2011年高考全国卷1文科数学试题(含答案)免费

合集下载

2011年高考数学(新课标)文科真题及答案

2011年高考数学(新课标)文科真题及答案

2011年高考数学(新课标)文科真题及答案参考答案一、选择题B C B D B AB DC CD A二、填空题1 -6三、解答题解:因为所以所以的通项公式为(18)解:因为,由余弦定理得从而BD2+AD2= AB2,故BD AD又PD 底面ABCD,可得BD PD所以BD 平面PAD. 故PA BD如图,作DE PB,垂足为E。

已知PD 底面ABCD,则PD BC。

由知BD AD,又BC//AD,所以BC BD。

故BC 平面PBD,BC DE。

则DE 平面PBC。

由题设知,PD=1,则BD= ,PB=2,根据BEPB=PDBD,得DE= ,即棱锥DPBC的高为解由试验结果知,用A配方生产的产品中优质的频率为,所以用A配方生产的产品的优质品率的估计值为0.3。

由试验结果知,用B配方生产的产品中优质品的频率为,所以用B 配方生产的产品的优质品率的估计值为0.42由条件知用B配方生产的一件产品的利润大于0当且仅当其质量指标值t94,由试验结果知,质量指标值t94的频率为0.96,所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96.用B配方生产的产品平均一件的利润为(20)解:曲线与y轴的交点为,与x轴的交点为,则有解得t=1. 则圆C的半径为所以圆C的方程为设A,B,其坐标满足方程组:消去y,得到方程由已知可得,判别式因此,从而①由于OAOB,可得又所以②由①,②得,满足故解:由于直线的斜率为,且过点,故即解得,。

由知,所以考虑函数,则所以当时,故当时,当时,从而当解:连接DE,根据题意在△ADE和△ACB中,ADAB=mn=AEAC,即.又DAE=CAB,从而△ADE∽△ACB因此ADE=ACB所以C,B,D,E四点共圆。

m=4,n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.由于A=900,故GH∥AB,HF∥AC. HF=AG=5,DF= (12-2)=5.故C,B,D,E四点所在圆的半径为5解:设P(x,y),则由条件知M( ).由于M点在C1上,所以即从而的参数方程为曲线的极坐标方程为,曲线的极坐标方程为。

2011年高考数学(全国大纲版)文科真题及答案

2011年高考数学(全国大纲版)文科真题及答案

2011年高考数学(全国大纲版)文科真题及答案参考答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则。

2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给力,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。

3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。

4.只给整数分数,选择题不给中间分。

一、选择题16 DBBCAD 712 CCBACD二、填空题13.0 14.15.16.6三、解答题17.解:设的公比为q,由题设得3分解得6分当当10分18.解:由正弦定理得3分由余弦定理得故6分8分故12分19.解:记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D表示事件:该地的1位车主甲、乙两种保险都不购买;E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买。

3分6分9分12分20.解法一:取AB中点E,连结DE,则四边形BCDE为矩形,DE=CB=2,连结SE,则又SD=1,故,所以为直角。

3分由,得平面SDE,所以。

SD与两条相交直线AB、SE都垂直。

所以平面SAB。

6分由平面SDE知,平面平面SED。

作垂足为F,则SF 平面ABCD,作,垂足为G,则FG=DC=1。

连结SG,则,又,故平面SFG,平面SBC 平面SFG。

9分作,H为垂足,则平面SBC。

,即F到平面SBC的距离为由于ED//BC,所以ED//平面SBC,E到平面SBC的距离d也有设AB与平面SBC所成的角为,则12分解法二:以C为坐标原点,射线CD为x轴正半轴,建立如图所示的空间直角坐标系Cxyz。

设D,则A、B。

又设,,由得故x=1。

2011年高考试题——数学文(全国卷)精校版

2011年高考试题——数学文(全国卷)精校版

2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷....上作答无效.....。

3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=⋂ð(M N ) (A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥(3)设向量a,b 满足|a|=|b|=1,则2a b +=(A(B(C(D(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3(5)下面四个条件中,使a>b 成立的充分而不必要的条件是(A) 1a b >+(B) 1a b >-(C) a 2> b 2 (D) a 3> b 3(6) 设S n 为等差数列{}n a 的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =(A)8 (B)7 (C) 6 (D) 5(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9(8) 已知直二面角α- l –β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l,D 为垂足.若AB =2,AC =BD =1,则CD =(A ) 2 (B (C (D )1(9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种(10)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=(A) -12 (B)1 4- (C)14 (D)12(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B) (C)8 (D)(12)已知平面α截一球面得圆M , 过圆心M 且与α成060,二面角的平面β截该球面得圆N.若该球的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (c)11π (D)13π第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011年高考数学文科试卷(全国1卷)(内含答案)(新课标卷卷)

2011年高考数学文科试卷(全国1卷)(内含答案)(新课标卷卷)

2011年普通高等学校招生全国统一考试一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )I ð (A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4【答案】D【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥【答案】B【命题意图】本题主要考查反函数的求法. 【解析】由原函数反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥. (3)设向量,a b 满足||||1a b ==,12a b ⋅=-r r ,则2a b += (A(B(C(D【答案】B 【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )5【答案】D【命题意图】本题主要考查等差数列的基本公式的应用.【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =. 解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂 足,若2,1AB AC BD ===,则CD =(A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, AC l ⊥,∴AC ⊥平面β,AC BC ∴⊥BC ∴=又BD l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -= (A) -12 (B)1 4- (C)14 (D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值. 【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111()(2)()()2(1)2222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离OM =,在Rt OMN ∆中,30OMN ︒∠=, ∴12ON OM ==故圆N 的半径r ==,∴圆N 的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

[高考数学]2011年全国高考文科数学试题及答案-全国

[高考数学]2011年全国高考文科数学试题及答案-全国

2011年普通高等学校招生全国统一考试文科数学(必修+选修II )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题1.设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=⋂(M N )ðA .{}12,B .{}23,C .{}2,4D .{}1,42.函数0)y x =≥的反函数为A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.权向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=ABCD4.若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为A .17B .14C .5D .3 5.下面四个条件中,使a b >成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=A .8B .7C .6D .57.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .98.已知二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB=2,AC=BD=1,则CD=A .2BCD .19.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 A .12种 B .24种 C .30种 D .36种 10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1211.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =A .4B .C .8D .12.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为A .7πB .9πC .11πD .13π第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011年高考新课标卷文科数学试题(解析版)

2011年高考新课标卷文科数学试题(解析版)

2011年普通高等学校招生全国统一考试(新课标全国卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其他题为必考题第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0,1,2,3,4}M =,{1,3,5}N =,P MN =,则P 的子集共有A .2个B .4个C .6个D .8个 【答案】B 【解析】P M N =={1,3},故P 的子集有224=个.2.复数5i12i=- A .2i - B .12i - C .2i -+ D .12i -+ 【答案】C 【解析】5i 5i(12i)2i 12i (12i)(12i)+==-+--+. 3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是A .3y x =B .||1y x =+C .21y x =-+ D .||2x y -=【答案】B【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .4.椭圆221168x y +=的离心率为A .13 B .12C D .2【答案】D【解析】由221168x y +=可知216a =,28b =,∴2228c a b =-=,∴22212c e a ==,∴22e =. 5.执行右面的程序框图,如果输入的N 是6,那么输出的p 是A .120B .720C .1440D .5040 【答案】B【解析】由程序框图可得,输出的123456720p =⨯⨯⨯⨯⨯=,选B6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13 B .12 C .23 D .34【答案】A【解析】记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此31()93P A ==. 7.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45【答案】B【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .8.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A【答案】D【解析】通过正视图及俯视图可看出该几何体为半个圆锥和一个三棱锥组合在一起,故侧视图为D .9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于,A B 两点,||AB =12,P 为C 的准线上一点,则ABP ∆的面积为_____.A .18B .24C .36D .48 【答案】C【解析】设抛物线方程为22y px =,则焦点坐标为(,0)2p ,将2px =代入22y px =可得22y p =,||AB =12,即2p =12,∴p =6.点P 在准线上,到AB 的距离为p =6,所以ABP ∆面积为1612362⨯⨯=. 10.在下列区间中,函数()43xf x e x =+-的零点所在的区间为_____. A .1(,0)4- B .1(0,)4 C .11(,)42 D .13(,)24【答案】C【解析】因为114411()432044f e e =+⨯-=-<,112211()431022f e e =+⨯-=->,所以()43xf x e x =+-的零点所在的区间为11(,)42.11.设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称 B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称 C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称 D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称【答案】D【解析】因为()sin(2)cos(2)44f x x x ππ=+++=2sin(2)2x π+=2cos 2x , 所以2cos 2y x =,在(0,)2π单调递减,对称轴为2x k π=,即2k x π=(k ∈Z ).12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有_____.A .10个B .9个C .8个D .1个 【答案】A【解析】画出两个函数图象可看出交点有10个.第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = .【答案】1【解析】∵+a b 与k -a b 垂直,∴(+a b )·(k -a b ) =0,化简得(1)(1)0k -⋅+=a b ,根据a 、b 向量不共线,且均为单位向量得10⋅+≠a b ,得10k -=,即1k =. 14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.【答案】-6【解析】画出区域图知,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.15.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.153【解析】根据sin sin AB ACC B=得5353sin sin 7AB C B AC === 25311cos 1()1414C =-=, 所以sin sin[()]sin cos sin cos A B C B C C B π=-+=+3111533321421414=⨯-⨯=. 因此ABC S ∆=1133153sin 7522144AB AC A ⨯⨯⨯=⨯⨯⨯= 16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________. 【答案】13【解析】设球心为1O ,半径为1r ,圆锥底面圆圆心为2O ,半径为2r ,则有22123416r r ππ⨯=,即212r r =,所以1122r O O ==, 设两个圆锥中,体积较小者的高与体积较大者的高分别为1h 、2h ,则1111211232r r h r h r -==+.三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =.(Ⅰ)n S 为{}n a 的前n 项和,证明:12nn a S -=;(Ⅱ)设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.【解析】(Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++=)21(n +++-=2)1(+-=n n 所以}{n b 的通项公式为.2)1(+-=n n b n18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若1PD AD ==,求棱锥D PBC -的高.【解析】(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD. 故 P A ⊥BD(Ⅱ)如图,作DE ⊥PB ,垂足为E .已知PD ⊥底面ABCD ,则PD ⊥BC .由(Ⅰ)知BD ⊥AD ,又BC //AD ,所以BC ⊥BD . 故BC ⊥平面PBD ,BC ⊥DE . 则DE ⊥平面PBC .由题设知,PD =1,则BD =3,PB =2,根据BE ·PB =PD ·BD ,得DE =23, 即棱锥D —PBC 的高为.2319.(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩,估计用B 配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.【解析】(Ⅰ)由试验结果知,用A 配方生产的产品中优质品的频率为2280.3100+=,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32100.42100+=,所以用B 配方生产的产品的优质品率的估计值为0.42.(Ⅱ)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值94t ≥,由试验结果知,质量指标值94t ≥的频率为0.96.所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96. 用B 配方生产的产品平均一件的利润为1[4(2)542424] 2.68100⨯⨯-+⨯+⨯=(元).20.(本小题满分12分)在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上. (Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线0x y a -+=交于,A B 两点,且OA OB ⊥,求a 的值. 【解析】(Ⅰ)曲线162+-=x x y 与y 轴的交点为(0,1),与x 轴的交点为().0,223(),0,223-+故可设C 的圆心为(3,t ),则有,)22()1(32222t t +=-+解得t =1.则圆C 的半径为.3)1(322=-+t 所以圆C 的方程为.9)1()3(22=-+-y x(Ⅱ)设A (11,y x ),B (22,y x ),其坐标满足方程组:⎪⎩⎪⎨⎧=-+-=+-.9)1()3(,022y x a y x 消去y ,得到方程.012)82(222=+-+-+a a x a x由已知可得,判别式.0416562>--=∆a a因此,,441656)28(22,1a a a x --±-=从而2120,422121+-=-=+a a x x a x x①由于OA ⊥OB ,可得,02121=+y y x x 又,,2211a x y a x y +=+=所以.0)(222121=+++a x x a x x②由①,②得1-=a ,满足,0>∆故.1-=a21.(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a ,b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-. 【解析】(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =.(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x=++,所以 )1ln 2(111ln )(22xx x x x x x f -+-=-=考虑函数()2ln h x x =+xx 12-(0)x >,则22222)1()1(22)(xx x x x x x h --=---=' 所以当1≠x 时,,0)1(,0)(=<'h x h 而故 当)1,0(∈x 时,;0)(11,0)(2>->x h x x h 可得当),1(+∞∈x 时,;0)(11,0)(2>-<x h xx h 可得从而当.1ln )(,01ln )(,1,0->>--≠>x xx f x x x f x x 即且请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.EB(Ⅰ)证明:,,,C B D E 四点共圆;(Ⅱ)若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.【解析】(Ⅰ)连结DE ,根据题意在ADE ∆和ACB ∆中,AD AB mn AE AC ⨯==⨯,即AD AEAC AB=. 又DAE CAB ∠=∠,从而ADE ∆∽ACB ∆. 因此ADE ACB ∠=∠. 所以C ,B ,D ,E 四点共圆.(Ⅱ)4m =,6n =时,方程2140x x mn -+=的两根为12x =,212x =. 故2AD =,12AB =.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连结DH . 因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH .由于90A ∠=︒,故//GH AB ,//HF AC ,从而5HF AG ==,()112252DF =-=. 故C ,B ,D ,E 四点所在圆的半径为23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C . (Ⅰ)求2C 的方程;ADB C GEM(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .【解析】(Ⅰ)设(),P x y ,则由条件知,22x y M ⎛⎫⎪⎝⎭,由于M 点在1C 上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩. 从而2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数).(Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=. 射线3πθ=与1C 的交点A 的极径为14sin 3πρ=, 射线3πθ=与2C 的交点B 的极径为28sin3πρ=,所以12AB ρρ=-=24.(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集.(Ⅱ)若不等式()0f x ≤的解集为{x |1}x ≤-,求a 的值. 【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为12x -≥由此可得3x ≥或1x ≤-,故不等式()32f x x ≥+的解集为{3x x ≥或}1x ≤-. (Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组 30x a x a x ≥⎧⎨-+≤⎩或30x a a x x ≤⎧⎨-+≤⎩即4x a a x ≥⎧⎪⎨≤⎪⎩或2x aa x ≤⎧⎪⎨≤-⎪⎩.由于0a >,所以不等式组的解集为2a x x ⎧⎫≤-⎨⎬⎭⎩.由题设可得12a-=-,故2a =.。

2011年全国卷文科数学(必修+选修II)高考试卷及答案

2011年全国卷文科数学(必修+选修II)高考试卷及答案

2011年全国卷文科数学(必修+选修II )高考试卷及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

..........3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题1.设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=⋂(M N )ðA .{}12,B .{}23,C .{}2,4D .{}1,42.函数0)y x =≥的反函数为A .2()4xy x R =∈ B .2(0)4xy x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.权向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=A.B.CD4.若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为A .17B .14C .5D .3 5.下面四个条件中,使a b >成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=A .8B .7C .6D .57.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .98.已知二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB=2,AC=BD=1,则CD=A .2BCD .1 9.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有A .12种B .24种C .30种D .36种10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .14-C .14D .1211.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =A .4B .C .8D .12.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为 A .7π B .9πC .11πD .13π第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011年高考试题:文科数学(全国卷)

2011年高考试题:文科数学(全国卷)

2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

..........3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则075,2,A b a c ==求与=⋂(M N )ð(A ){}12,(B ){}23, (C ){}2,4 (D ){}1,4[ (2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥(3)权向量a,b 满足a=b=12-,则2a b += (A(B(C(D(4)若变量x 、y 满足约束条件6321x y x y x +⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为(A )17 (B )14 (C )5 (D )3(5)(6)(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9(9)曲线y=2x e -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为 (A)13 (B)12 (C)23(D)1 (10)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -= (A) -12 (B)1 4- (C)14 (D)12(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B)(12)已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (c)11π (D)13π第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2011年高考试题——数学文(全国卷)

2011年高考试题——数学文(全国卷)

2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷....上作答无效.....。

3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=⋂(M N ) (A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4(2)函数(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥(3)设向量a,b 满足|a|=|b|=1,则2a b +=(A 2 (B 3 (C 5 (D 7 (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3(5)下面四个条件中,使a>b 成立的充分而不必要的条件是(A) 1a b >+(B) 1a b >-(C) a 2> b 2 (D) a 3> b 3(6) 设S n 为等差数列{}n a 的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =(A)8 (B)7 (C) 6 (D) 5(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13 (B )3 (C )6 (D )9(8) 已知直二面角α- l –β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l,D 为垂足.若AB =2,AC =BD =1,则CD =(A ) 2 (B )3 (C )2 (D )1(9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种(10)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=(A) -12 (B)1 4- (C)14 (D)12(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B)42 (C)8 (D)82(12)已知平面α截一球面得圆M , 过圆心M 且与α成060,二面角的平面β截该球面得圆N.若该球的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (c)11π (D)13π第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011年全国高考文科数学试题及答案-新课标

2011年全国高考文科数学试题及答案-新课标

2011年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.N1.已知集合M={0,1,2,3,4},N={1,3,5},P=M,则P的子集共有A.2个 B.4个 C.6个 D.8个.复数A. B. C. D..下列函数中,既是偶函数又在单调递增的函数是A. B. C. D. 22的离心率为 4.椭圆16811 A. B.3223 C. D.325.执行右面的程序框图,如果输入的N是6,那么输出的p是A.120 B. 720 C. 1440 D. 5040 6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为11 A.B.3223 C. D.347.已知角的顶点与原点重合,始边与x轴的正半轴重合,终边在直线上,则= 4334A. B. C. D.5555 8.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为9.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,,P为C的准线上一点,则的面积为A.18 B.24 C.36 D.4810.在下列区间中,函数的零点所在的区间为A. B. C. D.11.设函数,则 A.在单调递增,其图象关于直线对称B.在单调递增,其图象关于直线对称C.在单调递减,其图象关于直线对称D.在单调递减,其图象关于直线对称12.已知函数的周期为2,当时,那么函数的图象与函数的图象的交点共有 A.10个 B.9个 C.8个 D.1个第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.已知a与b为两个不共线的单位向量,k为实数,若向量a+b与向量ka-b垂直,则k=_____________.14.若变量x,y满足约束条件,则的最小值是_________.15.中,,则的面积为_________.16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面3积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为16______________.三、解答题:解答应写文字说明,证明过程或演算步骤.17.(本小题满分12分)1,公比.已知等比数列中,S(I)为的前n项和,证明:(II)设,求数列的通项公式.n31323nn18.(本小题满分12分)如图,四棱锥中,底面ABCD为平行四边形,,,底面ABCD.(I)证明:;(II)设PD=AD=1,求棱锥D-PBC的高. 19.(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表指标值分组 [90,94) [94,98) [98,102)[102,106) [106,110] 8 20 42 22 8 频数 B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]4 12 42 32 10 频数(I)分别估计用A配方,B配方生产的产品的优质品率;(II)已知用B配方生产的一种产品利润y (单位:元)与其质量指标值t的关系式为估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润. 20.(本小题满分12分)2在平面直角坐标系xOy中,曲线与坐标轴的交点都在圆C上.(I)求圆C的方程;(II)若圆C与直线交于A,B两点,且求a的值.21.(本小题满分12分)已知函数,曲线在点处的切线方程为.(I)求a,b的值;.(II)证明:当x>0,且时,请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,D,E分别为的边AB,AC上的点,且不与的顶点重合.已知AE的长为2m,AC的长为n,AD,AB的长是关于x的方程的两个根.(I)证明:C,B,D,E四点共圆;(II)若,且求C,B,D,E所在圆的半径.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线的参数方程为,M为上的动点,为参数)P点满足,点P的轨迹为曲线.2C(I)求的方程;(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与的异于极点的交13C点为A,与的异于极点的交点为B,求|AB|.2 24.(本小题满分10分)选修4-5:不等式选讲设函数,其中.(I)当a=1时,求不等式的解集.(II)若不等式的解集为{x|,求a的值.参考答案一、选择题(1)B (2)C (3)B (4)D (5)B (6)A (7)B (8)D (9)C (10)C (11)D (12)A 二、填空题1153(13)1 (14)-6 (15)(16)34三、解答题(17)解:111n(Ⅰ)因为,所以(Ⅱ)所以的通项公式为nn2 (18)解:(Ⅰ)因为,由余弦定理得从而BD+AD= AB,故又PD底面ABCD,可得所以BD平面PAD. 故PABD (Ⅱ)如图,作DEPB,垂足为E。

2011年高考试题与答案(全国卷文科数学)答案与解析

2011年高考试题与答案(全国卷文科数学)答案与解析

2011年普通高等学校招生全国统一考试文科数学(必修+选修II )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题1.设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=⋂(M N )ðA .{}12,B .{}23,C .{}2,4D .{}1,42.函数2(0)y x x =≥的反函数为A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.权向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=A .2B .3C .5D .74.若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为A .17B .14C .5D .3 5.下面四个条件中,使a b >成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=A .8B .7C .6D .57.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .98.已知二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB=2,AC=BD=1,则CD=A .2B .3C .2D .19.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 A .12种 B .24种 C .30种 D .36种 10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1211.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =A .4B .42C .8D .8212.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为 A .7π B .9π C .11π D .13π第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011年全国课标卷(文科数学)

2011年全国课标卷(文科数学)

2011年普通高等学校招生全国统一考试全国卷课标卷(文科数学)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0,1,2,3,4}M =,{1,3,5}N =,P M N =I ,则P 的子集共有 A .2个 B .4个 C .6个 D .82.复数512ii =-A.2i -B.12i -C.2i -+D.12i -+ 3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是A.3y x =B.1y x =+C.21y x =-+D.2xy -=4.椭圆221168x y +=的离心率为 A.13 B.12C.3D.25.执行右面的程序框图,如果输入的N 是6,那么输出的P 是A .120B .720C .1440D .50406.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.345.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ= A.45- B.35- C.35 D.458.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为9.已知直线l 过抛物线C的焦点,且与C 的对称轴垂直,l 与C 交于A ,B两点,12AB =,P 为C 的准线上一点,则ABP ∆的面积为A.18B.24C.36D.48 10.在下列区间中,函数34)(-+=x e x f x 的零点所在的区间为A.1(,0)4-B.1(0,)4C.11(,)42D.13(,)2411.设函数()sin(2)cos(2)44f x x x ππ=+++,则A.()y f x =在(0,)2π单调递增,其图像关于直线4x π=对称B.()y f x =在(0,)2π单调递增,其图像关于直线2x π=对称C.()y f x =在(0,)2π单调递减,其图像关于直线4x π=对称 (正视图)ABCDD.()y f x =在(0,)2π单调递减,其图像关于直线2x π=对称12.已知函数()y f x =的周期为2,当[1,1]x ∈-时,2()f x x =,那么函数()y f x =的图像与函数lg y x =的图像的交点共有A.10个B.9个C.8个D.1个二、填空题:本大题共4小题,每小题5分,共20分.13.已知a r 与b r 为两个不共线的单位向量,k 为实数,若向量a b +r r 与向量ka b -r r垂直,则k = .14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 .15.ABC ∆中,120B =o ,7AC =,5AB =,则ABC ∆的面积为 .16.已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的163,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 .三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第1721:题为必做题,每个试题考生都必须作答.第22,23,24题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(本小题满分12分)已知等比数列{}n a 中,213a =,公比13q =. (Ⅰ)n S 为{}n a 的前n 项和,证明:12nn a S -=;(Ⅱ)设31323log log log n n b a a a =+++L ,求数列{}n b 的通项公式. 18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=o ,2AB AD =,PD ⊥底面ABCD . (Ⅰ)证明:PA BD ⊥;(Ⅱ)若1PD AD ==,求棱锥D PBC -的高.19.(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果:(Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用B 配方生成的一件产品的利润y (单位:元)与其质量指标值t 的关系式为:2942941024102t y t t -<⎧⎪=≤<⎨⎪≥⎩,估计用B 配方生产的一件产品的利润大于0的概率,并求B 配方生产上述100件产品平均一件的利润. 20.(本小题满分12分)在平面直角坐标系xoy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上. (Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线0x y a -+=交与A ,B 两点,且OA OB ⊥,求a 的值. 21.(本小题满分12分)ABCDP已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为23x y +- 0=.(Ⅰ)求a ,b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-. (二)选考题:共10分.请考生在第22,23,24题中任选一题作答.如果多做,按所做的第一题计分.22.(本小题满分10分)选修41-:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根. (Ⅰ)证明:C ,B ,D ,E 四点共圆;(Ⅱ)若90A ∠=o ,且4,6m n ==,求C ,B ,D ,E 所在圆的半径.23.(本小题满分10分)选修44-:坐标系与参数方程在直角坐标系xoy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数).M 是1C 上的动点,P 点满足2OP OM =u u u v u u u u v,P 点的轨迹为曲线2C (Ⅰ)求2C 的方程(Ⅱ)在以O 为极点,以x 轴正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB . 24.(本小题满分10分)选修45-:不等式选讲 设函数()3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集; (Ⅱ)若不等式()0f x ≤的解集为{|1}x x ≤-,求a 的值.ABC DE。

2011年高考全国卷文科数学解析版

2011年高考全国卷文科数学解析版

2011年高考(全国卷)文科数学解析版第Ⅰ卷一、选择题(1)设集合{}1,2,3,4U =,{}1,2,3M =,{}2,3,4N =。

则()=U C M N(A ){}1,2 (B ){}2,3 (C ){}2,4 (D ){}1,4 [答案](D )[解析]依题意知答集中的元素不在集合M N 中,2M N ∈ ,∴排出(A )、(B )、(C ),故选(D )。

(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2()4x y x =≥0 (C )()24y x x R =∈ (D )24()y x x =≥0[答案](B )[解析]依题意知原函数的值域不会是负数,即反函数的定义域是x ≥0,∴排出(A )、(C ),又点()1,2在原函数上,∴点()2,1必在反函数上,再排出(D ),故选(B )(3)设向量a 、b 满足1a b == ,12a b ⋅=- ,则2a b +=(A(B(C(D[答案](B )[解析]运用公式得:()22222222()(2)2244a b a ba b a b a b a b +=+=++⋅=++⋅1423=+-=2a b ∴+=,故选(B )(4)若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤-⎨⎪≥⎩,则23z x y =+的最小值为(A )17 (B )14 (C )5 (D )3[答案](C )[解析](如图)显然当目标函数23z x y =+过直线1x =与32x y -=-的交点(1,1) 时取得最小值5,故选(C )(5)下面四个条件中,使a >b 成立的充分而不必要的条件是(A )1a b >+ (B )1a b >- (C )22a b > (D )33a b >[答案](A )[解析] 1a b b a b >+>⇒> ,而反之不成立,故选(A )(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )5[答案](D )[解析] 21211242422241112115k k k k k k S S a a a a k k +++++-=⇒+=⇒+=⇒=⇒+=⇒=故选(D )(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 [答案](C )[解析]因为,()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合 所以,函数()cos (0)f x x ωω=>的周期的整数倍是3π即,2()63k k Z k ππωω⋅=∈⇒=,又0ω>,1k ∴=时,ω取得最小值6。

2011年全国高考文科数学试题及答案-全国

2011年全国高考文科数学试题及答案-全国

2011年普通高等学校招生全国统一考试文科数学(必修+选修II )第Ⅰ卷一、选择题1.设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=⋂(M N )ðA .{}12,B .{}23,C .{}2,4D .{}1,42.函数0)y x =≥的反函数为A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.权向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=ABCD4.若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为A .17B .14C .5D .3 5.下面四个条件中,使a b >成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=A .8B .7C .6D .57.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .98.已知二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB=2,AC=BD=1,则CD=A .2BCD .19.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 A .12种 B .24种 C .30种 D .36种 10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1211.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =A .4B .C .8D .12.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为 A .7π B .9π C .11π D .13π第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011新课标全国卷数学WORD版(文科)(含答案)

2011新课标全国卷数学WORD版(文科)(含答案)

2011年普通高等学校招生全国统一考试文科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2,3,4},N={1,3,5},P=M N ,则P 的子集共有 A .2个 B .4个 C .6个 D .8个 2.复数512ii=-A .2i -B .12i -C . 2i -+D .12i -+3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是 A .3y x = B .||1y x =+C .21y x =-+D .||2x y -=4.椭圆221168x y +=的离心率为A .13 B .12 C .33D .225.执行右面的程序框图,如果输入的N 是6,那么输出的p 是 A .120 B . 720 C . 1440 D . 50406.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13 B .12C .23D .347.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A . 45-B .35-C .35D .458.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧 视图可以为9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为 A .18 B .24C . 36D . 4810.在下列区间中,函数()43xf x e x =+-的零点所在的区间为A .1(,0)4-B .1(0,)4C .11(,)42D .13(,)2411.设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称 B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称 C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有A .10个B .9个C .8个D .1个 二、填空题:本大题共4小题,每小题5分. 13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量a+b 与向量ka-b 垂直,则k=_____________.14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.15.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知等比数列{}n a 中,113a =,公比13q =.(I )n S 为{}n a 的前n 项和,证明:12nn a S -=(II )设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD . (I )证明:PA BD ⊥; (II )设PD=AD=1,求棱锥D-PBC 的高. 19.(本小题满分12分) 某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表 指标值分组 [90,94)[94,98)[98,102)[102,106)[106,110]频数 8 20 42228B 配方的频数分布表指标值分组 [90,94)[94,98)[98,102)[102,106)[106,110]频数 412423210(I )分别估计用A 配方,B 配方生产的产品的优质品率;(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润. 20.(本小题满分12分) 在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上. (I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.21.(本小题满分12分) 已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (I )求a ,b 的值;(II )证明:当x>0,且1x ≠时,ln ()1xf x x >-. 请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:C ,B ,D ,E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求C ,B ,D ,E 所在圆的半径.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C . (I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求|AB|.24.(本小题满分10分)选修4-5:不等式选讲 设函数()||3f x x a x =-+,其中0a >. (I )当a=1时,求不等式()32f x x ≥+的解集.(II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.2011年普通高等学校招生全国统一考试文科数学试卷参考答案一、选择题(1)B (2)C (3)B (4)D (5)B (6)A (7)B (8)D (9)C (10)C (11)D (12)A 二、填空题(13)1 (14)-6 (15)4315 (16)31三、解答题 (17)解:(Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++= )21(n +++-=2)1(+-=n n所以}{n b 的通项公式为.2)1(+-=n n b n (18)解:(Ⅰ)因为60,2DAB AB AD ∠=︒=,由余弦定理得BD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD. 故 P A ⊥BD(Ⅱ)如图,作DE ⊥PB ,垂足为E 。

2011年全国统一高考数学试卷(文科)(大纲版)解析版

2011年全国统一高考数学试卷(文科)(大纲版)解析版

2011年全国统一高考数学试卷(文科)(大纲版)解析版参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合{1U =,2,3,4},{1M =,2,3},{2N =,3,4},则()(U MN =ð)A .{1,2}B .{2,3}C .{2,4}D .{1,4}【考点】1H :交、并、补集的混合运算 【专题】11:计算题【分析】先根据交集的定义求出MN ,再依据补集的定义求出()U MN ð.【解答】解:{1M =,2,3},{2N =,3,4},{2MN ∴=,3},则(){1U MN =ð,4},故选:D .【点评】本题考查两个集合的交集、补集的定义,以及求两个集合的交集、补集的方法.2.(5分)函数0)y x =…的反函数为( ) A .2()4xy x R =∈B .2(0)4x y x =…C .24()y x x R =∈D .24(0)y x x =…【考点】4R :反函数 【专题】11:计算题【分析】由原函数的解析式解出自变量x 的解析式,再把x 和y 交换位置,注明反函数的定义域(即原函数的值域). 【解答】解:20)y x x =…,24y x ∴=,0y …,故反函数为2(0)4xy x =….故选:B .【点评】本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.3.(5分)设向量a 、b 满足||||1a b ==,12a b =-,|2|(a b += )A. BC .D.【考点】91:向量的概念与向量的模;9O :平面向量数量积的性质及其运算 【专题】11:计算题【分析】由222|2|(2)44a b a b a a b b +=+=++,代入已知可求 【解答】解:||||1a b ==,12ab =-,222|2|(2)44124a b a b a a b b +=+=++=-+故选:B .【点评】本题主要考查了向量的数量积 性质的基本应用,属于基础试题4.(5分)若变量x 、y 满足约束条件6321x y x y x +<⎧⎪--⎨⎪⎩……,则23z x y =+的最小值为( )A .17B .14C .5D .3【考点】7C :简单线性规划 【专题】31:数形结合【分析】我们先画出满足约束条件6321x y x y x +<⎧⎪--⎨⎪⎩……的平面区域,然后求出平面区域内各个顶点的坐标,再将各个顶点的坐标代入目标函数,比较后即可得到目标函数的最值. 【解答】解:约束条件6321x y x y x +<⎧⎪--⎨⎪⎩……的平面区域如图所示:由图可知,当1x =,1y =时,目标函数23z x y =+有最小值为5 故选:C .【点评】本题考查的知识点是线性规划,其中画出满足约束条件的平面区域是解答本题的关键.5.(5分)下面四个条件中,使a b >成立的充分而不必要的条件是( ) A .1a b >+B .1a b >-C .22a b >D .33a b >【考点】29:充分条件、必要条件、充要条件 【专题】5L :简易逻辑【分析】利用不等式的性质得到1a b a b >+⇒>;反之,通过举反例判断出a b >推不出1a b >+;利用条件的定义判断出选项.【解答】解:1a b a b >+⇒>;反之,例如2a =,1b =满足a b >,但1a b =+即a b >推不出1a b >+, 故1a b >+是a b >成立的充分而不必要的条件. 故选:A .【点评】本题考查不等式的性质、考查通过举反例说明某命题不成立是常用方法.6.(5分)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则(k =) A .8B .7C .6D .5【考点】85:等差数列的前n 项和 【专题】11:计算题【分析】先由等差数列前n 项和公式求得2k S +,k S ,将224k k S S +-=转化为关于k 的方程求解.【解答】解:根据题意:22(2)k S k +=+,2k S k = 224k k S S +∴-=转化为:22(2)24k k +-= 5k ∴=故选:D .【点评】本题主要考查等差数列的前n 项和公式及其应用,同时还考查了方程思想,属中档题.7.(5分)设函数()cos (0)f x x ωω=>,将()y f x =的图象向右平移3π个单位长度后,所得的图象与原图象重合,则ω的最小值等于( ) A .13B .3C .6D .9【考点】HK :由sin()y A x ωϕ=+的部分图象确定其解析式 【专题】56:三角函数的求值 【分析】函数图象平移3π个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,容易得到结果. 【解答】解:()f x 的周期2T πω=,函数图象平移3π个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,所以23kππω=,k Z ∈.令1k =,可得6ω=.故选:C .【点评】本题是基础题,考查三角函数的图象的平移,三角函数的周期定义的理解,考查技术能力,常考题型.8.(5分)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,点B β∈,BD l ⊥,D 为垂足,若2AB =,1AC BD ==,则(CD = )A .2B CD .1【考点】MK :点、线、面间的距离计算 【专题】11:计算题【分析】根据线面垂直的判定与性质,可得AC CB ⊥,ACB ∆为直角三角形,利用勾股定理可得BC 的值;进而在Rt BCD ∆中,由勾股定理可得CD 的值,即可得答案.【解答】解:根据题意,直二面角l αβ--,点A α∈,AC l ⊥,可得AC ⊥面β, 则AC CB ⊥,ACB ∆为Rt △,且2AB =,1AC =,由勾股定理可得,BC在Rt BCD ∆中,BC 1BD =,由勾股定理可得,CD =; 故选:C .【点评】本题考查两点间距离的计算,计算时,一般要把空间图形转化为平面图形,进而构造直角三角形,在直角三角形中,利用勾股定理计算求解.9.(5分)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( ) A .12种B .24种C .30种D .36种【考点】3D :计数原理的应用 【专题】11:计算题【分析】本题是一个分步计数问题,恰有2人选修课程甲,共有24C 种结果,余下的两个人各有两种选法,共有22⨯种结果,根据分步计数原理得到结果. 【解答】解:由题意知本题是一个分步计数问题,恰有2人选修课程甲,共有246C =种结果, ∴余下的两个人各有两种选法,共有224⨯=种结果,根据分步计数原理知共有6424⨯=种结果 故选:B .【点评】本题考查分步计数问题,解题时注意本题需要分步来解,观察做完这件事一共有几步,每一步包括几种方法,这样看清楚把结果数相乘得到结果.10.(5分)设()f x 是周期为2的奇函数,当01x 剟时,()2(1)f x x x =-,则5()(2f -=) A .12-B .14-C .14D .12【考点】3I :奇函数、偶函数;3Q :函数的周期性 【专题】11:计算题【分析】由题意得 51()(22f f -=- 1)()2f =-,代入已知条件进行运算.【解答】解:()f x 是周期为2的奇函数,当01x 剟时,()2(1)f x x x =-, ∴51()(22f f -=- 11)()222f =-=-⨯1(12- 1)2=-,故选:A .【点评】本题考查函数的周期性和奇偶性的应用,以及求函数的值.11.(5分)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12||(C C =)A .4B .C .8D .【考点】1J :圆的标准方程 【专题】5B :直线与圆【分析】圆在第一象限内,设圆心的坐标为(,)a a ,(,)b b ,利用条件可得a 和b 分别为210170x x -+= 的两个实数根,再利用韦达定理求得两圆心的距离212||2()C C a b -的值.【解答】解:两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),故圆在第一象限内, 设两个圆的圆心的坐标分别为(,)a a ,(,)b b ,由于两圆都过点(4,1),||a ,||b =, 故a 和b 分别为222(4)(1)x x x -+-= 的两个实数根,即a 和b 分别为210170x x -+= 的两个实数根,10a b ∴+=,17ab =,22()()432a b a b ab ∴-=+-=,∴两圆心的距离212||()8C C a b -=,故选:C .【点评】本题考查直线和圆相切的性质,两点间的距离公式、韦达定理的应用,属于基础题.12.(5分)已知平面α截一球面得圆M ,过圆心M 且与α成60︒二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为( ) A .7πB .9πC .11πD .13π【考点】MJ :二面角的平面角及求法 【专题】11:计算题;16:压轴题【分析】先求出圆M 的半径,然后根据勾股定理求出求出OM 的长,找出二面角的平面角,从而求出ON 的长,最后利用垂径定理即可求出圆N 的半径,从而求出面积. 【解答】解:圆M 的面积为4π∴圆M 的半径为2根据勾股定理可知OM =过圆心M 且与α成60︒二面角的平面β截该球面得圆N30OMN ∴∠=︒,在直角三角形OMN 中,ON∴圆N 则圆的面积为13π 故选:D .【点评】本题主要考查了二面角的平面角,以及解三角形知识,同时考查空间想象能力,分析问题解决问题的能力,属于基础题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)10(1)x -的二项展开式中,x 的系数与9x 的系数之差为: 0 . 【考点】DA :二项式定理 【专题】11:计算题【分析】利用二项展开式的通项公式求出展开式的通项,令x 的指数分别取1;9求出展开式的x 的系数与9x 的系数;求出两个系数的差.【解答】解:展开式的通项为110(1)r r rr T C x +=- 所以展开式的x 的系数10-9x 的系数10-x 的系数与9x 的系数之差为(10)(10)0---=故答案为:0【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.14.(5分)已知3(,)2a ππ∈,tan 2α=,则cos α= . 【考点】GG :同角三角函数间的基本关系 【专题】11:计算题【分析】先利用α的范围确定cos α的范围,进而利用同脚三角函数的基本关系,求得cos α的值.【解答】解:3(,)2a ππ∈, cos 0α∴<cos α∴==故答案为:【点评】本题主要考查了同角三角函数基本关系的应用.解题的关键是利用那个角的范围确定三角函数符号.15.(5分)已知正方体1111ABCD A B C D -中,E 为11C D 的中点,则异面直线AE 与BC 所成的角的余弦值为23. 【考点】LM :异面直线及其所成的角【专题】11:计算题;16:压轴题;31:数形结合;35:转化思想【分析】根据题意知//AD BC ,DAE ∴∠就是异面直线AE 与BC 所成角,解三角形即可求得结果.【解答】解:连接DE ,设2AD = 易知//AD BC ,DAE ∴∠就是异面直线AE 与BC 所成角,在RtADE ∆中,由于DE =,2AD =,可得3AE = 2cos 3AD DAE AE ∴∠==,故答案为:23.【点评】此题是个基础题.考查异面直线所成角问题,求解方法一般是平移法,转化为平面角问题来解决,体现了数形结合和转化的思想.16.(5分)已知1F 、2F 分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线,则2||AF = 6 . 【考点】KC :双曲线的性质 【专题】16:压轴题【分析】利用双曲线的方程求出双曲线的参数值;利用内角平分线定理得到两条焦半径的关系,再利用双曲线的定义得到两条焦半径的另一条关系,联立求出焦半径. 【解答】解:不妨设A 在双曲线的右支上AM 为12F AF ∠的平分线∴1122||||82||||4AF F M AF MF === 又12||||26AF AF a -== 解得2||6AF = 故答案为6【点评】本题考查内角平分线定理;考查双曲线的定义:解有关焦半径问题常用双曲线的定义.三、解答题(共6小题,满分70分)17.(10分)设等比数列{}n a 的前n 项和为n S ,已知26a =,13630a a +=,求n a 和n S . 【考点】88:等比数列的通项公式;89:等比数列的前n 项和 【专题】54:等差数列与等比数列【分析】设出等比数列的公比为q ,然后根据等比数列的通项公式化简已知得两等式,得到关于首项与公比的二元一次方程组,求出方程组的解即可得到首项和公比的值,根据首项和公比写出相应的通项公式及前n 项和的公式即可. 【解答】解:设{}n a 的公比为q ,由题意得: 12116630a q a a q =⎧⎨+=⎩, 解得:132a q =⎧⎨=⎩或123a q =⎧⎨=⎩,当13a =,2q =时:132n n a -=⨯,3(21)n n S =⨯-; 当12a =,3q =时:123n n a -=⨯,31n n S =-.【点评】此题考查学生灵活运用等比数列的通项公式及前n 项和的公式化简求值,是一道基础题.18.(12分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin sin sin a A c C C b B +=,(Ⅰ)求B ;(Ⅱ)若75A =︒,2b =,求a ,c . 【考点】HU :解三角形 【专题】11:计算题【分析】(Ⅰ)利用正弦定理把题设等式中的角的正弦转换成边的关系,代入余弦定理中求得cos B 的值,进而求得B .(Ⅱ)利用两角和公式先求得sin A 的值,进而利用正弦定理分别求得a 和c . 【解答】解:(Ⅰ)由正弦定理得222a c b +=, 由余弦定理可得2222cos b a c ac B =+-,故cos B =45B =︒(Ⅱ)sin sin(3045)sin30cos45cos30sin 45A =︒+︒=︒︒+︒︒故sin 1sin A a b B =⨯==sin2sinCc bB∴=⨯==【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用.19.(12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.【考点】5C:互斥事件的概率加法公式;CN:二项分布与n次独立重复试验的模型【专题】5I:概率与统计【分析】()I设该车主购买乙种保险的概率为P,由相互独立事件概率公式可得(10.5)0.3P-=,解可得p,先求出该车主甲、乙两种保险都不购买的概率,由对立事件的概率性质计算可得答案.()II该地的3位车主中恰有1位车主甲、乙两种保险都不购买,是一个n次独立重复试验恰好发生k次的概率,根据上一问的结果得到该地的一位车主甲、乙两种保险都不购买的概率,代入公式得到结果.【解答】解:()I设该车主购买乙种保险的概率为p,根据题意可得(10.5)0.3p⨯-=,解可得0.6p=,该车主甲、乙两种保险都不购买的概率为(10.5)(10.6)0.2--=,由对立事件的概率该车主至少购买甲、乙两种保险中的1种的概率10.20.8-=()II每位车主甲、乙两种保险都不购买的概率为0.2,则该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率1230.20.80.384P C=⨯⨯=.【点评】本题考查互斥事件的概率公式加法公式,考查n次独立重复试验恰好发生k次的概率,考查对立事件的概率公式,是一个综合题目.20.(12分)如图,四棱锥S ABCD-中,//AB CD,BC CD⊥,侧面SAB为等边三角形,2AB BC==,1CD SD==.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.【考点】LW :直线与平面垂直;MI :直线与平面所成的角 【专题】11:计算题;14:证明题【分析】(1)利用线面垂直的判定定理,即证明SD 垂直于面SAB 中两条相交的直线SA ,SB ;在证明SD 与SA ,SB 的过程中运用勾股定理即可(Ⅱ)求AB 与平面S B C 所成的角的大小即利用平面S B C 的法向量n A B 与间的夹角关系即可,当n AB 与间的夹角为锐角时,所求的角即为它的余角;当n AB 与间的夹角为钝角时,所求的角为,2n AB π<>-【解答】(Ⅰ)证明:在直角梯形ABCD 中, //AB CD ,BC CD ⊥,2AB BC ==,1CD =AD ∴==侧面SAB 为等边三角形,2AB = 2SA ∴= 1SD =222AD SA SD ∴=+ SD SA ∴⊥同理:SD SB ⊥ SASB S =,SA ,SB ⊂面SABSD ∴⊥平面SAB(Ⅱ)建立如图所示的空间坐标系则(2A ,1-,0),(2B ,1,0),(0C ,1,0),作出S 在底面上的投影M ,则由四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形知,M 点一定在x 轴上,又2AB BC ==,1CD SD ==.可解得12MD =,从而解得SM =1(2S ,0则331(,1,),(,1,22SB SC =-=-设平面SBC 的一个法向量为(,,)n x y z = 则0SB n=,0SCn = 即302102x y z x y ⎧+=⎪⎪⎨⎪-+=⎪⎩ 取0x =,y =,1z = 即平面SBC 的一个法向量为(,,)(0n x y z ==,1) 又(0AB =,2,0)cosAB <,3||||7AB n n ABn >===AB ∴<,n >= 即AB 与平面SBC 所成的角的大小为【点评】本题考查了直线与平面垂直的判定,直线与平面所成的角以及空间向量的基本知识,属于中档题.21.(12分)已知函数32()3(36)124()f x x ax a x a a R =++-+-∈ (Ⅰ)证明:曲线()y f x =在0x =处的切线过点(2,2);(Ⅱ)若()f x 在0x x =处取得极小值,0(1,3)x ∈,求a 的取值范围.【考点】6E :利用导数研究函数的最值;6H :利用导数研究曲线上某点切线方程 【专题】11:计算题;16:压轴题【分析】(Ⅰ)求出函数()f x 在0x =处的导数和(0)f 的值,结合直线方程的点斜式方程,可求切线方程;(Ⅱ)()f x 在0x x =处取得最小值必是函数的极小值,可以先通过讨论导数的零点存在性,得出函数有极小值的a 的大致取值范围,然后通过极小值对应的0(1,3)x ∈,解关于a 的不等式,从而得出取值范围【解答】解:(Ⅰ)2()3636f x x ax a '=++- 由(0)124f a =-,(0)36f a '=-,可得曲线()y f x =在0x =处的切线方程为(36)124y a x a =-+-, 当2x =时,2(36)1242y a a =-+-=,可得点(2,2)在切线上∴曲线()y f x =在0x =的切线过点(2,2)(Ⅱ)由()0f x '=得 22120x ax a ++-=⋯(1)方程(1)的根的判别式244(12)4(1(1a a a a =--=+++①当11a 剟时,函数()f x 没有极小值②当1a <或1a >时,由()0f x '=得12x a x a =--=-+故02x x =,由题设可知13a <-<()i 当1a >时,不等式13a <-没有实数解;()ii 当1a <时,不等式13a <-+<化为13a a +<<+,解得512a -<<综合①②,得a 的取值范围是5(,1)2-【点评】将字母a 看成常数,讨论关于x 的三次多项式函数的极值点,是解决本题的难点,本题中处理关于a 的无理不等式,计算也比较繁,因此本题对能力的要求比较高.22.(12分)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为l 与C 交于A 、B 两点,点P 满足0OA OB OP ++=. (Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.【考点】9S :数量积表示两个向量的夹角;KH :直线与圆锥曲线的综合 【专题】15:综合题;16:压轴题;35:转化思想【分析】(1)要证明点P 在C 上,即证明P 点的坐标满足椭圆C 的方程2212y x +=,根据已知中过F 且斜率为l 与C 交于A 、B 两点,点P 满足0OA OB OP ++=,我们求出点P 的坐标,代入验证即可.(2)若A 、P 、B 、Q 四点在同一圆上,则我们可以先求出任意三点确定的圆的方程,然后将第四点坐标代入验证即可.【解答】证明:(Ⅰ)设1(A x ,1)y ,2(B x ,2)y椭圆22:12y C x +=①,则直线AB 的方程为:1y =+②联立方程可得2410x --=,则12x x +,1214x x ⨯=-则1212)21y y x x +=++= 设1(P p ,2)p ,则有:10(A x =,1)y ,20(B x =,2)y ,10(P p =,2)p ;∴1200(A B x x +=+,12)(2y y +=,1);10(P p =,2)(00)(2p A B =-+=,1)-p ∴的坐标为(1)-代入①方程成立,所以点P 在C 上.(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.设线段AB 的中点坐标为12(2x x +,12)2y y +,即1)2,则过线段AB 的中点且垂直于AB 的直线方程为:12y x -=,即14y x =+;③ P 关于点O 的对称点为Q ,故0(0.0)为线段PQ 的中点,则过线段PQ 的中点且垂直于PQ 的直线方程为:y x =④;③④联立方程组,解之得:8x =,18y =③④的交点就是圆心1(O ,1)8,22221199||(((1)864r O P ==-+--=故过P Q 两点圆的方程为:22199(()864x y ++-=⋯⑤,把1y =+ ⋯②代入⑤,有122x x +=,121y y += A ∴,B 也是在圆⑤上的.A ∴、P 、B 、Q 四点在同一圆上.【点评】本题考查的知识点是直线与圆锥曲线的关系,向量在几何中的应用,其中判断点与曲线关系时,所使用的坐标代入验证法是解答本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密 ★ 启用前
2011年普通高等学校招生全国统一考试
文科数学(必修+选修Ⅱ)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.
第Ⅰ卷
注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证
号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡
皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........
. 3.第Ⅰ卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项
是符合题目要求的.
一 选择题
(1) 设集合U={ 1,2,3,4 },M={ 1,2,3 },N={ 2,3,4 }, 则()Cu M N =
(A ){1,2} (B ){2,3} (C ){2,4} (D) {1,4}
(2
)函数(0)y x =≥的反函数是
(A )2()4x y x R =∈ (B )2
(0)4
x y x =≥ (C )24()y x x R =∈ (D )24(0)y x x =≥
(3)设向量,a b 满足||||1a b ==,12
a b •=-,则|2|a b += (A
(B
(C
(D)
(4)若变量,x y 满足约束条件6321x y x y x +≤⎧⎪-≤-⎨⎪≥⎩
,则23z x y =+的最小值为
(A )17 (B )14 (C )5 ( D ) 3
(5)下列四个条件中,使a b >成立的充分不必要的条件是
(A )1a b >+ (B )1a b >- (C )22a b > (D) 3a b >
(6)设n S 为等差数列的前n 项和,若11a =,公差2,d =,224,k k S S +-=则k=
(A )8 (B )7 (C )6 (D)5
(7)设函数()cos (0),f x wx w =>将()y f x =的图像向右平移
3π个单位长度后的图像与原图像重合,则w 的最小值等于
(A )13
(B )3 (C )6 (D) 9 (8)已知二面角,l αβ--点,,A AC l C α∈⊥为垂足,点,,B BD l D β∈⊥为垂足,若
AB=2,AC=BD=1,则CD=
(A )2 (B (C (D) 1
(9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不
同选法有多少种
(A )12 (B )24 (C )30 (D) 36
(10)设()f x 是周期为2的奇函数,当01x ≤≤时,()2(1)f x x x =-则5()2
f -= (A )12- (B )14- (C )12 (D) 14
(11)设两圆12C C 都和两坐标轴相切,且都过(4,1)则两个圆心的距离12||C C =
(A )4 (B ) (C )8 (D) (12)已知平面α截一球面得圆M ,过圆心M 且α与成60二面角的平面β截该球
面得圆N ,若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为
(A )4π (B )9π (C )11π (D) 13π
二、填空题
(13)10(1)x -的二项展开式中,x 的系数与9x 的系数之差为____________
(14)已知:3(,),tan 2,2
παπα∈=则cos α=____________ (15)已知:正方体1111ABCD A B C D -中,E 是11C D 的中点,则异面直线AE 与BC
所成角的余弦值为____________
2011年普通高等学校招生全国统一考试
第 3 页 共 10 页
(16)已知:12,F F 分别是双曲线C :22
1927
x y -=的左右焦点,点A C ∈,点M 的坐标为(2,0),AM 为-12F AF ∠的平分线,则2||AF ____________
三、解答题.
(17)设等比数列{}n a 的前N 项和为n S ,已知26a =,13630a a +=,求n a 和n S
(18)ABC ∆的内角,,A B C 的对边分别为,,a b c ,sin sin 2sin sin a A c C a C b B +-=
(1)求B ;
(2) 若75A ︒=,2b =,求,a c .
(19)根据以往统计资料,某地车主购买甲种保险的概率是0.5,购买乙种保险但不 购买甲种保险的概率为0.3.设各车主购买保险相互独立.
(1)求该地一位车主至少购买甲乙两种保险中的1中的概率.
(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.
(20)如图,四棱锥S-ABCD 中,AB //CD ,BC ⊥CD ,侧面SAB 为等边三角形, AB=BC=2,CD=SD=1
(1) 证明:SD ⊥平面SAB
(2) 求AB 与平面SBC 所成角的大小.
(21)已知函数:
32
()3(36)124
f x x ax a x a
=++-+-

a R
∈)
(1)证明:曲线
()
y f x
=
在0
x=出的切线过点(2,2)
(2)若
()
f x
在0
x x
=
处取得极小值,0
(1,3)
x∈
,求
a的求值范围
(22)已知O为坐标原点,F为椭圆C:
2
21
2
y
x+=在y轴正半轴上的焦
点,过F且斜率为2
-的直线l与C交与A,B两点,点P满足0
OA OB OP
++=
(1)证明:点P在C上
设点P关于O的对称点为Q
(2),证明:A、P、B、Q四点在同一个圆上.
2011年普通高等学校招生全国统一考试
第5 页共10 页
2011年普通高等学校招生全国统一考试
第7 页共10 页
2011年普通高等学校招生全国统一考试
第9 页共10 页。

相关文档
最新文档