圆锥曲线综合测试题
圆锥曲线测试题及答案
圆锥曲线测试题及答案一、选择题(每题3分,共15分)1. 椭圆的离心率定义为:A. 长轴与短轴的比值B. 长轴的一半与焦距的比值C. 焦距与长轴的比值D. 焦距与长轴的一半的比值2. 抛物线的标准方程是:A. \( x^2 = 4py \)B. \( y^2 = 4px \)C. \( x^2 = 2py \)D. \( y^2 = 2px \)3. 双曲线的渐近线方程是:A. \( y = \pm \frac{b}{a}x \)B. \( y = \pm \frac{a}{b}x \)C. \( x = \pm \frac{a}{b}y \)D. \( x = \pm \frac{b}{a}y \)4. 椭圆上任意一点到两个焦点的距离之和是:A. 长轴的长度B. 短轴的长度C. 焦距的两倍D. 不确定5. 对于双曲线,如果 \( a > b \),则它是:A. 垂直轴双曲线B. 水平轴双曲线C. 焦点在x轴上D. 焦点在y轴上二、填空题(每题2分,共10分)6. 椭圆的方程 \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) 中,\( a \) 和 \( b \) 分别代表______和______。
7. 抛物线 \( y^2 = 4px \) 的焦点坐标是______。
8. 双曲线 \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) 的焦距是______。
9. 椭圆 \( \frac{x^2}{4} + \frac{y^2}{3} = 1 \) 的离心率是______。
10. 如果一个点 \( P(x, y) \) 在双曲线 \( \frac{x^2}{a^2} -\frac{y^2}{b^2} = 1 \) 上,那么 \( x \) 和 \( y \) 满足的关系是______。
三、简答题(每题5分,共20分)11. 描述椭圆的基本性质。
(完整版)圆锥曲线综合练习题(有答案)
圆锥曲线综合练习一、 选择题:1.已知椭圆221102x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .82.直线220x y -+=经过椭圆22221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为( )A B .12 C D .233.设双曲线22219x y a -=(0)a >的渐近线方程为320x y ±=,则a 的值为( )A .4B .3C .2D .14.若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是( )A B C D 5.已知双曲线22221(00)x y a b a b-=>>,,过其右焦点且垂直于实轴的直线与双曲线交于M N ,两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( )A B C D 6.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( )A .0B .1C .2D .7.双曲线221259x y -=上的点到一个焦点的距离为12,则到另一个焦点的距离为( )A .22或2B .7C .22D .28.P 为双曲线221916x y -=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点,则||||PM PN -的最大值为( )A .6B .7C .8D .99.已知点(8)P a ,在抛物线24y px =上,且P 到焦点的距离为10,则焦点到准线的距离为( ) A .2 B .4 C .8 D .1610.在正ABC △中,D AB E AC ∈∈,,向量12DE BC =,则以B C ,为焦点,且过D E ,的双曲线离心率为( )A B 1 C 1 D 111.两个正数a b ,的等差中项是92,一个等比中项是a b >,则抛物线2by x a=-的焦点坐标是( )A .5(0)16-, B .2(0)5-, C .1(0)5-, D .1(0)5, 12.已知12A A ,分别为椭圆2222:1(0)x y C a b a b+=>>的左右顶点,椭圆C 上异于12A A ,的点P恒满足1249PA PA k k ⋅=-,则椭圆C 的离心率为( )A .49 B .23 C .59D 513.已知2212221(0)x y F F a b a b+=>>、分别是椭圆的左、右焦点,A 是椭圆上位于第一象限内的一点,点B 也在椭圆 上,且满足0OA OB +=(O 为坐标原点),2120AF F F ⋅=2, 则直线AB 的方程是( ) A . 22y =B .22y x =C .3y =D .3y = 14.已知点P 是抛物线22y x =上的一个动点,则点P 到点(02)M ,的距离与点P 到该抛物线准线的距离之和的最小值为A .3B 17C 5D .9215.若椭圆221x y m n+=与双曲线221(x y m n p q p q -=,,,均为正数)有共同的焦点F 1,F 2,P 是两曲线的一个公共点,则12||||PF PF ⋅等于 ( )A .m p +B .p m -C .m p -D .22m p -16.若()P a b ,是双曲线22416(0)x y m m -=≠上一点,且满足20a b ->,20a b +>,则该点P 一定位于双曲线( ) A .右支上 B .上支上 C .右支上或上支上 D .不能确定17.如图,在ABC △中,30CAB CBA ∠=∠=,AC BC ,边上的高分别为BD AE ,,则以A B , 为焦点,且过D E ,的椭圆与双曲线的离心率的倒数和为( ) A .3 B .1 C .32D .218221sin 2sin 3cos 2cos 3=--表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线19.已知12F F ,是椭圆22221(0)x y a b a b +=>>的左、右焦点,点P 在椭圆上,且122F PF π∠=记线段1PF 与y 轴的交点为Q ,O 为坐标原点,若1FOQ △与四边形2OF PQ 的面积之比为1:2,则该椭圆的离心率等于 ( ) A .23 B .33 C .43- D 3120.已知双曲线方程为2214y x -=,过(21)P -,的直线L 与双曲线只有一个公共点,则直线l 的条数共有( )A .4条B .3条C .2条D .1条 21.已知以1(20)F -,,2(20)F ,为焦点的椭圆与直线340x +=有且仅有一个交点,则椭圆的长轴长为( ) A .2 B .6 C .7 D .222.双曲线22221x y a b -=与椭圆22221x y m b+=(00)a m b >>>,的离心率互为倒数,那么以a b m ,,为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形23.已知点(10)(10)A B -,,,及抛物线22y x =,若抛物线上点P 满足PA m PB =,则m 的最大值为( ) A .3 B .2 CD24.设12F F ,是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32x a =上一点,21F PF △是底角为30的等腰三角形,则E 的离心率为( )A .12B .23C .34D .4525.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A B ,两点,||AB =则C 的实轴长为( )AB. C .4 D .826.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A B ,两点,||12AB =,P 为C 准线上一点,则ABP △的面积为( )A .18B .24C .36D .48 27.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(42)-,,则它的离心率为( ) ABCD28.椭圆221ax by +=与直线1y x =-交于A B ,两点,过原点与线段AB中点的直线的斜率为,则ab的值为( )B. C.D. 29.若椭圆221(00)x y m n m n +=>>,与曲线22||x y m n +=-无焦点,则椭圆的离心率e 的取值范围是( )A.1) B.(0 C.1) D.(030.已知12F F ,分别是椭圆22143x y +=的左、右焦点,A 是椭圆上一动点,圆C 与1F A 的延长线、12F F 的延长线以及线段2AF 相切,若(0)M t ,为一个切点,则( )A .2t =B .2t >C .2t <D .t 与2的大小关系不确定31.如图,过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于点A B ,,交其准线于点C ,若||2||BC BF =,且||3AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x = D.2y32.已知椭圆2214x y +=的焦点为12F F 、,在长轴12A A 上任取一点M ,过M 作垂直于12A A 的直线交椭圆于P ,则使得120PF PF ⋅<的M 点的概率为( D ) ABC .12D33.以O 为中心,12F F ,为两个焦点的椭圆上存在一点M ,满足12||2||2||MF MO MF ==,则该椭圆的离心率为( ) AB .23CD34.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( ) A. B .2 C .1 D .035.在抛物线25(0)y x ax a =+-≠上取横坐标为1242x x =-=,的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线的顶点坐标为( ) A .(29)--, B .(05)-, C .(29)-, D .(16)-,36.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为( ) A .2 B .3 C .6 D .837.直线3440x y -+=与抛物线24x y =和圆22(1)1x y +-=从左到右的交点依次为A B C D ,,,,则||||AB CD 的值为( )A .16B .116 C .4 D .1438.如图,双曲线的中心在坐标原点O ,A C ,分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F 是双曲线的左焦点,直线AB 与FC 相交于点DBDF ∠的余弦是( )ABC D39.设双曲线2222:1(00)x y C a b a b-=>>,的左、右焦点分别为12F F ,,若在双曲线的右支上存在一点P ,使得12||3||PF PF =,则双曲线C 的离心率e 的取值范围为( )A .(12],B .2]C .2)D .(12),40.已知11()A x y ,是抛物线24y x =上的一个动点,22()B x y ,是椭圆22143x y +=上的一个动点,(10)N ,是一个定点,若AB ∥x 轴,且12x x <,则NAB △的周长l 的取值范围为( )A .10(5)3,B .8(4),C .10(4)3,D .11(5)3,41.的离心率2=e ,右焦点(0)F c ,,方程20ax bx c +-=的两个根分别为1x ,2x ,则点12()P x x ,在( )A .圆1022=+y x 内 B .圆1022=+y x 上 C .圆1022=+y x 外 D .以上三种情况都有可能42.过双曲线22221(00)x y a b a b-=>>,的右焦点F 作圆222x y a +=的切线FM (切点为M ),交y 轴于点P ,若M 为线段FP 的中点, 则双曲线的离心率是( )A B C .2 D43P 使得右焦点F 关于直线OP (O 为双曲线的中心)的对称点在y 轴上,则该双曲线离心率的取值范围为( )ABCD44F 为圆心,a 为半径的圆与椭圆的右准线交于不同的两点,则该椭圆的离心率的取值范围是( )A B C D 45的左准线l ,左.右焦点分别为F 1.F 2,抛物线C 2的准线为l ,焦点是F 2,C 1与C 2的一个交点为P ,则|PF 2| )A B C .4 D .846.已知F 1、F 2是双曲线 a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是 ( )A . 147A 、F ,点B (0,b )则该双曲线离心率e 的值为( )A B C D 48.直线l 是双曲线O 为圆心且过双曲线焦点的圆被直线l 分成弧长为2:1的两段,则双曲线的离心率为( )A .B .C .D . 49的左焦点F 引圆222a y x =+的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则与a b -的大小关系为A BCD .不确定.50.点P 为双曲线1C :和圆2C :2222b a y x +=+的一个交点,且12212F PF F PF ∠=∠,其中21,F F 为双曲线1C 的两个焦点,则双曲线1C 的离心率为( )ABCD .251.设圆锥曲线r 的两个焦点分别为12F F ,,若曲线r 上存在点P ,则曲线r 的离心率等于A B 2 C D 52.已知点P 为双曲线22221(00)x y a b a b -=>>,右支上一点,12F F ,分别为双曲线的左、右交点,I 为22PF F △的内心,若1212IPF IPF IF F S S S λ=+△△△成立,则λ的值为( )AB C .b a D .ab二、填空题:53.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点.若22||||12F A F B +=,则||AB = . 54.中心在原点,焦点在x 轴上,且长轴长为4,离心率为12的椭圆的方程为 . 55.9.已知双曲线221y x a-=的一条渐近线与直线230x y -+=垂直,则a = .56.已知P 为椭圆22194x y +=上的点,12F F ,是椭圆的两个焦点,且1260F PF ∠=,则12F PF △ 的面积是 . 57.已知双曲线22221(00)x y a b a b -=>>,和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .58.若双曲线22221(00)x y a b a b -=>>,的一条渐近线与椭圆22143x y +=的焦点在x 轴上的射影恰为该椭圆的焦点,则双曲线的离心率为 . 59.已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为12F F ,,过点2F 做与x 轴垂直的直线与双曲线一个焦点P ,且1230PF F ∠=,则双曲线的渐近线方程为 .60.已知12F F 、分别为椭圆221259x y +=的左、右焦点,P 为椭圆上一点,Q 是y 轴上的一个动点,若12||||4PF PF -=,则12()PQ PF PF ⋅-= .61.已知圆22:68210C x y x y ++++=,抛物线28y x =的准线为l ,设抛物线上任意一点P 到直线l 的距离为m ,则||m PC +的最小值为 .62.设双曲线221916x y -=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则AFB △的面积为 . 63.已知直线1l :4360x y -+=和直线2:0l x =,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是 .三、解答题:64.已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点为12F F ,,点P 在椭圆C 上,且12PF PF ⊥,14||3PF =,214||3PF =.(Ⅰ)求椭圆C 的方程; (Ⅱ)若直线l 过点M (21)-,,交椭圆C 于A B ,两点,且点M 恰是线段AB 的中点,求直线l 的方程. 65.已知抛物线2:2(0)C y px p =>过点(12)A -,.(Ⅰ)求抛物线C 的方程,并求其准线方程;(Ⅱ)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与L 的距离等?若存在,求直线l 的方程;若不存在,请说明理由. 66.已知抛物线22(0)x py p =>.(Ⅰ)已知P 点为抛物线上的动点,点P 在x 轴上的射影是点M ,点A 的坐标是(42)-,,且||||PA PM +的最小值是4.(ⅰ)求抛物线的方程;(ⅱ)设抛物线的准线与y 轴的交点为点E ,过点E 作抛物线的切线,求此切线方程; (Ⅱ)设过抛物线焦点F 的动直线l 交抛物线于A B ,两点,连接AO BO ,并延长分别交抛物线的准线于C D ,两点,求证:以CD 为直径的圆过焦点F .67.如图所示,已知椭圆2222:1(0)x y C a b a b+=>>,12A A ,分别为椭圆C 的左、右顶点.(Ⅰ)设12F F ,分别为椭圆C 的左、右焦点,证明:当且仅当椭圆C 上的点P 在椭圆的左、右顶点时,1||PF 取得最小值与最大值;(Ⅱ)若椭圆C 上的点到焦点距离的最大值为3,最小值为1,求椭圆C 的标准方程;(Ⅲ)若直线l :y kx m =+与(Ⅱ)中所述椭圆C 相交于A B ,两点(A B ,不是左、右顶点),且满足22AA BA ⊥,证明:直线l 过定点,并求出该定点的坐标.68.已知椭圆2222:1(0)x y C a b a b+=>>的离心率2e =12的交点F 恰好是该椭圆的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知圆222:3O x y +=的切线l 与椭圆相交于A B ,两点,那么以AB 为直径的圆是否经过定点?如果时,求出定点的坐标;如果不是,请说明理由.。
圆锥曲线综合练习题及答案-.doc
一、单选题(每题6分共36分)1. 椭圆221259x y +=的焦距为. ( ) A . 5 B. 3 C. 4 D 8 2.已知双曲线的离心率为2,焦点是(—4,0),(4,0),则双曲线的方程为 ( )A .221412x y -= B. 221124x y -= C 。
221106x y -= D 221610x y -= 3.双曲线22134x y -=的两条准线间的距离等于 ( ) A .677 B. 377C 。
185D 1654.椭圆22143x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 45.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。
( )A .22149y x -=B 。
22194x y -= C. 2213131100225y x -= D 22131********y x -= 6.设12,F F 是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ︒∠=且123AF AF =,则双曲线的离心率为 ( ) A .52 B. 102 C. 152D 5 7。
设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4 B .y 2=±8x C .y 2=4xD .y 2=8x8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D 。
错误!9.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )10.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为错误!的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4错误!D .8二.填空题。
圆锥曲线综合测试题(含详细答案)
圆锥曲线测试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =-14x 2的准线方程为( )A .x =116B .x =1C .y =1D .y =2解析: 抛物线的标准方程为x 2=-4y , 准线方程为y =1. 答案: C2.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 解析: 双曲线x 24-y 212=-1的焦点坐标为(0,±4),顶点坐标为(0,±23),故所求椭圆的焦点在y 轴上,a =4,c =23, ∴b 2=4,所求方程为x 24+y 216=1,故选D. 答案: D3.设P 是椭圆x 2169+y 2144=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .13解析: 由椭圆的定义知,|PF 1|+|PF 2|=26, 又∵|PF 1|=4,∴|PF 2|=26-4=22. 答案: A4.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A.⎝⎛⎭⎫22,0B.⎝⎛⎭⎫52,0C.⎝⎛⎭⎫62,0D .(3,0)解析: 将双曲线方程化为标准方程为x 2-y 212=1,∴a 2=1,b 2=12,∴c 2=a 2+b 2=32,∴c =62, 故右焦点坐标为⎝⎛⎭⎫62,0.答案: C 5.若抛物线x 2=2py的焦点与椭圆x 23+y 24=1的下焦点重合,则p 的值为( )A .4B .2C .-4D .-2解析: 椭圆x 23+y 24=1的下焦点为(0,-1),∴p2=-1,即p =-2. 答案: D6.若k ∈R ,则k >3是方程x 2k -3-y 2k +3=1表示双曲线的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析: 方程x 2k -3-y 2k +3=1表示双曲线的条件是(k -3)(k +3)>0,即k >3或k <-3.故k >3是方程x 2k -3-y 2k +3=1表示双曲线的充分不必要条件.故选A. 答案: A7.已知F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1) B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫0,22 D.⎣⎡⎭⎫22,1解析: 由MF 1→·MF 2→=0可知点M 在以线段F 1F 2为直径的圆上,要使点M 总在椭圆内部,只需c <b ,即c 2<b 2,c 2<a 2-c 2,2c 2<a 2, 故离心率e =c a <22.因为0<e <1,所以0<e <22. 即椭圆离心率的取值范围是⎝⎛⎭⎫0,22.故选C. 答案: C8.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A.45B.35 C .-35D .-45解析 方法一:由⎩⎪⎨⎪⎧ y =2x -4,y 2=4x ,得⎩⎪⎨⎪⎧ x =1,y =-2或⎩⎪⎨⎪⎧x =4,y =4.令B (1,-2),A (4,4),又F (1,0),∴由两点间距离公式得|BF |=2,|AF |=5,|AB |=3 5. ∴cos ∠AFB =|BF |2+|AF |2-|AB |22|BF |·|AF |=4+25-452×2×5=-45.方法二:由方法一得A (4,4),B (1,-2),F (1,0), ∴F A →=(3,4),FB →=(0,-2), ∴|F A →|=32+42=5,|FB →|=2.∴cos ∠AFB =F A →·FB→|F A →|·|F B →|=3×0+4×(-2)5×2=-45.答案: D9.F 1、F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7 B.72 C.74D.752解析: |F 1F 2|=22,|AF 1|+|AF 2|=6,|AF 2|=6-|AF 1|.|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|cos 45° =|AF 1|2-4|AF 1|+8(6-|AF 1|)2 =|AF 1|2-4|AF 1|+8,∴|AF 1|=72.S =12×72×22×22=72. 答案: B10.已知点M (-3,0)、N (3,0)、B (1,0),动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( )A .x 2-y 28=1(x >1) B .x 2-y 28=1(x <-1) C .x 2+y 28=1(x >0) D .x 2-y 210=1(x >1) 解析: 设圆与直线PM 、PN 分别相切于E 、F , 则|PE |=|PF |,|ME |=|MB |,|NB |=|NF |. ∴|PM |-|PN |=|PE |+|ME |-(|PF |+|NF |) =|MB |-|NB |=4-2=2<|MN |.所以点P 的轨迹是以M (-3,0),N (3,0)为焦点的双曲线的一支,且a =1, ∴c =3,b 2=8, ∴所以双曲线方程是x 2-y 28=1(x >1). 答案: A11.(2009全国卷Ⅰ理)已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D). 3解:过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =,故2||3BM =.又由椭圆的第二定义,得222||233BF =⋅=||2AF ∴=.故选A 12.(2009山东卷理)设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ).A.45B. 5C. 25D.5【解析】:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x a y x ⎧=⎪⎨⎪=+⎩,消去y,得210b x x a -+=有唯一解,所以△=2()40ba-=, 所以2b a =,2221()5c a b b e a a a+===+=,故选D.答案:D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.若双曲线的渐近线方程为y =±13x ,它的一个焦点是(10,0),则双曲线的标准方程是________.解析: 由双曲线的渐近线方程为y =±13x ,知b a =13,它的一个焦点是(10,0),知a 2+b 2=10, 因此a =3,b =1,故双曲线的方程是x 29-y 2=1.答案: x 29-y 2=112.若过椭圆x 216+y 24=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是________.解析: 设直线方程为y -1=k (x -2),与双曲线方程联立得(1+4k 2)x 2+(-16k 2+8k )x +16k 2-16k -12=0, 设交点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=16k 2-8k 1+4k 2=4,解得k =-12, 所以直线方程为x +2y -4=0. 答案: x +2y -4=013.如图,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是________.解析: ∵△POF 2是面积为3的正三角形, ∴12c 2sin 60°=3, ∴c 2=4, ∴P (1,3),∴⎩⎪⎨⎪⎧1a 2+3b 2=1,a 2=b 2+4,解之得b 2=2 3. 答案: 2 314.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________.解析: 显然x 1,x 2≥0,又y 21+y 22=4(x 1+x 2)≥8x 1x 2, 当且仅当x 1=x 2=4时取等号,所以最小值为32. 答案: 32三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,且经过点(2,0)和点(0,1);(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解析: (1)因为椭圆的焦点在x 轴上, 所以可设它的标准方程为x 2a 2+y 2b 2=1(a >b >0),∵椭圆经过点(2,0)和(0,1)∴⎩⎨⎧22a 2+0b 2=10a 2+1b 2=1,∴⎩⎪⎨⎪⎧a 2=4b 2=1,故所求椭圆的标准方程为x 24+y 2=1.(2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为 y 2a 2+x 2b 2=1(a >b >0), ∵P (0,-10)在椭圆上,∴a =10.又∵P 到它较近的一个焦点的距离等于2, ∴-c -(-10)=2,故c =8,∴b 2=a 2-c 2=36. ∴所求椭圆的标准方程是y 2100+x 236=1.18.(12分)已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,求双曲线方程.解析: 由椭圆方程可得椭圆的焦点为F (0,±4), 离心率e =45,所以双曲线的焦点为F (0,±4),离心率为2, 从而c =4,a =2,b =2 3. 所以双曲线方程为y 24-x 212=1.19.(12分)设椭圆的中心在原点,焦点在x 轴上,离心率e =32.已知点P ⎝⎛⎭⎫0,32 到这个椭圆上的点的最远距离为7,求这个椭圆的方程.解析: 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),M (x ,y )为椭圆上的点,由c a =32得a =2b .|PM |2=x 2+⎝⎛⎭⎫y -322=-3⎝⎛⎭⎫y +122+4b 2+3(-b ≤y ≤b ), 若b <12,则当y =-b 时,|PM |2最大,即⎝⎛⎭⎫b +322=7, 则b =7-32>12,故舍去.若b ≥12时,则当y =-12时,|PM |2最大,即4b 2+3=7,解得b 2=1.∴所求方程为x 24+y 2=1.20.(12分)已知椭圆的长轴长为2a ,焦点是F 1(-3,0)、F 2(3,0),点F 1到直线x =-a 23的距离为33,过点F 2且倾斜角为锐角的直线l 与椭圆交于A 、B 两点,使得|F 2B |=3|F 2A |.(1)求椭圆的方程; (2)求直线l 的方程.解析: (1)∵F 1到直线x =-a 23的距离为33,∴-3+a 23=33.∴a 2=4. 而c =3, ∴b 2=a 2-c 2=1. ∵椭圆的焦点在x 轴上, ∴所求椭圆的方程为x 24+y 2=1.(2)设A (x 1,y 1)、B (x 2,y 2). ∵|F 2B |=3|F 2A |,∴⎩⎪⎨⎪⎧3=x 2+3x 11+3,0=y 2+3y 11+3,⎩⎪⎨⎪⎧x 2=43-3x 1,y 2=-3y 1.∵A 、B 在椭圆x 24+y 2=1上,∴⎩⎪⎨⎪⎧x 214+y 21=1,(43-3x 1)24+(-3y 1)2=1.∴⎩⎪⎨⎪⎧x 1=1033,y 1=233(取正值).∴l 的斜率为233-01033-3= 2.∴l 的方程为y =2(x -3), 即2x -y -6=0.21.(12分)已知直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线相交于A 、B 两点.(1)若|AF |=4,求点A 的坐标; (2)求线段AB 的长的最小值. 解析: 由y 2=4x ,得p =2, 其准线方程为x =-1,焦点F (1,0). 设A (x 1,y 1),B (x 2,y 2). (1)由抛物线的定义可知.|AF |=x 1+p2,从而x 1=4-1=3.代入y 2=4x ,解得y 1=±2 3.∴点A 的坐标为(3,23)或(3,-23). (2)当直线l 的斜率存在时, 设直线l 的方程为y =k (x -1).与抛物线方程联立,得⎩⎪⎨⎪⎧y =k (x -1)y 2=4x,消去y ,整理得k 2x 2-(2k 2+4)x +k 2=0, 因为直线与抛物线相交于A 、B 两点, 则k ≠0,并设其两根为x 1,x 2, 则x 1+x 2=2+4k 2.由抛物线的定义可知, |AB |=x 1+x 2+p =4+4k2>4,当直线l 的斜率不存在时,直线l 的方程为x =1,与抛物线交于A (1,2),B (1,-2),此时|AB |=4.所以|AB |≥4,即线段AB 的长的最小值为4.22.(12分)如图,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,x 轴被曲线C 2:y =x 2-b截得的线段长等于C 1的长半轴长.(1)求C 1,C 2的方程.(2)设C 2与y 轴的交点为M ,过坐标原点O 的直线l 与C 2相交于点A ,B ,直线MA ,MB 分别与C 1相交于点D ,E .证明:MD ⊥ME .解析: 由题意知e =c a =32,从而a =2b .又2b =a ,所以a =2,b =1.故C 1,C 2的方程分别为x 24+y 2=1,y =x 2-1.(2)证明:由题意知,直线l 的斜率存在,设为k ,则直线l 的方程为y =kx .由⎩⎪⎨⎪⎧y =kx ,y =x 2-1,得x 2-kx -1=0. 设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,于是x 1+x 2=k ,x 1x 2=-1. 又点M 的坐标为(0,-1),所以k MA ·k MB =y 1+1x 1·y 2+1x 2=(kx 1+1)(kx 2+1)x 1x 2=k 2x 1x 2+k (x 1+x 2)+1x 1x 2=-k 2+k 2+1-1=-1.故MA ⊥MB ,即MD ⊥ME .。
圆锥曲线综合训练题(分专题,含答案)
圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
圆锥曲线综合练习题有答案资料全
圆锥曲线综合练习一、 选择题:1.已知椭圆221102x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .82.直线220x y -+=经过椭圆22221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为( )A B .12 C D .233.设双曲线22219x y a -=(0)a >的渐近线方程为320x y ±=,则a 的值为( )A .4B .3C .2D .14.若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是( )A B C D 5.已知双曲线22221(00)x y a b a b-=>>,,过其右焦点且垂直于实轴的直线与双曲线交于M N ,两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( )A B C D 6.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +u u u r u u u u r的最小值是( )A .0B .1C .2D .7.双曲线221259x y -=上的点到一个焦点的距离为12,则到另一个焦点的距离为( )A .22或2B .7C .22D .28.P 为双曲线221916x y -=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点,则||||PM PN -的最大值为( )A .6B .7C .8D .99.已知点(8)P a ,在抛物线24y px =上,且P 到焦点的距离为10,则焦点到准线的距离为( )A .2B .4C .8D .1610.在正ABC △中,D AB E AC ∈∈,,向量12DE BC =u u u r u u u r,则以B C ,为焦点,且过D E ,的双曲线离心率为( )A B 1 C 1 D 1 11.两个正数a b ,的等差中项是92,一个等比中项是a b >,则抛物线2by x a=-的焦点坐标是( )A .5(0)16-, B .2(0)5-, C .1(0)5-, D .1(0)5, 12.已知12A A ,分别为椭圆2222:1(0)x y C a b a b+=>>的左右顶点,椭圆C 上异于12A A ,的点P恒满足1249PA PA k k ⋅=-,则椭圆C 的离心率为( )A .49 B .23 C .59D13.已知2212221(0)x y F F a b a b+=>>、分别是椭圆的左、右焦点,A 是椭圆上位于第一象限内的一点,点B 也在椭圆 上,且满足0OA OB +=u u u r u u u r r (O 为坐标原点),2120AF F F ⋅=u u u u r u u u u r , 则直线AB 的方程是( )A . y =B .y =C .y =D .y = 14.已知点P 是抛物线22y x =上的一个动点,则点P 到点(02)M ,的距离与点P 到该抛物线准线的距离之和的最小值为A .3BCD .9215.若椭圆221x y m n+=与双曲线221(x y m n p q p q -=,,,均为正数)有共同的焦点F 1,F 2,P 是两曲线的一个公共点,则12||||PF PF ⋅等于 ( )A .m p +B .p m -C .m p -D .22m p -16.若()P a b ,是双曲线22416(0)x y m m -=≠上一点,且满足20a b ->,20a b +>,则该点P 一定位于双曲线( ) A .右支上 B .上支上 C .右支上或上支上 D .不能确定17.如图,在ABC △中,30CAB CBA ∠=∠=o ,AC BC ,边上的高分别为BD AE ,,则以A B , 为焦点,且过D E ,的椭圆与双曲线的离心率的倒数和为( )A .B .C .D .18221=表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线19.已知12F F ,是椭圆22221(0)x y a b a b +=>>的左、右焦点,点P 在椭圆上,且122F PF π∠=记线段1PF 与y 轴的交点为Q ,O 为坐标原点,若1FOQ △与四边形2OF PQ 的面积之比为1:2,则该椭圆的离心率等于 ( )A .2B .3C .4-D 120.已知双曲线方程为2214y x -=,过(21)P -,的直线L 与双曲线只有一个公共点,则直线l 的条数共有( )A .4条B .3条C .2条D .1条 21.已知以1(20)F -,,2(20)F ,为焦点的椭圆与直线40x ++=有且仅有一个交点,则椭圆的长轴长为( )A .B .C .D .22.双曲线22221x y a b-=与椭圆22221x y m b +=(00)a m b >>>,的离心率互为倒数,那么以a b m ,,为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 23.已知点(10)(10)A B -,,,及抛物线22y x =,若抛物线上点P 满足PA m PB =,则m 的最大值为( )A .3B .2 CD24.设12F F ,是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32x a =上一点,21F PF △是底角为30o 的等腰三角形,则E 的离心率为( )A .12 B .23 C .34 D .4525.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A B ,两点,||AB =C 的实轴长为( )AB. C .4 D .826.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A B ,两点,||12AB =,P 为C 准线上一点,则ABP △的面积为( )A .18B .24C .36D .4827.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(42)-,,则它的离心率为( ) ABCD28.椭圆221ax by +=与直线1y x =-交于A B ,两点,过原点与线段AB中点的直线的斜率为,则ab的值为( )C.29.若椭圆221(00)x y m n m n +=>>,与曲线22||x y m n +=-无焦点,则椭圆的离心率e 的取值范围是( )A.1) B.(0 C.1) D.(0 30.已知12F F ,分别是椭圆22143x y +=的左、右焦点,A 是椭圆上一动点,圆C 与1F A 的延长线、12F F 的延长线以及线段2AF 相切,若(0)M t ,为一个切点,则( )A .2t =B .2t >C .2t <D .t 与2的大小关系不确定31.如图,过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于点A B ,,交其准线于点C ,若||2||BC BF =,且||3AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x = D.2y32.已知椭圆2214x y +=的焦点为12F F 、,在长轴12A A 上任取一点M ,过M 作垂直于12A A 的直线交椭圆于P ,则使得120PF PF ⋅<u u u r u u u u r的M 点的概率为( D )ABC .12D33.以O 为中心,12F F ,为两个焦点的椭圆上存在一点M ,满足12||2||2||MF MO MF ==u u u u r u u u u r u u u u r,则该椭圆的离心率为( ) AB .23CD34.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +u u u r u u u u r的最小值是( )A. B .2 C .1 D .035.在抛物线25(0)y x ax a =+-≠上取横坐标为1242x x =-=,的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线的顶点坐标为( ) A .(29)--, B .(05)-, C .(29)-, D .(16)-,36.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅u u u r u u u r 的最大值为( ) A .2 B .3 C .6 D .837.直线3440x y -+=与抛物线24x y =和圆22(1)1x y +-=从左到右的交点依次为A B C D ,,,,则||||AB CD 的值为( ) A .16 B .116 C .4 D .1438.如图,双曲线的中心在坐标原点O ,A C ,分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F 是双曲线的左焦点,直线AB 与FC 相交于点DBDF ∠的余弦是( ) A B C D 39.设双曲线2222:1(00)x y C a b a b-=>>,的左、右焦点分别为12F F ,,若在双曲线的右支上存在一点P ,使得12||3||PF PF =,则双曲线C 的离心率e 的取值范围为( )A .(12],B .2]C .2)D .(12),40.已知11()A x y ,是抛物线24y x =上的一个动点,22()B x y ,是椭圆22143x y +=上的一个动点,(10)N ,是一个定点,若AB ∥x 轴,且12x x <,则NAB △的周长l 的取值范围为( )A .10(5)3,B .8(4),C .10(4)3,D .11(5)3,412=e ,右焦点(0)F c ,,方程20ax bx c +-=的两个根分别为1x ,2x ,则点12()P x x ,在( )A .圆1022=+y x 内 B .圆1022=+y x 上C .圆1022=+y x 外 D .以上三种情况都有可能42.过双曲线22221(00)x y a b a b-=>>,的右焦点F 作圆222x y a +=的切线FM (切点为M ),交y 轴于点P ,若M 为线段FP 的中点, 则双曲线的离心率是( )A B C .2 D43.若双曲线22221(0,0)x y a b a b-=>>上不存在点P 使得右焦点F 关于直线OP (O 为双曲线的中心)的对称点在y 轴上,则该双曲线离心率的取值范围为( )A .)+∞B .)+∞C .D .44.已知以椭圆)0(12222>>=+b a by a x 的右焦点F 为圆心,a 为半径的圆与椭圆的右准线交于不同的两点,则该椭圆的离心率的取值范围是( )A B C D 45的左准线l ,左.右焦点分别为F 1.F 2,抛物线C 2的准线为l ,焦点是F 2,C 1与C 2的一个交点为P ,则|PF |的值等于( )A B C .4 D .846.已知F 1、F 2是双曲线 12222=-by a x (a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是 ( ) A .4+32 B.3+1 C.3—1 D.213+47.已知双曲线)0,0(12222>>=-b a by a x 的左顶点、右焦点分别为A 、F ,点B (0,b )-=+,则该双曲线离心率e 的值为( )A .213+ B C .215- D .248.直线l 是双曲线22221(0,0)x y a b a b-=>>的右准线,以原点O 为圆心且过双曲线焦点的圆被直线l 分成弧长为2:1的两段,则双曲线的离心率为( )A .B .C .2D . 49.从双曲线)0,0(12222>>=-b a by a x 的左焦点F 引圆222a y x =+的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则MT MO -与a b -的大小关系为 A .a b MT MO ->- B .a b MT MO -=- C .a b MT MO -<-D .不确定.50.点P 为双曲线1C :()0,012222>>=-b a by a x 和圆2C :2222b a y x +=+的一个交点,且12212F PF F PF ∠=∠,其中21,F F 为双曲线1C 的两个焦点,则双曲线1C 的离心率为( )A .3B .21+C .13+D .251.设圆锥曲线r 的两个焦点分别为12F F ,,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于 A .1322或B .23或2C .12或2 D .2332或 52.已知点P 为双曲线22221(00)x y a b a b -=>>,右支上一点,12F F ,分别为双曲线的左、右交点,I 为22PF F △的内心,若1212IPF IPF IF F S S S λ=+△△△成立,则λ的值为( )AB C .b a D .ab二、填空题:53.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点.若22||||12F A F B +=,则||AB = .54.中心在原点,焦点在x 轴上,且长轴长为4,离心率为12的椭圆的方程为 . 55.9.已知双曲线221y x a-=的一条渐近线与直线230x y -+=垂直,则a = .56.已知P 为椭圆22194x y +=上的点,12F F ,是椭圆的两个焦点,且1260F PF ∠=o ,则12F PF △ 的面积是 . 57.已知双曲线22221(00)x y a b a b -=>>,和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 . 58.若双曲线22221(00)x y a b a b -=>>,的一条渐近线与椭圆22143x y +=的焦点在x 轴上的射影恰为该椭圆的焦点,则双曲线的离心率为 .59.已知双曲线22221(00)x y a b a b -=>>,的左、右焦点分别为12F F ,,过点2F 做与x 轴垂直的直线与双曲线一个焦点P ,且1230PF F ∠=o ,则双曲线的渐近线方程为 .60.已知12F F 、分别为椭圆221259x y +=的左、右焦点,P 为椭圆上一点,Q 是y 轴上的一个动点,若12||||4PF PF -=u u u r u u u u r ,则12()PQ PF PF ⋅-=u u u r u u u r u u u u r.61.已知圆22:68210C x y x y ++++=,抛物线28y x =的准线为l ,设抛物线上任意一点P 到直线l 的距离为m ,则||m PC +的最小值为 .62.设双曲线221916x y -=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则AFB △的面积为 . 63.已知直线1l :4360x y -+=和直线2:0l x =,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是 .三、解答题:64.已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点为12F F ,,点P 在椭圆C 上,且12PF PF ⊥,14||3PF =,214||3PF =.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 过点M (21)-,,交椭圆C 于A B ,两点,且点M 恰是线段AB 的中点,求直线l 的方程. 65.已知抛物线2:2(0)C y px p =>过点(12)A -,.(Ⅰ)求抛物线C 的方程,并求其准线方程;(Ⅱ)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与L 的距离等?若存在,求直线l 的方程;若不存在,请说明理由. 66.已知抛物线22(0)x py p =>.(Ⅰ)已知P 点为抛物线上的动点,点P 在x 轴上的射影是点M ,点A 的坐标是(42)-,,且||||PA PM +的最小值是4.(ⅰ)求抛物线的方程;(ⅱ)设抛物线的准线与y 轴的交点为点E ,过点E 作抛物线的切线,求此切线方程;(Ⅱ)设过抛物线焦点F 的动直线l 交抛物线于A B ,两点,连接C D ,两点,求证:以CD 为直径的圆过焦点F .67.如图所示,已知椭圆2222:1(0)x y C a b a b+=>>,12A A ,分别为椭圆C 的左、右顶点.(Ⅰ)设12F F ,分别为椭圆C 的左、右焦点,证明:当且仅当椭圆C 上的点P 在椭圆的左、右顶点时,1||PF 取得最小值与最大值;(Ⅱ)若椭圆C 上的点到焦点距离的最大值为3,最小值为1,求椭圆C 的标准方程;(Ⅲ)若直线l :y kx m =+与(Ⅱ)中所述椭圆C 相交于A B ,两点(A B ,不是左、右顶点),且满足22AA BA ⊥,证明:直线l 过定点,并求出该定点的坐标.68.已知椭圆2222:1(0)x y C a b a b+=>>的离心率e =12的交点F 恰好是该椭圆的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知圆222:3O x y +=的切线l 与椭圆相交于A B ,两点,那么以AB 为直径的圆是否经过定点?如果时,求出定点的坐标;如果不是,请说明理由.。
圆锥曲线综合试题[全部大题目]附答案解析.docx
1.平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦•设过抛物线2X =2Py外一点P(x°,y°)的任一直线与抛物线的两个交点为C、D,与抛物线切点弦AB的交点为Q。
(1)求证: 抛物线切点弦的方程为χ0χ= p(y+ y0);(2)求证:1 1 2. PC IPDl IPQl2.已知定点F( 1,0),动点P在y轴上运动,过点P作PM交X轴于点M并延长MP到点N 且PM PF =0,∣ PM UPN |.(1)动点N的轨迹方程;(2)线I与动点N的轨迹交于A,B两点,若OAOB- -4,且4 .. 6 AB 4 30 ,求直线I的斜率k的取值范围.2 2 2 23.如图,椭圆C V的左右顶点分别为A B P为双曲线C2「「1右支上(X轴上方)一点,连AP交G于C,连PB并延长交G于。
,且厶ACD与^ PCD的面积相等,求直线PD的斜率及直线CD的倾斜角.4.已知点M (-2,0), N (2,0),动点P满足条件| PM | - | PN卜2、、2 .记动点P的轨迹为(I)求W的方程;O是坐标原点,求(∏)若代B是W上的不同两点,2 25. 已知曲线α的方程为:kx +(4- k)y =k+1,(k ∈R)(I)若曲线C是椭圆,求k的取值范围;(∏)若曲线C是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程;(川)满足(∏)的双曲线上是否存在两点P, C关于直线I : y=x-1对称,若存在,求出过P, C的直线方程;若不存在,说明理由。
6. 如图(21)图,M(-2 , 0)和N(2, 0)是平面上的两点,动点P满足:PM + PN = 6.(1)求点P的轨迹方程;2⑵若PM -PN = ------------------------ ,求点P的坐标.1 —cosNMPN2 27. 已知F为椭圆y2 =1 (a b 0)的右焦点,直线I过点F且与双曲线a b2 2X V〒二1的两条渐进线∣1,∣2分别交于点M , N ,与椭圆交于点A, B.a b(I )若.MON ,双曲线的焦距为4。
word完整版圆锥曲线综合试题全部大题目含答案推荐文档
1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦•设过抛物线2x 2py外一点P(X o,y°)的任一直线与抛物线的两个交点为C、D,与抛物线切点弦AB的交点为Q。
(1 )求证:抛物线切点弦的方程为x0x p(y+ y0);(2)求证:1 12 PC |PD | |PQ |2. 已知定点F( 1, 0),动点P在y轴上运动,过点P作PM交x轴于点M,并延长MP到点N 且PM PF 0,| PM | | PN |.(1)动点N的轨迹方程;(2)线I与动点N的轨迹交于A, B两点,若OA OB 4,且4,6 | AB | 4 30,求直线I的斜率k的取值范围.3.如图,椭圆G :1的左右顶点分别为A、B, P为双曲线C2 :1右支上(x轴上方)一点,连AP交C1于C,连PB并延长交C1于。
,且厶ACD与厶PCD的面积相等,求直线PD的斜率及直线CD的倾斜角.4.已知点M ( 2,0), N(2,0),动点P满足条件| PM | | PN | 2-2.记动点P的轨迹为W.(I)求W的方程;uuu uun(n)若 AB 是W 上的不同两点,O 是坐标原点,求 OA OB 的最小值.2 25.已知曲线 C 的方程为:kx 2+(4-k)y 2=k+1,(k € R)(I)若曲线C 是椭圆,求k 的取值范围;(n)若曲线c 是双曲线,且有一条渐近线的倾斜角是 60°,求此双曲线的方程; (川)满足(n)的双曲线上是否存在两点 P , Q 关于直线I : y=x-1对称,若存在,求出过 P,Q 的直线方程;若不存在,说明理由。
6.如图(21)图,M (-2, 0)和N (2, 0)是平面上的两点, 动点P 满足:PM PN 6.(1)求点P 的轨迹方程;2 ⑵若PM -PN l = --------------------- ,求点P 的坐标.1 cos MPN的两条渐进线|仆12分别交于点M,N ,与椭圆交于点 A,B . ⑴若 MON ―,双曲线的焦距为3UUUU UULU(II )若OM MN 0 ( O 为坐标原点)2 x7.已知F 为椭圆—a 2b 2 1(a b0)的右焦点,直线I 过点F 且与双曲线b 24。
圆锥曲线综合试题(全部大题目)含答案
1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB的交点为Q 。
(1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112||||PC PD PQ +=.2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==⋅ (1)动点N 的轨迹方程;(2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=⋅AB OB OA 且,求直线l 的斜率k 的取值范围.3. 如图,椭圆134:221=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积相等,求直线PD 的斜率及直线CD 的倾斜角.4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W .(Ⅰ)求W 的方程;(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围;(Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。
6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(1)求点P 的轨迹方程; (2)若2·1cos PM PN MPN-∠=,求点P 的坐标.7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线1222=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3MON π∠=,双曲线的焦距为4。
圆锥曲线综合测试题附答案
圆锥曲线综合测试题班级________ 姓名________ 学号_______成绩________一、选择题(本题每小题5分,共60分)1.双曲线19422=-y x 的渐近线方程是( )A .x y 23±= B .x y 32±= C .x y 49±= D .x y 94±= 2.已知F 是抛物线241x y =的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是( )A .122-=y xB .16122-=y x C .212-=y x D .222-=y x3.已知A(-1,0),B(1,0),点C(x,y)12=,则=+BC AC ( )A .6B .4C .2D .不能确定4.抛物线px y 22=与直线04=-+y ax 交于A 、B 两点,其中点A 的坐标为(1,2),设抛物线的焦点为F ,则|FA|+|FB|等于( )A .7 B .53 C .6 D .5 5.双曲线)0,(12222>=-b a b y a x 的左、右焦点分别为F 1、F 2,过焦点F 2且垂直于x 轴的弦为AB ,若︒=∠901B AF ,则双曲线的离心率为 ( )A .)22(21- B .12- C .12+D .)22(21+6.若椭圆)0(122>>=+b a by ax 和双曲线)0,(122>=-n m ny mx 有相同的焦点F 1、F 2,P 是两曲线的交点,则21PF PF ⋅的值是( ) A .n b -B .m a -C . n b -D . m a -7.直线l 是双曲线)0,0(12222>>=-b a by a x 的右准线,以原点为圆心且过双曲线的顶点的圆,被直线l 分成弧长为2 : 1的两段圆弧,则该双曲线的离心率是 ( )A .2B .2C .26D .58.直线143x y+=与椭圆221169x y +=相交于A 、B 两点,该椭圆上点P ,使得△APB 的面积等于3,这样的点P 共有( )A .1个B .2个C .3个D .4个9.曲线)1(42≤--=x x y 的长度是 ( )A .34πB .32πC .38πD .π3 10.方程22)1()1(-+-=+y x y x 所表示的曲线是( )A . 双曲线B . 抛物线C . 椭圆D .不能确定11.已知曲线ax y =2与其关于点(1,1)对称的曲线有两个不同的交点A 和B ,如果过这两个交点的直线的倾斜角是︒45,则实数a 的值是 ( )A .1B .23C .2D .312.给出下列结论,其中正确的是 ( )A .渐近线方程为()0,0>>±=b a x a by 的双曲线的标准方程一定是12222=-by a xB .抛物线221x y -=的准线方程是21=x C .等轴双曲线的离心率是2 D .椭圆()0,012222>>=+n m ny m x 的焦点坐标是()(),,0,222221n mF n m F ---二、填空题(本题每小题4分,共16分) 13.如果正△ABC 中,D ∈AB,E ∈AC,向量12DE BC =,那么以B,C 为焦点且过点D,E 的双曲线的离心率是 .14.已知椭圆()x m y n x p y qm n p q R 22221+=-∈+与双曲线,,,有共同的焦点F 1、F 2,P 是椭圆和双曲线的一个交点,则12PF PF ⋅=.15.有一系列椭圆,满足条件:①中心在原点;②以直线x=2为准线;③离心率)()(*21N n e nn ∈=,则所有这些椭圆的长轴长之和为 .16.沿向量a =(m, n)平移椭圆1522=+y x ,使它的左准线为平移后的右准线,且新椭圆中心在直线2x -y+6=0上, 则m= 、n= .三、解答题(本大题共6小题,共74分。
圆锥曲线综合测试题(含答案)
圆锥曲线综合测试题一、选择题(每题5分)1、双曲线x 2-5y 2=0的焦距为( ) A.6 B.26 C.23 D.432、顶点在原点,且过点(-4,4)的抛物线的标准方程是( )A.y 2=-4xB.x 2=4yC. y 2=-4x 或x 2=4yD.y 2=4x 或x 2=-4y3、若椭圆19222=+m y x (m>0)的一个焦点坐标为(1,0),则m 的值为( ) A.5 B.3 C.23 D.224、已知方程11122=--+ky k x 表示双曲线,则k 的取值范围是( ) A.-1<k<1 B.k>0 C.k ≥0 D.k>1或k<-15、已知双曲线15222=-y a x 的右焦点为(3,0)则该双曲线的离心率为( ) A.14143 B.423 C.23 D.34 6、如果点P (2,y 0)在以点F 为焦点的抛物线y 2=4x 上,则PF=( )A.1B.2C.3D.47、双曲线12222=-b y a x 与椭圆12222=+by m x (a >0,m>b>0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形8、已知椭圆E 的中心在坐标原点,离心率为21,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则AB=( )A.3B.6C.9D.129、已知双曲线12222=-by a x (a >0,b>0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点,若双曲线的离心率为2,∆AOB 的面积为3,则p=( )A.1B.23 C.2 D.3 10、已知F 1,F 2为椭圆191622=+y x 的两个焦点,过点F 2的直线交椭圆与A ,B 两点,在∆A F 1B 中,若有两边之和等于10,则第三边的长度为( )A.6B.5C.4D.311、已知动圆P 过定点A (-3,0),并且与定圆B :(x -3)2+y 2=64内切,则动圆的圆心P 的轨迹是( )A.线段B.直线C.圆D.椭圆12、若直线mx +ny=4与圆O: x 2+y 2=4没有交点,则过点P(m ,n)的直线与椭圆14922=+y x 的交点个数为( )A.至多一个B.2C.1D.0二、填空题(每题5分)13、抛物线x 2=4y 上一点P 到焦点的距离为3,则点P 到y 轴的距离为 。
圆锥曲线综合测试题汇编
1 2圆锥曲线综合测试题一、选择题1. 如果 x2ky 22 表示焦点在 y 轴上的椭圆,那么实数 k 的取值范围是()A . 0,B . 0,2C . 1,D . 0,1x2y22. 以椭圆1的顶点为顶点,离心率为 2 的双曲线方程()2516x2y2x 2y2x2y2x2y2A .1B. 1C.1 或1 D. 以上都不对16 48927 16 489 273. 过双曲线的一个焦点离心率 e 等于() F 2 作垂直于实轴的弦 PQ , F 1 是另一焦点,若∠ PF 1Q,则双曲线的2A . 2 1B . 2C . 2 1D . 224.F 1 , F 2 x2y2是椭圆1 的两个焦点, A 为椭圆上一点,且∠ AF 1 F 245 0,则 Δ AF F 的 9 7面积为()777 5A . 7B .C .D .4 2 25. 以坐标轴为对称轴,以原点为顶点且过圆x2y22 x 6 y 9 0 的圆心的抛物线的方程()A . y3x 2或 y3x2B. y3x2C. y9 x 或 y3x 2D. y3x 2 或 y29 x6. 设 AB 为过抛物线y22 px( p 0) 的焦点的弦,则 AB 的最小值为( )A .pB . pC .2 p 2D .无法确定7. 若抛物线y 2x 上一点 P 到准线的距离等于它到顶点的距离,则点P 的坐标为()1 2 A . ( ,) 44 12 B . ( ,) 841 2 C . ( , )4 41 2 D . ( , )8 4x2y28. 椭圆1 上一点 P 与椭圆的两个焦点F 1、 F 2 的连线互相垂直,则△PF 1F 2 的面积为4924A . 20B . 22C . 28D . 249. 若点 A 的坐标为 (3, 2) ,F 是抛物线 y 2取得最小值的M 的坐标为()2 x 的焦点, 点 M 在抛物线上移动时, 使 MF MA22 2 1A . 0,0B . 1 ,12C . 1, 2D . 2,2x210. 与椭圆4 y21 共焦点且过点Q(2,1)的双曲线方程是()A .x y21 B . xy21x 2y2C. 1D.x2y 12 43 3211. 若直线y kx 2 与双曲线 x 2y26 的右支交于不同的两点,那么 k 的取值范围是()A .(15 , 3 15 )B .( 0,315 ) C .(315,0 ) D .(315 , 1 )312.抛物线 y 2x 2上两点 A( x 1 , y 1 ) 、 B( x 2 , y 2 ) 关于直线 y x m 对称,且 x 1 x 2 ,则2m 等于( ) 35A .B . 2C .2 2D . 3二、填空题1. 椭圆22xyk 89 1 的离心率为 1 2,则 k 的值为。
(完整版)圆锥曲线大题综合测试(含详细答案)
圆锥曲线1.设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF F A =u u u r u u u r(其中O为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求⋅的最大值.2 . 已知椭圆E :()222210x y a b a b +=>>的一个焦点为()1F ,而且过点12H ⎫⎪⎭.(Ⅰ)求椭圆E 的方程;(Ⅱ)设椭圆E 的上下顶点分别为12,A A ,P 是椭圆上异于12,A A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.3、已知圆O:222=+y x 交x 轴于A,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F,若P 是圆O上一点,连结PF,过原点O 作直线PF 的垂线交直线x=-2于点Q.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切; (Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.4设)0(1),(),,(22222211>>=+b a b x x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点.(1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5 、直线l :y = mx + 1,双曲线C :3x 2 - y 2 = 1,问是否存在m 的值,使l 与C 相交于A , B 两点,且以AB 为直径的圆过原点6 已知双曲线C :22221(0,0)x y a b a b-=>>的两个焦点为F 1(-2,0),F 2(2,0),点P 在曲线C 上。
圆锥曲线综合练习题及答案.doc
圆锥曲线综合练习题及答案.椭圆的焦点是。
()a.5b.3 c.4d82 .已知双曲线的偏心率为2,焦点为(-椭圆的焦点是。
()a.5b.3c.4d82 .已知双曲线的偏心率为2,焦点为(:4x-3y 6=0,直线l2: x=-1,抛物线y2上的移动点p=4x到直线l1和直线l2的距离之和的最小值为()a.2b.3c.d.9 .已知直线l1:4x-3y 6=0,直线l2:X=-1,从抛物线y2=4x上的移动点p到直线l1和直线l2的距离之和的最小值是()10。
抛物线y2=4x的焦点是f,准线是l,穿过f并具有斜率的直线与x轴上方的抛物线部分在点a处相交,AK⊥l,垂直脚是k,那么△AKF的面积是()a.4b.3c.4d.8ii(每项6分,共24分)7。
椭圆的准线方程是_ _ _ _ _ _。
8.双曲线渐近线方程是_ _ _ _ _ _。
9.如果椭圆(0)的准线通过该点,则椭圆的偏心率为_ _ _ _ _ _。
10.当已知抛物线拱的顶点距离水面2米时,测得的水面宽度为8米。
当水面上升米时,水面的宽度为_ _ _ _ _ _。
3.回答问题11。
已知椭圆的两个焦点分别是偏心率。
(15点)(1)求椭圆圆方程。
(2)不平行于坐标轴的直线与椭圆在两个不同的点相交,线段中点的横坐标是直线斜率的数值范围。
12.设置双曲线c: 双曲线c的偏心率e的取值范围在两个不同的点a、b(I)上:(二)让直线L和Y轴的交点为P,求出a13的值。
已知椭圆:两个焦点分别是,并且具有斜率k的直线穿过右焦点并且在点a 和b处与椭圆相交,并且与y轴的交点被设置为p,并且线段的中点正好是b。
(25点)(1)如果找到了椭圆C的偏心值范围。
(2)如果从A和B到右准线的距离之和为,则得到椭圆C的方程。
14.(201-x=-1,抛物线y2=4x,从最后一个移动点p到直线l1和直线l2的距离之和的最小值是()a.2b.3c.d.9。
已知的直线l1: 4x-3y 6=0,直线l2:X=-1,从抛物线y2=4x上的移动点p到直线l1和直线l2的距离之和的最小值是()10。
完整版)圆锥曲线综合练习题(有答案)
完整版)圆锥曲线综合练习题(有答案)圆锥曲线综合练1.已知椭圆 $x^2/a^2+y^2/b^2=1$ 的长轴在 $y$ 轴上,焦距为 4,则 $m$ 等于()A。
4B。
5C。
7D。
82.直线 $x-2y+2=0$ 经过椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的一个焦点和一个顶点,则该椭圆的离心率为frac{\sqrt{5}}{2}3.设双曲线 $x^2/a^2-y^2/b^2=1(a>0)$ 的渐近线方程为$3x\pm 2y=0$,则 $a$ 的值为24.若 $m$ 是 2 和 8 的等比中项,则圆锥曲线$x^2/a^2+y^2/b^2=1$ 的离心率是frac{\sqrt{5}}{2}5.已知双曲线 $x^2/a^2-y^2/b^2=1(a>b>0)$,$N$ 两点,$O$ 为坐标原点,过其右焦点且垂直于实轴的直线与双曲线交于 $M$ 点。
若 $OM\perp ON$,则双曲线的离心率为frac{\sqrt{5}+1}{2}6.已知点$F_1,F_2$ 是椭圆$x^2/2+y^2/2=1$ 的两个焦点,点 $P$ 是该椭圆上的一个动点,则 $|PF_1+PF_2|$ 的最小值是sqrt{2}7.双曲线 $x^2/a^2-y^2/b^2=1$ 上的点到一个焦点的距离为 12,则到另一个焦点的距离为2\sqrt{5}8.$P$ 为双曲线 $x^2/a^2-y^2/b^2=1$ 的右支上一点,$M$,则 $|PM|-|PN|$ 分别是圆 $(x+5)^2+y^2=4$ 和 $(x-5)^2+y^2=1$ 上的点,的最大值为99.已知点 $P(8,a)$ 在抛物线 $y^2=4px$ 上,且 $P$ 到焦点的距离为 10,则焦点到准线的距离为210.在正三角形 $ABC$ 中,$D\in AB$,$E\in AC$,$\overrightarrow{DE}=\overrightarrow{BC}$,则以 $B$,$C$ 为焦点,且过 $D$,$E$ 的双曲线离心率为frac{3+\sqrt{5}}{2}11.两个正数 $a$,$b$ 的等差中项是 $5$,一个等比中项是 $25$,且 $a>b$,则抛物线 $y^2=-x$ 的焦点坐标是left(-\frac{5\sqrt{21}}{21},0\right)12.已知 $A_1$,$A_2$ 分别为椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的左右顶点,椭圆 $C$ 上异于$A_1$,$A_2$ 的点 $P$ 恒满足 $k\cdot PA_1\cdot k\cdotPA_2=-1$,则椭圆 $C$ 的离心率为frac{3}{5}13.已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左、右焦点分别为 $F_1,F_2$,点 $A$ 在第一象限内且在椭圆上,点 $B$ 也在椭圆上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线综合测试题一、选择题1.如果222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .()+∞,0B .()2,0C .()+∞,1D .()1,02.以椭圆1162522=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A .1481622=-y x B .127922=-y x C .1481622=-y x 或127922=-y x D .以上都不对 3.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠21π=Q PF ,则双曲线的离心率e 等于( )A .12-B .2C .12+D .22+4.21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则Δ12AF F 的面积为( )A .7B .47 C .27D .2575.以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的方程()A .23x y =或23x y -= B .23x y = C .x y 92-=或23x y =D .23x y -=或x y 92= 6.设AB 为过抛物线)0(22>=p px y 的焦点的弦,则AB 的最小值为( )A .2pB .pC .p 2D .无法确定 7.若抛物线x y =2上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( )A .1(,)44±B .1(,84±C .1(,44D .1(,848.椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直,则△21F PF 的面积为 A .20 B .22 C .28 D .249.若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为( )A .()0,0B .⎪⎭⎫⎝⎛1,21 C .()2,1 D .()2,2 10.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A .1222=-y x B .1422=-y x C .13322=-y x D .1222=-y x 11.若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( ) A .(315,315-) B .(315,0) C .(0,315-) D .(1,315--) 12.抛物线22x y =上两点),(11y x A 、),(22y x B 关于直线m x y +=对称,且2121-=⋅x x ,则m 等于( ) A .23 B .2 C .25D .3二、填空题1.椭圆22189x y k +=+的离心率为12,则k 的值为______________。
2.双曲线2288kx ky -=的一个焦点为(0,3),则k 的值为______________。
3.若直线2=-y x 与抛物线x y 42=交于A 、B 两点,则线段AB 的中点坐标是______。
4.对于抛物线24y x =上任意一点Q ,点(,0)P a 都满足PQ a ≥,则a 的取值范围是____。
5.若双曲线1422=-my x 的渐近线方程为x y 23±=,则双曲线的焦点坐标是_________. 6.设AB 是椭圆22221x y a b+=的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点,则AB OM k k ⋅=____________。
7.椭圆14922=+y x 的焦点1F 、2F ,点P 为其上的动点,当∠1F P 2F 为钝角时,点P 横坐标的取值范围是。
8.双曲线221tx y -=的一条渐近线与直线210x y ++=垂直,则这双曲线的离心率为___。
9.若直线2y kx =-与抛物线28y x =交于A 、B 两点,若线段AB 的中点的横坐标是2,则AB =______。
10.若直线1y kx =-与双曲线224x y -=始终有公共点,则k 取值范围是。
11.已知(0,4),(3,2)A B -,抛物线28y x =上的点到直线AB 的最段距离为__________。
12.已知定点(A -,F 是椭圆2211612x y +=的右焦点,则过椭圆上一点M 使2AM MF +取得最小值时点M 的坐标为 。
三、解答题1.当00180α从到变化时,曲线22cos 1x y α+=怎样变化?2.设12,F F 是双曲线116922=-y x 的两个焦点,点P 在双曲线上,且01260F PF ∠=,求△12F PF 的面积。
3.双曲线与椭圆1362722=+y x 有相同焦点,且经过点4),求其方程。
4.已知椭圆)0(12222>>=+b a by a x ,A 、B 是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x .证明:.22022ab a x a b a -<<--5.已知椭圆22143x y +=,试确定m 的值,使得在此椭圆上存在不同两点关于直线4y x m =+对称。
6.已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15,求抛物线的方程。
圆锥曲线综合测试题解答一、选择题1.D 焦点在y 轴上,则2221,20122y x k k k +=>⇒<< 2.C 当顶点为(4,0)±时,224,8,11648x y a c b ===-=; 当顶点为(0,3)±时,223,6,1927y x a c b ===-= 3.C Δ12PF F是等腰直角三角形,21212,PF F F c PF ===122,22,1c PF PF a c a e a -=-==== 4.C 1212216,6F F AF AF AF AF =+==-222022112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+2211117(6)48,,2AF AF AF AF -=-+=177222S =⨯⨯=5.D 圆心为(1,3)-,设22112,,63x py p x y ==-=-; 设2292,,92y px p y x === 6.C 垂直于对称轴的通径时最短,即当,,2px y p ==±min 2AB p =7.B 点P 到准线的距离即点P 到焦点的距离,得PO PF =,过点P 所作的高也是中线18x P ∴=,代入到x y =2得4y P =±1(,)84P ∴±8.D 222212121214,()196,(2)100PF PF PF PF PF PF c +=+=+==,相减得12121296,242PF PF S PF PF ⋅==⋅= 9.D MF 可以看做是点M 到准线的距离,当点M 运动到和点A 一样高时,MA MF +取得最小值,即2y M =,代入x y 22=得2x M =10.A 241c c =-=,且焦点在x 轴上,可设双曲线方程为222213x y a a-=-过点(2,1)Q 得222224112,132x a y a a -=⇒=-=- 11.D 2222226,(2)6,(1)41002x y x kx k x kx y kx ⎧-=-+=---=⎨=+⎩有两个不同的正根则221221224024040,11001k k x x k x x k ⎧∆=->⎪⎪⎪+=>⎨-⎪-⎪=>⎪-⎩得1k <<- 12.A 22212121212111,2(),2AB y y k y y x x x x x x -==--=-+=--而得,且212122x x y y++(,)在直线y x m =+上,即21212121,222y y x x m y y x x m ++=++=++ 222212121212132()2,2[()2]2,23,2x x x x m x x x x x x m m m +=+++-=++==二、填空题1.54,4-或 当89k +>时,222891,484c k e k a k +-====+; 当89k +<时,2229815,944c k e k a --====- 2.1- 焦点在y 轴上,则22811,()9,181y x k k k k k-=-+-==--- 3.(4,2)221212124,840,8,442y x x x x x y y x x y x ⎧=-+=+=+=+-=⎨=-⎩中点坐标为1212(,)(4,2)22x x y y ++= 4.(],2-∞ 设2(,)4t Q t ,由PQ a ≥得222222(),(168)0,4t a t a t t a -+≥+-≥221680,816t a t a +-≥≥-恒成立,则8160,2a a -≤≤5.(渐近线方程为2y x =±,得3,m c ==x 轴上 6. 22b a - 设1122(,),(,)A x y B x y ,则中点1212(,)22x x y y M ++,得2121,AB y y k x x -=-2121OMy y k x x +=+,22212221AB OM y y k k x x -⋅=-,22222211,b x a y a b += 22222222,b x a y a b +=得2222222121()()0,b x x a y y -+-=即2222122221y y b x x a-=-- 7.(,55-可以证明12,,PF a ex PF a ex =+=-且2221212PF PF F F +<而3,2,3a b c e ====,则22222222()()(2),2220,1a ex a ex c a e x e x ++-<+<< 22111,,x x e e e<-<<即e <<8y =,其中一条与与直线210x y ++=11,24t ==221,2,4x y a c e -==== 9.222122848,(48)40,42y x k k x k x x x k y kx ⎧=+-++=+==⎨=-⎩得1,2k =-或,当1k =-时,2440x x -+=有两个相等的实数根,不合题意 当2k =时,12AB x =-===10.1,±±222224,(1)4,(1)2501x y x kx k x kx y kx ⎧-=--=-+-=⎨=-⎩ 当210,1k k -==±时,显然符合条件;当210k -≠时,则220160,k k ∆=-== 11.5直线AB 为240x y --=,设抛物线28y x =上的点2(,)P t t22d===≥=12.M∴解:显然椭圆2211612x y+=的14,2,2a c e===,记点M到右准线的距离为MN 则1,22MFe MN MFMN===,即2AM MF AM MN+=+当,,A M N同时在垂直于右准线的一条直线上时,2AM MF+取得最小值,此时y yM A==2211612x y+=得xM=±而点M在第一象限,M∴三、解答题1.解:当00α=时,0cos01=,曲线221x y+=为一个单位圆;当00090α<<时,0cos1α<<,曲线22111cosy xα+=为焦点在y轴上的椭圆;当090α=时,0cos900=,曲线21x=为两条平行的垂直于x轴的直线;当0090180α<<时,1cos0α-<<,曲线22111cosx yα-=-为焦点在x轴上的双曲线;当0180α=时,0cos1801=-,曲线221x y-=为焦点在x轴上的等轴双曲线。