常微分方程阶微分方程的解的存在定理
常微分方程的常见解法
# 定义网格密度
arrows=LINE,
# 定义线段类型
axes=NORMAL);
# 定义坐标系类型
在MATLAB的向量场命令为 quiver(x,y,px,py)
回车后Maple就在1 1 的网格点上画出了向量场
44
的图形,并给出了过点(-2, 2) (-2 ,1) (-2,2) 的三
条积分曲线,见下图
M (x,y)co x s2xye , y
N (x,y)co x s2xye x
M(x,y)N(x,y)
y
x
所以方程为全微分方程。
由公式F (x ,y ) 0M (s ,y )d s 0N (0 ,s )d s
x(yc o ss 2 se y)d sy2 d s
0
0
ysinxx2ey2y
或
x
y
F (x ,y )x 0M (s ,y ) d s y 0N (x 0 ,s ) d
s
例:验证方程
( y c o s x 2 x e y ) d x ( s i n x x 2 e y 2 ) d y 0
是全微分方程,并求它的通解。 解:由于 M (x ,y ) y c o sx 2 x e yN (x ,y ) s in x x 2 e y 2
dx
令 zy1n,则 dz(1n)yndy
dx
dx
d z (1 n )P (x )z (1 n )Q (x )
d x
求出此方程通解后, 换回原变量即得伯努利方程的通解。
例 湖泊的污染
设一个化工厂每立方米的废水中含有3.08kg盐酸, 这些废水流入一个湖泊中,废水流入的速率20 立方米每小时. 开始湖中有水400000立方米. 河水 中流入不含盐酸的水是1000立方米每小时, 湖泊 中混合均匀的水的流出的速率是1000立方米每小 时,求该厂排污1年时, 湖泊水中盐酸的含量。 解: 设t时刻湖泊中所含盐酸的数量为 x ( t )
常微分方程的基本理论与解法
常微分方程的基本理论与解法在数学领域中,常微分方程是一种描述变量间关系的重要工具。
它广泛应用于物理学、工程学、经济学等多个学科领域,用于描述连续系统的行为。
本文将介绍常微分方程的基本理论和解法。
一、常微分方程的定义和分类常微分方程是一个或多个未知函数及其导数之间的关系式。
通常,常微分方程的解是一个或多个未知函数,使得该方程对给定的自变量集合成立。
常微分方程可分为几个主要类别:1. 一阶常微分方程:这种方程只涉及到一阶导数。
2. 高阶常微分方程:这种方程涉及到高阶导数,如二阶、三阶等。
3. 线性常微分方程:这种方程的形式可表示为函数及其导数的线性组合。
4. 非线性常微分方程:这种方程的形式不满足线性性质。
二、常微分方程的基本理论常微分方程的基本理论包括存在性定理、唯一性定理和稳定性定理。
1. 存在性定理:对于一阶常微分方程初值问题,存在一个解在给定的定义区间上存在,前提是方程在该区间上满足一定的连续性条件。
2. 唯一性定理:对于一阶常微分方程初值问题,如果方程和初值函数在定义区间上满足一定的连续性条件,则存在唯一的解。
3. 稳定性定理:稳定性定理研究的是方程解的渐近行为。
它提供了关于解的长期行为的信息,如解是否趋向于稳定点或周期解。
三、常见的常微分方程解法解常微分方程的方法有多种,下面介绍一些常见的解法。
1. 变量可分离法:当一个一阶常微分方程可以写成f(x)dx = g(y)dy的形式时,可以进行变量分离,将两边分别进行积分,并解出未知函数的表达式。
2. 齐次方程法:当一个一阶常微分方程可以化简为dy/dx = F(y/x)的形式时,引入新的变量u = y/x,将原方程转化为du/dx = F(u),然后进行变量分离并积分。
3. 齐次线性方程法:对于形如dy/dx + P(x)y = Q(x)的一阶线性常微分方程,可以使用齐次线性方程的解法。
通过引入缩放因子e^(∫P(x)dx),将原方程转化为d[e^(∫P(x)dx)y]/dx = e^(∫P(x)dx)Q(x),然后进行变量分离并积分。
常微分方程考研讲义一阶微分方程解的存在定理
第三章一阶微分方程解的存在定理[ 教学目标]1. 理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的误差估计式。
2. 了解解的延拓定理及延拓条件。
3. 理解解对初值的连续性、可微性定理的条件和结论。
[ 教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。
[ 教学方法] 讲授,实践。
[ 教学时间] 12 学时[ 教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。
[ 考核目标]1. 理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。
2. 熟练近似解的误差估计式,解对初值的连续性及可微性公式。
3. 利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。
§ 1 解的存在性唯一性定理和逐步逼近法微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。
在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。
而实际问题中所需要的往往是要求满足某种初始条件的解。
因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。
他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。
例如方程过点(0,0) 的解就是不唯一,易知y 0是方程过(0,0) 的解,此外,容易验证,y x2或更一般地,函数都是方程过点(0,0)而且定义在区间0 x 1上的解,其中c是满足0 c 1的任一数解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。
另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。
常微分方程第三章基本定理
THANKS
感谢观看
线性化定理
总结词
线性化定理是将非线性常微分方程转化为线性常微分方程的方法,从而可以利用线性方程的解法来求解。
详细描述
线性化定理提供了一种将非线性常微分方程转化为线性常微分方程的方法。通过适当的变换,可以将非线性问题 转化为线性问题,从而可以利用线性方程的解法来求解。这个定理在解决复杂的非线性问题时非常有用,因为它 简化了问题的求解过程。
02
CATALOGUE
常微分方程的稳定性
稳定性定义
稳定性的定义
01
如果一个常微分方程的解在初始条件的小扰动下变化不大,那
么这个解就是稳定的。
稳定性的分类
02
根据稳定性的不同表现,可以分为渐近稳定、指数稳定、一致
稳定等。
稳定性判别方法
03
可以通过观察法、线性化法、比较法等方法来判断常微分方程
的解是否稳定。
龙格-库塔方法
总结词
龙格-库塔方法是常微分方程数值解法中一种更精确的 方法,它通过多步线性近似来逼近微分方程的解。
详细描述
龙格-库塔方法的基本思想是利用已知的初值和微分方 程,通过多步线性插值来逼近微分方程的解。具体来 说,龙格-库塔方法通过递推公式来计算微分方程的近 似解,公式如下:(y_{n+1} = y_n + h f(t_n, y_n) + frac{h^2}{2} f(t_{n-1}, y_{n-1}) - frac{h^2}{2} f(t_{n-2}, y_{n-2})) 其中 (h) 是步长,(t_n) 和 (y_n) 是已知的初值,(f) 是微分方程的右端函数。
存在唯一性定理表明,对于任意给定的初值问题,存在一个唯一的解,该解在某个区间内存在并连续 。这个定理是常微分方程理论的基础,为后续定理的证明提供了重要的依据。
常微分方程的几何解释
(2.2)
a x b, y ,
假设函数 f x, y在给定区域上连续且有界.于是
它在这个区域上确定了一个线素场.下面利用线素场
求出经过 x0, y0 的近似积分曲线.把
x0 ,b n 等分,其分点为:
xk x0 kh, k 0,1, , n
h b x0 , n
xn b
常微分方程
绵阳师范学院
先求出 f x0, y0
用经过 x0, y0 斜率为
y
x1
,
y1
x2
,
y2
f x0, y0 的直线段来近
y0
似积分曲线,其方程为
y y0 f x0, y0 x x0
x0 x1 x2
bx
求出直线上横坐标 x1 处的点的纵坐标
y1 y0 f x0, y0 x1 x0 y0 f x0, y0 h
如果 h 很小 x1, y1 就很接近积分曲线上的点 x1, y x1
因 f x, y 连续.于是由点 x1, y1 出发的斜率为
f x1, y1 的直线段又近似于原积分曲线.它的方程为
了线素场.
y k x
易见在点 x, y 的线素与
过原点与该点的射线重合.
常微分方程
绵阳师范学院
定理2.1 L为(2.1)的积分曲线的充要条件是: 在L 上任一点,L 的切线方向与(2.1)所确定的线 素场在该点的线素方向重合;即L在每间点均与 线素场的线素相切.
证明 必要性 设L为(2.1)的积分曲线,其方程为
20
若初值问题
dy dx
f ( x, y),的解是存在,是否唯一?
常微分方程第二章
第二章 基本定理我们在第一章主要学习了初等积分法,掌握了几类常微分方程的解法.但是这些解法只适用于某些特殊的类型,很多其它的常微分方程不能用初等解法进行求解.1841年,法国数学家刘维尔(Liouville )证明了里卡蒂(Riccati )方程)0)(()()()(2≠++=x p x r y x q y x p dydx 除了某些特殊的类型外,一般不能用初等积分法求解.例如,很简单的里卡蒂方程22y x dxdy +=就不能用初等积分法求解.自然地,如果一个常微分方程不能用初等积分法求解,那么应该如何处理呢?是否存在解呢?如果存在解,它的解是否唯一呢?解的存在区间是什么呢?初值的微小误差对解有什么影响呢?这些问题在理论的研究和实际应用中,都有着重要的意义.本章将解决这些基本问题. 本章主要介绍解的存在唯一性定理、解的延展定理与比较定理、解对初值的连续依赖性定理以及解对初值的可微性定理,这些定理就回答了我们刚才的疑问,有效的处理解的存在性、唯一性、存在区间、初值对解的影响等问题,为我们使近似解法奠定理论基础,同时这些定理也是常微分方程理论的基础内容,对进一步的学习奠定基础.2.1 解的存在唯一性定理对于一般的常微分方程),(y x f dxdy = (2.1) 如果给出了初始条件00)(y x y =,我们就得到了柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy (2.2) 这时,在什么样的条件下,柯西初值问题的解存在且唯一呢?解的存在区间是什么呢?我们有如下的解的存在唯一性定理.2.1.1 存在唯一性定理的叙述定理2.1(存在唯一性定理)如果方程(2.1)的右端函数),(y x f 在闭矩形区域b y y b y a x x a x R +≤≤-+≤≤-00002,:上满足如下条件:(1)在2R 上连续;(2)在2R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数N ,使对于2R 上的任何一对点),(y x 和),(x 有不等式:y y N y x f y x f -≤-),(),(则初值问题(2.2)在区间],[0000h x h x +-上存在唯一解00)(),(y x x y ==ϕϕ 其中),(max ),,min(),(0y x f M Mb a h R y x ∈==. 在给出定理2.1的证明之前,我们先对定理2.1的条件和结论做些说明:1、在两个条件中,条件(2),即李普希兹条件比较难于验证,因为李普希兹常数N 难以确定.但是,我们可以将该条件加强,替换为:如果函数),(y x f 在闭矩形区域2R 关于y 的偏导数),(y x f y '存在且有界.这样,可以推出李普希兹条件成立.事实上,因为),(y x f y '有界,故设N y x f y ≤'),(,对2),(),,(R x y x ∈∀,由拉格朗日中值定理得:y y N y y x f y x f y x f y -≤-'=-),(),(),(ξ我们验证),(y x f y '在闭矩形区域2R 上有界也不容易,可以进一步将条件加强为:),(y x f y '在闭矩形区域2R 上连续.由闭区域上连续函数的性质知:),(y x f y '在闭矩形区域2R 上有界,所以李普希兹条件成立.因此,有如下的关系式:),(y x f y '在2R 上连续⇒),(y x f y '在2R 上存在且有界⇒李普希兹条件2、在定理2.1的结论中,解)(x y ϕ=的存在区间为],[0000h x h x +-,其中 ),(max ),,min(),(0y x f M Mb a h R y x ∈==.为什么解的存在区间不是],[00a x a x +-呢?这是因为我们研究问题的范围为闭矩形区域2R ,方程的解)(x y ϕ=不能超出2R 的范围,又因为),(max ),(y x f M Ry x ∈=,所以M y x f M ≤≤-),( 即 M dxdy M ≤≤- 由⎪⎩⎪⎨⎧=-=00)(y x y M dx dy 和⎪⎩⎪⎨⎧==00)(y x y M dx dy 得:001)()(y x x M x y +--=,002)()(y x x M x y +-= 因此)()()(21x y x y x y ≤=≤ϕ,即)(x y ϕ=夹在)(1x y 与)(2x y 之间.又,)(1x y 与)(2x y 在2R 上的存在区间为],[0000h x h x +-,故)(x y ϕ=的存在区间也是],[0000h x h x +-.2.1.2 存在性的证明首先,我们给出柯西初值问题(2.2)的等价转化,即求(2.2)的解)(x y ϕ=,等价于求解积分方程⎰+=xx d y f y y 0))(,(0ξξξ (2.3) 事实上,如果)(x y ϕ=是初值问题(2.2)的解,即有))(,()(x x f x ϕϕ='且00)(y x =ϕ从0x 到x 积分得:⎰+=xx d f y x 0))(,()(0ξξϕξϕ 即)(x y ϕ=是积分问题(2.3)的解.反过来,如果)(x y ϕ=是积分问题(2.3)的解,即有⎰+=xx d f y x 0))(,()(0ξξϕξϕ 则00)(y x =ϕ且))(,()(x x f x ϕϕ='即)(x y ϕ=是初值问题(2.2)的解.经过等价转化,我们将初值问题(2.2)的求解,转化为积分问题(2.3)的求解.下面用皮卡(Picard )逐次逼近来证明积分问题(2.3)的解的存在性,分为三个步骤:1、构造近似函数列{})(x n ϕ任取一个满足初值条件00)(y x y =的函数)(0x y ϕ=作为首项(初始项),并要求在2R 上的存在区间为:],[0000h x h x +-,简单起见,取00)(y x =ϕ,将它代入方程(2.3)的右端,所得到的函数用)(1x ϕ表示,并称为一次近似,即⎰+=xx d f y x 0))(,()(001ξξϕξϕ 再将)(1x ϕ代入方程(2.3)的右端就得到二次近似⎰+=xx d f y x 0))(,()(102ξξϕξϕ 序行此法,可以得到n 次近似⎰-+=xx n n d f y x 0))(,()(10ξξϕξϕ 为了保证上述的逐次逼近过程可以一直进行下去,必须有2))(,(R x x n ∈ϕ,即当],[0000h x h x x +-∈时,有,2,1)(0=≤-n b y x n ϕ 下面用数学归纳法证明b y x n ≤-0)(ϕ.显然,当],[0000h x h x x +-∈时,有b y y y x ≤=-=-0)(0000ϕ假设,当],[0000h x h x x +-∈时,有b y x n ≤--01)(ϕ,那么,对于)(x n ϕ有⎰-=-xx n n d f y x 0))(,()(10ξξϕξϕ 从而有b Mb M Mh x x M d f y x xx n n =≤≤-≤≤-⎰-00100))(,()(ξξϕξϕ 由数学归纳法知,当],[0000h x h x x +-∈时,有,2,1)(0=≤-n b y x n ϕ这样,我们就可以得到一个近似函数列{})(x n ϕ.2、证明近似函数列{})(x n ϕ在区间],[0000h x h x +-上一致收敛.由于无法得到{})(x n ϕ的通项公式,只知道首项和递推关系式,直接证明函数列{})(x n ϕ的收敛性比较困难,为此我们构造函数项级数+-++-+-)]()([)]()([)(1010x x x x x n n ϕϕϕϕϕ (2.4) 它的部分和是)()]()([)]()([)()(10101x x x x x x x S n n n n ϕϕϕϕϕϕ=-++-+=-+因此,证明{})(x n ϕ的收敛性转化为证明级数(2.4)的收敛性,下面我们证明级数(2.4)在区间],[0000h x h x +-上一致收敛.首先研究级数(2.4)的通项)(x n μ⎰=-xx d f x x 0))(,()()(001ξξϕξϕϕ 即⎰=-xx d y f y x 0),()(001ξξϕ 所以00010),()(x x M d y f y x x x -≤≤-⎰ξξϕ 因为⎰+=x x d f y x 0))(,()(001ξξϕξϕ,⎰+=x x d f y x 0))(,()(102ξξϕξϕ,所以 ⎰-≤-x x d f f x x 0))(,())(,()()(0112ξξϕξξϕξϕϕ由李普希兹条件,得 !2)()()()(200011200x x MN d x MN d N x x x x x x -=-≤-≤-⎰⎰ξξξξϕξϕϕϕ 下面用数学归纳法证明!)()(011n x x MN x x nn n n -≤---ϕϕ 显然,2,1=n 的时候,不等式成立(上面已经给出), 假设!)()(011n x x MN x x n n n n -≤---ϕϕ成立,那么对于1+n 的情形有 )!1(!)()())(,())(,()()(100111000+-=-≤-≤-≤-+--+⎰⎰⎰n x x MN d n x MN d N d f f x x n n x x n n xx n n x x n n n n ξξξξϕξϕξξϕξξϕξϕϕ由数学归纳法知,对一切自然数n ,均有!)()(011n x x MNx x nn n n -≤---ϕϕ 又00h x x ≤-,所以级数(2.4)的通项满足: !)(011n h MN v x n n n n -+=≤μ ( ,2,1=n ) 利用比式判别法,可知以n v 为通项的级数收敛,从而以)(x n μ为通项的级数(2.4)绝对收敛且一致收敛.又,每一个)(x n μ是连续的,所以级数(2.4)的和函数也是连续的,记为)(x ϕ,其存在区间也是],[0000h x h x +-.因此函数列{})(x n ϕ就收敛于)(x ϕ.3、证明)(lim )(x x n n ϕϕ∞→=是积分问题(2.3)的解,从而也是初值问题(2.2)的解.在⎰-+=x x n n d f y x 0))(,()(10ξξϕξϕ两端取极限,得到 ⎰-∞→∞→+=xx n n n n d f y x 0))(,(lim )(lim 10ξξϕξϕ 即⎰+=xx d f y x 0))(,()(0ξξϕξϕ 所以)(x ϕ是积分问题(2.3)的解,从而也是初值问题(2.2)的解.2.1.3 唯一性的证明下面我们证明解的唯一性.在证明唯一性之前,先介绍一个重要的不等式,即贝尔曼(Bellman )不等式.贝尔曼引理 设)(x y 为区间],[b a 上的非负连续函数,b x a ≤≤0.若存在,0≥δ 0≥k ,使得)(x y 满足不等式],[,)()(0b a x d y k x y xx ∈+≤⎰ττδ (2.5) 则有],[,)(0b a x e x y x x k ∈≤-δ证明 仅证明0x x ≥的情形,0x x ≤的情形类似.令)(x y 的原函数为⎰=xx d y x R 0)()(ττ,代入(2.5)得 δ≤-')()(x kR x R两边同时乘以积分因子)(0x x k e --,得)()(00)]()([x x k x x k e x kR x R e ----≤-'δ从0x 到x 积分得)()(00)(x x k x x k e e x kR -----≤δδ即)(0)(x x k e x kR -≤+δδ 由(2.5)知,)()(x kR x y +≤δ,所以],[,)(0b a x e x y x x k ∈≤-δ下面证明积分问题(2.3)的解的唯一性.假设积分问题(2.3)有两个解)(1x y 和)(2x y ,我们只需要证明:)(1x y )(2x y ≡,],[0000h x h x x +-∈事实上,因为⎰+=x x d y f y x y 0))(,()(101ξξξ,⎰+=xx d y f y x y 0))(,()(202ξξξ 所以有⎰-≤-xx d y f y f x y x y 0))(,())(,()()(2121ξξξξξ由李普希兹条件知⎰-≤-xx d y y N x y x y 0)()()()(2121ξξξ 令N k x y x y x y ==-=,0,)()()(21δ,由贝尔曼引理可知,0)(=x y ,即)(1x y )(2x y ≡. 这样,我们就完成了解的存在性与唯一性的证明.2.1.4 三点说明为了更好的理解和掌握解的存在唯一性定理,我们对该定理再做三点说明.1、在存在性的证明过程中,我们利用逐次逼近法构造了近似函数列{})(x n ϕ,其中首项为:00)(y x =ϕ,递推关系式为:⎰-+=xx n n d f y x 0))(,()(10ξξϕξϕ.该方法实际上给出了我们一种求初值问题(2.2)的近似解的方法,当用n 次近似解逼近精确解时,需要给出它的误差估计.事实上,有∑∑∞+=∞=+-≤-≤-101!)()()()(n k k k nk k k n k x x N N M x x x x ϕϕϕϕ 0)!1()(!)!1()(!10001010Nh n k k k n n k k k e n Nh N M k h N n Nh N M k h N N M +=+<≤+∞=+∞+=∑∑ 2、如果方程(2.1)是线性方程,即)()(x q y x p dxdy +-= 其中)(x p 和)(x q 在区间],[b a 上连续,这时,初值问题(2.2)在带型区域+∞<<-∞≤≤y b x a R ,:2满足定理2.1的条件.事实上,)()(),(x q y x p y x f +-=在2R 上连续,而且)(),(x p y x f y -='在2R 上也连续,所以),(y x f 关于变量y 满足李普希兹条件.这时,初值问题(2.2)的解存在且唯一,存在区间为],[b a .3、定理2.1中的李普希兹条件是保证解唯一的充分条件,那么这个条件是不是必要条件呢?回答是否定的,即李普希兹条件是解唯一的充分非必要条件.下面我们给出一个例子来说明李普希兹条件是解唯一的非必要条件,也就是说,即使李普希兹条件不成立,初值问题(2.2)的解也可能是唯一的.例1 试证方程0,ln ,0≠=⎩⎨⎧=y y y y dx dy 经过xOy 平面上任一点的解都是唯一的.证明 由00,ln ,0≠=⎩⎨⎧=y y y y dx dy 可得:0=y 或x Ce e y ±=. 任给xOy 平面上的一个点),(00y x ,只会对应0=y 或xCe e y ±=中的一个解,也就是说,过xOy 平面上任一点的解都是唯一的.但是,我们有0ln ln )0,(),(-==-y y y y x f y x f 因为+∞=→y y ln lim 0,所以找不到0>N ,使得 0)0,(),(-≤-y N x f y x f从而方程右端函数在0=y 的任何邻域上不满足李普希兹条件,但是初值问题(2.2)的解却是唯一的,这说明李普希兹条件是非必要条件.习 题 2.11.试判断方程y x dx dy tan =在区域 (1)π≤≤≤≤-y x R 0,11:1;(2)44,11:2ππ≤≤-≤≤-y x R上是否满足定理2.1的条件?2.讨论方程3123y dx dy =在怎样的区域中满足定理2.1的条件.并求通过)0,0(的一切解.3.试用逐次逼近法求方程2y x dxdy -=满足初值条件0)0(=y 的近似解: )(),(),(),(3210x x x x ϕϕϕϕ并在闭矩形区域11,11:2≤≤-≤≤-y x R 给出三次近似的误差估计.4.利用逐次逼近法求方程22x y dxdy -=适合初值条件1)0(=y 的近似解: )(),(),(210x x x ϕϕϕ并在闭矩形区域111,11:2≤-≤-≤≤-y x R 给出二次近似的误差估计.5.试证明定理2.1中的n 次近似解)(x n ϕ与精确解)(x ϕ有如下的误差估计式:10)!1()()(+-+≤-n n n x x n MN x x ϕϕ 6.在条形区域+∞<≤≤y b x a ,内,假设方程(2.1)的所有解都唯一,对其中任意两个解)(),(21x y x y ,如果有)()(0201x y x y <,则必有b x x x y x y ≤≤<021),()(.7.讨论方程323y dx dy = 解的唯一性.2.2 延展定理和比较定理由解的存在唯一性定理,我们知道,初值问题(2.2)的解在满足一定条件的情况下存在且唯一,但是解的存在区间不是],[00a x a x +-,而是],[0000h x h x +- 其中),(max ),,min(),(0y x f M Mb a h R y x ∈==.如果M 比较大的话,则解的存在区间就非常小,这对我们研究解的性质产生了很大的局限性,只能在很小的范围内有解,当x 超出这个范围时,解的情况就不清楚了.为了解决这个问题,我们有下面的延展定理.2.2.1 延展定理定理2.2(延展定理)如果方程(2.1)的右端函数在区域R R D ⨯⊂上连续,且关于变量y 满足局部的李普希兹条件,即对于D 内的任一闭矩形区域都满足李普希兹条件,则对任何一点D y x ∈),(00,初值问题(2.2)的解)(x y ϕ=可以向左右无限延展,直到))(,(x x ϕ任意接近区域D 的边界.在给出定理的证明之前,先对“))(,(x x ϕ任意接近区域D 的边界”进行说明.当区域D 有界时,积分曲线向左右延展可以任意接近;当区域D 无界时,积分曲线向左、右延展,或者任意接近区域D 的边界(边界存在的话),或者无限远离坐标原点.证明 首先证明区域D 有界的情形.设区域D 的边界为D D L -=(D 为D 的闭包).对于任意给定的正数ε,记L 的ε邻域为εU ,记L 的2ε邻域为2εU ,记L 的4ε邻域为4εU .则集合22εεU D D -=为闭集,且D D ⊂2ε,所以2εD 有界. 只要证明积分曲线可以到达2εD 的边界2εL ,由ε的任意性知,积分曲线就可以任意接近区域D 的边界L .事实上,以2εD 中的任意一点为中心,以4ε为半径的闭圆区域均包含在区域D 的内部.且在闭区域44εεU D D -=之内.从而,以2εD 中的任意一点为中心,以4221ε=a 为边长的正方形也在闭区域4εD 之内.记 ),(max 4),(1y x f M D y x ε∈= 则过2εD 的任意一点),(**y x 的积分曲线,必至少可在区间],[**h x h x +-上存在,其中)82,82min(),min(1111M M a a h εε==. 于是,过点),(00y x 的积分曲线)(x y ϕ=每向左或向右延展一次,其存在区间就伸长一个确定的正数h ,由于2εD 有界,)(x y ϕ=经过有限次延展后一定可以达到2εD的边界2εL .于是也就可以任意接近区域D 的边界L .其次考虑区域D 为无界的情形.这时,我们可以用闭圆区域,2,1},),{(222=≤+=n n y x y x S n与区域D 取交集,令n n S D D =,则 ∞==1n n D D .由于n D 为有界的区域,根据前面的证明,我们可知,过n D 内任一点的积分曲线能够任意接近n D 的边界.因此,过点),(00y x 的积分曲线)(x y ϕ=可以无限接近区域D 的边界.延展定理的证明,关键是第一步证明,也就是区域D 有界的时候,过点),(00y x 的积分曲线)(x y ϕ=向左向右延展的时候,一定要做等速延展,即延展步幅h 是不变的. 例1 试讨论方程2y dxdy=通过点)1,1(的解和通过点)1,3(-的解的存在区间. 解 该题目中研究问题的区域D 为整个坐标平面xOy .方程右端函数满足延展定理的条件.由2y dxdy=可以解得方程的通解为 xC y -=1代入1)1(=y 得:2=C .故通过点)1,1(的解为xy -=21 它可以向左无限延展,而当-→2x 时,+∞→y ,所以通过点)1,1(的解xy -=21的存在区间为)2,(-∞.代入1)3(-=y 得:2=C .故通过点)1,3(-的解为xy -=21它可以向右无限延展,而当+→2x 时,-∞→y ,所以通过点)1,3(-的解xy -=21的存在区间为),2(+∞.这个例子说明,尽管),(y x f 在整个坐标平面上满足延展定理的条件,解上的点))(,(x x ϕ也能无限接近区域D 的边界,但是延展的方向却不一定是无限向右和向左,可能是向上或向下,从而导致解的存在区间不是),(+∞-∞. 例2 试证明:对任意的0x 及满足条件100<<y 的0y ,方程221)1(y x y y dx dy ++-=的满足条件00)(y x y =的解)(x y y =在),(+∞-∞上存在.证明:令221)1(),(y x y y y x f ++-=,则222222)1(122),(y x x y y x y y x f y ++--++=' 显然),(),,(y x f y x f y '在xOy 平面上连续,满足解的存在唯一性条件及延展定理的条件,而1,0==y y 是),(y x f dxdy=的解, 因此,满足00)(y x y =,100<<y 的解存在,而且可以无限延展到xOy 平面的边界,且不能穿过1,0==y y ,故只能向左右无限延展,所以,)(x y y =在),(+∞-∞上存在.该例题说明,),(y x f 在整个坐标平面上满足延展定理的条件,当方程的解不能穿过1,0==y y 时,它就不能向上向下无限延展了,只能向左、向右延展,所以解的存在区间就是),(+∞-∞.在这里,1,0==y y 控制了解的延展方向,使它按照我们的要求进行延展,因此就有了下面的比较定理. 2.2.2 比较定理我们在使用延展定理的时候,通常会和比较定理配合使用,从而起到控制延展方向的作用.下面介绍一下比较定理.我们在考察方程(2.1)),(y x f dxdy=时,通常将右端函数),(y x f 进行放缩的处理,比如),(),(),(21y x F y x f y x F <<这时,我们可以同时考察),(1y x F dx dy =和),(2y x F dxdy = 我们有如下的比较定理:定理2.3 (第一比较定理)设定义在某个区域D 上的函数),(y x f ,),(1y x F 和),(2y x F 满足条件:(1)在D 满足解的存在唯一性定理及延展定理的条件,即在D 上连续,在D 上关于变量y 满足李普希兹条件;(2)在D 上有不等式),(),(),(21y x F y x f y x F <<设初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy ,⎪⎩⎪⎨⎧==001)(),(y x y y x F dx dy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解分别为)(x y ϕ=,)(1x y Φ=和)(2x y Φ=,则在它们的共同存在区间上有下列不等式:021),()()(x x x x x >Φ<<Φϕ 021),()()(x x x x x <Φ>>Φϕ证明 仅证当0x x >时,)()(2x x Φ<ϕ,其它的情形相类似. 由比较定理的条件(1),初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解在0x 的某一邻域内存在且唯一,分别记为)(x y ϕ=和)(2x y Φ=,它们满足0020)()(y x x =Φ=ϕ令)()()(2x x x h ϕ-Φ=,则0)()()(0020=-Φ=x x x h ϕ且0))(,())(,()()()(0002020020>-Φ='-Φ'='x x f x x F x x x h ϕϕ所以函数)(x h 在0x 的某一右邻域内是严格单调增加的.如果在0x x >时,0)(>x h 不是总成立,则至少存在一点01x x >,使得0)(1=x h ,且当10x x x <<时,0)(>x h ,因此在点1x 的左导数0)0(1≤-'x h ,这与0))(,())(,()()()(1112121121>-Φ='-Φ'='x x f x x F x x x h ϕϕ矛盾.因此当0x x >时,0)(>x h 总成立,即)()(2x x Φ<ϕ.比较定理的应用,关键是),(1y x F 和),(2y x F 的选取,因为初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解)(x y ϕ=的存在区间的延展,受到)(1x y Φ=和)(2x y Φ=的控制,即)(x y ϕ=夹在)(1x y Φ=和)(2x y Φ=之间.因此,我们必须能确定出)(1x y Φ=和)(2x y Φ=的存在区间,这就是我们选取),(1y x F 和),(2y x F 的标准,即⎪⎩⎪⎨⎧==001)(),(y x y y x F dxdy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解)(1x y Φ=和)(2x y Φ=必须能够求得. 下面我们给出第二比较定理.定理2.4 (第二比较定理)设定义在某个区域D 上的函数),(y x f ,),(1y x F 和),(2y x F 满足条件:(1)在D 满足解的存在唯一性定理及延展定理的条件,即在D 上连续,在D 上关于变量y 满足李普希兹条件;(2)在D 上有不等式),(),(),(21y x F y x f y x F ≤≤设初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy ,⎪⎩⎪⎨⎧==001)(),(y x y y x F dx dy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解分别为)(x y ϕ=,)(1x y Φ=和)(2x y Φ=,则在它们的共同存在区间上有下列不等式:021),()()(x x x x x >Φ≤≤Φϕ 021),()()(x x x x x <Φ≥≥Φϕ习 题 2.21.设方程为),()(22y x f a y dxdy-= 假设),(y x f 及),(y x f y '在xOy 平面上连续,试证明:对于任意的0x 及a y <0,方程满足00)(y x y =的解都在),(+∞-∞上存在.2.指出方程2)1(2xy e y dxdy -=的每一个解的最大存在区间,以及当x 趋于这个区间的右端点时解的极限.3.讨论方程xx dx dy 1cos 12-= 解的存在区间.4.设),(y x f 在整个平面上连续有界,对y 有连续偏导数,试证明方程),(y x f dxdy=的任一解)(x y ϕ=在区间+∞<<∞-x 上有定义. 5.讨论方程212-=y dx dy 的通过点)0,0(的解,以及通过点)3,2(ln -的解的存在区间.6.在方程)(y f dxdy=中,如果)(y f 在),(+∞-∞上连续可微,且 )0(0)(≠<y y yf ,求证方程满足00)(y x y =的解)(x y 在区间),[0+∞x 上存在,且有0)(lim =+∞→x y x .2.3 解对初值的连续依赖性定理和解对初值的可微性定理通过前两节的存在唯一性定理和延展定理,加上比较定理,我们知道了初值问题(2.2)在什么样的条件下,解是存在的,是唯一的,而且存在区间比较小的时候,通过延展定理和比较定理可以将解的存在区间变大,从而在实际问题中可以达到我们的要求.但是,在实际问题中,还有一个问题需要解决,那就是误差问题.我们的初始条件00)(y x y =如果产生了微小的偏差,这个偏差对我们的初值问题(2.2)的解)(x y ϕ=会有什么影响呢?下面我们来解决这个问题. 我们在研究初值问题(2.2)的时候,习惯上把0x 和0y 当作常数来看待,这样初值问题(2.2)的解)(x y ϕ=被看作x 的函数.实际上,如果0x ,0y 变化,初值问题(2.2)的解)(x y ϕ=也会发生变化.例如方程xydx dy = 经过点),(00y x 的解为x x y y 0=,可以看作00,,y x x 的函数.对于一般的情形,初值问题(2.2)的解也可以看作00,,y x x 的函数,记为),,(00y x x y ϕ=,代入00)(y x y = 得:0000),,(y y x x =ϕ.如果我们的初始条件00)(y x y =发生了微小的误差,变为了**0)(y x y =,初值问题(2.2)的解也变化不大的话,称解连续依赖于初值.下面我们给出连续依赖性的严格定义.定义2.1 设初值问题⎪⎩⎪⎨⎧==**0)(),(y x y y x f dxdy的解),,(*0*0y x x y ϕ=在区间],[b a 上存在,如果对于任意给定的正数ε,存在正数δ (δ的选取与,ε**0,y x 有关),使得对于满足δδ<-<-*00*00,y y x x (2.2)的解),,(00y x x y ϕ=都在],[b a 上存在,且有],,[,),,(),,(*0*000b a x y x x y x x ∈<-εϕϕ则称初值问题(2.2)的解),,(00y x x y ϕ=在点),(*0*0y x 连续依赖于初值,0x 0y .定理2.4 (解对初值的连续依赖性定理)设),(y x f 在区域D 内连续,且关于变量y 满足李普希兹条件.如果D y x ∈),(*0*0,初值问题(2.2)有解),,(*0*0y x x y ϕ=,且当b x a ≤≤时,D y x x x ∈)),,(,(*0*0ϕ,则对任意的正数ε,存在0>δ,使对于满δδ<-<-*00*00,y y x x的任意),(00y x ,初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解),,(00y x x y ϕ=也在区间],[b a 上存在,且有εϕϕ<-),,(),,(*0*000y x x y x x证明 对于任意给定的正数ε,取εδ<<10,使得闭区域}),,(,),{(1*0*0δϕ≤-≤≤=y x x y b x a y x U整个含在区域D 内,这是可以做到的,因为区域D 是开区域,且当b x a ≤≤时,D y x x x ∈)),,(,(*0*0ϕ,所以,只要1δ的选取足够小,以曲线),,(*0*0y x x y ϕ=为中线,宽度为12δ的带形开区域U 就整个包含在区域D 内, 选取δ满足)(110a b N e M--+<<δδ其中N 为李普希兹常数,),(max ),(y x f M Uy x ∈=,同时还要求δ的选取,必须保证闭正方形δδ≤-≤-*0*02,:y y x x R含于带形开区域U 内.由存在唯一性定理知,对于任一200),(R y x ∈,初值问题(2.2)在0x 的某邻域上存在唯一解),,(00y x x y ϕ=,而且),,(00y x x y ϕ=在0x 的该邻域上可以表示为ττϕτϕd y x f y y x x xx )),,(,(),,(000000⎰+=而),,(*0*0y x x y ϕ=可以表示为ττϕτϕd y x f y y x x xx )),,(,(),,(*0*0*0*0*0*⎰+=对上述两式做差得:ττϕτττϕτϕϕd y x f d y x f y y y x x y x x xx x x )),,(,()),,(,(),,(),,(*0*000*00*0*000*⎰⎰-+-=-ττϕτττϕτϕϕd y x f d y x f y y y x x y x x xx xx )),,(,()),,(,(),,(),,(*0*000*00*0*000*0⎰⎰-+-≤-ττϕτττϕττϕτd y x f d y x f y x f y y x x xx |)),,(,(||)),,(,()),,(,(|0000*0*0*00**0⎰⎰+-+-≤δττϕττϕτδM d y x f y x f xx +-+≤⎰|)),,(,()),,(,(|00*0*0*0ττϕτϕδd y x y x N M xx |),,(),,(|)1(00*0*0*0-++≤⎰由贝尔曼引理,得εδδδϕϕ<<+≤+≤---1)(*0*000)1()1(),,(),,(*a b N x x N e M e M y x x y x x因此,只要在),,(00y x x y ϕ=有定义的区间上,就有εϕϕ<-),,(),,(*0*000y x x y x x .下面我们证明:),,(00y x x y ϕ=在区间],[b a 上有定义.事实上,因为εϕϕ<-),,(),,(*0*000y x x y x x即解),,(00y x x y ϕ=夹在εϕ+=),,(*0*0y x x y 和εϕ-=),,(*0*0y x x y 之间,而且,初值问题(2.2)满足延展定理的条件,所以,解),,(00y x x y ϕ=可以向左向右无限延展,直到无限接近区域D 的边界,于是,它在延展的时候,必须由直线a x =和直线b x =穿出区域U ,从而),,(00y x x y ϕ=在区间],[b a 上有定义.解对初值的连续依赖性说明,初值),(00y x 无法准确得到,但是我们能得到测量数据),(*0*0y x ,只要误差比较小,即δδ<-<-*00*00,y y x x .我们就可以用),(*0*0y x 代替),(00y x 去计算,得到初值问题的解),,(*0*0y x x y ϕ=,这个解可以非常接近真实解),,(00y x x y ϕ=,即εϕϕ<-),,(),,(*0*000y x x y x x .同理,如果方程的右端函数),(y x f 不能准确得到,只能得到),(y x f 的近似函数),(~y x f ,即)),((,),(),(~D y x y x f y x f ∈<-δ我们就可以用),(~y x f 代替),(y x f 去计算,得到初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 的解),,(00~y x x y ϕ=,那么),,(00~y x x y ϕ=能否代替),,(00y x x y ϕ=呢?我们有下面的解的连续依赖性定理.定理2.5 (解对被积函数的连续依赖性定理)在区域D 上,),(y x f 和),(~y x f 都连续,而且关于变量y 满足李普希兹条件, 若初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 在b x a ≤≤上有解),,(00~y x x y ϕ=,则对任意给定的正数ε,存在0>δ,只要),(y x f 满足)),((,),(),(~D y x y x f y x f ∈<-δ则初值问题(2.2)的解),,(00y x x y ϕ=在b x a ≤≤上存在,且有εϕϕ<-),,(),,(00~00y x x y x x .证明 由解的存在唯一性定理知,初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 的解),,(00~y x x y ϕ=存在,设其存在区间为],[b a ,且有⎰+=xx d y x f y y x x 0))],,(,([),,(00~~000~ξξϕξϕ而初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解),,(00y x x y ϕ=也存在,且可以表示为⎰+=xx d y x f y y x x 0))],,(,([),,(00000ξξϕξϕ则⎰⎰-=-xx xx d y x f d y x f y x x y x x 0))],,(,([))],,(,([),,(),,(0000~~0000~ξξϕξξξϕξϕϕ从而有⎰-≤-xx d y x f y x f y x x y x x 0|)),,(,()),,(,(|),,(),,(0000~~0000~ξξϕξξϕξϕϕ⎰-+-=xx d y x f y x f y x f y x f 0|)),,(,()),,(,()),,(,()),,(,(|0000~00~00~~ξξϕξξϕξξϕξξϕξ ⎰-+-≤xx d y x f y x f y x f y x f 0|)),,(,()),,(,(||)),,(,()),,(,(|0000~00~00~~ξξϕξξϕξξϕξξϕξ⎰+-≤xx d y x y x N 0)|),,(),,((|0000~ξδξϕξϕ ⎰-+-≤xx d y x y x N a b 0|),,(),,(|)(0000~ξξϕξϕδ由贝尔曼引理,得)(0000~)(),,(),,(a b N e a b y x x y x x --≤-δϕϕ取)(a b N e ab ---<εδ,则εϕϕ<-),,(),,(0000~y x x y x x .且解),,(00y x x y ϕ=在b x a ≤≤上存在. 例1 考虑方程,ln ,0≠=⎩⎨⎧-=y y y y dx dy 解的情况.解 显然1,1,0-===y y y 是方程的解,当1,1,0-≠≠≠y y y 时,有y y dxdyln -= 这时解得上半平面的通解为x Ce e y -=,下半平面的通解为xCe e y --=.可以看到,对于Ox 轴上的初值)0,(0x ,在任意有限闭区间上解对初值连续依赖,但是,在),0[+∞上,无论),(00y x ,00≠y 如何接近)0,(0x ,只要x 充分大,过),(00y x 的积分曲线就不能与过)0,(0x 的积分曲线(即0=y )任意接近了.这个例子说明,解在有限闭区间上对初值连续依赖,不能推广到无限区间,即,在无限区间上解对初值的连续依赖定理就不成立了.我们有时不仅要求解对初值连续依赖,而且还要知道解),,(00y x x y ϕ=对初值00,y x 的偏导数00,y x ∂∂∂∂ϕϕ是否存在.下面给出解对初值的可微性定理. 定理2.6 (解对初值的可微性定理)如果函数),(y x f 以及),(y x f y '在区域D 内连续,则初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解),,(00y x x y ϕ=在它有定义的区间上有连续偏导数00,y x ∂∂∂∂ϕϕ.并且有 ⎰-=∂∂'x x y d y x f e y x f x y x x 000)),,(,(00000),(),,(ττϕτϕ 及⎰=∂∂'xx y d y x f e y y x x 000)),,(,(000),,(ττϕτϕ 习 题 2.31.若函数),(y x f ,),(y x R 在区域D 内连续且满足李普希兹条件,设初值问题⎪⎩⎪⎨⎧=+=*0*0)(),(),(y x y y x R y x f dx dy 的解为),,(*0*0~y x x y ϕ=,存在区间为],[b a .对任意的正数ε,存在0>δ,使对于满足)),((,),(D y x y x R ∈<δ的),(y x R ,以及满足δδ<-<-*00*00,y y x x的任意),(00y x ,初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解),,(00y x x y ϕ=也在区间],[b a 上存在,且有εϕϕ<-),,(),,(*0*0~00y x x y x x 2.已知方程)sin(xy dxdy = 试求0000000),,(==⎥⎦⎤⎢⎣⎡∂∂y x x y x x y 和0000000),,(==⎥⎦⎤⎢⎣⎡∂∂y x y y x x y 3.设),,(00y x x ϕ是初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解,试证明0),(),,(),,(00000000=∂∂+∂∂y x f y y x x x y x x ϕϕ 2.4 欧拉折线法在第一章,我们介绍了方程的初等解法,即用微积分的知识求得常微分方程的函数解.但是绝大多数的方程不能用初等方法求解,在第二章的前三节中,我们给出了柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 在什么样的条件下,解存在且唯一;在什么条件下,解的存在区间可以延展;在什么条件下连续依赖于初值;在什么条件下,解对初值是可微的.有了这些准备,我们就可以研究柯西初值问题的近似解.下面我们介绍求近似解的方法,欧拉折线法.假定函数),(y x f 在区域:+∞<<-∞≤≤y b x a ,上连续,且关于变量y 满足李普希兹条件,求柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 在区间],[0b x 上的近似解,我们采用的方法是:(1)等分区间],[0b x ,分点为n k kh x x k ,,1,0,0 =+=;小区间长度nx b h 0-=, (2)第一个小区间上用切线段逼近曲线:))(,(0000x x y x f y y -+=,(3)求出1x 所对应的纵坐标))(,(010001x x y x f y y -+=,(4)依次重复(2),(3)得到每个小区间上的线段,从而得到欧拉折线. 这样,我们就用欧拉折线作为柯西初值问题在区间],[0b x 近似解.欧拉折线法的前提是:柯西初值问题的解存在且唯一,而且解的存在区间是],[0b x .例1试用欧拉折线法,取步长1.0=h ,求初值问题⎪⎩⎪⎨⎧=+=1)1(22y y x dx dy 的解在4.1=x 时的近似值.解 令22),(y x y x f +=,2)1,1(=f ,这时12-=x y ,代入1.11=x 得:2.11=y ,65.2)2.1,1.1(=f ,这时2.1)1.1(65.2+-=x y , 代入2.12=x 得:465.12=y ,586225.3)465.1,2.1(=f ,这时465.1)2.1(586225.3+-=x y , 代入3.13=x 得:8236225.13=y ,0155990225.5)8236225.1,3.1(=f ,这时8236225.1)3.1(0155990225.5+-=x y ,代入4.14=x 得:53251824022.24=y 习 题 2.41. 试用欧拉折线法,取步长1.0=h ,求初值问题⎪⎩⎪⎨⎧=-=0)0(22y y x dx dy 的解在5.1=x 时的近似值.2.试用欧拉折线法,取步长1.0=h ,求初值问题 ⎪⎩⎪⎨⎧=+=2)1(22y y x dx dy 在区间]4.1,1[上的近似解.。
高等数学:第九章 常微分方程3-4
x0
2
6
.......
| (x) (x) |
ALn | x x0
|n
Ln h n A
n
0.
n!
n!
lim
n
|
(
x)
(
x)
|
0
当x
[
x0
h,
x0
h]时,
(
x)
(
x)。
推论: 考虑微分方程
y' f (x, y),(x, y) D.
若函数 f(x,y), fy(x,y) 在区域 D 上连续,则过 D 内任 一点 (x0,y0), 有且只有一条方程的通积分通过。
x
y1(x) y0 x0 f (x, y0 )dx,
估计 | y1(x) y0 | 后发现
x [x0 h, x0 h]
x
| y1(x) y0 | x0 f (x, y0 )dx M | x x0 | Mh b.
可见(x, y1(x)) R.
h
min(
a,
b M
),
M
max{|
上连续,且对 y 满足李氏条件,则初值问题在 区间 [x0-h,x0+h] 上有且只有一个解,其中常数
h
min( a,
b M
), M
max{|
f (x, y) |, (x, y) R}
y' f (x, y)
y(x0 )
y0
在 [x0-h,x0+h] 上有唯一解.
h
min(
a,
b M
),
M
max{|
f (x, y1) f (x, y2 ) f y (x, )(y1 y2 ), ( y1, y2 ).
《常微分方程指导与实验》第2章:一阶微分方程的解的存在定理
第二章 一阶微分方程的解的存在定理§2.1 一阶微分方程解的基本理论主要内容一 导数已解出方程初值问题解的存在唯一性定理 考虑导数已解出的一阶DE 的初值问题()()00,y f x y y x y '=⎧⎪⎨=⎪⎩(2.1)(2.2)这里()y x f ,是在闭矩形域R : a x x ≤-0,b y y ≤-0上的连续函数。
定义2.1 如果存在常数0>L ,使得对于所有的点()1,y x ,()2,y x R ∈,都有不等式()()2121,,y y L y x f y x f -≤-成立,则称函数()y x f ,在R 上关于y 满足李普希兹(Lipschitz )条件。
1定理2.1 (毕卡存在唯一性定理) 如果()y x f ,在R 上满足条件: 1)连续;2)关于y 满足李普希兹条件,则初值(2.1)和(2.2)在区间h x x ≤-0上存在唯一解()x y y =,其中()M b a h ,m in=,()y x f M R y x ,max ),(∈=。
注1 取数h 的意义。
注意到()y x f M R y x ,max ),(∈=,从而积分曲线()x y y =在任一点()()R x y x ∈,处的切线斜率()M x y ≤'。
于是从点()o y x p ,0引两条斜率分别为M 和M -的直线1l 和2l ,便知过点P 的积分曲线必限制在图2.1和图2.2的阴影区域内。
而直线1l 和2l 相交情形有如下两种可能。
(i )若相交成如图 2.1所示的情况,则a Mb>,积分曲线()x y y =在a x x ≤-0上不越出R ,从而应取a h =。
(ii )若相交成如图 2.2所示的情况,则a Mb >,积分曲线()x y y =在Mb x x ≤-0上不越出R ,从而应取Mb h =。
总之,取()M ba h ,min =,就是为了使初值问题(2.1)和(2.2)的解在h x x ≤-0上总存在。
一阶非线性常微分方程解的存在性定理—Picard-Lindelof定理
⼀阶⾮线性常微分⽅程解的存在性定理—Picard-Lindelof定理上⼀节简单介绍了可求解的⼀阶常微分⽅程的解法,因为⼤部分⾮线性⽅程是不可解的,所以需要给出解的存在性的证明。
本节主要介绍⼀阶⾮线性常微分⽅程Cauchy问题(E)dydx=f(x,y),y(x0)=y0.解的存在性定理Picard-Lindelof定理(有的书上称它为Cauchy-Lipschitz定理). 对⼀阶常微分⽅程解的存在性理论作出重要贡献的数学家有Cauchy、Lipschitz、Picard、Lindelof、Peano等,其中Picard提出的Picard迭代法尤其值得关注。
据传Picard证明Picard—Lindelof定理的原始论⽂⾜⾜有三四百页,后来数学家Banach把Picard的⽅法抽象出来证明了著名的Banach不动点定理。
Banach不动点定理是分析学中最重要的定理之⼀,也是⽤的最多的定理之⼀,它在线性⽅程组求解迭代⽅法的收敛性、常微分⽅程的两点边值问题、隐函数定理、Lax-Milgram定理甚⾄代数⽅程解的存在性等问题中均有重要应⽤。
许多微分⽅程(组)通过转化为等价的积分⽅程再利⽤不动点理论来证明解的存在性。
本节也采⽤这⼀框架来探索⽅程(E)解的存在性。
为此,⾸先利⽤Picard迭代给出Banach不动点定理的证明。
定理1 (Banach) 设X为Banach空间(即完备的赋范空间,完备的意思指所有的Cauchy列均收敛),f:X→X为压缩映射,即存在常数k,0<k<1,对任意x,y∈X有‖f(x)−f(y)‖≤k‖x−y‖,则映射f:X→X有且只有⼀个不动点x∈X.证明:任取x0∈X,构造Picard迭代x n+1=f(x n),n≥0.则‖x n+1−x n‖=‖f(x n)−f xn−1‖≤k‖x n−x n−1‖≤⋯≤k n‖x1−x0‖.设m>n≥0,由三⾓不等式和上式得‖x m−x n‖≤m−1∑p=n‖x p+1−x p‖≤k n1−k‖x1−x0‖,当m,n→∞时,‖x m−x n‖→0, 故序列{x n}为Cauchy列,由X的完备性知存在x∞∈X使得lim f:X\to X满⾜Lipschitz条件,显然连续.故x_{\infty}=\lim_{n\to\infty}x_{n+1}=\lim_{n\to\infty}f(x_{n})=f(\lim_{n\to\infty}x_{n})=f(x_{\infty}).存在性得证。
常微分方程解的存在唯一性定理
常微分方程解的存在唯一性定理一阶微分方程⑴其中. 是在矩形域丄」’叭」上的连续函数。
定义1如果存在常数二11,使得不等式”(础)-/(砒)冏肝川对于所有--■■-1--- 都成立,贝U函数/、•称为在二上关于:'满足Lipschitz 条件。
定理1如果「二,在二上连续且关于「满足Lipschitz 条件,则方程(1)存在唯一的解y=叭心,定义于区间M ■阳卜月上,连续且满足初始条件W八-卄 A = r—)M = max' ■-.,这里」f,•心「。
Picard逐步逼近法来证明这个定理的主要思想首先证明求微分方程的初值冋题的解等价于求积分方程的连续解。
然后去证明积分方程的解的存在唯一性。
任取一个连续函数代入上面积分方程右端的,就得到函数俅沪)Vp(Z()⑴)必,显然J 也是连续函数,如果,那末l:-'就是积分方程的解。
否则,我们又把J二代入积分方程右端的「,得到汀0恥)皿,如果氛沪仍⑴,那末仇⑴就是积分方程的解。
否则我们继续这个步骤。
一般地作函数惦(3.1.1.4)这样就得到连续函数序列,...,〔「」,…如果二, 那末就是积分方程的解。
如果始终不发生这种情况,我们可以证明上面的函数序列有一个极限函数厂:;;1,即'厂…I存在,因而对©Ji/)取极限时,就得到f「打「X FJr=y0+l=y0+祕幼必Jf祕x)=y n+/(X 矶兀))必/ 、即•血,这就是说机x)是积分方程的解。
这种一步一步地求出方程的解的方法就称为逐步逼近法。
函数''■■■■■'称为初值问题的第:次近似解。
命题1设—是方程(1)的定义于区间V —'■'‘上,满足初始条件Jf瞅)=刃的解,则厂曲)是积分方程y=y°+y (2曲碳心砒的定义于V ——'■上的连续解。
反之亦然。
现在取,构造皮卡逐步逼近函数序列如下: 京(X)=丹;保(方=丹+ f于(乙矶_1©)時从“英肿hJ*D(聊=12…)1命题2对于所有的卜,函数在J■:上有定义、连续且满足不等式命题3 函数序列"I「在J ------------ '."上是一致收敛的。
微分方程中的解的存在性理论
微分方程中的解的存在性理论微分方程是研究变量之间的关系的重要数学工具。
解微分方程的存在性理论是微分方程理论中的核心内容之一。
本文将介绍微分方程中的解的存在性理论,并探讨其在实际应用中的意义。
微分方程解的存在性理论是指在何种条件下,微分方程一定存在解。
这个理论的研究主要涉及到微分方程的类型、边界条件和解的唯一性等方面。
解的存在性理论的研究对于解决各类实际问题具有重要意义。
一、常微分方程的解的存在性理论常微分方程是最常见的微分方程类型,其解的存在性理论相对较为简单。
常微分方程的解存在的条件主要有两个方面:存在定理和唯一性定理。
1. 存在定理存在定理又称为皮卡-林德洛夫定理,它告诉我们,如果常微分方程满足某些条件,那么在给定的初始条件下,方程一定存在解。
这个定理给出了解的存在的一个直接判定方法。
2. 唯一性定理唯一性定理是对解的唯一性进行了研究。
在某些情况下,方程的解不仅存在,而且是唯一的。
这个定理的证明方法多种多样,可以是解析的,也可以是几何的。
唯一性定理给出了解的精确性,使得我们可以准确地计算和预测物理现象。
二、偏微分方程的解的存在性理论偏微分方程相较于常微分方程更为复杂,解的存在性理论也更加丰富。
偏微分方程的解的存在性理论主要有以下几个方面:1. 麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程,解的存在性理论是电磁学和电子学研究的重要基础。
麦克斯韦方程组的解存在性主要通过矢量分析和偏微分方程理论进行证明,为电磁场的计算和应用提供了理论支持。
2. 热传导方程热传导方程是描述物体温度分布变化的方程,解的存在性理论对于热传导问题的研究至关重要。
热传导方程关于边界条件和初值条件的不同,解的存在性也存在差异,需要通过特定的数学方法进行证明。
3. 波动方程波动方程是描述波动现象的方程,它的解存在性理论与波动现象的特点密切相关。
波动方程的解的存在性主要通过分析波动现象的特性以及边界条件的规定来进行证明,对于解决声学、光学等领域的问题具有重要意义。
常微分方程2.2解的存在唯一性定理
即命题2 当 n=1 时成立。 现在用数学归纳法证明对于任何正整数 n ,命题2都成立。
即 当 n=k 时, k (x)在 x0 x x0 h 上有定义,连续,
也就是满足不等式 k (x) y0 b
x
而当 n=k+1 时, k1(x) y0 x0 f (,k ( ))d
x
0 (x) (x) x0 f (, ( )) d M (x x0 )
x
k1(x) y0 x0 f (,k ( )) d M (x x0 ) Mh b
k 1 (x) 在 x0 x x0 h 上有定义,连续。
§ 2.2 Existence & Uniqueness Theorem & Progressive Method
即命题2在 n=k+1时也成立。
现在取 0 (x) y0 ,构造皮卡逐步逼近函数序列如下:
0 (x) y0
n (x) y0
x x0
f ( ,n1( ))d
x0 h x x0 h
(3.1.9)
0 (x) y0
x
1(x) y0 x0 f ( ,0 ( ))d
x
2 (x) y0 x0 f (,1( ))d
x0+a
x
§ 2.2 Existence & Uniqueness Theorem & Progressive Method
0 (x) y0
n (x) y0
x x0
f ( , n1 ( ))d
命题2 对于所有的 (3.1.9) 中函数
x0 x x0 h
n (x) 在
x0 x x0 h 上有定义、连续,即满足不等式:
常微分方程一阶微分方程的解的存在定理课件
THANKS
感谢您的观看
数学模型
弹簧振子模型一般采用一阶微分方程的形式,方程如下:mdx/dt² + bdx/dt + kx = 0,其中m表示质量,b表示阻尼系数,k表示弹簧刚度 。
传染病传播模型
01
总结词
传染病传播模型也是一阶微分方程的重要应用案例,通过 模型可以描述疾病的传播规律,预测疫情的发展趋势。
02 03
详细描述
常微分方程一阶微分 方程的解的存在定理
目录
CONTENTS
• 引言 • 一阶微分方程的基本概念 • 一阶微分方程解的存在定理 • 数值求解一阶微分方程的方法 • 一阶微分方程的稳定性分析 • 应用案例分析
01
引言
课程背景
• 在数学、物理学、工程学和其他许多学科中,常微分方程都有着广泛的应用。一阶微分方程作为常微分方程的 一个子类,具有非常重要的地位。研究一阶微分方程的解的存在性,对于理解其动力学行为、解决实际问题, 以及推动相关领域的发展都具有重要的意义。
通过应用存在定理,我们可以证明这些模型的一阶微分方 程存在解,进而用数值方法或解析方法求解该解,以预测 未来趋势或制定相应政策。
04
数值求解一阶微分 方程的方法
欧拉方法
简单介绍
欧拉方法是一种经典的数值求解 一阶微分方程的方法,其基本思 想是利用微分方程的离散化近似
来求解。
方法描述
欧拉方法基于一阶微分方程的离散 化近似,通过迭代过程不断逼近方 程的解。
传染病传播模型一般采用一阶微分方程的形式,其中感染 人数是时间的函数,并且受到疾病传播率、治愈率和死亡 率等因素的影响。根据不同的传播率和初始条件,可以求 解微分方程,得到感染人数随时间变化的解。
常微分方程解的存在唯一性定理
1解的存在唯一性
解的存在唯一性定理是指方程的解在一定条件下的存在性和唯一性,它是常微分方程理论中最基本的定理,有其重大的理论意义,另一方面由于能求得精确解的微分方程并不多,常微分方程的近似解法具有十分重要的意义,而解的存在唯一性又是近似解的前提,试想,如果解都不存在,花费精力去求其近似解有什么意义呢?如果解存在但不唯一,但不知道要确定的是哪一个解,又要去近似的求其解,又是没有意义的。
2解的存在唯一性定理一
定理1
如果函数f(x,y)在矩形域R上连续且关于y满足利普希茨条件,则方程
dx/dy=f(x,y);存在唯一的解y=φ(x),定义于区间|x-x0|<=h上,连续且满足初值条件φ(x0)=y0,这里h=min(a,b/M) , M=max|f(x,y)|。
命题1
设y=φ(x)是方程的定义于区间x0<=x<=x0+h上,满足初值条件φ(x0)=y0的解,则y=φ(x)是积分方程y=y0+∫f(x,y)dx,x0<=x<=x0+h的定义于x0<=x<=x0+h上的连续解,反之亦然。
命题2
对于所有的n,皮卡逐步逼近函数φn(x)在 x0<=x<=x0+h上有定义,连续且满足不等式|φn(x)-y0|<=b。
命题3
函数序列{φn(x)} 在x0<=x<=x0+h上已收敛的。
命题4
φn(x)是积分方程的定义于x0<=x<=x0+h上的连续解
命题5
设ψ(x)是积分方程的定义于 x0<=x<=x0+h的另一个解,则
ψ(x)=φ(x)(x0<=x<=x0+。
常微分方程--第三章 一阶微分方程的解的存在定理(3.1-3.2)_OK
x
L x0 1( ) 0 ( )d
L
x x0
M (
x0 )d
ML 2
(x
x0 )2
其中第二个不等式是由Lipschitz条件得到的,
由Lipschitz条件
17
设对于正整数n, 有不等式
n (x) n1(x)
MLn1 n!
(x
x0
)n
,
则当x0 x x0 h时,由Lipschitz条件有
dy dx
f
(x, y), (3.1)
y(x0 ) y0
证明: 若y (x)为(3.1)的连续解,则
d ( x)
dx
f
( x, ( x)),
(x0 ) y0
对第一式从x0到x取定积分得
x
即
x (x) (x0 ) x0 f (x,(x))dx (x) y0 x0 f (x,(x))dx
x
f ( , ( )) f ( ,( )) d x0
x
x
L ( ) ( ) d L g( )d
x0
x0
令u(x) L
x
g( )d ,
x0
则u(x)是定义于[x0, x0 h]上连续可微函数,
且u(x0 ) 0,0 g(x) u(x), u'(x) Lg(x),于是
u(x) Lu(x), (u(x) Lu(x))eLx 0,
(4) (x)是积分方程(3.5)定义于[x0 h, x0 h]上连续解
且唯一.
9
下面分五个命题来证明定理,为此先给出
积分方程
如果一个数学关系式中含有定积分符号且在定积分符 号下含有未知函数, 则称这样的关系式为积分方程.
常微分方程的常见解法
的切线斜率是 。
如果我们在区域D内每一点 处,都画上一个
以
的值为斜率中心在 点的线段,我们
就得到一个方向场,将这个方向场称为由微分方程
所确定的向量场。
向量场对于求解微分方程的近似解和研究微分方
程的几何性质极为重要,因为,可根据向量场的走
向来近似求积分曲线,同时也可根据向量场本身的
性质来研究解的性质。
解: 设t时刻湖泊中所含盐酸的数量为 x(t)
考虑
内湖泊中盐酸的变化。
因此有 该方程有积分因子
两边同乘以
后,整理得
积分得 利用初始条件得
变量可分离方程的求解
当,
方程(2.2.1)两边同除以
得
这样对上式两边积分得到
齐次方程
齐次函数: 函数
称为m次齐次函数, 如果
齐次方程: 形如
的方程称为齐次方程。
即
(3)凑微分法 例:验证方程
是全微分方程,并求它满足初始条件: 的解。
解:由于
所以方程为全微分方程。 由于
根据二元函数微分的经验,原方程可写为
方程的通解为:
利用条件
得
最后得所求初值问题得解为:
四、微分方程的近似解法
• 用一些函数去近似微分方程的解 • 在一些点上计算方程解的近似值 逐次迭代法 Taylor级数法 Euler折线法 Runge-Kutta法
令
则
4. 对特殊方程
令
则
例 求方程
的通解。
解:解方程组
得
令 代入原方程可得到齐次方程
令
得
变量分离后积分 还原后得原方程通解为
变量可分离方程的应用
例:雪球融化问题
设雪球在融化时体积的变化率与表面积成比
常微分方程的解的存在唯一性定理
常微分方程的解的存在唯一性定理常微分方程是数学中的一门重要分支,它涉及到许多实际问题的理论分析和计算求解,尤其是在物理、化学等领域有着广泛的应用。
而常微分方程的解的存在唯一性定理则是研究常微分方程解的基础,下面我将对这一定理进行详细阐述。
1. 常微分方程的定义及初值问题常微分方程(ODE)是指未知函数 $y(t)$ 的某个数量关系式:$$F(t,y,y',y'',\cdots ,y^{(n)})=0$$其中 $y'$,$y''$,$\cdots$,$y^{(n)}$ 分别表示 $y$ 的一阶、二阶、$\cdots$,$n$ 阶导数,$F$ 是已知的函数。
这个方程称为$n$ 阶常微分方程。
方程的初值问题是指,在确定 $n$ 阶常微分方程中的 $n$ 个初始条件:$$y(t_0)=y_0,\ y'(t_0)=y_1,\ \cdots,\ y^{(n-1)}(t_0)=y_{n-1}$$后,求解函数 $y(t)$ 在整个定义域上的解。
2. 解的存在唯一性定理的三个条件常微分方程的解的存在唯一性定理是指在一定的条件下,常微分方程仅有唯一的解。
下面给出常微分方程存在唯一性定理的三个条件。
2.1 连续性设函数 $F(t,y,y',y'',\cdots ,y^{(n)})$ 是定义于某个区域上的$C^{m+1}$ 级函数,即 $F$ 及其 $m$ 个偏导数(一直到$y^{(m)}$)都是连续的。
2.2 局部存在性对于同一初值问题,存在一个足够小的区间 $I$,使得在此区间内存在解 $y(t)$,并且 $y(t)$ 函数及其前 $n-1$ 阶导数都是$C^{m}$ 级函数。
2.3 局部唯一性在区间 $I$ 上,对于同一初值问题,解 $y(t)$ 是唯一的。
3. 解的存在唯一性定理的证明解的存在唯一性定理可转化为证明常微分方程方程的解满足某种 Lipschitz 条件,即:$$\forall \ y_1,y_2\in C([a,b])\ \text{and}\ y_1(t_0)=y_2(t_0)$$$$\Rightarrow \ \exists L>0,\ \text{s.t.}\ |y_1(t)-y_2(t)|\le L\cdot \max_{t\in [t_0,T]}\{|y_1(t)-y_2(t)|\}$$其中,$C([a,b])$ 表示在区间 $[a,b]$ 内连续的函数集合,$L$ 是 Lipschitz 常数。
常微分方程:解的存在唯一性定理及证明
➢ 李卜西兹(Lipschitz)条件
例1 验证下列函数对是否满足李氏条件
1. f (x) x
解: f ( x1 ) f ( x2 ) x1 x2
f ( x) x在R上满足李氏条件。
2. f (x) x
解: f (x1) f (x2 ) x1 x2 x1 x2 f (x) x 在R上满足李氏条件。
毕卡定理
定理1 设初值问题
(E) :
dy f (x, y), dx
y(x0 ) y0,
其中 f (x, y)在矩形区域
R : | x x0 | a, | y y0 | b
内连续,而且对y满足李氏条件,则(E)在区间I [x0 h, x0 h]上有并且只
有一个解,其中常数
h min(a, b ), 而 M max | f (x, y) |。
f (x, y0(x)) | dx | M | x x0 | .
(1.5)
即,在区间 I 上 | y1(x) y0 | Mh b。
f (x, y1(x))在I上是连续。
由(1.4)可知
x
y2 (x) y0 x0 f (x, y1(x))dx,
在I上是连续可微的,而且 满足不等式
(xI)
其中常数L 0。则称函数 f (x, y)在区域D内对y满足李卜西兹条件(或简称 李氏条件)。
易知,若函数f (x, y)在凸形闭区域D内对y有连续的偏微商,则f (x, y)在D内对 y满足李氏条件;
反之,结论不一定正确 。
局部李卜西兹条件: 对区域D内任一点q,存在以q为中心的一个矩形区域 Q D,使得在Q内f (x, y)对y满足李氏条件。
(n 0,1,2,), 其中y0 (x) y0.
常微分方程的解的存在唯一性定理
常微分方程的解的存在唯一性定理常微分方程是数学中一个重要的研究对象,它描述了自变量是连续变化的函数与自变量的导数之间的关系。
研究常微分方程的解的存在唯一性定理是常微分方程理论的基石之一,对于解的存在性和唯一性的判断具有重要的意义。
定理一:皮卡尔(Picard)存在定理假设函数f(x, y)在矩形区域D={(x, y):a≤x≤b,α≤y≤β}上连续,且满足利普希茨条件:存在正数L,使得在D上任意点(x, y1)和(x, y2),有|f(x, y1) - f(x, y2)|≤L|y1-y2|。
则初值问题y' = f(x, y),y(x0) = y0在区间[a, b]上存在唯一的解。
证明:(略)定理二:格朗沃尔(Gronwall)不等式假设函数y(x)满足不等式y(x)≤K+∫[a,x]f(t,y(t))dt,其中K为常数且f(x, y)为非负函数。
则有0≤y(x)≤Kexp(∫[a,x]f(t,y(t))dt)。
证明:(略)根据皮卡尔存在定理和格朗沃尔不等式,我们可以推导出常微分方程解的存在唯一性定理。
定理三:常微分方程解的存在唯一性定理假设函数f(x, y)在区域D上连续,且满足利普希茨条件:存在正数L,使得在D上任意点(x, y1)和(x, y2),有|f(x, y1) - f(x, y2)|≤L|y1-y2|。
则对于初值问题y' = f(x, y),y(x0) = y0,在定义区间上存在唯一的解。
证明:(略)常微分方程解的存在唯一性定理的推导过程相对较为复杂,涉及到一些数学理论和定理的运用。
但是这个定理为我们研究和求解常微分方程提供了重要的理论支持,确保了我们在解决实际问题中得到的解是存在且唯一的。
除了皮卡尔存在定理和格朗沃尔不等式外,我们还可以利用其他方法来证明常微分方程解的存在唯一性,比如利用分离变量法、变换方法、级数法等。
在实际应用中,根据具体问题的特点选择适合的方法进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1(x) y0
x
x0 f ( ,y0 )d
x x0
f ( , y0 )d
M x x0 Mh b
M Max f (x, y) ( x, y)R
h min( a, b ) M
设命题2当n k时成立, 即k (x)在[x0, x0 h]上连续且
k (x) y0 b
当n k 1时
y0
即y (x)为(3.1)的连续解.
构造Picard逐步逼近函数列{n (x)}
00(x)
xx
nn(x) y00 xx00 f ( ,nn11( ))d
(n 1,2,)
(3.7)
x00 xx xx00 hh
注 一般来说连续函数0 (x)可任取,但实际上为 方便, 往往取0 (x) y0的常数值.
问题: 这样构造的函数列是否行得通, 即上述的积分 是否有意义?
命题2 对于所有n和x [x0, x0 h],n (x)连续且满足
n (x) y0 b,
(3.8)
证明:(用数学归纳法)
x
n 1时 1(x) y0 x0 f ( ,y0 )d
显然1(x)在[x0, x0 h]上连续,且
dx
f (x, y)
(3.1)
y(x0 ) y0 其中f (x, y)在矩形区域R : x x0 a, y y0 b, (3.2)
上连续, 并且对y满足Lipschitz条件:
即存在L 0,使对所有(x, y1), (x, y2) R常成立
f (x, y1) f (x, y2 ) L y1 y2
故y (x)为(3.5)的连续解.
反之 若y (x)为(3.5)的连续解,则有
x
(x) y0 x0 f (t,(t))dt
由于f (x, y)在R上连续, 从而f (t,(t))连续,
故对上式两边求导,得
d(x) f (x,(x))
dx
且 (x0 ) y0
x0 x0
f
( x, ( x))dx
第三章 一阶微分方程的解的存在定理
需解决的问题
10
初值问题
dy dx
f
(x, y),的解是否存在?
y(x0 ) y0
20
若初值问题
dy dx
f
(x, y),的解是存在,是否唯一?
y(x0 ) y0
§3.1 解的存在唯一性定理与逐 步逼近法
一 存在唯一性定理
1 定理1 考虑初值问题
dy
(4) (x)是积分方程(3.5)定义于[x0 h, x0 h]上连续解
且唯一.
下面分五个命题来证明定理,为此先给出
积分方程
如果一个数学关系式中含有定积分符号且在定积分符 号下含有未知函数, 则称这样的关系式为积分方程.
如: y ex x y(t)dt,就是一个简单的积分方程. 0
积分方程的解
即命题2当n k 1时成立, 从而命题2对所有n都成立,
命题3 函数序列{n (x)}在[x0, x0 h]上一致收敛.
记
lim
n
n
(
x)
(
x),
x [x0, x0 h].
证明: 考虑函数项级数
0 (x) (n (x) n1(x)), n1
只需{n (x)}在[x0 h, x0 h]上一致收敛于(x).
n
由于 0 (x) (k (x) k1(x)) n (x), k 1 于是函数列{n (x)}在[x0 h, x0 h]上一致收
敛性, 等价于函数项级数
0 (x) (n (x) n1(x)), n1
在[x0 h, x0 h]上一致收敛性.
x
这是为了
lim
n
n1
(
x)
y0
lim
n
x
x0 f ( ,n ( ))d
y0
x0
lim
n
f
( ,n ( ))d
即
x
(x) y0 x0 f ( ,( ))d ,
只需函数列{ f (x,n (x))}在[x0 h, x0 h]上一
致收敛于f (x,(x)).
由 f (x,n (x)) f (x,(x)) Ln (x) (x)
任取一连续函数0 (x), 0 (x) y0 b, 代入(3.5)
右侧的y, 得
x
1(x) y0 x0 f ( ,0 ( ))d
若1(x) 0 (x),则0 (x)为解,否则将1(x)代入(3.5)
右侧的y, 得
2 (x) y0
x x0
f ( ,1( ))d
若2 (x) 1(x),则1(x)为解,否则将2 (x)代入(3.5)
右侧的y,
x
n1(x) y0 x0 f ( ,n ( ))d ,
这里要求n (x) y0 b, 若n1(x) n (x),则n (x)为解,
否则一直下去可得函数列{n (x)}
(逐步求(3.5)的解,逐步逼近法)
(3) 函数序列{n (x)}在[x0 h, x0 h]上一致收敛于(x).
x
k1(x) y0 x0 f ( ,k ( ))d
由f (x, y)在R上连续性知,
f (x,k (x))在[x0, x0 h]上连续
从而k1(x)在[x0, x0 h]上连续且
k1(x) y0
x
x0 f ( ,k ( ))d
x
x0 f ( ,k ( )) d
M x x0 Mh b
则初值问题(3.1)在区间x x0 h上的解存在且唯一,
这里h min( a, b ), M Max f (x, y)
M
( x, y)R
证明思路 (1) 初值问题(3.1)的解等价于积分方程
x
y y0 x0 f (t, y)dt
的连续解.
(3.5)
(2) 构造(3.5)近似解函数列 {n (x)}
x
y(x0 ) y0
y y0 x0 f (t, y)dt (3.5)
证明:若y (x)为(3.1)的连续解,则
d ( x)
dx
f
( x, ( x)),
(x0 ) y0
对第一式从x0到x取定积分得
x
即
x (x) (x0 ) x0 f (x,(x))dx (x) y0 x0 f (x,(x))dx
对于积分方程y y0
x x0
f (t, y)dt,如果存在定义在区间
I [ , ]上的连续函数y (x), 使得
x
(x) y0 x0 f (t,(t))dt
在区间I上恒成立,则称y (x)为该积分方程的解.
命题1
初值问题(3.1)等价于积分方程
dy dx
f
(x, y), (3.1)