已知数列递推公式求通项公式的几种方法

合集下载

已知数列递推公式求通项公式的几种方法

已知数列递推公式求通项公式的几种方法

求数列通项公式的方法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。

二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。

评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。

例3 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

数列递推公式求通项公式的方法

数列递推公式求通项公式的方法

数列递推公式求通项公式的方法数列是指按照一定规律排列的一组数。

而数列递推公式是指通过前一项或几项的数值,推导出数列中后一项的数值的公式。

而求解数列通项公式,即通过已知的数列的部分项求得数列的通项公式的方法,可以分为以下几种:1.列表法:通过列出数列的前几项进行观察和总结,找到数列的规律,从而推导出数列的通项公式。

这种方法常用于找出简单数列的通项公式,如等差数列和等比数列。

2.递推法:利用数列递推的性质,通过对数列进行递推推导出通项公式。

递推法常用于复杂的数列,需要将数列的前几项与后几项进行比较,找到规律并推导出通项公式。

3.数学归纳法:数学归纳法是一种利用已知的数学命题,在该命题的基础上证明该命题对任意自然数(或整数)都成立的方法。

对于数列来说,可以利用已知的数列部分项的性质,通过数学归纳法证明该数列的通项公式的正确性。

4.差分法:差分法是一种通过对数列进行差分操作,将数列变为新的数列,新数列有可能是个数列递推公式/规律更简单的数列。

然后,根据新数列的通项公式,再通过反差分操作推导出原数列的通项公式。

差分法常用于较为复杂的数列,特别适合于数列中的递推关系较为难以发现的情况。

5.比率法:比率法是一种通过比较数列的相邻项之间的比率或比值的变化规律,推导出数列的通项公式的方法。

比率法常用于等比数列或存在比率规律的数列。

需要注意的是,求解数列通项公式并不是一种机械性的计算过程,而是需要灵活运用数学知识、观察和总结数列的规律,并进行推理和证明的过程。

在实际应用中,也可能需要结合上述多种方法进行综合分析来求解数列的通项公式。

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法要求根据递推关系求解数列的通项公式,其实是要求找到一个能将数列的每一项都表示为n(项数)的函数的公式。

在数学中,有几种方法可以求解这类问题。

一、代数方法:对于一些简单的递推关系,可以尝试使用代数方法来求解数列的通项公式。

这种方法通过观察数列中的模式,尝试将递推关系转化为代数方程,然后解方程得到通项公式。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设通项公式为Fn=k1a^n+k2b^n,其中k1、k2为常数,a、b为待定数。

k1a^n+k2b^n=k1a^(n-1)+k2b^(n-1)+k1a^(n-2)+k2b^(n-2)整理得:k1a^2-k1a-k2=0。

解这个方程,可以得到a和b的值,然后将a和b的值代入通项公式中,即可求解斐波那契数列的通项公式。

二、特征根法:特征根法是求解一阶线性递推关系(如Fn=aFn-1+b)的通项公式的常用方法。

该方法的基本思想是,将递推关系转化为一个一阶线性常微分方程,然后解方程得到通项公式。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列满足的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1将递推关系转化为一阶线性常微分方程得到:y''-y'-y=0其中y=Fn。

解这个方程得到的特征根为α1=(1+√5)/2,α2=(1-√5)/2通项公式可以表示为:Fn=k1(α1)^n+k2(α2)^n其中k1、k2为常数。

利用初始条件F1=1,F2=1,可以求解出k1和k2的值,进而求解出斐波那契数列的通项公式。

三、母函数法:母函数法是一种求解递推关系的高效方法,尤其适用于求解求和问题。

该方法的基本思想是,将数列视为一个幂级数的系数列,通过构造母函数来解决递推关系。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设母函数为F(x)=F0+F1x+F2x^2+F3x^3+...F(x)=x(F(x)-F0)+x^2F(x)整理得:F(x)=F0+xF(x)+x^2F(x)移项得:F(x)=F0/(1-x-x^2)。

高中数列的通项公式的几种常用求法

高中数列的通项公式的几种常用求法

高中数列的通项公式的几种常用求法数列是高考的必考内容,也是同学们比较怕的一个知识点。

其实归结起来数列常考的就三个知识点:等差等比数列性质的应用、求数列的通项公式、求数列的前n 项和。

而数列的通项公式往往又决定着前n 项和的求法,所以求出数列的通项公式至关重要。

下面我将对数列通项公式的几种常用求法进行总结。

一. 观察法1 适用类型:已知数列前若干项,求该数列的通项时。

2 具体方法:一般对所给的项观察分析,找出项数n 与项n a 之间的关系,从而根据规律写出此数列的一个通项.3 例题示范例1:根据数列的前4项,写出它的一个通项公式:(1)4,44,444,4444,…(2) ,17164,1093,542,211 (3) ,52,21,32,1 (4) ,54,43,32,21--4 方法总结:(1)有分式又有整式的统一表示成假分式,再分子分母分别观察规律。

(2)正负相间的先把负号去了观察规律,再用1)1()1(+--n n 或来调节符号.二. 公式法1 适用类型:当已知数列为等差或等比数列时。

2 具体方法:可直接利用等差或等比数列的通项公式,只需求得首项及公差公比.等差数列:d n a a n )1(1-+=等比数列:)0(11≠=-q q a a n n三. 已知n s 求n a1适用类型:已知数列的前n 项和求通项时。

2具体发方法:通常用公式⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 。

3例题示范例1、已知数列{}n a 的前n 项和为:① n n S n -=22 ② 12++=n n S n求数列{}n a 的通项公式。

四. 由递推式求数列通项1 适用类型:已知数列的递推公式求通项公式时.2 具体方法:(1)形如d a a n n +=-1或q a a n n 1-=——-—利用等差等比来求例1 n n n a a a a 求已知2,111=-=+的通项公式(2)形如q pa a n n +=+1--——---构造等比数列例2 已知数列}{n a 满足11=a ,321+=+n n a a ,求n a【解析】123n n a a +=+,∴1326n n a a ++=+,即)3(231+=++n n a a ,1323n n a a ++∴=+. ∴{3}n a +是以134a +=为首项,2为公比的等比数列,∴113422n n n a -++=⨯=,即321-=+n n a .(3)形如--——--——累加法例3 已知数列}{n a 满足12a = ,121,(2)n n a a n n -=+-≥,求n a【解析】∵当2n ≥时,121n n a a n -=+-,∴121n n a a n --=-,∴11221()()()n n n n n a a a a a a a ---=-+-++-1a +[(21)(23)3]2n n =-+-+++2[(21)3](1)212n n n -+=⋅-+=+, ∵21211a ==+,∴21n a n =+(4)形如——-—--——-累乘法例4 已知数列}{n a 满足11a =,12n n n a a +=⋅,求n a .【解析】∵12n n n a a +=⋅,∴12n n na a +=, ∴3241231n n a a a a a a a a -⋅⋅⋅⋅⋅⋅⋅121222n -=⨯⨯⋅⋅⋅⋅⨯, ∴(1)12(1)2122n n n n a a -++⋅⋅⋅+-==, 又11a =,∴(1)22n n n a -=.(5)形如1n n n a pa q +=+方法:①将原递推公式两边同除以1n q +,②得111n n n n a a p q q q q ++=⋅+,③n n n a b q =,得11n n p b b q q+=+, ④再利用“递推关系形如1n n a pa q +=+”方法来求. 例5 已知数列}{n a 满足11a =,123n n n a a +=+,求n a【解析】在123n n n a a +=+两边除以13n +,得11213333n n n n a a ++=⋅+, 令3n n n a b =,则12133n n b b +=+,∴121(1)3n n b b +-=-, ∴11221(1)()()33n n n b b --=-⋅=-, ∴21()3n n b =-.∴332n n n n n a b =⋅=-. 总之,数列的通项公式的求法有很多,着需要我们多做题,多总结.做到从题目中来到题目中去.。

常见递推数列求通项公式的七种方法

常见递推数列求通项公式的七种方法
o型 , 】 两边 取 倒 数 , 造 新 数 列求 解 . 构
解A争 1_. l 1 边 - 得 一 :—-= , : q 两 加2 :l =L 2. } I . ‘+ 在 ,
例 5已知数列 ‘ l a 2 = . 中,t , =
)C k十 l
。 求数列 { ) 的
类 型 二 : 知 口: 口 ) 。, ・ 型 . 用 累 乘 法 求 已 I ≠o , = ( | 可
‘ ・
例. 数 {J,} =,数 {) 4知 列 中8 , 列 的 已 - + 求 = -
通项公式.
由 口- 叶
。 可知 :
u l
1 )

, , …
t t. t ̄ 1

1 ) ・
解法一 : 已知 + 两边 同除 以 2 J 给 a 肿, }一 得
把上面各项两边分别相乘 , 得
’ 1 ,b 参- + 冷6 则 . } 1 ,

= l ) 2… ・ 一 ) 口・ 【) 1 ≥2 1 . )


例 2设 I l 首 项 为 1的 正 项 数 列 , (+ ) . 是 且 ,1 l
至多 有 1 是 二 等 品 ” 件 的概 率 P A)O9 . ( = .6
解 法 二 : I 2 两 边 同除 以 ( 1 , ( 1“ 广 对 + = l I 一 ) 得 一 )


}^ ‘‘=. ・ }争争} ・
E . Ⅳ) .
} 等 比数 列. 为
(1 = (2^ _ ) 一- ) . 令 6 - ) , 6 l(1 ‰ l (1 则 =_ ,
常见递推数列 求通项公 式的七种方法

由递推公式求通项公式五类型

由递推公式求通项公式五类型

由递推公式求通项公式类型一 累加相消法(“)(1n f a a n n +=+型”)例1.设数列{}n a 满足),3,2,1(12,111 =++==+n n a a a n n 求{}n a 的通项公式 解:由(1)),3,2,1(121 =+=-+n n a a n n 可知,;11212+⨯=-a a ;12223+⨯=-a a ;1)1(2;1+-⨯=--n a a n n上述等式累加可得,21)1())1(21(2n a n n a a n n =⇒-+-+++⨯=-类型二 累乘相消法(“)(1n f a a n n ⋅=+型”)例2.设数列{}n a 满足),3,2,1(2,111 =⋅==+n a a a n n n ,求{}n a 的通项公式 解:由(2)),3,2,1(21 =⋅=+n a a n n n 可知,212=a a ;2232=a a ;3342=a a112--=n n n a a 上述等式累乘可得,2)1(132122222--=⇒⋅⋅=n n n n n a a a类型三 倒数法 CBa Aa a n nn +=型数列(C B A ,,为非零常数)例3.设数列{}n a 满足),3,2,1(12,111 =+==+n a a a a n nn 求{}n a 的通项公式 解:211211+=+=+nn n n a a a a ∴⎭⎬⎫⎩⎨⎧n a 1是以35为首项,公差为2的等差数列,即351=n a +2(n -1)=316-n ∴a n =163-n 类型四 构建新数列( 待定系数法) (1)q a p a n n +⋅=+1型例4.设数列{}n a 满足),3,2,1(12,111 =+==+n a a a n n ,求{}n a 的通项公式 解 :设)(21x a x a n n +=++,即x a a n n +=+21与递推式比较,可得1=x ,所以递推式转化为)1(211+=++n n a a 则可构造新数列,令1+=n n a b ,有⎩⎨⎧===+=+),3,2,1(221111 n b b a b n n ),3,2,1(122 =-=⇒=⇒n a b n n n n (2)a n +1 = p a n + f (n )型例5.已知数列{a n }中,a 1=1,且a n =a n -1+3n -1,求{a n }的通项公式.解:设a n +p ·3n =a n -1+p ·3n -1则a n =a n -1-2p ·3n -1,与a n =a n -1+3n -1比较可知p =-21. 所以⎭⎬⎫⎩⎨⎧-23n n a 是常数列,且a 1-23=-21.所以23n n a -=-21,即a n =213-n .(3) 11-++=n n n qa pa a 型(其中p ,q 为常数)例6. 已知数列{}n a 满足06512=+-++n n n a a a ,且5,121==a a ,且满足,求n a .解:令)(112n n n n xa a y xa a -=-+++,即0)(12=++-++n n n xya a y x a ,与已知06512=+-++n n n a a a 比较,则有⎩⎨⎧==+65xy y x ,故⎩⎨⎧==32y x 或⎩⎨⎧==23y x 下面我们取其中一组⎩⎨⎧==32y x 来运算,即有)2(32112n n n n a a a a -=-+++,则数列{}n n a a 21-+是以3212=-a a 为首项,3为公比的等比数列,故n n n n a a 333211=⋅=--+,即n n n a a 321+=+,利用类型(2)的方法,可得n n n a 23-=.类型五 取对数 r n n pa a =+1(其中p ,r 为常数)型例6. 设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式. 解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n an b ,则12-=n n b b ,{}n b 是以2为公比的等比数列,11log 121=+=b 11221--=⨯=n n n b ,1221log -=+n a n,12log12-=-n a n ,∴1212--=n n a。

已知递推公式求通项公式

已知递推公式求通项公式

`式已知递推公式求通项公].p)i (a [p a p)i (p a pa p)(pa pa p 1p 2n )i (a a 1p .)()(pa a p p1q a }p1q a {p1q a p p1q a p 1q 1p q a 1p q pa a 11n 1i i11n n 1n 1i 1i 1nn 1n nn 1n 1n 1n 1n 1i 1n n 1n 1n n 1n 1n 1n ∑∑∑-=--=+++++-=++++=+=+=≠≥+==+=-+-+-+=-+-≠=+=f f n f f n f n f ,从而利用叠加法易得,,变形为,则两边同时除以若;,,则显然若不是常数,其中为公比的等差数列为首项,是以显然)(,变为,则两边同加上若为公差的等差数列;为首项,,则显然是以若)常见形式:(p x a x a qx a x a x x p p x a 1x a 1x x x x 0b x a -d cx dcx b ax x dca b aa a )2(2n 1n 21n 11n 211n 11n 21212n n 1n 通项公式求解,然后再利用等比数列可以用待定系数法求解,其中则有若通项公式求解,然后再利用等差数列可以用待定系数法求解,其中则有若,,令此方程的两个根为)(,即,令典型例子:不动点法--=--≠+-=-==-+++=++=++++用待定系数法求得、,,则其通项公式为若用待定系数法求得、,)(则其通项公式若,,令此方程两根为,特征方程为性递推式的好方法特征根法是专用来求线特征根法B A Bx Axa x x B A x Bn A a ,x x x x q px x qa pa a .)3(n2n1n 21n1n 21212n 1n 2n +=≠+==+=+=++.4然后用数学归纳法去证的规律猜出一个结果,简单说就是根据前几项)数学归纳法(公式,马上迎刃而解!,只需联系正切二倍角看起来似乎摸不着头脑:东西,看看下面的例子三角函数是个很奇妙的)联系三角函数(2nn 1n a1a 2a 5-=+递推新值的过程。

利用递推关系求数列通项的九种类型及解法

利用递推关系求数列通项的九种类型及解法

利用递推关系求数列通项的九种类型及解法1.形如)(1n f a a n n =-+型(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 方法如下: 由 )(1n f a a n n =-+得:2≥n 时,)1(1-=--n f a a n n ,)2(21-=---n f a a n n ,)2(23f a a =-)1(12f a a =-所以各式相加得 )1()2()2()1(1f f n f n f a a n +++-+-=-即:∑-=+=111)(n k n k f a a .为了书写方便,也可用横式来写:2≥n 时,)1(1-=--n f a a n n ,∴112211)()()(a a a a a a a a n n n n n +-++-+-=---=1)1()2()2()1(a f f n f n f ++++-+- . 例 1. (2003天津文) 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明213-=nn a证明:由已知得:故,311--=-n n n a a112211)()()(a a a a a a a a n n n n n +-++-+-=---=.213133321-=++++--nn n ∴213-=nn a .例 2.已知数列{}n a 的首项为1,且*12()n n a a n n N+=+∈写出数列{}n a 的通项公式.答案:12+-n n例3.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:na n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

八种通项公式求解方法

八种通项公式求解方法

求数列通项公式的八种方法总述:一.利用递推关系式求数列通项的8种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、二.等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:----------这是广义的等差数列累加法是最基本的二个方法之一。

2.若,则两边分别相加得例1已知数列满足,求数列的通项公式。

解:由得则所以数列的通项公式为。

例2已知数列满足,求数列的通项公式。

解法一:由得则所以解法二:两边除以,得,则,故因此,则评注:已知,,其中f(n)可以是关于n的一次函数、二次函数、指数函数、分式函数,求通项.若f(n)是关于n的一次函数,累加后可转化为等差数列求和;若f(n)是关于n的二次函数,累加后可分组求和;若f(n)是关于n的指数函数,累加后可转化为等比数列求和;若f(n)是关于n的分式函数,累加后可裂项求和。

例3.已知数列中,且,求数列的通项公式.解:由已知得,化简有,由类型(1)有,又得,所以,又,,则二、累乘法1.适用于:----------这是广义的等比数列累乘法是最基本的二个方法之二。

2.若,则两边分别相乘得,∏=+=nk n k f a a 111)(例4已知数列满足,求数列的通项公式。

解:因为,所以,则,故所以数列的通项公式为例5.设是首项为1的正项数列,且(=1,2,3,…),则它的通项公式是=________.解:已知等式可化为:()(n+1),即时,==.评注:本题是关于和的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到与的更为明显的关系式,从而求出.三、待定系数法适用于基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

由递推关系求数列通项定律的几种方法

由递推关系求数列通项定律的几种方法

).
2 递推相减(或相除)
求数列an的通项公式.
1.已知数列an中,a1 1,an1 an ( 2 n N *),求数列an的通项公式
2.已知数列an中, a1
1, an1
an (n 1 2an
N
*),求an .
3.已知数列an中,a1 1,an1 2an 1,求:an
4.已知数列an 中, a1
+ an an1 n 1
得 n2 n 1
(n 2)
2
1 2 a1
an a1 1 2 3 (n 1)
an
n(n 1) 2
1 2
n2
n 2
1
(当n 1时也适合)
an
n(n 1) 2
1 2
n2
n 1 2
(n N*)
5 .形如an1 f(n) an 迭乘法
已知数列an 中,a1
解:a2 2
1,an1 an
n
n
1
,
求:an
a1 1
a3 3
×
an an1
a2 2 a4 4 a3 3
n
(n n 1
2)
an 2 3 4 n 1 n a1 1 2 3 n 2 n 1
an n (当n 1时也适合)
an n (n N*)
6 归纳法
已知数列an 中,a1
2,an1
2
1(n an
令2 3n1中n 1得2 3n1 2 a1
1
an
2
3n1
(n 1) (n 2)
2.数 列an 的 前 项 和 为Sn, 且Sn
1
2 3
an (n
N * ),求an .

由数列递推公式求通项公式的常用方法

由数列递推公式求通项公式的常用方法

21世纪,信息技术在各行各业都在运用,它已和人们的学习生活息息相关,掌握不好信息知识和信息技能,就难以高效地工作和生活。

初中信息技术的开设,引导着我们每个教学者探究如何采取适当的教学方法激发学生主动学习,提高信息技术的教学质量、提升学生素质。

一、编好导学案,培养学生独立探究的品质什么样的导学案才叫好的导学案?一要能激发学习动机,在学案中创设特定的情境和启发性的问题,引导学生积极思考和主动探索,能和实践紧密结合。

二要针对不同类型的信息课,设计不同的形式的导学案,新授课的导学案要着重关注学生的最近发展区,问题设计情境化,有启发性和探究性。

习题课的导学案应着重帮助学生总结解答典型问题的基本方法和基本思路,复习课导学应帮助学生梳理知识体系。

设计导学时要充分考虑学生在学习过程中可能会遇到的问题和困难,考虑怎样去帮助学生克服困难,导学思考题,要求将学习目标问题化、情境化。

能力训练题,每个知识点学完后,要给予适当的题目进行训练,但题目应少而精,要有利于学生巩固基础知识,突出易混淆的和需注意的知识点;能力提高题,主要是针对掌握程度好的学生设计的,这部分题目的设置可以多链接学生的疑点。

学生对每一项应该完成的任务都必须掌握和理解,才开始学习新的任务,这样才能保证收到效果。

比如,初中“网络课件构件设计”导学案设计。

①学习对象设计包括中哪五个环节?(内容结构设计、内容呈现设计、SCOS 设计、内容编序设计和元数据设计)。

②每个设计的方案是什么?(如:内容呈现设计,在画面中应该尽量删除无用的背景和多余的细节。

元数据设计,SCORM 中的元数据包括Assets 元数据、SCOS 元数据、学习活动元数据、内容组织元数据和内容聚合元数据。

元数据设计时可参照SCORM。

定义的九大类元数据元素及其应用情况,其中“M”为必选项,“O”为可选项,“NP”为不选项。

)导学案为提高课堂效益架设了一座快捷的桥梁,导学让学生在课前有一定的时间构思,在课堂上学生参与、学生创新潜质更易发挥。

求数列通项公式的11种方法

求数列通项公式的11种方法

求数列通项公式的11种方法方法总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法(少用)不动点法(递推式是一个数列通项的分式表达式)、特征根法二.四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法
根据递推关系数列通项公式的几种求法
一、定义法 例 1、已知数列an 的递推公式,求an
1)a1 3, an1 an 2
1 2)a1 2, an 1 an 3
等差数列
等比数列
二、累加相消法(累加法)
形如:a1 a, an1 an f n
当所给数列每依次相邻两项之间的差 组成等差或等比数列时,就可用累加 法进行消元。
p 1 , 求a n ?
构造等比数列an , 使an 1 p(an ),
an 2 1
n
则q (p 1 ) ,
q 即 p1
4)a1 2, an1 2an 3
an 2
n1
an1 3 2(an 3)
2 an 5 4n
例6、已知数列an 的递推关系为: an 1 a ,a1 3,求an
2 n
两边同取常用对数
an 3
2 n1
当一个数列每依次相邻两项之商构成 一个等比数列或其它数列时,就可用 累乘法进行消元。
例3、已知数列an 的递推公式,求an
1)a1 2, an1 3 an
n
an 2 3
n n 1 2
n 2)a1 1, an 1 an n 1
1 an n
四、换元法
通过“换元”,构造一个等差或等比的 新数列,利用等差或等比的知识解决 问题。
3
1 5)a1 1, an 1 an 6 2
1 an 1 4 (an 4) 2
1 an 5 2
n 1
4
例5、已知数列an 的递推关系为: an 1 an 2an 1an,a1 2,an 0, 求an

几种由递推式求数列通项的方法介绍

几种由递推式求数列通项的方法介绍

几种由递推式求数列通项的方法介绍求数列通项通常可以通过递推式来实现,即通过之前的项推导出后一项。

下面介绍几种常见的方法:1.直接法:直接法是最基本的一种方法,即通过观察数列中的规律,找出递推式,然后根据递推式求解通项。

这种方法适用于简单的数列,如等差数列、等比数列等。

例如,求等差数列1, 3, 5, 7, ...的通项。

由观察可知,每一项与前一项的差值为2,即递推式为an = an-1 + 2、再根据首项a1 = 1,得到an = 2n-12.假设法:假设法是一种通过假设通项形式来求解递推式的方法。

通过猜测通项的形式,并将它代入递推式中,得到一个等式,再通过递推式和等式求解未知系数。

例如,求Fibonacci数列的通项。

观察Fibonacci数列的前几项0, 1, 1, 2, 3, 5, ...,可以猜测通项形式为an = A * φ^n + B * (1-φ)^n,其中A和B为待定系数,φ为黄金分割比。

将该通项代入Fibonacci数列的递推式an = an-1 + an-2,得到A = 1/√5,B = -1/√5、因此,Fibonacci数列的通项为an = (1/√5) * (φ^n - (1-φ)^n),其中φ约等于1.6183.代数法:代数法是通过代数运算来求解通项。

将数列的递推式变形为一个方程,再通过方程求解通项。

例如,求等比数列1, 2, 4, 8, ...的通项。

观察可知,每一项与前一项的比值为2,即递推式为an = 2 * an-1、变形方程为an = 2 * an-1,将an-1代入等式中得到an = 2^n。

因此,等比数列的通项为an =2^n。

4.积分法:积分法适用于一些特殊的数列,如等差递减数列、等比递减数列等。

通过对递推式进行积分,可以得到一个通项形式的积分表达式。

例如,求等差递减数列1, 4/3, 1, ...的通项。

观察可知,每一项与前一项的差值为-1/3,即递推式为an = an-1 - 1/3、对递推式进行积分得到通项的积分表达式∫an dn = ∫(-1/3) dn,即an = C - n/3,其中C为常数。

递推数列通项公式的求法

递推数列通项公式的求法

递推数列通项公式的求法递推数列是指通过前一项或前几项推导出后一项的数列。

通项公式是指通过数列中的任意一项可以直接计算出该项的数值的公式。

在求递推数列的通项公式时,可以使用多种方法,包括直接法、联立方程法、差分法、母函数法等。

下面将详细介绍这些方法。

一、直接法二、联立方程法联立方程法适用于一些复杂的递推数列,通过联立多个方程来求出通项公式。

该方法需要已知的一些数列值,然后根据这些值建立方程组,通过解方程组来求得通项公式。

例如,对于数列1,3,7,13,21,...,我们可以通过观察得到an = a(n-1) + 2n-1、然后,我们可以通过已知项确定初始值,如a1 = 1、通过逐一代入这些值,可以得到如下的方程组:a2 = a1 + 2(2) - 1,a3 = a2 + 2(3) - 1,...,以此类推。

然后我们可以通过求解这个方程组来得到数列的通项公式。

三、差分法差分法是通过求解数列项之间的差分来求得通项公式。

该方法常用于递推数列的高阶通项公式的求解。

对于数列an,我们可以通过计算an+1- an的值,然后继续计算相邻项之间的差分,直到得到一个关于n的表达式。

例如,对于数列1,3,6,10,15,...,我们可以计算出相邻项之间的差分:2,3,4,5,...。

我们发现这个差分数列是一个等差数列,其通项公式为an = n(n+1)/2、通过这个通项公式,我们可以进一步求得原数列的通项公式。

四、母函数法母函数法是一种重要的数学工具,适用于一些复杂的递推数列。

该方法通过构造一个函数来表示数列的各项,然后通过求解函数的表达式来得到数列的通项公式。

例如,对于数列1,1,2,3,5,...,我们可以构造一个函数F(x)=1+x+x^2+x^3+x^4+...。

我们可以通过求解这个函数关于x的表达式来得到数列的通项公式。

这个函数有一个特点,即F(x)=xF(x)+1,通过求解这个方程我们可以得到F(x)=1/(1-x)。

递推式求数列通项公式常见类型及解法

递推式求数列通项公式常见类型及解法

递推式求数列通项公式常见类型及解法递推数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列给 予解决,由于递推数列的多变性,这里介绍总结一些常见类型及解法。

一、公式法(涉及前n 项的和) 已知)(n f s n =⎩⎨⎧≥----=-----=⇒-)2()1(11n S S n S a n n n 注意:已知数列的前n 项和,求通项公式时常常会出现忘记讨论1=n 的情形而致错。

例1.已知数列}a {n 前n 项和1322-+=n n S n ,求数列}a {n 的通项公式。

解:当n=1时,411==s a ,当2≥n 时,14]1)1(3)1(2[)132(221+=--+---+=-=-n n n n n s s a n n n ,15114a ≠=+⨯⎩⎨⎧≥+==∴)2(,14)1(,4n n n a n练习:已知数列}a {n 前n 项和12+=n n S ,求数列}a {n 的通项公式。

答案:⎩⎨⎧≥==-)2(,2)1(,31n n a n n 二、作商法(涉及前n 项的积)已知)(......321n f a a a a n =⨯⨯⨯⎪⎩⎪⎨⎧≥----=----=⇒)2()1()()1().1(n n f n f n f a n例2.已知数列}a {n 中的值试求时53232,2,11a a n a a a n a n +=⋅⋅⋅⋅⋅⋅⋅≥=。

解:当2≥n 时,由2321n a a a a n =⋅⋅⋅⋅⋅⋅⋅⋅,可得21321)1(-=⋅⋅⋅⋅⋅⋅⋅⋅-n a a a a n则22)1(-=n na n16614523222253=+=+∴a a三、累加法(涉及相邻两项的差)已知)(1n f a a n n =-+112211)......()()(a a a a a a a a n n n n n +-+-+-=⇒--- 例3.已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求数列通项公式的方法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。

二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。

评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。

例3 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解:由1231n n n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.nn a n =+-评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231nn n a a +-=⨯+,进而求出11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+,即得数列{}n a 的通项公式。

例4 已知数列{}n a 满足1132313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-评注:本题解题的关键是把递推关系式13231nn n a a +=+⨯+转化为111213333n n n n n a a +++-=+,进而求出112232111122321()()()()333333333n n n n n n n n n n n n a a a a a a a a a -----------+-+-++-+,即得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式,最后再求数列{}n a 的通项公式。

三、累乘法例5 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。

解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯评注:本题解题的关键是把递推关系12(1)5nn n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅,即得数列{}n a 的通项公式。

例6已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式。

解:因为123123(1)(2)n n a a a a n a n -=++++-≥①所以1123123(1)n n n a a a a n a na +-=++++-+②用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=。

所以,{}n a 的通项公式为!.2n n a =评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为11(2)n na n n a +=+≥,进而求出132122n n n n a a a a a a a ---⋅⋅⋅⋅,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式。

四、待定系数法例7 已知数列{}n a 满足112356nn n a a a +=+⨯=,,求数列{}n a 的通项公式。

解:设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n nn n a x a x ++⨯+⨯=+⨯,等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅,两边除以5n ,得352,1,x x x +==-则代入④式得1152(5)n n n n a a ++-=-⑤由1156510a -=-=≠及⑤式得50nn a -≠,则11525n n nn a a ++-=-,则数列{5}nn a -是以1151a -=为首项,以2为公比的等比数列,则152n n n a --=,故125n n n a -=+。

评注:本题解题的关键是把递推关系式1235n n n a a +=+⨯转化为1152(5)n nn n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}nn a -的通项公式,最后再求出数列{}n a 的通项公式。

例8 已知数列{}n a 满足1135241nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解:设1123(2)n n n n a x y a x y +++⨯+=+⨯+⑥将13524nn n a a +=+⨯+代入⑥式,得1352423(2)n n n n n a x y a x y ++⨯++⨯+=+⨯+整理得(52)24323nnx y x y +⨯++=⨯+。

令52343x x y y +=⎧⎨+=⎩,则52x y =⎧⎨=⎩,代入⑥式得115223(522)n n n n a a +++⨯+=+⨯+⑦由11522112130a +⨯+=+=≠及⑦式,得5220nn a +⨯+≠,则115223522n n nn a a +++⨯+=+⨯+, 故数列{522}n n a +⨯+是以1152211213a +⨯+=+=为首项,以3为公比的等比数列,因此1522133n n n a -+⨯+=⨯,则1133522n nn a -=⨯-⨯-。

评注:本题解题的关键是把递推关系式13524nn n a a +=+⨯+转化为115223(522)n n n n a a +++⨯+=+⨯+,从而可知数列{522}n n a +⨯+是等比数列,进而求出数列{522}nn a +⨯+的通项公式,最后再求数列{}n a 的通项公式。

例9 已知数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式。

解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++ ⑧将212345n n a a n n +=+++代入⑧式,得2222345(1)(1)2()n n a n n x n y n z a xn yn z ++++++++=+++,则 222(3)(24)(5)2222n n a x n x y n x y z a xn yn z +++++++++=+++等式两边消去2n a ,得22(3)(24)(5)222x n x y n x y z xn yn z ++++++++=++,解方程组3224252x x x y y x y z z +=⎧⎪++=⎨⎪+++=⎩,则31018x y z =⎧⎪=⎨⎪=⎩,代入⑧式,得2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ ⑨由213110118131320a +⨯+⨯+=+=≠及⑨式,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为以21311011813132a +⨯+⨯+=+=为首项,以2为公比的等比数列,因此2131018322n n a n n -+++=⨯,则42231018n n a n n +=---。

相关文档
最新文档