增.第三步:利用洛必达法则求出函数下确界.()0001lim limlim 1,1x xx x x e e g x x→→→−=== 即当0x →时,()1g x →.()1g x ∴>,即有1a . 综上所述,当1,0a x 时,()0f x 成立.【例2】 设函数()1x f x e −=−,设当0x 时,()1xf x ax +,求a 的取值范围. 【解析】 证明 第一步:必要性讨论,缩小参数范围. 由题设0x ,此时()0f x .①当0a <.时,若1x a>−,则01x ax <+,()1x f x ax +不成立. ②当0a 时,当0x 时,()1x f x ax +,即.1111xx x x e e ax ax −−−−++. 若0x =,则a R ∈.第二步:不等式等价变化并参变分离. 若0x >,则11xx eax −−+等价于111xe x ax −−+,即1x x xxe e a xe x −+−. 第三步:构造函数,并因式分解,把部分因式提出,单独构造函数,并多次求导,结合特殊值最终确定原函数的单调性.记e e 1()e x x x x g x x x −+=−,则()g x '=()()(22222e e 2e 1e e 2e e x x x xx x x x x x x x x −−+=−−+−−)e x − 记2()e 2e x x h x x −=−−+,则()h x '=e 2e ,()e e 20x x x xx h x −−−−''=+−>.因此,()e 2exxh x x −'=−−在(0,)+∞上单调递增,且(0)0,()0h h x '=∴'>,即()h x 在(0,)+∞上单调递增,且(0)0,()0h h x =∴>.因此()2e ()()0exxg x h x x x'=⨯>−,∴()g x 在(0,)+∞上单调递增.第四步:利用洛必达法则求出函数下确界.00e e 1lim ()lim e x x x x x x g x x x →→−+==−00e e e 1lim lim e e 12e e 2x x x x x x x x x x x x x →→+==+−+,即当0x →时,1()2g x →,即有1()2g x >, 1. 2a∴综上所述,a 的取值范围是1,2⎛⎤−∞ ⎥⎝⎦. 【例3】若不等式3sin x x ax >−对于x ∈0,2π⎛⎫⎪⎝⎭恒成立,求a 的取值范围。

2025高考数学二轮复习导数应用中的函数构造技巧

2025高考数学二轮复习导数应用中的函数构造技巧

函数形式出现的是“-”法形式时,优先考虑构造 y=型函数.
(2)利用f(x)与ex(enx)构造
() ()

常用的构造形式有 e f(x),e f(x), e , e ,这类形式一方面是对 y=uv,y=型函
x
nx
数形式的考查,另外一方面也是对(ex)'=ex,(enx)'=nenx 的考查.所以对于
f'(x)cos x-f(x)sin x>0,所以 F'(x)>0,即函数
由于
f
π
6
f
π
6
π
0<6
<
π
4
π
π
cos6<f 4
<
3
π
3
3
<
π
3
<
π
,所以
2
π
π
cos4<f 3
π
F(x)在区间(0,2)
π
4
<F
π
cos3,因此可得
π
6
,故选 AD.
F
π
6
<F
f
π
x∈(0,2)时,
π
3
<
内单调递增.
,即
锐角三角形,则( D )
A.f(sin A)sin2B>f(sin B)sin2A
B.f(sin A)sin2B<f(sin B)sin2A
C.f(cos A)sin2B>f(sin B)cos2A
D.f(cos A)sin2B<f(sin B)cos2A
解析 因为
() '
2

2022年高考数学全国乙卷导数压轴题解析

2022年高考数学全国乙卷导数压轴题解析

㊀㊀㊀讲题比赛获奖论文之六:2022年高考数学全国乙卷导数压轴题解析◉中央民族大学附属中学呼和浩特分校㊀李雪峰㊀㊀摘要:函数零点问题在高考压轴题中经常出现.在解题过程中,按照一定标准对参数分类讨论㊁把握细节确定方向㊁引入隐零点㊁区间卡根,这些方面都可能成为解决零点问题的障碍.所以,选取适当的角度观察㊁分析,根据题目中的关键信息制定策略㊁拟定解题思路,并在此基础上进行计算㊁推理论证,往往是解题的关键.只有明白了思考的底层逻辑,才能使分析问题㊁解决问题的能力有所提高.关键词:函数零点问题;分类讨论;数形结合;区间卡根1试题呈现(2022年高考数学全国乙卷第21题)已知函数f (x )=l n (1+x )+a x e -x.(1)当a =1时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若f (x )在区间(-1,0),(0,+ɕ)各恰有一个零点,求a 的取值范围.2试题解析本题的第(1)问不多赘述,下面给出第(2)问的几种不同的思考角度和解题方法.2.1思路一及解法2.1.1解题思路一的形成因为题中所给条件是函数零点问题,所以我们先观察函数值的正负情况以及何时为零.当a ȡ0时,若x >0,则f (x )=l n (1+x )+a x e -x>0恒成立,与题意不符.因此,下面只讨论a <0时的情形.通过观察易知f (0)=0,当x ң-1时,f (x )ң-ɕ;当x ң+ɕ时,f (x )ң+ɕ.要使f (x )在区间(-1,0),(0,+ɕ)各恰有一个零点,则可以猜测f (x )的图象大致如图1所示.图1由图1可知,fᶄ(0)=a +1<0显然为其必要条件,即a <-1.下面需要说明:①当a ȡ-1时,不符合题意;②当a <-1时,讨论函数f (x )的单调性,再根据零点存在定理说明在区间(-1,0)和(0,+ɕ)上各恰有一个零点.思路一的思维导图如图2所示.函数f (x )零点问题观察函数的零点及正负情况确定讨论a 的标准说明a ȡ0和-1ɤa <0时不符合题意当a <-1时,利用隐零点讨论f (x )的单调性,并区间探点,说明a <-1时符合题意得出结论图22.1.2具体解法解法1:由思路一的分析可知a ȡ0不合题意,下面只讨论a <0时的情形.由f (x )求导,得f ᶄ(x )=e x +a (1-x 2)(x +1)ex.设g (x )=e x +a (1-x 2).当-1ɤa <0时,在区间(0,+ɕ)上,有g (x )=e x +a (1-x 2)=(e x+a )-a x 2>0.所以,在区间(0,+ɕ)上,f ᶄ(x )>0,f (x )单调递增,则f (x )>f (0)=0,这与题意不符.当a <-1时,g ᶄ(x )=e x-2a x ,因为g ᵡ(x )=e x-2a >0,所以g ᶄ(x )在区间(-1,+ɕ)上单调递增.又因为g ᶄ(-1)=e -1+2a <0,gᶄ(0)=1>0,所以存在唯一x 0ɪ(-1,0),使g ᶄ(x 0)=0.因此,当x ɪ(-1,x 0)时,g ᶄ(x )<0,g(x )单调递减;当x ɪ(x 0,+ɕ)时,g ᶄ(x)>0,g (x )单调递增.(为直观起见,下面分别画出函数g ᶄ(x ),g (x ),f (x )的大致图象,如图3~5所示.)图3㊀㊀图4322022年12月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀试题研究命题考试Copyright ©博看网. All Rights Reserved.㊀㊀㊀图5于是g (x 0)<g (0)=a +1<0,又因为g (-1)=1e >0,g (1)=e >0,所以存在x 1ɪ(-1,x 0),x 2ɪ(x 0,1),使g (x 1)=g (x 2)=0.当x ɪ(-1,x 1)时,g (x )>0,f ᶄ(x )>0,f (x )单调递增;当x ɪ(x 1,x 2)时,g (x )<0,f ᶄ(x )<0,f (x )单调递减;当x ɪ(x 2,+ɕ)时,g (x )>0,fᶄ(x )>0,f (x )单调递增.同时可知f (x 1)>f (0)=0,f (x 2)<f (0)=0.(至此,利用隐零点求出了函数f (x )的单调区间.下面利用放缩法进行区间卡根,根据零点存在定理说明在区间(-1,0)和(0,+ɕ)上各恰有一个零点.)当-1<x <0时,因为x e -x>-e(证明略),所以f (x )=l n (1+x )+a x e -x<l n (x +1)-e a .由l n (x +1)-e a <0,得x <e e a -1.取m =e e a-1,则f (m )<0,从而存在唯一s ɪ(m ,x 1),使f (s )=0.当x >0时,因为x e -xɤ1e (证明略),所以f (x )=l n (1+x )+a x e -x>l n (x +1)+a e.由l n (x +1)+a e>0,得x >e -a e-1.取n =e -a e-1,则f (n )>0,从而存在唯一t ɪ(x 2,n ),使f (t )=0.所以,当a <-1时,函数f (x )区间(-1,0)和(0,+ɕ)上各恰有一个零点.综上所述,a 的取值范围是(-ɕ,-1).解法2:当a ȡ0时,在区间(0,+ɕ)上,f (x )=l n (1+x )+a x e -x>0,与题意不符.下面只讨论a <0时的情形.由f (x )求导得f ᶄ(x )=1x +1+a (1-x )ex=1x +1[1+a (1-x 2)e x].(注意常见的变形技巧:对数 单身狗 ,指数 找朋友 .)设g (x )=1+a (1-x 2)ex,x ɪ(-1,+ɕ).求导,得g ᶄ(x )=a (x 2-2x -1)ex,x ɪ(-1,+ɕ).易得g (x )在(-1,1-2)上单调递减,在(1-2,1+2)上单调递增,在(1+2,+ɕ)上单调递增.当-1ɤa <0时,g (0)=a +1ȡ0,又因为当x >1+2时,g (x )=1+a (1-x 2)ex>1,所以当x >0时,g (x )>0,f ᶄ(x )>0,f (x )单调递增,从而f (x )>f (0)=0,这与题意不符.(为直观起见,给出g (x )的图象,如图6所示.)图6当a <-1时,g (0)=a +1<0,因为g (-1)=g (1)=1>0,g (1-2)<g (0)<0,所以存在唯一x 1ɪ(-1,0),x 2ɪ(0,1),使g (x 1)=g (x 2)=0.此时f (x )在(-1,x 1)上单调递增,(x 1,x 2)上单调递减,在(x 2,+ɕ)上单调递增.故f (x 1)>f (0)=0>f (x 2).(为直观起见,给出g (x ),f (x )的图象,如图7.)㊀图7下面找点说明f (x )在区间(-1,0),(0,+ɕ)上有零点.f (x )=l n (1+x )+a xex (a <-1).设m (x )=x e x ,则x ɪ(-1,1)时,m ᶄ(x )=1-xex >0,x ɪ(1,+ɕ)时,m ᶄ(x )<0.于是m (x )ɪ-e ,1e æèçöø÷.所以,可得l n (1+x )+ae<l n (1+x )+a xex <l n (1+x )-a e .由l n (1+x )+a e=0,解得x =e -ae-1>0,f (e -a e-1)>l n (1+e --1)+a e=0.由l n (1+x )-a e =0,解得x =e e a-1.所以可得f (e a e -1)<l n (1+e a e-1)-a e =0.所以f (x )在区间(-1,0),(0,+ɕ)上各恰有一个零点.综上所述,a 的取值范围是(-ɕ,-1).点评:解法1和解法2的基本思路一样,都是按照一定的标准对参数a 进行分类讨论,然后借助隐零点将函数的定义域分成若干个单调区间,最后在每个单调区间上卡根,根据零点存在定理说明函数零点的情况.解法2在求导后将导函数等价变形,使再求导后只需解一个不含参的二次不等式,简化了运算.解题一般是按照由易到难的顺序进行思考,即先42命题考试试题研究㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年12月上半月Copyright ©博看网. All Rights Reserved.㊀㊀㊀观察㊁猜想,再分析㊁思辨,最后论证㊁求解.题目越复杂越要注意细节,细节往往是打通解题思路的关键.2.2思路二及解法2.2.1解题思路二的形成函数零点的问题往往可以转化为两个函数图象交点问题,因此该题可以考虑参变分离,将函数零点的问题转化为直线与另一个函数图象交点问题,同时还可以避免参数讨论带来的麻烦.思路二的思维导图,如图8所示.函数f (x )零点问题转化为直线y =-a 与y =F (x )图象交点问题求导后,讨论F ᶄ(x )的符号及F (x )的单调性x >0时,求出F (x )在x =0处的极限,由图可得a <-1当x <0时,利用隐零点,讨论F (x )的单调性,并求出F (x )当x 趋于-1时的极限,由图可得a <-1得出结论图82.2.2具体解法解法3:因为f (0)=0,所以f (x )=0等价于-a =e x l n (1+x )x.令F (x )=e x l n (1+x )x (x >-1),则F ᶄ(x )=e x[(x 2-1)l n (1+x )+x ]x 2(x +1).令g (x )=(x 2-1)l n (1+x )+x ,则gᶄ(x )=x [1+2l n (1+x )].(注意到g (0)=0,所以先讨论g (x )在x >0时的正负情况.)当x >0时,gᶄ(x )>0,则g (x )单调递增,g (x )>g (0)=0,从而当x >0时,F ᶄ(x )>0,F (x )在(0,+ɕ)单调递增.由导数定义,得㊀F (x )>l i m x ң0F (x )=l i m x ң0e xl n (1+x )-e 0l n (1+0)x -0=[e xl n (1+x )]ᶄ|x =0=[e x 11+x +e xl n (1+x )]|x =0=1.(为直观起见,下面给出F (x )的图象.)图9如图9所示,要使直线y =a 与F (x )图象在y 轴右侧恰有一个交点,则必然有-a >1,即a <-1.因为e e l n (1+e -a )e-a+a >l n (1+e -a )+a >l n e -a+a =0,所以由零点存在定理可知,a <-1时,f (x )在区间(0,+ɕ)恰有一个零点.当-1<x <0时,令g ᶄ(x )=0,得x =e --1.易知g (x )在(-1,e -12-1)上单调递增,在(e -12-1,0)上单调递减,则g (e -12-1)>g (0)=0.因为g (e -1-1)=-e 2+3e -1e2<0,所以存在唯一x 0ɪ(e -1-1,e -12-1),使g (x 0)=0.(为直观起见,给出g (x ),F (x )的图象,如图10.)㊀㊀图10当-1<x <x 0时,g (x )<0,F ᶄ(x )<0,F (x )单调递减;当x 0<x <0时,g (x )>0,F ᶄ(x )>0,F (x )单调递增.所以F (x 0)<l i m x ң0F (x )=1.又因为l i m x ң-1F (x )=+ɕ,所以要使直线y =a 与f (x )图象在y 轴左侧恰有一个交点,则必然有-a >1,即a <-1.综上所述,当a <-1时,f (x )在区间(-1,0),(0,+ɕ)各恰有一个零点.点评:解法3的好处在于对F (x )求导后避免了参数的讨论;难点在于当x 趋于0时F (x )的极限值不易求出,虽然可用洛必达法则,但是超出了高中所学.该解法绕开了洛必达法则,利用导数的定义求出F (x )在x =0处的极限,比较巧妙,不易想到.3试题链接下面给出两道高考真题,供读者练习.试题1㊀(2017年全国Ⅰ卷理科)已知函数f (x )=a e 2x +(a -2)e x-x .(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.试题2㊀(2018年全国Ⅱ卷理科)已知函数f (x )=e x-a x 2.(1)若a =1,证明:当x ȡ0时,f (x )ȡ1;(2)若f (x )在(0,+ɕ)只有一个零点,求a .4总结函数零点问题是高考的常考内容,数形并用㊁合理分类是解题的关键.区间探点是一个难点,常常可以用放缩法解决.上述方法都是解决此类问题的典型方法,由于方法3中的极限值不易求出,考试中绝大多数考生选择了方法1和方法2.该题对学生的逻辑推理能力和运算能力要求较高,解题时要求学生注意细节㊁大胆猜想㊁合理分类㊁准确计算,这样才能将问题顺利解决.Z522022年12月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀试题研究命题考试Copyright ©博看网. All Rights Reserved.。

高考导数压轴题

高考导数压轴题

高考导数压轴题高考导数压轴题导数是高中数学的一大难点,其重要性不言而喻,也成为了高考数学必考的一部分。

对于高考来说,导数是一个非常重要的考点,而在导数的知识体系之中,高考常常考查一些难度稍大,较为综合的题目,即所谓的“导数压轴题”。

一、导数压轴题的特点导数压轴题,通常具有以下几个特点:1. 难度较高:导数压轴题是导数知识体系中比较难的题目,往往需要考生具备较为深厚的数学功底,以及熟练掌握导数的相关知识点。

2. 基础知识多:导数压轴题通常需要考生综合运用导数的各种知识点,包括但不限于导数的定义、导数的计算方法、导数的几何意义等。

3. 综合性强:导数压轴题不像其他知识点一样“纯粹”,往往需要考生融入自己的数学思想,并从不同的方面综合运用导数知识点,解决一些较为综合、较为难度的问题。

4. 涉及面宽:导数压轴题可能会涉及到其他高中数学的相关知识点,如函数极值、最值区间等等。

二、导数压轴题的例子以下是一些典型的导数压轴题例子:1. 求函数$f(x)=x^3-3x^2$的最小值。

解法:首先求导,得到$f'(x)=3x^2-6x$。

令$f'(x)=0$,解得$x=0,2$。

由于$f'(0)<0$,$f'(2)>0$,所以$x=2$是$f$的极小值点,代入原函数可得最小值$f(2)=-4$。

2. 求曲线$y=\sqrt{x^2+4}$上的一条切线,该切线平行于直线$y=2x$。

解法:首先求导,得到$y'=\frac{x}{\sqrt{x^2+4}}$。

则此时曲线上任一点$(x_0,y_0)$处的切线斜率为$y_0'=y'(x_0)=\frac{x_0}{\sqrt{x_0^2+4}}$。

因为切线与直线$y=2x$平行,故其斜率为$2$,即$$\frac{x_0}{\sqrt{x_0^2+4}}=2$$ 解得$x_0=4$,代入原方程可得$y_0=4\sqrt{2}$。

洛必达法则巧解高考数学压轴题_函数与导数中的参数问题求解_唐伟

洛必达法则巧解高考数学压轴题_函数与导数中的参数问题求解_唐伟

x2 + 4x + 2 则有k ≥ g(x) , max 2ex (x + 1)
2 4x + 2 , (4) 若 x ∈ [ 0, + ∞) , 有 k≥ x + 令 g(x) = 2ex (x + 1)
g(x) max=g(0) = 1, 所以k ≥ 1
又 g′(x) =
ห้องสมุดไป่ตู้
-2ex x(x + 2)2 , 当 x ∈ [ 0, + ∞) 时, g′(x)>0, [2ex (x + 1)]2
又 g′(x) = 单调递增.
三、 解决思路
-2ex x(x + 2)2 , 当x ∈[-1,0]时, g′(x)>0,g(x) x 2 [2e (x + 1)]
例1 (2013 年全国卷 · 理) 已知函数 f(x)=x2+ax+ b, g(x) =ex(cx + d), 若曲线 y=f(x) 和曲线 y=g(x) 都过 点 P(0, 2), 且在点 P 处有相同的切线 y=4x+2
· 54 ·
考试与复习
g(x)单调递增.
程为 x+2y-3=0.
f (x) = a ln x + b , 曲线 y = f(x)在点 (1,f (1) ) 处的切线方 x+1 x
例 2 (2011 年 全 国 卷 · 理 ) 已 知 函 数
综上所述, k的取值范围为[1,e2].
g(x) max=g(0) = 1, 所以k ≥ 1
h( x) = xex - 2ex + x + 2 ( x > 0 )



(x = 2∙

高考满分数学压轴题22 导数中的参数问题(可编辑可打印)

高考满分数学压轴题22 导数中的参数问题(可编辑可打印)

【方法综述】导数中的参数问题主要指的是形如“已知不等式恒成立、存在性、方程的根、零点等条件,求解参数的取值或取值范围”.这类问题在近几年的高考中,或多或少都有在压轴选填题或解答题中出现,属于压轴常见题型。

而要解决这类型的题目的关键,突破口在于如何处理参数,本专题主要介绍分离参数法、分类讨论法及变换主元法等,从而解决常见的导数中的参数问题。

【解答策略】一.分离参数法分离参数法是处理参数问题中最常见的一种手段,是把参数和自变量进行分离,分离到等式或不等式的两边(当然部分题目半分离也是可以的),从而消除参数的影响,把含参问题转化为不含参数的最值、单调性、零点等问题,当然使用这种方法的前提是可以进行自变量和参数的分离. 1.形如()()af x g x =或()()af x g x <(其中()f x 符号确定)该类题型,我们可以把参数和自变量进行完全分离,从而把含参数问题转化为不含参数的最值、单调性或图像问题.例1.已知函数432121()ln 432e f x x x ax x x x =-++-在(0,)+∞上单调递增,则实数a 的取值范围是 A .21[,)e e++∞B .(0,]eC .21[2,)e e--+∞ D .[21,)e -+∞【来源】广东省茂名市五校2020-2021学年高三上学期第一次(10月)联考数学(理)试题 【答案】A【解析】32()2ln 0f x x ex ax x '=-+-≥在(0,)+∞上恒成立2ln 2xa ex x x⇔≥+-, 设2ln ()2x p x ex x x =+-,221ln 2()()x e x x p x x-+-'=, 当0x e <<时,()0p x '>;当x e >时,()0p x '<;()p x ∴在(0,)e 单调递增,在(,)e +∞单调递减,21()()p x p e e e∴≤=+,21a e e ∴≥+.故选:A .导数中的参数问题【举一反三】1.(2020·宣威市第五中学高三(理))若函数()f x 与()g x 满足:存在实数t ,使得()()f t g t '=,则称函数()g x 为()f x 的“友导”函数.已知函数21()32g x kx x =-+为函数()2ln f x x x x =+的“友导”函数,则k 的最小值为( ) A .12B .1C .2D .52【答案】C【解析】()1g x kx '=-,由题意,()g x 为函数()f x 的“友导”函数,即方程2ln 1x x x kx +=-有解,故1ln 1k x x x=++, 记1()ln 1p x x x x =++,则22211()1ln ln x p x x x x x-'=+-=+, 当1x >时,2210x x ->,ln 0x >,故()0p x '>,故()p x 递增; 当01x <<时,2210x x-<,ln 0x <,故()0p x '<,故()p x 递减, 故()(1)2p x p ≥=,故由方程1ln 1k x x x=++有解,得2k ≥,所以k 的最小值为2.故选:C. 2.(2020·广东中山纪念中学高三月考)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为( )A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦C .(20,2e ⎤⎦D .(30,2e ⎤⎦【答案】B【解析】由12f a -=-+() ,可得222alnx x a --≤-+ 在0x > 恒成立, 即为a (1-lnx )≥-x 2,当x e = 时,0e -> 2显然成立;当0x e << 时,有10lnx -> ,可得21x a lnx ≥-,设201x g x x e lnx =-(),<<,222(1)(23)(1)(1)x lnx x x lnx g x lnx lnx (),---'==-- 由0x e << 时,223lnx << ,则0g x g x ()<,()'在0e (,)递减,且0g x ()< , 可得0a ≥ ;当x e > 时,有10lnx -< ,可得21x a lnx ≤- , 设22(23)1(1)x x lnx g x x e g x lnx lnx -='=--(),>,(), 由32 e x e << 时,0g x g x ()<,()' 在32 e e (,)递减, 由32x e >时,0g x g x '()>,() 在32 ,x e ⎛⎫+∞ ⎪⎝⎭递增, 即有)g x ( 在32x e = 处取得极小值,且为最小值32e , 可得32a e ≤ ,综上可得302a e ≤≤ .故选B .3.(2020湖南省永州市高三)若存在,使得成立,则实数的取值范围是( )A .B .C .D .【答案】D 【解析】原不等式等价于:令,则存在,使得成立又 当时,,则单调递增;当时,,则单调递减,,即当且仅当,即时取等号,即,本题正确选项:2.形如()(),f x a g x =或()()af x g x <(其中(),f x a 是关于x 一次函数)该类题型中,参数与自变量可以半分离,等式或不等式一边是含有参数的一次函数,参数对一次函数图像的影响是比较容易分析的,故而再利用数形结合思想就很容易解决该类题目了.【例2】已知函数2ln 1()x mx f x x+-=有两个零点a b 、,且存在唯一的整数0(,)x a b ∈,则实数m 的取值范围是( )A .0,2e ⎛⎫ ⎪⎝⎭B .ln 2,14e ⎡⎫⎪⎢⎣⎭ C .ln 3,92e e ⎡⎫⎪⎢⎣⎭ D .ln 2e 0,4⎛⎫ ⎪⎝⎭【答案】B【解析】由题意2ln 1()0x mx f x x+-==,得2ln 1x m x +=, 设2ln 1()(0)x h x x x +=>,求导4332(ln 1)12(ln 1)(2ln 1)()x x x x x h x x x x-+-+-+'=== 令()0h x '=,解得12x e -=当120x e -<<时,()0h x '>,()h x 单调递增;当12x e ->时,()0h x '<,()h x 单调递减; 故当12x e -=时,函数取得极大值,且12()2e h e -=又1=x e时,()0h x =;当x →+∞时,2ln 10,0x x +>>,故()0h x →; 作出函数大致图像,如图所示:又(1)1h =,ln 21ln 2(2)44eh +== 因为存在唯一的整数0(,)x a b ∈,使得y m =与2ln 1()x h x x+=的图象有两个交点, 由图可知:(2)(1)h m h ≤<,即ln 214em ≤< 故选:B.【方法点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 【举一反三】1.(2020·重庆市第三十七中学校高三(理))已知函数32()32f x x x ax a =-+--,若刚好有两个正整数(1,2)i x i =使得()0i f x >,则实数a 的取值范围是( )A .20,3⎡⎫⎪⎢⎣⎭B .20,3⎛⎤ ⎥⎦⎝C .2,13⎡⎫⎪⎢⎣⎭D .1,13⎡⎫⎪⎢⎣⎭【答案】A【解析】令32()3,()(2)()()()g x x x h x a x f x g x h x =-+=+∴=-,且2'()36g x x x =-+, 因为刚好有两个正整数(1,2)i x i =使得()0i f x >,即()()i i g x h x >, 作出(),()g x h x 的图象,如图所示,其中()h x 过定点(2,0)-,直线斜率为a ,由图可知,203a ≤≤时, 有且仅有两个点()()1,2,2,4满足条件, 即有且仅有121,2x x ==使得()0i f x >. 实数a 的取值范围是20,3⎛⎤ ⎥⎦⎝,故选:A2(2020济宁市高三模拟)已知当时,关于的方程有唯一实数解,则所在的区间是( ) A .(3,4) B .(4,5)C .(5,6)D .(6.7)【答案】C 【解析】由xlnx+(3﹣a )x+a =0,得,令f (x )(x >1),则f′(x ).令g (x )=x ﹣lnx ﹣4,则g′(x )=10,∴g(x )在(1,+∞)上为增函数, ∵g(5)=1﹣ln5<0,g (6)=2﹣ln6>0, ∴存在唯一x 0∈(5,6),使得g (x 0)=0,∴当x∈(1,x 0)时,f′(x )<0,当x∈(x 0,+∞)时,f′(x )>0. 则f (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增.∴f(x)min=f(x0).∵﹣4=0,∴,则∈(5,6).∴a所在的区间是(5,6).故选:C3.(2020蚌埠市高三)定义在上的函数满足,且,不等式有解,则正实数的取值范围是()A.B.C.D.【答案】C【解析】因为,故,因,所以即.不等式有解可化为即在有解.令,则,当时,,在上为增函数;当时,,在上为减函数;故,所以,故选C.二.分类讨论法分类讨论法是指通过分析参数对函数相应性质的影响,然后划分情况进行相应分析,解决问题的方法,该类方法的关键是找到讨论的依据或分类的情况,该方法一般在分离参数法无法解决问题的情况下,才考虑采用,常见的有二次型和指对数型讨论. 1.二次型根的分布或不等式解集讨论该类题型在进行求解过程,关键步骤出现求解含参数二次不等式或二次方程, 可以依次考虑依次根据对应定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较)为讨论的依据,进行分类讨论,然后做出简图即可解决.【例3】(2020·全国高三专题)函数()()23xf x x e =-,关于x 的方程()()210fx mf x -+=恰有四个不同实数根,则正数m 的取值范围为( ) A .()0,2 B .()2,+∞C .3360,6e e ⎛⎫+ ⎪⎝⎭D .336,6e e ⎛⎫++∞ ⎪⎝⎭【答案】D 【解析】【分析】利用导函数讨论函数单调性与极值情况,转化为讨论210t mt -+=的根的情况,结合根的分布求解.【详解】()()()()22331x xx x e x f e x x =+-=+-',令()0f x '=,得3x =-或1x =,当3x <-时,()0f x '>,函数()f x 在(),3-∞-上单调递增,且()0f x >; 当31x -<<时,()0f x '<,函数()f x 在()3,1-上单调递减; 当1x >时,()0f x '>,函数()f x 在()1,+∞上单调递增. 所以极大值()363f e-=,极小值()12f e =-,作出大致图象:令()f x t =,则方程210t mt -+=有两个不同的实数根,且一个根在360,e ⎛⎫ ⎪⎝⎭内,另一个根在36,e ⎛⎫+∞ ⎪⎝⎭内, 或者两个根都在()2,0e -内.因为两根之和m 为正数,所以两个根不可能在()2,0e -内.令()21g x x mx =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,即6336610m e e -+<,得3366e m e >+,即m 的取值范围为336,6e e ⎛⎫++∞ ⎪⎝⎭.故选:D【举一反三】1.(2020·湖南衡阳市一中高三月考(理))已知函数()f x kx =,ln ()xg x x=,若关于x 的方程()()f x g x =在区间1[,]e e内有两个实数解,则实数k 的取值范围是( )A .211[,)2e eB .11(,]2e eC .21(0,)e D .1(,)e+∞【答案】A【解析】易知当k ≤0时,方程只有一个解,所以k >0.令2()ln h x kx x =-,2121(21)(21)()2kx k x k x h x kx x x x--+=-==', 令()0h x '=得12x k =,12x k=为函数的极小值点, 又关于x 的方程()f x =()g x 在区间1[,]e e内有两个实数解,所以()01()01()02112h e h e h k e ek ≥⎧⎪⎪≥⎪⎪⎨<⎪⎪⎪<<⎪⎩,解得211[,)2k e e ∈,故选A.2.(2020扬州中学高三模拟)已知函数有两个不同的极值点,,若不等式恒成立,则实数的取值范围是_______.【答案】【解析】∵,∴.∵函数有两个不同的极值点,,∴,是方程的两个实数根,且,∴,且,解得.由题意得.令,则,∴在上单调递增,∴.又不等式恒成立,∴,∴实数的取值范围是.故答案为.2.指数对数型解集或根的讨论该类题型在进行求解过程,关键步骤出现求解含参指对数型不等式或方程, 可以依次考虑依次根据对应指对数方程的根大小(或与固定区间端点的大小)为讨论的依据,进行分类讨论. 即可解决.【例4】(2020•泉州模拟)已知函数f (x )=ae x ﹣x ﹣ae ,若存在a ∈(﹣1,1),使得关于x 的不等式f (x ) ﹣k ≥0恒成立,则k 的取值范围为( ) A .(﹣∞,﹣1] B .(﹣∞,﹣1)C .(﹣∞,0]D .(﹣∞,0)【答案】A【解析】不等式f (x )﹣k ≥0恒成立,即k ≤f (x )恒成立; 则问题化为存在a ∈(﹣1,1),函数f (x )=ae x ﹣x ﹣ae 有最小值,又f ′(x )=ae x ﹣1,当a ∈(﹣1,0]时,f ′(x )≤0,f (x )是单调减函数,不存在最小值; 当a ∈(0,1)时,令f ′(x )=0,得e x =,解得x =﹣lna , 即x =﹣lna 时,f (x )有最小值为f (﹣lna )=1+lna ﹣ae ; 设g (a )=1+lna ﹣ae ,其中a ∈(0,1),则g ′(a )=﹣e ,令g ′(a )=0,解得a =,所以a ∈(0,)时,g ′(a )>0,g (a )单调递增;a ∈(,1)时,g ′(a )<0,g (a )单调递减;所以g (a )的最大值为g ()=1+ln ﹣•e =﹣1; 所以存在a ∈(0,1)时,使得关于x 的不等式f (x )﹣k ≥0恒成立,则k 的取值范围是(﹣∞,﹣1].故选:A . 【举一反三】1.函数()()211,12x f x x e kx k ⎛⎫⎛⎤=--∈⎪⎥⎝⎦⎝⎭,则()f x 在[]0,k 的最大值()h k =( ) A . ()32ln22ln2-- B . 1- C . ()22ln22ln2k -- D . ()31k k e k --【答案】D2.(2020·浙江省杭州第二中学高三期中)已知函数()f x 的图象在点()00,x y 处的切线为():l y g x =,若函数()f x 满足x I ∀∈(其中I 为函数()f x 的定义域,当0x x ≠时,()()()00f x g x x x -->⎡⎤⎣⎦恒成立,则称0x 为函数()f x 的“转折点”,已知函数()2122x f x e ax x =--在区间[]0,1上存在一个“转折点”,则a 的取值范围是 A .[]0,e B .[]1,eC .[]1,+∞D .(],e -∞ 【答案】B【解析】由题可得()2xf x e ax =--',则在()00,x y 点处的切线的斜率()0002xk f x e ax ==--',0200122x y e ax x =--,所以函数()f x 的图象在点()00,x y 处的切线方程为:00200001(2)(2)()2x x y e ax x e ax x x ---=---,即切线()00200001:=(2)()+22x xl y g x e ax x x e ax x =-----,令()()()h x f x g x =-, 则002200011()2(2)()222x x xh x e ax x e ax x x e ax x =-------++,且0()0h x = 0000()2(2)=+x x x x h x e ax e ax e ax e ax =-------',且0()0h x '=,()x h x e a ='-',(1)当0a ≤时,()0xh x e a =-'>',则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(2)当01a <<时, ()0xh x e a =-'>'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=,所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(3)当1a =,()10x h x e =-'≥'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,取00x =,则()10x h x e x =-->',所以()h x 在区间(]0,1上单调递增,0()()0h x h x >=,当00x x ≠=时,0()()0h x x x ->恒成立,故00x =为函数()2122x f x e ax x =--在区间[]0,1上的一个“转折点”,满足题意。

(完整word版)高考数学导数压轴题7大题型总结

(完整word版)高考数学导数压轴题7大题型总结

高考数学导数压轴题7大题型总结
北京八中
高考数学导数压轴题7大题型总结
高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。

导数解答题是高考数学必考题目,今天就总结导数7大题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题
01导数单调性、极值、最值的直接应用
02交点与根的分布
03不等式证明
(一)做差证明不等式
(二)变形构造函数证明不等式
(三)替换构造不等式证明不等式
04不等式恒成立求字母范围(一)恒成立之最值的直接应用
(二)恒成立之分离参数
(三)恒成立之讨论字母范围
05函数与导数性质的综合运用
06导数应用题
07导数结合三角函数。

导数学习路线

导数学习路线

导数学习路线
导数学习路线如下:
1.理解导数的定义:导数是微积分中的重要概念,表示函数在某一点的变化率和方向。

可以从教材或辅导书中学习导数的定义和背景,理解瞬时速度和切线斜率的概念。

2.利用导数求函数单调性:函数的单调性与其导数的符号有关。

掌握如何利用导数判断函数的单调性,包括讨论含有参数的函数的单调性。

3.极值与最值:极值和最值是函数的重要性质,可以通过导数来求解。

理解极值和最值的概念,掌握利用导数求极值和最值的方法。

4.恒成立与存在性问题求参数范围:这是高考压轴题的常见题型,可以利用导数来解决。

理解恒成立和存在性问题的概念,掌握利用导数求参数范围的方法。

5.研究真题与专题总结:通过研究历年真题和进行专题总结,可以加深对导数理解和应用的认识,提高解题能力。

导数的学习需要理解概念、掌握方法、多做练习、研究真题和总结经验。

在学习过程中要注意逐步提高自己的数学素养和解题能力。

高考数学压轴题之当导数遇到三角

高考数学压轴题之当导数遇到三角

x)
对任意
x

[0,
+∞)
恒成立,求实数
a
的取值范围.
【解析】(I) a = −1时, F(x) = x2 − 2x + ln x − x = x2 − 3x + ln x.求导,得
F′(x) = 2x − 3 + 1 = 2x2 − 3x + 1 = (2x − 1)(x − 1) .
x
x
x
当 x ∈(0, 1) 时, F′(x) > 0 , F(x) 单调递增; 2
(I)求曲线
y
=
f
(x)
在点
π (
,
f
π ( ))
处的切线方程;
22
(II)若不等式 f (x) ≥ axcos x 在区间[0, π]上恒成立,求实数 a 的取值范围. 2 (2019 年北京市东城区第二次模拟理科试题)
【解析】(Ⅰ)因为
f
(x)
=
x
+
sin
x
,所以
f
′(x)
=
1+
cos
x
,f
′( π)
a

1 + 2 cos x (2 + cos x)2
t = 2 + cos x ∈[1, 3]
,由 ,从而 1+ 2cos x
(2 + cos x)2
=
2t − 3 t2
=
−3 t2
+
2 t
=
−3(1 − 1)2 t3
+1 3
1 ∈[1 ,1] t3
1 + 2 cos x (2 + cos x)2

2023届高考数学二轮复习导数经典技巧与方法:洛必达法则

2023届高考数学二轮复习导数经典技巧与方法:洛必达法则

第5讲洛必达法则知识与方法与函数导数相关的压轴题,一般需要确定函数的值域和参数的取值范围,其传统做法是构造函数,然后通过分类讨论,求导分析单调性进行,过程相对复杂繁琐,且分类的情况较多.并且我们采用分离参数时,往往还会出现最值难以求解的情况,这时,我们就可以考虑使用“洛必达法则”来简化解题过程,快速解题.下面,我们先来介绍一下洛必达法则:法则1:若函数f(x)和g(x)满足下列条件:(1)lim x→a f(x)=0及lim x→a g(x)=0;(2)在点a的去心邻域内,f(x)与g(x)可导,且g′(x)≠0;(3)lim x→a f ′(x)g′(x)=l.那么lim x→a f(x)g(x)=lim x→a f′(x)g′(x)=l.法则2:若函数f(x)和g(x)满足下列条件:(1)lim x→∞f(x)=0及lim x→∞g(x)=0;(2)∃A>0,f(x)和g(x)在(−∞,A)与(A,+∞)内可导,且g′(x)≠0;(3)lim x→∞f ′(x)g′(x)=l.那么lim x→∞f(x)g(x)=lim x→∞f′(x)g′(x)=l.法则3:若函数f(x)和g(x)满足下列条件:(1)lim x→a f(x)=∞及lim x→a g(x)=∞;(2)在点a的去心邻域内,f(x)与g(x)可导,且g′(x)≠0;(3)lim x→a f ′(x)g′(x)=l.那么lim x→a f(x)g(x)=lim x→a f′(x)g′(x)=l.利用洛必达法则解题时,应点睛意:①将上面公式中的x→a,x→∞换成x→+∞,x→−∞,x→a+,x→a−,洛必达法则也成立.②洛必达法则可处理00,∞∞,0⋅∞,1∞,∞0,00,∞−∞型.③在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,∞0,00,∞−∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.④若条件符合,洛必达法则可连续多次使用,直到求出极限为止.典型例题【例1】已知f(x)=(x+1)lnx.(1)求f(x)的单调区间;(2)若对于任意x≥1,不等式x[f(x)x+1−ax]+a≤0成立,求a的取值范围.【解析】(1)f(x)的定义域为(0,+∞),f′(x)=lnx+1+1x,令g(x)=lnx+1+1x (x>0),则g′(x)=1x−1x2=x−1x2,所以当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以x>0时,g(x)≥g(1)=2>0,即f(x)在(0,+∞)上单调递增.所以f(x)的单调递增区间为(0,+∞),无减区间.(2)解法1:分离参数+洛必达法则对任意x≥1,不等式x[f(x)x+1−ax]+a≤0成立等价于对任意x≥1,lnx−a(x−1x)≤0恒成立.当x=1时,a∈R;对任意x>1,不等式x[f(x)x+1−ax]+a≤0恒成立等价于对任意x>1,a≥xlnxx2−1恒成立.记m(x)=xlnxx2−1(x>1),则m′(x)=(1+lnx)(x2−1)−2x2lnx(x2−1)2=x2−1−(1+x2)lnx(x2−1)2=1x2+1(1−2x2+1−lnx)(x2−1)2.记t(x)=1−21+x2−lnx(x>1),则t′(x)=4x(1+x2)2−1x=4x2−(1+x2)2x(1+x2)2=−(1−x2)2x(1+x2)2<0,所以t(x)在(1,+∞)单调递减,又t(1)=0,所以x>1时,t(x)<0,m′(x)<0,所以m(x)在(1,+∞)单调递减.所以m(x)max<m(1)=lim x→1xlnxx2−1=lim x→1xlnxx+1−0x−1=lim x→1x+1−lnx(x+1)2=12.综上所述,实数a的取值是[12,+∞).解法2:直接讨论+分类讨论“对任意x≥1,不等式x[f(x)x+1−ax]+a≤0恒成立”等价于“对任意x≥1,不等式x(lnx−ax)+a≤0恒成立”.令ℎ(x)=xlnx−ax2+a(x≥1),则ℎ′(x)=1+lnx−2ax,令m(x)=1+lnx−2ax(x≥1),则m′(x)=1x−2a.①当2a≥1,即a≥12时,因为x≥1,所以0<1x≤1,所以m′(x)≤0,从而m(x)在[1,+∞)上单调递减,又m(1)=1−2a≤0,所以x≥1时,m(x)≤0,即ℎ′(x)≤0,所以ℎ(x)在[1,+∞)上单调递减,又ℎ(1)=0,所以当x≥1时,ℎ(x)≤0,即a≥12符合题意;②若0<2a<1,即0<a<12时,所以1≤x<12a时,m(x)≥m(1)=1−2a>0,即ℎ′(x)>0,所以ℎ(x)在[1,12a)单调递增.所以当1≤x<12a时,ℎ(x)≥ℎ(1)=0,故0<2a<1不符合题意.③若a≤0时,则m′(x)≥0恒成立,所以m(x)在[1,+∞)上单调递增,故当x≥1时,m(x)≥m(1)=1−2a>0,即ℎ′(x)>0,所以ℎ(x)在[1,+∞)上单调递增,所以当x≥1时,ℎ(x)≥ℎ(1)=0,故x(lnx−ax)+a≥0恒成立.综上所述,实数a的取值范围是[12,+∞).解法3:构造函数+分类讨论对任意x≥1,不等式x[f(x)x+1−ax]+a≤0恒成立等价于对任意x≥1,lnx−a(x−1x)≤0恒成立.令t(x)=lnx−a(x−1x)(x≥1),则t′(x)=1x −a(1+1x2)=−ax2−x+ax2,记Δ=1−4a2.①当a≥12时,Δ≤0,此时t′(x)≤0,t(x)在[1,+∞)单调递减,又t(1)=0,所以x≥1时,t(x)≤0,即对任意x≥1,lnx−a(x−1x)≤0恒成立;②当a≤−12时,Δ≤0,此时t′(x)≥0,t(x)在[1,+∞)单调递增,又t(1)=0,所以x≥1时,t(x)≥0,即对任意x≥1,lnx−a(x−1x)≥0恒成立,不符合题意;③当a=0时,不等式转化为lnx≤0(x≥1),显然不成立;④当−12<a<12,且a≠0时,方程ax2−x+a=0的二根为x1=1+√1−4a22a,x2=1−√1−4a22a.若0<a<12,x1>1,0<x2<1,则t(x)在(1,x1)单调递增,又t(1)=0,所以x∈(1,x1),t(x)≥0,即不等式lnx−a(x−1x)≤0不恒成立;⑤若−12<a<0,x1<x2<0,则t(x)在(1,+∞)上单调递增,又t(1)=0,所以x∈[1,+∞)时,t(x)≥0,即不等式lnx−a(x−1x)≤0不恒成立,不符合题意.综上所述,实数a的取值范围是[12,+∞).【点睛】通过此例,我们可以发现使用“洛必达法则”的好处,可以较为简单地解决问题,在恒成立问题中的求参数取值范围,参数与变量分离较易理解,但有些题中的求分离出来的函数式的最值有点麻烦,利用洛必达法则可以较好的处理它的最值,是一种值得借鉴的方法.【例2】设函数f(x)=ln(x+1)+a(x2−x),其中a∈R.(1)讨论函数f(x)极值点的个数,并说明理由;(2)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】(1)f(x)=ln(x+1)+a(x2−x),定义域为(−1,+∞)f′(x)=1x+1+a(2x−1)=a(2x−1)(x+1)+1x+1=2ax2+ax+1−ax+1,当a=0时,f′(x)=1x+1>0,函数f(x)在(−1,+∞)上为增函数,无极值点.设g(x)=2ax2+ax+1−a,g(−1)=1,g(−1)=1,Δ=a(9a−8)>0,当a≠0时,g(x)=0的根的个数就是函数f(x)极值点的个数.若Δ=a(9a−8)≤0,即0<a≤89时,g(x)≥0,f′(x)≥0,函数f(x)在(−1,+∞)为增函数,无极值点.若Δ=a(9a−8)>0,即a>89或a<0,而当a<0时,g(−1)≥0,此时方程g(x)= 0在(−1,+∞)只有一个实数根,此时函数f(x)只有一个极值点;当a>89时,方程g(x)=0在(−1,+∞)有两个不相等的实数根,此时函数f(x)有两个极值点;综上可知:当0≤a≤89时,f(x)的极值点个数为0;当a<0时,f(x)的极值点个数为1;当a>89时,f(x)的极值点个数为2.(2)解法1:由(1)可知当0≤a≤89时f(x)在(0,+∞)单调递增,而f(0)=0,则当x∈(0,+∞)时,f(x)>0,符合题意;当a>89时,Δ=a(9a−8)>0,方程g(x)=0的两根为:x1=−a−√a(9a−8)4a ,x2=−a+√a(9a−8)4a,当89<a≤1时,g(0)≥0,x2≤0,f(x)在(0,+∞)单调递增,而f(0)=0,则当x∈(0,+∞)时,f(x)>0,符合题意;当a>1时,g(0)<0,x2>0,所以函数f(x)在(0,x2)单调递减,而f(0)=0, 则当x∈(0,x2)时,f(x)<0,不符合题意;当a <0时,设ℎ(x )=x −ln (x +1),当x ∈(0,+∞)时ℎ′(x )=1−1x+1=x1+x >0, ℎ(x )在(0,+∞)单调递增,因此当x ∈(0,+∞)时ℎ(x )>ℎ(0)=0,ln (x +1)<x , 于是f (x )<x +a (x 2−x )=ax 2+(1−a )x ,当x >1−1a 时ax 2+(1−a )x <0, 此时f (x )<0,不符合题意.综上所述,a 的取值范围是0≤a ≤1. 解法2:函数f (x )=ln (x +1)+a (x 2−x ),∀x >0,都有f (x )≥0成立, 即ln (x +1)+a (x 2−x )≥0恒成立, 设ℎ(x )=−ln (x+1)x 2−x ,则ℎ′(x )=−1x+1(x 2−x)+(2x−1)ln (x+1)(x 2−x )2=(2x−1)[−x 2−x(2x−1)(x+1)+ln (x+1)](x 2−x )2,设φ(x )=−x 2−x(2x−1)(x+1)+ln (x +1),则φ′(x )=(x 2−x)(4x+1)(2x−1)2(x+1)2,所以x ∈(0,12)和x ∈(12,1)时,φ′(x )<0,所以φ(x )在(0,12),(12,1)上单调递减, x ∈(1,+∞)时,φ′(x )>0,所以φ(x )在(1,+∞)上单调递增, 因为φ(0)=0,lim x→12−x 2−x (2x−1)(x+1)>0,φ(1)=ln2>0,所以x ∈(0,1)和x ∈(1,+∞)时,ℎ′(x )>0,所以ℎ(x )在(0,1)与(1,+∞)上递增. 当x ∈(0,1)时,x 2−x <0,所以a ≤−ln (x+1)x 2−x,由ℎ(x )的单调性可得,a ≤lim x→0−ln (x+1)x 2−x=lim x→0−1x+12x−1=lim x→0−1(2x−1)(x+1)=1;当x =1时,f (x )=0,恒成立; 当x ∈(1,+∞)时,x 2−x >0,所以a ≥−ln (x+1)x 2−x ,由ℎ(x )的单调性可得,a ≥−ln (x +1)x 2−x =lim x→+∞−ln (x +1)x 2−x=lim x→+∞−1x +12x −1=lim x→+∞−1(2x −1)(x +1)=0, 综上,a ∈[0,1].【例3】已知f (x )=(ax +1)lnx −ax .(1)当a=1时,讨论f(x)的单调性;(2)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(3)令g(x)=f′(x),存在0<x1<x2,且x1+x2=1,g(x1)=g(x2),求实数a的取值范围.【解析】(1)当a=1时,f(x)=(x+1)lnx−x,则f′(x)=lnx+x+1x −1=lnx+1x,所以f′′(x)=1x −1x2=x−1x2,当x∈(0,1)时,f′′(x)<0;当x∈(1,+∞)时,f′′(x)>0,则f′(x)在(0,1)上单调递减,在(1,+∞)上单调递增,又因为f′(1)=1>0,所以x∈(0,+∞)时,f′(x)>0,所以f(x)在(0,+∞)上单调递增;(2)当a=0时,f(x)=lnx,f(x)在(0,+∞)上单调递增,则a=0时满足要求;当a≠0时,f(x)在(0,+∞)上单调递增,则当x∈(0,+∞)时,f′(x)≥0恒成立,因为f′(x)=alnx+1x ,f′′(x)=ax−1x2,当a<0时,f′′(x)=ax−1x2<0,所以f′(x)在(0,+∞)上单调递减,而f′(e−1a)=−1+1e−1a,因为a<0,e−1a≥1,所以f′(e−1a)=−1+1e−1a<0,所以x∈(e−1a,+∞)时,f′(x)<0,故a<0时不成立,当a>0时,f′′(x)=ax−1x2,当x∈(0,1a )时,f′′(x)<0,x∈(1a,+∞)时,f′′(x)>0,则f′(x)在(0,1a)上单调递减,在(1 a ,+∞)上单调递增,因为x∈(0,+∞)时,f′(x)≥0,只需f′(1a)≥0,即f′(1a)=aln1a+a=a(1−lna)≥0,因为a>0,所以1−lna≥0,则0<a≤e, 综上所述,实数a的取值范围是[0,e].(3)因为g(x)=f′(x)=alnx+1x ,所以g(x1)=alnx1+1x1,g(x2)=alnx2+1x2,因为g(x1)=g(x2),所以alnx1+1x1=alnx2+1x2,即aln x2x1+1x2−1x1=0,又x1+x2=1,所以aln x2x1+(x1+x2)x2−(x1+x2)x1=0,即aln x2x1+x1x2−x2x1=0,令t=x2x1,则t∈(1,+∞),即alnt+1t−t=0方程有解.解法1:分离参数+洛必达法则即a=t−1tlnt,令ℎ(t)=t−1tlnt,则ℎ′(t)=(1+1t2)lnt−(t−1t)×1t(lnt)2=(1+t2t2)lnt+1−t2t2(lnt)2,令F(t)=lnt+1−t 2t2+1,F′(t)=1t+−4t(t2+1)2=(t2+1)2−4t2t(t2+1)2≥0,所以当t∈(1,+∞)时,ℎ′(t)≥0,故ℎ(t)在(1,+∞)上单调递增,故ℎ(t)=t−1tlnt>ℎ(1),由洛必达法则知:当t→1时,ℎ(t)=1+1t21t,则ℎ(1)→2,则a>2,所以实数a的取值范围是(2,+∞).解法2:令G(t)=alnt+1t−t,则t∈(1,+∞)时,G(t)=0有解,G′(t)=at −1t2−1=−t2+at−1t2,因为t∈(1,+∞)时,则t+1t>2,当a≤2时,−t 2+at−1t2=a−(t+1t)t≤0,即t∈(1,+∞)时,G′(t)≤0,则G(t)在(1,+∞)上单调递减,又G(1)=0,故t∈(1,+∞)时,G(t)=0无解,则a≤2时不成立;当a>2时,当t∈(1,a+√a2−42)时,G′(t)>0,t∈(a+√a2−42,+∞)时,G′(t)<0,又G(1)=0,则t∈(1,a+√a2−42),G(t)>0,而G(e a)=a2+1e a−e a<a2+1−e a(a>2),令H(x)=x2+1−e x(x>2),H′(x)=2x−e x,H′′(x)=2−e x,因为x>2,则H′′(x)=2−e x<0,则H′(x)在(2,+∞)单调递减,H′(x)≤H′(2)= 4−e2<0,则H(x)在(2,+∞)单调递减,则H(x)<H(2)=5−e2<0,即G(e a)<0,故存在x0∈(a+√a2−42,e a),使得G(x0)=0,故a>2时满足要求,综上所述,实数a 的取值范围是(2,+∞).【点睛】(1)利用导数研究函数的单调性,求导得f ′(x )=lnx +1x ,则f ′′(x )=x−1x 2,由此得f ′(x )≥f ′(1)=1>0,从而得到函数的单调性;(2)分类讨论,当a =0时,f (x )=lnx ,满足要求;当a ≠0时,x ∈(0,+∞)时,f ′(x )≥0恒成立,而f ′(x )=alnx +1x ,f ′′(x )=a x −1x 2,再分a <0和a >0两种情况讨论即可求出答案;(3)由题意得alnx 1+1x 1=alnx 2+1x 2,即aln x 2x 1+1x 2−1x 1=0,进而有aln x 2x 1+x1x 2−x 2x 1=0,令t =x 2x 1,则转化为t ∈(1,+∞)时,alnt +1t −t =0方程有解.一般地,含有参数的函数恒成立问题往往从三个角度求解:一是直接求导,通过对参数的讨论来研究函数的单调性,进一步确定参数的取值范围;二是借助函数单调性确定参数的取值范围,然后对参数取值范围以外的部分进行分析验证其不符合题意,即确定所求;三是分离参数,求相应函数的最值或取值范围,当函数的最值不容易求解时,利用“洛必达法则”往往能化难为易,使问题得到解决.强化训练1.已知函数f (x )=e x −x −1,若当x ≥0时,恒有|f (x )|≤mx 2e |x |成立,求实数m 的取值范围.【解析】因为f (x )=e x −x −1,所以f ′(x )=e x −1, 所以当x ∈(−∞,0)时,f ′(x )<0,即f (x )递减, 当x ∈(0,+∞)时,f ′(x )>0,即f (x )递增.若当x ≥0时,恒有|f (x )|≤mx 2e |x |成立,即恒有0≤f (x )≤mx 2e x 成立, 当x =0时,不等式恒成立.当x >0时,恒有0≤f (x )≤mx 2e x 成立,即m ≥e x −x−1x 2e x,令H (x )=e x −x−1x 2e x,则H ′(x )=x 2−2e x +2x+2x 3e x.今ℎ(x )=x 2−2e x +2x +2,则ℎ′(x )=2x −2e x +2,进一步ℎ′′(x )=2−2e x <0,所以ℎ′(x )=2x −2e x +2在(0,+∞)上单调递减,所以ℎ′(x )<ℎ′(0)=0,所以ℎ(x )=x 2−2e x +2x +2在(0,+∞)上单调递减,所以ℎ(x )<ℎ(0)=0, 即H ′(x )<0在(0,+∞)上恒成立,所以H (x )在(0,+∞)上单调递减. 所以lim x→0+e x −x−1x 2e x=lim x→0+e x −1e x (x 2+2x )=lim x→0+e xe x (x 2+4x+2)=12,所以m ≥12.综上,m 的取值范围为[12,+∞).2.已知函数f (x )=x 2−mx −e x +1.(1)若函数f (x )在点(1,f (1))处的切线l 经过点(2,4),求实数m 的值; (2)若关于x 的方程|f (x )|=mx 有唯一的实数解,求实数m 的取值范围. 【解析】(1)f ′(x )=2x −m −e x ,所以在点(1,f (1))处的切线l 的斜率k =f ′(1)=2−e −m ,又f (1)=2−e −m ,所以切线l 的方程为:y −(2−e −m )=(2−e −m )(x −1), 即l:y =(2−e −m )x ,由l 经过点(2,4)可得:4=2(2−e −m )⇒m =−e . (2)易知|f (0)|=0=m ×0,即x =0为方程的根,因此只需说明: 当x >0和x <0时,原方程均没有实数根即可. ① 当x >0时,若m <0,显然有mx <0,而|f (x )|≥0恒成立,此时方程显然无解; 若m =0,f (x )=x 2−e x +1⇒f ′(x )=2x −e x ,f ′′(x )=2−e x , 令f ′′(x )>0⇒x <ln2,故f ′(x )在(0,ln2)单调递增,在(ln2,+∞)单调递减, 故f ′(x )<f ′(ln2)=2ln2−2<0,所以f (x )在(0,+∞)单调递减,于是f (x )<f (0)=0,从而|f (x )|>0,mx =0×x =0,此时方程|f (x )|=mx 也无解; 若m >0,由|f (x )|=mx ⇒m =|x +1x −e x x −m|,记g (x )=x +1x −e x x−m ,则g ′(x )=(x−1)(x+1−e x )x 2,设ℎ(x )=x +1−e x ,则ℎ′(x )=1−e x <0对任意x ∈(0,+∞)恒成立, 所以ℎ(x )在(0,+∞)上单调递减,所以ℎ(x )<ℎ(0)=0恒成立, 令g ′(x )>0⇒0<x <1⇒g (x )在(0,1)上递增,在(1,+∞)上递减所以g (x )≤g (1)=2−e −m <0⇒|g (x )|≥e −2+m >m ,可知原方程也无解.由上面的分析可知,当x >0时,∀m ∈R ,方程|f (x )|=mx 均无解.② 当x <0时,若m >0,显然有mx <0,而|f (x )|≥0恒成立,此时方程显然无解;若m =0,和(1)中的分析同理可知此时方程|f (x )|=mx 也无解.若m <0,由|f (x )|=mx ⇒−m =|x +1x −e x x −m|, 记g (x )=x +1x −e x x −m , 则g ′(x )=(x−1)(x+1−e x )x 2,由(1)中的分析可知:ℎ(x )=x +1−e x <0, 故g ′(x )>0对任意x ∈(−∞,0)恒成立,从而g (x )在(−∞,0)上单调递增,点睛意到lim x→0−g (x )=lim x→0−x 2+1−e x x −m =lim x→0−2x−e x 1−m =−1−m ,如果−1−m ≤0,即m ≥−1,则|g (x )|>m +1,要使方程无解,只需−m ≤m +1,即m ≥−12,所以−12≤m <0;如果−1−m >0,即m <−1,此时|g (x )|∈[0,+∞),方程−m =|g (x )|一定有解,不满足题意.由上面的分析可知:当x <0时,∀m ∈[−12,+∞),方程|f (x )|=mx 均无解, 综合①②可知,当且仅当m ∈[−12,+∞)时,方程|f (x )|=mx 有唯一解.。

高考数学函数压轴题方法归纳总结

高考数学函数压轴题方法归纳总结

高考数学函数压轴题方法归纳总结一、利用导数证明不等式1.已知()()21xf x ax e x =-+.(1)当1a =时,讨论函数()f x 的零点个数,并说明理由;(2)若0x =是()f x 的极值点,证明()()2ln 11f x ax x x ≥-+++.【思路引导】(1)由题意1a =时,得()()21xf x x e x =-+,利用导数得到函数的单调性,进而可判定函数的零点个数;(2)求得函数的导数()()12xf x eax a x -'=++,由0x =是()f x 的极值点,得1a =,得到函数的解析式,令1x t -=,转化为证明1ln 2t te t t +≥++,设()()ln 20xh x ex e x x x =⋅--->, 根据导数得到()h x 的单调性和最小值,证得()0h x ≥,即可作出证明. 2.已知函数()()22xf x e ax x a R =--∈.(1)当0a =时,求()f x 的最小值; (2)当12e a <-时,证明:不等式()12ef x >-在()0,+∞上恒成立. 【思路引导】(1)()2xf x e x =-, ()2xf x e '=-,由单调区间及极值可求得最小值。

(2) 由导函数()22xf x e ax =--',及12e a <-, ()12222102e f e a e ⎛⎫=-->---= ⎪⎝⎭, ()010f '=-<,由根的存在性定理可知存在()00,1x ∈使得()00f x '=,只需证()f x 最小值()()0020000022x x f x e ax x e x ax =--=-+>12e -,由隐零点00220x e ax --=回代,即证()12t t g t e t ⎛⎫=-- ⎪⎝⎭12e >-。

3.已知函数()ln f x x =,()()1g x a x =-(1)当2a =时,求函数()()()h x f x g x =-的单调递减区间;(2)若1x >时,关于x 的不等式()()f x g x <恒成立,求实数a 的取值范围; (3)若数列{}n a 满足11n n a a +=+, 33a =,记{}n a 的前n 项和为n S ,求证:()ln 1234...n n S ⨯⨯⨯⨯⨯<.【思路引导】(Ⅰ)求出()h x ',在定义域内,分别令()'0h x >求得x 的范围,可得函数()h x 增区间, ()'0h x <求得x 的范围,可得函数()h x 的减区间;(Ⅱ)当0a ≤时,因为1x >,所以()1ln 0a x x -->显然不成立,先证明因此1a ≥时, ()()f x g x <在()1,+∞上恒成立,再证明当01a <<时不满足题意,从而可得结果;(III )先求出等差数列的前n 项和为()12n n n S +=,结合(II )可得ln22,ln33,ln44,,ln n n <<<⋅⋅⋅<,各式相加即可得结论.4.已知函数()sin xf x e x ax =-.(1)若1a =,求曲线()y f x =在()()0,0f 处的切线方程; (2)若()f x 在0,4π⎡⎤⎢⎥⎣⎦上单调递增,求实数a 的取值范围; (3)当1a ≤时,求证:对于任意的x ∈ 30,4π⎡⎤⎢⎥⎣⎦,均有()0f x ≥. 【思路引导】(1)求出()1x xf x e sinx e cosx '=+-,由()0f 的值可得切点坐标,由()'0f 的值,可得切线斜率,利用点斜式可得曲线()y f x =在点()()1,1f 处的切线方程;(2)函数()f x 在[0,4π]上单调递增⇔ ()f x '在[0,4π]上恒有()0f x '≥.即sin x (4x π+)a ≥恒成立,令()sinxg x =(4x π+),只需求出()g x 的最小值即可得结果;(3)先证明当x ∈ [0,2π]时, ()()0f x g x a '=-≥,()f x 递增,有()()()min 00f x f x f ≥==成立,再讨论两种情况若0a ≤,不等式恒成立,只需分两种情况证明a ∈(0,1]时也恒成立即可. 5.已知函数()2ln f x a x =+且()f x a x ≤.(1)求实数a 的值; (2)令()()xf x g x x a=-在(),a +∞上的最小值为m ,求证: ()67f m <<.【思路引导】由题意知: 2ln a x a x +≤恒成立等价于2ln 0a at t -+≤在0t >时恒成立, 令()2ln h t a at t =-+,由于()10h =,故2ln 0a at t -+≤ ()()1h t h ⇔≤, 可证: ()h t 在()0,1上单调递增;在()1,+∞上单调递减.故2a =合题意.6.已知函数()1ln xf x x ax-=+(其中0a >, e 2.7≈). (1)当1a =时,求函数()f x 在()()1,1f 点处的切线方程; (2)若函数()f x 在区间[)2,+∞上为增函数,求实数a 的取值范围; (3)求证:对于任意大于1的正整数n ,都有111ln 23n n>+++. 【思路引导】(1)()21x f x x='-, ()10f '=, ()10f =,可求得切线方程。

高中数学:掌握这7种函数构造方法,巧解导数难题!

高中数学:掌握这7种函数构造方法,巧解导数难题!

近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.一、作差构造法1.直接作差构造评注: 本题采用直接作差法构造函数,通过特殊值缩小参数范围后,再对参数进行分类讨论来求解.2.变形作差构造二、分离参数构造法分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.三、局部构造法1.化和局部构造2.化积局部构造四、换元构造法换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用方法.评注: 本题的两种解法通过将待解决的式子进行恰当的变形,将二元字母变出统一的一种结构,然后用辅助元将其代替,从而将两个变元问题转化一个变元问题,再以辅助元为自变量构造函数,利用导数来来求解。

其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.五、主元构造法主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.六、特征构造法1.根据条件特征构造2.根据结论特征构造七、放缩构造法1.由基本不等式放缩构造2.由已证不等式放缩构造评注: 本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决,笔者研究发现不能解决的原因是分离参数后,出现了“0/0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则;若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力.。

高考数学压轴题解题技巧方法

高考数学压轴题解题技巧方法

高考数学压轴题解题技巧方法高考数学的压轴题可以说是整张数学卷中难度最大的题,也是考验学生数学综合知识的题,在压轴题上得分往往都是不容易的。

下面是小编为大家整理的关于高考数学压轴题解题技巧,希望对您有所帮助!高考数学压轴题解题诀窍诀窍1.重视审题你的心态就是珍惜题目中给你的条件。

数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。

所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。

在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时,步骤(1)将题目条件推导出“新条件”,步骤(2)将题目结论推导到“新结论”,步骤(1)就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推导出来,从而得到“新条件”。

步骤(2)就是想要得到题目的结论,我需要先得到什么结论,这就是所谓的“新结论”。

然后在“新条件”与“新结论”之间再寻找关系。

一道难题,难就难在题目条件与结论的关系难以建立,而你自己推出的“新条件”与“新结论”之间的关系往往比原题更容易建立,这也意味着解出题目的可能性也就越大!诀窍2.细心演算由于高考数学压轴题思路曲折,推理和运算过程都比较复杂,一旦前面的解答部分出错,就会导致后面的解答劳而无功,且往往陷入更加复杂的运算,因此一定要细心演算,关键步骤要认真检查。

对于一些高考压轴题,如果题意难以理解,解题思路不明,可以先考虑一些特殊情况或简单情况,也就是“以退求进”。

高考数学压轴题怎么答1、如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败.特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题巧拿分”。

八个视角处理双变量导数压轴题(学生版)

八个视角处理双变量导数压轴题(学生版)

八个视角处理双变量导数压轴题在高中数学中,导数算是难度天梯里排No.1的存在,在高考出题人的心中,导数算是一个超赞的存在,天生的守门员。

但其实,现在同学们接触的只是导数世界的“皮毛”,真正的精髓还是要到大学中才会学习。

导数大题是近年来高考的重点和热点问题,也是高考必考的板块之一,不管是简答题还是选择、填空都有涉及,也是拉分项。

我们不可否认导数解答题的难度,但也不能过分地夸大。

像导数、函数这样的大板块,同学们必须会解题。

遇到一个问题应该认真分析题型与问题条件,反复思考结论,每步做到“言必有据,步步合理”不用题海战术,每个板块都能攻克了!今天给大家整理总结了高考导数大题的常见类型及求解策略方法,大家通做一遍,复习提分效果更佳!热点题型1构造偏导数2整体规划统一变量3比(差)值换元4同构性双变量5切线估计与剪刀差模型6不等式放缩7主元法8多项式拟合经典例题1.构造偏函数注:1.构造偏差函数的基本应用①.函数f x 的极值点为x0;②.函数f x1,然后证明:x1+x2>2x0或x1+x2<2x0.=f x22.构造偏差证明极值点偏移的基本方法:①.构造一元差函数F x =f x -f2x0-x;-f x0-x或是F x =f x+x0②.对差函数F x 求导,判断单调性;③.结合F(x0)=0或F(0)=0,判断F x 的符号,从而确定f x 与f2x0-x的大小关系;④.由f x 1 =f x 2 =f x 0-x 0-x 2 _____f x 0+x 0-x 2 =f 2x 0-x 2 的大小关系,得到f x 1 ____f 2x 0-x 2 ,(横线上为不等号);⑤.结合f x 单调性得到x 1____2x 0-x 2,进而得到x 1+x 22___x 0.例1.(2023届福建七市联考)已知函数f (x )=e x -ax 22,a >0.(1)讨论f x 的极值点个数;(2)若f x 有两个极值点x 1,x 2,且x 1<x 2,当e <a <e 22时,证明:f x 1 +2f x 2 <3e 2.2.整体划归,统一变量法例2.(2023届泉州一诊).已知函数f x =e x x2-a+2x+a+3(1)讨论f x 的单调性;(2)若f x 在0,2有两个极值点x1,x2,求证:f x1f x2<4e2.例3.(2023届温州二模)已知函数f x =a2x2-x-x ln x a∈R.(1)若a=2,求方程f x =0的解;(2)若f x 有两个零点且有两个极值点,记两个极值点为x1,x2,求a的取值范围并证明f x1+f x2<12e.3.比(差)值代换消元例4.(2023届武汉二月调考)已知关于x的方程ax-ln x=0有两个不相等的正实根x1,x2,且x1<x2.(1)求实数a的取值范围;(2)设k为常数,当a变化时,若x k1x2有最小值e e,求常数k的值.例5.(2023届南通二模)已知函数f(x)=ax-ln x-a x.(1)若x>1,f(x)>0,求实数a的取值范围;(2)设x1,x2是函数f(x)的两个极值点,证明:f(x1)-f(x2)<1-4a2 a.4.同构型双变量例6.已知函数f(x)=axe x和g(x)=ln xax有相同的最大值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等比数列.5.切线估计与“剪刀差模型”注4.“剪刀模型”基本原理1.函数凸凹性:若函数f (x )在区间I 上有定义,若f (x )≥0,则称f (x )为区间I 上的凸函数. 反之,称f (x )为区间I 上的凹函数.2.切线不等式:f (x )在I 上为凸函数,∀x 0∈I ,有f (x )≥f (x 0)(x −x 0)+f (x 0). 反之,若f (x )为区间I 上的凹函数,则∀x 0∈I ,有f (x )≤f (x 0)(x −x 0)+f (x 0).注:切线不等式是剪刀模型的理论依据.3.剪刀模型已知函数f (x )为定义域上的凸函数,且图象与y =m 交于A ,B 两点,其横坐标为x 1,x 2,这样如下图所示,我们可以利用凸函数的切线与y =m 的交点将x 1,x 2的范围予以估计,这便是切线放缩的基本原理.如图,在函数图象先减后增的情形下,两条切线和两条割线即可估计出零点的一个上下界,而切割线的方程均为一次函数,这样我们就可以得到一个显式解(精确解)的估计.例7.(2023届皖南八校联考)已知函数f x =3x -e x +1,其中e =2.71828⋯是自然对数的底数.(1)设曲线y =f x 与x 轴正半轴相交于点P x 0,0 ,曲线在点P 处的切线为l ,求证:曲线y =f x 上的点都不在直线l 的上方;(2)若关于x 的方程f x =m (m 为正实数)有两个不等实根x 1,x 2x 1<x 2 ,求证:x 2-x 1<2-34m .6.不等式放缩例8.(2023届湖北七市州联考T22).已知函数f x =a ln x-x-1 x+1.(1)当a=1时,求函数f x 的单调区间;(2)若g x =a x2-1ln x-x-12a≠0有3个零点x1,x2,x3,其中x1<x2<x3.(ⅰ)求实数a的取值范围;(ⅱ)求证:3a-1x1+x3+2<2.注5. 一些重要的不等式放缩2x-1 x+1<3x2-1x2+4x+1<ln x,x∈1,+∞ln x<3x2-1x2+4x+1<2x-1x+1<x-1,x∈0,17.主元法例9.(2022北京卷)已知函数f(x)=e x ln(1+x).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设g(x)=f′(x),讨论函数g(x)在[0,+∞)上的单调性;(3)证明:对任意的s,t∈(0,+∞),有f(s+t)>f(s)+f(t).8.多项式拟合例10.(2021新高考1卷)已知函数f x =x1-ln x.(1)讨论f x 的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a +1b<e.针对性训练1.已知函数f x =ae x-x-3有两个零点.(1)求实数a的取值范围.(2)函数g x =f x +x-ln x+1,证明:函数g x 有唯一的极小值点.2.已知f(x)=e x-a2x2-x.(1)若f x 在x=0处取得极小值,求实数a的取值范围;(2)若f x 有两个不同的极值点x1,x2(x1<x2),求证:fx1+x22<0(f x 为f x 的二阶导数).3.已知函数f x =2ae2xx,a≠0.(1)讨论函数f x 的单调性;(2)若ln x-xf x ≤ln a恒成立,求实数a的取值范围.4.已知函数f x =e x+x,g x =ax2+2x+1.(1)当a=12时,讨论函数F x =f x -g x 的单调性;(2)当a<0时,求曲线y=f x 与y=g x 的公切线方程.5.已知f x =a 2x 2-a +2 x +2ln x .(1)讨论f x 的单调性;(2)确定方程f x =a 2x 2的实根个数.6.已知函数f x =a -3 ln x -3ax -1xa ∈R ,ln3≈1.1.(1)当a <0时,试讨论f x 的单调性;(2)求使得f x ≤0在0,+∞ 上恒成立的整数a 的最小值;(3)若对任意a ∈-4,-3 ,当x 1,x 2∈1,4 时,均有m +ln4 ⋅a >f x 1 -f x 2 +3ln4成立,求实数m 的取值范围.7.已知函数f x =ln x-2ax.(1)讨论函数f(x)的单调性;(2)若f(x)≤0恒成立,求a的取值范围.8.已知m>0,e是自然对数的底数,函数f x =e x+m-m ln mx-m.(1)若m=2,求函数F x =e x+x2-4x+2-f x 的极值;2(2)是否存在实数m,∀x>1,都有f x ≥0?若存在,求m的取值范围;若不存在,请说明理由.9.已知函数f x =-ln x,g x =e-x-e x.(1)若∃x∈0,1,g x >f a 成立,求实数a的取值范围;(2)证明:h x =f x +cosπx2e有且只有一个零点x0,且1-e2e<g cosπx02e<1-e e.10.已知函数f x =e x tan x-1-1,f x 的导函数为f x .记函数f x 在区间nπ-3π2,nπ-π2内的零点为x n,n∈N∗.(1)求函数f x 的单调区间;(2)证明:x n+1-x n<π.11.已知函数f x =m ln x+x+m+1x.(1)求函数f x 的单调区间;(2)当m=1时,证明:x2f x <e x+x3.12.已知函数f x =m2x2+m-1x-1m∈R.(1)求函数f x 在区间1,2上的最大值;(2)若m为整数,且关于x的不等式f x ≥ln x恒成立,求整数m的最小值.13.已知函f x =x+ae x,a∈R.(1)讨论f x 在0,+∞的单调性;(2)是否存在a,x0,x1,且x0≠x1,使得曲线y=f x 在x=x0和x=x1处有相同的切线?证明你的结论.14.已知函数.(1)若,求在点处的切线方程;(2)若()是的两个极值点,证明:.15.已知函数.(1)证明:;(2)若,求实数的取值范围;(3)证明:.16.设函数.(1)讨论的单调性;(2)若当时,不等式恒成立,求m的取值范围.17.已知函数.(1)当时,讨论函数在上的单调性;(2)当时,,求实数的取值范围.18.对定义在区间上的函数,如果对任意都有成立,那么称函数在区间上可被替代.(1)若,试判断在区间上,能否可被替代?(2)若,且函数在上可被函数替代,求实数的取值范围.19.已知函数.(1)当时,求曲线在点处的切线方程;(2)对任意实数,都有恒成立,求实数的取值范围.20.已知函数.(1)求函数的零点;(2)证明:对于任意的正实数k,存在,当时,恒有.。

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考压轴题:导数题型及解题方法一.切线问题题型1 求曲线)(x f y =在0x x =处的切线方程。

方法:)(0x f '为在0x x =处的切线的斜率。

题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。

方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。

例 已知函数f (x )=x 3﹣3x .(1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、(提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。

将问题转化为关于m x ,0的方程有三个不同实数根问题。

(答案:m 的范围是()2,3--)练习 1. 已知曲线x x y 33-=(1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。

答案:(03=+y x 或027415=--y x )(2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。

2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1)题型3 求两个曲线)(x f y =、)(x g y =的公切线。

方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。

()(,22x f x );建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

巧妙导数压轴题

巧妙导数压轴题

巧妙导数压轴题
摘要:
1.导数压轴题的概念和特点
2.解决导数压轴题的常用方法
3.导数压轴题的实战演练
4.总结与展望
正文:
一、导数压轴题的概念和特点
导数压轴题是指在高考数学压轴题中,涉及到导数知识的问题。

它具有以下特点:题目难度较大,对学生的综合运用能力要求高,涉及知识点较多,考查学生的逻辑思维能力和创新能力。

二、解决导数压轴题的常用方法
1.导数与函数的性质相结合:导数是函数在某一点的变化率,因此可以利用导数研究函数的极值、最值、单调性等性质。

2.导数的几何意义:导数可以表示函数在某一点的切线斜率,因此可以利用导数解决一些几何问题。

3.利用导数的应用:如求解速度与加速度、变化率、切线方程等问题。

4.利用导数的性质:如求解函数的极值、最值、单调性等问题。

5.构造函数:通过构造函数,将问题转化为求解导数问题。

三、导数压轴题的实战演练
例题:已知函数f(x)=x^3+ax^2+bx+c,求f"(x)。

解:由导数的定义可知,f"(x)=lim_(h->0) [(f(x+h)-f(x))/h]。

将函数f(x) 代入得f"(x)=lim_(h->0) [((x+h)^3+a(x+h)^2+b(x+h)+c)-
(x^3+ax^2+bx+c))/h]。

经过化简,得f"(x)=3x^2+2ax+b。

四、总结与展望
导数压轴题是高考数学中的一个重要题型,解决这类问题需要学生具备扎实的导数知识,并能灵活运用导数的性质、几何意义及应用。

高考数学导数压轴题解题技巧

高考数学导数压轴题解题技巧

高考数学导数压轴题解题技巧包括:
函数法:将参数k当成整个函数中的一部分,分情况讨论k的不同取值对函数的影响。

放缩法:有的参数给的一个范围,通过单调性分析,可以简化为一个端点值讨论即可。

比如给k≤2,你可以转化为
k=2,这样题中就没有参数了,大大降低难度。

此外,还有分离参数等方法。

在解决导数压轴题时,需要注意:
遇到有关单调性或最值的题目,考虑使用导数法。

对于存在性问题,如求参数的取值范围,可以运用分离参数法。

对于与零点存在性有关的问题,最好借助零点存在性定理严格说明,即需在给定单调区间【以单调增区间为例】上找到,进而严格说明使得。

在应用这些技巧时,要结合题目的具体条件和已知信息,灵活运用所学知识解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学:导数压轴题的学习方法
有些数学水平“非常好”的同学,平时做题没问题,可一上考场就开始六神无主,拿不到压轴题的分数。

或者更常见的,考试时间一到,才“灵光”突现,发觉自己做了很多无用的计算推导。

其实这都是因为基础知识不踏实,没有好的解题方法才导致的丢分。

今天组合教育张老师来和同学们聊一聊异数压轴题的学习方法,以帮助同学们拿下高考数学压轴题。

导数压轴题题目的特点:题型非常专一,题目难度大。

题型专一,一个题目就考一个题型或者就考一个知识点,这是专一性。

如下图中的题目,第一问其实是第二问的一部分,实际上这个题目就是让你去证明第二问:f(x)有且只有2个零点。

这就是我们所说的导数具有的专一性特点,也就是一个题目只考查一个知识点。

由于题目单一,而且位置在最后一题或倒数第二题,在比较难的位置上,必然会导致导数的第二个特点:单题的难度非常大。

导数题目归纳总结出来就是导数题型是有限的,细分出来四个大类:恒成立问题,零点问题,双变量问题,不等式问题。

每个大类会分成很多小类,比如恒成立问题,有参变分离法的恒成立问题,分类讨论的恒成立问题,数形结合的恒成立问题,变换组元法,切线法等等,一个大类下面会分出若干小类。

但总的来说,题型和解决方案是有限的。

我们根据“导数的题型和解题方法有限”这样一个特点,并且结合归纳总结的思路,最
终解决导数问题也就不难了。

看到这里是不是感觉导数的压轴题并没有那么难了?其实高考数学本就不难,是我们把它想像的太难了。

相关文档
最新文档