图像空间域处理的综合实验

合集下载

2015秋 数字图像处理实验二 综合实验

2015秋  数字图像处理实验二 综合实验


//细胞核和核仁的面积统计
//统计结果存入数组 parameter[index-1]=(float)area_nucleolus/(area_cell+area_nucleolus); //把当前测量的细胞,细胞核与核仁置不同的标记输出 //测量结果存文件,以分析测量数据
菜单中的消息响应函数
预处理
为何需要预处理?
直接分割的效果
选择何种预处理方法?
中值、均值、形态学开闭运算的效果对比 分析预处理的目的,有针对性的选择合适的方法
预处理
中值滤波
原图
灰值闭运算
分割
分割方法的选择 全局阈值 大津阈值 水域分割 …
中值滤波后分割
分割后的效果 直接分割 噪声、边缘毛刺 滤波后分割
//统计该连通区域的大小
//连通区域太小,滤除,此处大小可根据实际应用自行设定 *(segment.m_pImgData+k*lineByte+l)=255; //滤除 //其余的连通区域被认定为目标,给定编号 *(segment.m_pImgData+k*lineByte+l)=index;
输出测量结果
细胞图像分割测量的方案步骤
数学形态学
腐蚀:集合 A 被集合 B 腐蚀,表示为 A B ,数学形式为
A B = {x : B x A}
膨胀: A 被 B 膨胀表示为 A B , 其定义为:
A B [AC
(-B )]C
A B
A
A B B
腐蚀类似于收缩
利用圆盘膨胀
实验一:现场演示,检查,提问 实验二:现场演示,检查,提问 实验三:现场演示,检查,提问,提交报告和代码 实验成绩占最终成绩的30%。

数字图像处理:空间域图像处理

数字图像处理:空间域图像处理

数字图像处理:空间域图像处理数字图像处理:空间域图像处理注:别忘了图⽚的路径改成⾃⼰的⼀、实验⽬的理解和掌握图像的线性变换和直⽅图均衡化的原理和应⽤;了解平滑和锐化处理的算法和⽤途,学习使⽤平滑滤波器和边缘算⼦对图像进⾏平滑和锐化操作。

⼆、实验内容1.图像直⽅图(1)读⼊⼀幅图像,计算并绘制图像的直⽅图。

(2)读⼊⼀幅低对⽐度图像,对图像进⾏直⽅图均衡化处理。

2.编写程序,实现以下功能:(1)读⼊⼀幅图像,利⽤’imnoise’函数,添加⾼斯噪声;(2)通过100次相加求平均的⽅法去除噪声。

3.图像的平滑和锐化滤波(1)读⼊⼀幅图像,分别采⽤均值和⾼斯滤波器对图像进⾏平滑处理。

(提⽰: 图像滤波⾸先使⽤fspecial()函数创建平滑或锐化滤波器,然后调⽤imfilter()函数实现相应的滤波操作)(2)分别采⽤’prewitt’和’sobel’边缘算⼦对图像做边缘增强处理。

实验结果图如下:代码如下:%1.1pic=imread('lena.jpg'); %读⼊图⽚'lena.jpg'figure('name','实验结果1');subplot(2,2,1);imshow(pic);title('原图1');A=imhist(pic); %取直⽅图subplot(2,2,3);bar(0:255,A); %形成256个等级的直⽅图title('灰度图像直⽅图');%1.2pic1=imread('lena1.jpg'); %读⼊图⽚'lena1.jpg'subplot(2,2,2);imshow(pic1);title('原图2');B=imhist(histeq(pic1)); %先进⾏均衡化,再取直⽅图subplot(2,2,4);bar(0:255,B); %形成256个等级的直⽅图title('灰度图像均衡直⽅图');%2.1figure('name','实验结果2');subplot(4,2,1);imshow(pic);title('原图');C=imnoise(pic,'gaussian',0,0.01); %添加均值为0,⽅差为0.01的⾼斯噪声subplot(4,2,3);imshow(C);title('添加均值为0,⽅差为0.01的⾼斯噪声');%2.2[m n]=size(pic) %获取⼤⼩D=zeros(m,n) %创建全0数组for i=0:99 %循环100次C=imnoise(pic,'gaussian',0,0.01); %随机加噪C1=im2double(C); %转成double型进⾏相加D=D+C1;endD=D/100;subplot(4,2,4);imshow(D);title('去除噪声后图像');%3.1E=imfilter(pic,fspecial('average',8)); %⽣成⼀个8x8的均值滤波器F=imfilter(pic,fspecial('gaussian')); %⽣成⾼斯滤波器subplot(4,2,5);imshow(E);title('均值平滑处理后图像');subplot(4,2,6);imshow(F);title('⾼斯滤波器平滑处理后图像');%3.2G=pic-uint8(imfilter(pic,fspecial('prewitt')));%⽣成’prewitt’模板,并对输⼊图像做边缘增强,再加上原图像subplot(4,2,7);imshow(G);title('’prewitt’对图像做边缘增强处理后图像');H=pic-uint8(imfilter(pic,fspecial('sobel')));%⽣成’sobel’模板,并对输⼊图像做边缘增强,再加上原图像subplot(4,2,8);imshow(H);title('’sobel’对图像做边缘增强处理后图像');。

数字图像处理空间域滤波实验报告

数字图像处理空间域滤波实验报告

一.实验目的1.掌握图像滤波的基本定义及目的;2.理解空间域滤波的基本原理及方法;3.掌握进行图像的空域滤波的方法。

4.掌握傅立叶变换及逆变换的基本原理方法;5.理解频域滤波的基本原理及方法;6.掌握进行图像的频域滤波的方法。

二.实验结果与分析1.平滑空间滤波:a)读出eight.tif这幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中;(提示:imnoise)b)对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示;(提示:fspecial、imfilter或filter2)c)使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像采用不同的填充方式,效果略有不同。

d)运用for循环,将加有椒盐噪声的图像进行10次,20次均值滤波,查看其特点,显示均值处理后的图像;(提示:利用fspecial 函数的’average’类型生成均值滤波器)e)对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。

(提示:medfilt2)中值滤波后的图像比均值滤波后的图像更加平滑。

f)自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像;滤波后图像变得平滑。

2.锐化空间滤波a)读出blurry_moon.tif这幅图像,采用3×3的拉普拉斯算子w =[ 1, 1, 1; 1 – 8 1; 1, 1, 1]对其进行滤波;观察原图与拉普拉斯掩模滤波后的图像,滤波后的图像不再那么平滑,使图像产生锐化效果。

b)编写函数w = genlaplacian(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]本函数见文件夹下genlaplacian.m文件。

图像增强(灰度图像-空间域)实验报告

图像增强(灰度图像-空间域)实验报告
2.(第二组模板用于锐化处理)
给予二阶微分的图像处理—拉普拉斯算子
0
-1
0
-1
4
-1
0
-1
0
以下两个模板是Sobel算子
-1 -2 -1
0 0 0
1 2 1
-1 0 1
-2ห้องสมุดไป่ตู้0 2
-1 0 1
二:使用Visual C++编写程序,利用对比度拉伸(Contrast stretching)和对数变换(Log transformation)的方法,对本目录下的图gray001.bmp进行操作,以凸显图像中的细节信息。根据图像的具体情况自行选择具体的变换函数,以达到最佳处理效果。
1.(第一组模板用于平滑处理)
3x3
1/9
1/9
1/9
1/9
1/9
1/9
1/9
1/9
1/9
1/16 2/16 1/16
2/16 4/16 2/16
1/16 2/16 1/16
5x5
1/25 1/25 1/25 1/25 1/25
1/25 1/25 1/25 1/25 1/25
1/25 1/25 1/25 1/25 1/25
通过以上实验可知平滑模板可以将原始图像平滑,但是在这三幅图例子中改变很小;锐化模板锐化效果比较明显。
二:对图像gra其中参数选择为第一个坐标点为(40,20)第二个坐标点为(130,150)
与原图像比较可以看到对比度有所增强,细节更突出。
对图像gray001.bmp进行对数变换得到如下图像:
其中对数变换参数选择为C=50,与原图像比较可知图像细节更加突出,特别是图像右下角部分。
通过此实验,掌握了空间域利用模版进行图像平滑和增强的基本方法;对图像平滑和增强的效果建立了直观的印象,加深对图像处理算法原理的理解;通过此次实验,还掌握图像灰度变换的一些基本方法。

中南大学数字图像处理实验报告

中南大学数字图像处理实验报告

实验报告实验名称图像变换及频域滤波课程名称数字图像处理姓名成绩班级学号日期地点实验一 图像变换及频域滤波一.实验目的(1)编写快速傅里叶变换算法程序,验证二维傅里叶变换的平移性和旋转不变。

; (2)实现图像频域滤波,加深对频域图像增强的理解。

二.实验环境及开发工具Windws XP 、MATALAB7.0、Visual C++、Visual Basic 三.实验方法1.验证二维傅里叶变换的平移性和旋转不变性;a .要验证证其平移特性,就先建立一个二维图象,然后再对其平移,通过观察两者的频谱图来观察平移特性,为了方便起见,我们选择特殊情况来分析,令u0=v0=N/2,使),()1(),(12y x f y x f y x +-= F(u-N/2,v-N/2),达到将原始F(U,V)四周频谱移到中心的效果,及达到频谱中心化。

b .验证旋转不变性可以通过将原始数组的通过移动45度,然后再比较旋转后与旋转前的频谱,得出频谱旋转不变性的结论。

具体步骤:1)产生如图1所示图像),(1y x f (128×128大小,暗处=0,亮处=255) 2)同屏显示原图1f 和)(FFT 1f 的幅度谱图。

3)若令),()1(),(12y x f y x f y x +-=,重复以上过程,比较二者幅度谱的异同。

4)将),(2y x f 顺时针旋转45度得到),(3y x f ,显示)(FFT 3f 的幅度谱,并与)(FFT 2f 的幅度谱进行比较。

图1实验图象f 1(x , y )2.实现图像频域滤波,加深对频域图像增强的理解。

频率域中进行增强是相当直观的,主要步骤有:1)计算需要增强的图象的傅立叶变换;2)将其与一个(根据需要设计的)转移的函数相乘; 3)再将结果反傅立叶变换以得到增强的图象. 为了直观的展示频域增强,可以通过下面任务来展现:对如图2所示的数字图像lena.img (256×256大小、256级灰度)进行频域的理想低通、高通滤波,同屏显示原图、幅度谱图和低通、高通滤波的结果图。

关于图形图像处理实训报告总结【九篇】

关于图形图像处理实训报告总结【九篇】

关于图形图像处理实训报告总结【九篇】实训报告总结:图形图像处理实训图形图像处理实训是计算机科学与技术专业的基础课程之一。

通过本次实训课程,我深入了解了图形图像处理的基本概念、方法和技术,并通过实际操作来提升了自己的实践能力。

下面是对本次实训的九篇报告总结:1. 实验一:图像读取与显示本次实验主要是学习如何读取和显示图像,以及使用Matplotlib库进行图像展示。

通过实验,我掌握了图像读取和显示的基本方法,并学会了基本的图像处理操作。

2. 实验二:图像的灰度变换实验二主要是学习图像的灰度变换,包括线性变换和非线性变换。

我学会了如何使用不同的灰度变换函数来调整图像的亮度和对比度,进一步提升图像的质量。

3. 实验三:图像的空间域滤波本次实验主要是学习图像的空间域滤波技术,包括均值滤波、中值滤波和高斯滤波等。

通过实验,我掌握了不同滤波方法的原理和实现方式,并学会了如何选择合适的滤波方法来降噪和模糊图像。

4. 实验四:图像的频域滤波实验四主要是学习图像的频域滤波技术,包括傅里叶变换和频域滤波等。

通过实验,我了解了傅里叶变换的原理和应用,并学会了如何使用频域滤波来实现图像的锐化和平滑。

5. 实验五:图像的形态学处理本次实验主要是学习图像的形态学处理技术,包括腐蚀、膨胀、开运算和闭运算等。

通过实验,我学会了如何使用形态学操作来改变图像的形状和结构,进一步改善图像的质量。

6. 实验六:图像的边缘检测实验六主要是学习图像的边缘检测技术,包括Sobel算子、Laplacian算子和Canny算子等。

通过实验,我了解了不同边缘检测方法的原理和应用,并学会了如何使用边缘检测来提取图像的轮廓和特征。

7. 实验七:图像的分割与聚类本次实验主要是学习图像的分割与聚类技术,包括阈值分割、区域生长和K均值聚类等。

通过实验,我掌握了不同分割与聚类方法的原理和应用,并学会了如何使用分割与聚类来识别和分析图像中的目标和区域。

8. 实验八:图像的特征提取与描述子实验八主要是学习图像的特征提取和描述子技术,包括尺度不变特征变换(SIFT)和方向梯度直方图(HOG)等。

matlab图像处理综合实验实验报告

matlab图像处理综合实验实验报告

《数字图像处理》实验报告学院:专业:班级:姓名:学号:实验一实验名称:图像增强实验目的:1.熟悉图像在Matlab下的读入,输出及显示;2.熟悉直方图均衡化;3.熟悉图像的线性指数等;4.熟悉图像的算术运算及几何变换.实验仪器:计算机,Matlab软件实验原理:图像增强是为了使受到噪声等污染图像在视觉感知或某种准则下尽量的恢复到原始图像的水平之外,还需要有目的性地加强图像中的某些信息而抑制另一些信息,以便更好地利用图像。

图像增强分频域处理和空间域处理,这里主要用空间域的方法进行增强。

空间域的增强主要有:灰度变换和图像的空间滤波。

图像的直方图实际上就是图像的各像素点强度概率密度分布图,是一幅图像所有像素集合的最基本统计规律,均衡化是指在每个灰度级上都有相同的像素点过程。

实验内容如下:I=imread('E:\cs.jpg');%读取图像subplot(2,2,1),imshow(I),title('源图像')J=rgb2gray(I)%灰度处理subplot(2,2,2),imshow(J) %输出图像title('灰度图像') %在原始图像中加标题subplot(2,2,3),imhist(J) %输出原图直方图title('原始图像直方图')0100200几何运算:I=imread('E:\cs.jpg');%subplot(1,2,1),imshow(I); theta = 30;K = imrotate(I,theta); subplot(1,2,2),imshow(K)对数运算:I=imread('E:\dog.jpg');subplot(2,2,1),imshow(I),title('源图像') J=rgb2gray(I)%灰度处理subplot(2,2,2),imshow(J),title('灰度变换后图像') J1=log(1+double(J));subplot(2,2,3),imshow(J1,[]),title('对数变换后') 指数运算:I=imread('E:\dog.jpg'); f=double(I); g=(2^2*(f-1))-1 f=uint8(f); g=uint8(g);subplot(1,2,1);subimage(f),title('变换一') subplot(1,2,2);subimage(g),title('变换二')加法运算:clc;clear all;close all; i = imread('E:\dog.jpg');j = imnoise(i,'gaussian',0,0.02);subplot(1,3,1),imshow(i),title('图一') subplot(1,3,2),imshow(j),title('图二') k=zeros(242,308); for p=1:100j = imnoise(i,'gaussian',0,0.02); j1 = im2double(j); k = k + j1; end k=k/100;subplot(1,3,3),imshow(k),title('图三')变换一200400600100200300400500变换二200400600100200300400500实验二实验名称:图像变换实验目的:(1)进一步对matlab的了解和使用;(2)学习如何在matlab中对数字图像的处理;实验原理:图像和其他信号一样,既能在空间域处理,也能在频率域处理。

matlab图像处理综合实验实验报告

matlab图像处理综合实验实验报告

《数字图像处理》实验报告学院:专业:班级:姓名:学号:实验一实验名称:图像增强实验目的:1.熟悉图像在Matlab下的读入,输出及显示;2.熟悉直方图均衡化;3.熟悉图像的线性指数等;4.熟悉图像的算术运算及几何变换.实验仪器:计算机,Matlab软件实验原理:图像增强是为了使受到噪声等污染图像在视觉感知或某种准则下尽量的恢复到原始图像的水平之外,还需要有目的性地加强图像中的某些信息而抑制另一些信息,以便更好地利用图像。

图像增强分频域处理和空间域处理,这里主要用空间域的方法进行增强。

空间域的增强主要有:灰度变换和图像的空间滤波。

图像的直方图实际上就是图像的各像素点强度概率密度分布图,是一幅图像所有像素集合的最基本统计规律,均衡化是指在每个灰度级上都有相同的像素点过程。

实验容如下:I=imread('E:\cs.jpg');%读取图像subplot(2,2,1),imshow(I),title('源图像')J=rgb2gray(I)%灰度处理subplot(2,2,2),imshow(J) %输出图像title('灰度图像') %在原始图像中加标题subplot(2,2,3),imhist(J) %输出原图直方图title('原始图像直方图')I=imread('E:\cs.jpg');%读取图像subplot(1,2,1),imshow(I);theta = 30;K = imrotate(I,theta);subplot(1,2,2),imshow(K)对数运算:I=imread('E:\dog.jpg');subplot(2,2,1),imshow(I),title('源图像')J=rgb2gray(I)%灰度处理subplot(2,2,2),imshow(J),title('灰度变换后图像') J1=log(1+double(J));subplot(2,2,3),imshow(J1,[]),title('对数变换后')指数运算:I=imread('E:\dog.jpg');f=double(I);g=(2^2*(f-1))-1f=uint8(f); g=uint8(g);subplot(1,2,1);subimage(f),title('变换一') subplot(1,2,2);subimage(g),title('变换二')加法运算:clc;clear all;close all; i = imread('E:\dog.jpg');j = imnoise(i,'gaussian',0,0.02);subplot(1,3,1),imshow(i),title('图一') subplot(1,3,2),imshow(j),title('图二') k=zeros(242,308); for p=1:100j = imnoise(i,'gaussian',0,0.02); j1 = im2double(j); k = k + j1; end k=k/100;subplot(1,3,3),imshow(k),title('图三')变换一200400600100200300400500变换二200400600100200300400500实验二实验名称:图像变换实验目的:(1)进一步对matlab的了解和使用;(2)学习如何在matlab中对数字图像的处理;实验原理:图像和其他信号一样,既能在空间域处理,也能在频率域处理。

实验三数字图像地空间域滤波

实验三数字图像地空间域滤波

实验三、四数字图像的空间域滤波和频域滤波1.实验目的1.掌握图像滤波的基本定义及目的。

2.理解空间域滤波的基本原理及方法。

3.掌握进行图像的空域滤波的方法。

4.掌握傅立叶变换及逆变换的基本原理方法。

5.理解频域滤波的基本原理及方法。

6.掌握进行图像的频域滤波的方法。

2.实验基本原理1.空间域增强空间域滤波是在图像空间中借助模板对图像进行领域操作,处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。

空域滤波基本上是让图像在频域空间内某个范围的分量受到抑制,同时保证其他分量不变,从而改变输出图像的频率分布,达到增强图像的目的。

空域滤波一般分为线性滤波和非线性滤波两类。

线性滤波器的设计常基于对傅立叶变换的分析,非线性空域滤波器则一般直接对领域进行操作。

各种空域滤波器根据功能主要分为平滑滤波器和锐化滤波器。

平滑可用低通来实现,平滑的目的可分为两类:一类是模糊,目的是在提取较大的目标前去除太小的细节或将目标内的小肩端连接起来;另一类是消除噪声。

锐化可用高通滤波来实现,锐化的目的是为了增强被模糊的细节。

结合这两种分类方法,可将空间滤波增强分为四类:线性平滑滤波器(低通)非线性平滑滤波器(低通)线性锐化滤波器(高通)非线性锐化滤波器(高通)空间滤波器都是基于模板卷积,其主要工作步骤是:1)将模板在图中移动,并将模板中心与图中某个像素位置重合;2)将模板上的系数与模板下对应的像素相乘;3)将所有乘积相加;4)将和(模板的输出响应)赋给图中对应模板中心位置的像素。

2.平滑滤波器1)线性平滑滤波器线性低通平滑滤波器也称为均值滤波器,这种滤波器的所有系数都是正数,对3×3的模板来说,最简单的是取所有系数为1,为了保持输出图像任然在原来图像的灰度值范围内,模板与象素邻域的乘积都要除以9。

MATLAB 提供了fspecial 函数生成滤波时所用的模板,并提供filter2 函数用指定的滤波器模板对图像进行运算。

遥感图像空间域增强处理实验报告

遥感图像空间域增强处理实验报告

一、实验名称遥感图像空间域增强处理二、实验目的对图像数据采用各种图形增强算法,提高图像的目视效果,方便人工目视解译、图像分类中的样本选取等,方便以后的图像解译。

学会使用ENVI软件对遥感影像进行分析增强处理,初步掌握各种图像增强方法,并对其结果进行比较,观察增强效果。

三、实验原理空间域增强处理是通过直接改变图像中的单个像元及相邻像元的灰度值来增强图像,包括直方图增强及邻域增强。

直方图增强主要有图像拉伸、图像均衡化以及直方图规定化。

拉伸是最基本的图像处理方法,主要用于改善图像显示的对比度。

如果拉伸后的图像不理想,可以通过直方图均衡化做适当修改。

邻域增强主要通过定义卷积模板对图像进行滤波处理。

卷积滤波是通过消除特定的空间频率来增强图像,可分为低通率波、带通滤波和高通滤波,还有增强图像某些方向特征的方向滤波等。

四、数据来源本次实验所用数据来自于国际数据服务平台;landsat4-5波段30米分辨率TM影像,投影为WGS-84,影像主要为山西省大同市恒山地区,中心纬度:38.90407 中心经度:113.11840。

五、实验过程1、灰度拉伸1)打开并显示TM影像文件,从ENVI 主菜单中,选择File →Open Image File选择影像,点击Load Band 在主窗口加载影像。

2)在图像的主菜单上单击ENHANCE菜单,在下拉菜单中选择INTERECTIVE STRETCHING 菜单,在弹出的对话框的主菜单上单击STRETCH_TYPE菜单。

3)线性拉伸:单击linear,再在STRETCH对应的两个文本框中输入需要拉伸的范围,然后单击对话框上的APPLY按钮,图像显示为线性拉伸后的效果。

如图所示:4) 分段线性拉伸:单击Piecewise linear通过使用鼠标在输入直方图中放置几个点交互地限定,各点之间的部分采用线性拉伸。

如图所示:5)高斯拉伸:选择Stretch_Type>Gaussian.输入拉伸的最小和最大值,要手动地输入所需要的标准差值,选择Options > SetGaussian Stdv。

数字图像处理实验4:图像空间域锐化

数字图像处理实验4:图像空间域锐化

∙实验四:图像空间域锐化∙任务:1.理解图像空间域锐化的目的和意义;2.了解图像空间域锐化的各种方法及优缺点;3.掌握图像空间域的邻域运算方法;4.掌握图像锐化处理算法及流程;5.进一步熟悉C#下图像处理基本编程方法及图像局部处理方法;6.掌握C#中构建数据输入对话框方法;7.编程实现图像梯度锐化、Roberts锐化、Prewitt锐化、Sobel锐化、Laplace锐化及高通滤波法;8.总结实验过程。

∙关于课外实验:1.课内实验没有做完可以继续在课后完成。

∙实验环境:1.Adobe Photoshop 5.0以上软件。

2.C#编译器。

3.MathLab 5.0以上软件。

4.图象处理演示代码及示例图像。

∙实验步骤:1.使用实验三建立的简单多文档应用程序框架及、图像读取和显示功能和图像直方图分析功能,进一步熟悉图像图像编程的操作方法。

2.编写图像空间域锐化程序:1.编程对图像作各种锐化处理,编写图像空间域梯度锐化、Roberts锐化、Prewitt锐化、Sobel锐化、Laplace锐化及高通滤波法;2.在实验三的程序中,加入对话框资源,构建对话框类,用于输入图像空间域锐化模板参数及阀值;3.在实验三的程序中加入相应的图像锐化程序入口点(创建相应的锐化处理菜单,建立响应函数)。

4.把编写的空间域锐化子程序分别加入到相应的响应函数中,编译并运行程序。

5.用不同的平滑方法处理不同类型边缘的图像,观察不同的图像锐化方法、不同的锐化参数对图像锐化的的作用;6.观察不同的图像锐化方法对具有噪声的图像的处理效果。

3.观察图像图像平滑处理的结果1.利用Photoshop对图像实施锐化处理。

2.分析对比Photoshop和与自己编写的图像锐化程序处理效果不同之处,并设法改进自己的图像处理程序。

实验报告:1、实验过程中,积极认真,做好记录。

2、实验产生的程序及源代码,邮件发送给,sztxcl_*************,发送邮件标题写为:实验四:学号-班级-姓名,程序及源代码作为附件(删除掉Debug 目录)。

数字图像处理实验——实验四

数字图像处理实验——实验四

报告内容:(目的和要求、原理、步骤、数据、计算、小结等)图像处理综合性实验报告实验四综合实验一、实验目的1、掌握matlab编程语言进行编程。

2、用matlab及运用各种数字图像处理方法实现对图像的变换。

二、实验设备计算机、Matlab软件三、实验原理图像预处理是相对于图像识别、图像理解而言的一种前期处理。

不论采用何种装置,输入的图像往往不能令人满意。

例如,从美学的角度会感到图像中物体的轮廓过于鲜明而显得不协调;按检测对象物大小和形状的要求看,图像的边缘过于模糊;在相当满意的一幅图像上会发现多了一些不知来源的黑点或白点;图像的失真、变形等等。

总之,输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为“质量”问题。

尽管由于目的、观点、爱好等的不同,图像质量很难有同意的定义和标准,但是,根据应用要改善图像质量却是一个共同的愿望。

改善图像质量的处理称为图像预处理,主要是指按需要对图像进行适当的变换突出某些游泳的信息,去除或削弱无用的信息,如改变图像对比度,去除噪声或强调边缘的处理等。

四、实验步骤1.对图像灰度非线性变换2.对某个图像进行直方图均衡化3.对图像进行直方图规定化4.对图像进行空间域低通滤波5.对图片进行低通滤波处理6.对图像进行空域高通滤波法7.通过各种频域低通滤波器方法对图像进行处理五、源程序清单、测试数据、结果1、灰度非线性变换图像灰度变换是图像增强的一种手段。

其中灰度非线性变换能使图像灰度的分布均匀,与人的视觉特性相匹配。

MATLAB语言编写的例程和图像运行结果如下:%GRAY TRANSFORMclc;I=imread('21.jpg');imshow(I);J=imadjust(I,[0.3 0.7],[0 1],1);%transfroms the values in the intensity image I to%values in J by linealy mapping values between %0.3 and 0.7 to values between 0 and 1figure;imshow(J);J=imadjust(I,[0.3 0.7],[0 1],1);%If GAMMA is less than 1,the mapping%is weighted toward higher (brighter)output values.figure;imshow(J);J=imadjust(I,[0.3 0.7],[0 1],1.5);% If GAMMA is greater than 1,the % mapping is weighted toward lower (darker)output values.figure;imshow(J);J=imadjust(I,[0.3 0.7],[0 1],1);% If TOP < BOTTOM,the output image % is reversed,as in a photogrphic negative.figure;imshow(J);2、对tire图像进行直方图均衡化图示:直方图均衡化是通过变换函数将原图的直方图调整为平坦的直方图。

数字图像处理实验报告2

数字图像处理实验报告2

实验二: 数字图像的空间域滤波——平滑滤波1. 1. 实验目的2.掌握图像滤波的基本定义及目的。

3.理解空间域滤波的基本原理及方法。

4.掌握进行图像的空域滤波的方法。

1. 2. 实验基本原理2.空间域增强空间域滤波是在图像空间中借助模板对图像进行领域操作, 处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。

空域滤波基本上是让图像在频域空间内某个范围的分量受到抑制, 同时保证其他分量不变, 达到增强图像的目的。

空域滤波一般分为线性滤波和非线性滤波两类。

各种空域滤波器根据功能主要分为平滑滤波器和锐化滤波器。

平滑的目的可分为两类: 一类是模糊, 目的是在提取较大的目标前去除太小的细节或将目标内的小肩端连接起来;另一类是消除噪声。

锐化的目的是为了增强被模糊的细节。

结合这两种分类方法, 可将空间滤波增强分为四类:线性平滑滤波器(低通)非线性平滑滤波器(低通)线性锐化滤波器(高通)非线性锐化滤波器(高通)1)空间滤波器都是基于模板卷积, 其主要工作步骤是:2)将模板在图中移动, 并将模板中心与图中某个像素位置重合;3)将模板上的系数与模板下对应的像素相乘;4)将所有乘积相加;5)将和(模板的输出响应)赋给图中对应模板中心位置的像素。

3.平滑滤波器1)线性平滑滤波器线性低通平滑滤波器也称为均值滤波器, 这种滤波器的所有系数都是正数, 对3×3的模板来说, 最简单的是取所有系数为1, 为了保持输出图像任然在原来图像的灰度值范围内, 模板与象素邻域的乘积都要除以9。

MATLAB 提供了fspecial 函数生成滤波时所用的模板, 并提供filter2和imfilter 函数用指定的滤波器模板对图像进行运算。

函数fspecial 的语法格式为:h=fspecial(type);h=fspecial(type,parameters);其中参数type 指定滤波器的种类, parameters 是与滤波器种类有关的具体参数。

图像处理实验一实验二

图像处理实验一实验二

实验一空域图像增强一、实验目的(1)掌握基本的空域图像增强方法,观察图像增强的效果,加深理解;(2)了解空域平滑模板的特性及其对不同噪声的影响;(3)了解空域锐化模板的特性及其对边缘的影响。

二、实验内容(1)直方图处理:直方图均衡(2)空域平滑:均值滤波、中值滤波;三、实验要求(1)用matlab语言进行仿真实验;(2)递交实验报告,要求给出实验原理、源程序、实验结果及分析。

四、实验图像pollen.png lena.bmp bridge.gif五、具体实验内容及结果1. 直方图均衡实验内容(1)读入原图像pollen.png并显示原图像以及直方图(2)对原图像进行直方图均衡处理(3)显示均衡后图像以及直方图。

要求:分析直方图能够改善视觉效果的原因实验代码:I=imread('D:\实验\图像\pollen.png');subplot(4,5,1);imshow(I);title('原图');Gr=rgb2gray(I);subplot(4,5,2);imshow(Gr);title('gray');subplot(4,5,3);imhist(Gr);title('直方图');Grc=histeq(Gr);subplot(4,5,4);imshow(Grc);title('均衡化');subplot(4,5,5);imhist(Grc);title('均衡化直方图');R=I(:,:,1);A=histeq(R);subplot(4,5,7);imshow(R);title('Red');subplot(4,5,8);imhist(R);title('直方图');subplot(4,5,9);imshow(A);title('均衡化');subplot(4,5,10);imhist(A);title('均衡化直方图'); G=I(:,:,2);N=histeq(G);subplot(4,5,12);imshow(G);title('Green');subplot(4,5,13);imhist(G);title('直方图'); subplot(4,5,14);imshow(N);title('均衡化');subplot(4,5,15);imhist(N);title('均衡化直方图');B=I(:,:,3);C=histeq(B);subplot(4,5,17);imshow(B);title('Blue');subplot(4,5,18);imhist(B);title('直方图'); subplot(4,5,19);imshow(C);title('均衡化');subplot(4,5,20);imhist(C);title('均衡化直方图');结果:直方图均衡化能使原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。

matlab图像处理综合实验实验报告

matlab图像处理综合实验实验报告

《数字图像处理》实验报告学院:专业:班级:姓名:学号:实验一实验名称:图像增强实验目的:1.熟悉图像在Matlab下的读入,输出及显示;2.熟悉直方图均衡化;3.熟悉图像的线性指数等;4.熟悉图像的算术运算及几何变换.实验仪器:计算机,Matlab软件实验原理:图像增强是为了使受到噪声等污染图像在视觉感知或某种准则下尽量的恢复到原始图像的水平之外,还需要有目的性地加强图像中的某些信息而抑制另一些信息,以便更好地利用图像。

图像增强分频域处理和空间域处理,这里主要用空间域的方法进行增强。

空间域的增强主要有:灰度变换和图像的空间滤波。

图像的直方图实际上就是图像的各像素点强度概率密度分布图,是一幅图像所有像素集合的最基本统计规律,均衡化是指在每个灰度级上都有相同的像素点过程。

实验内容如下:I=imread('E:\cs.jpg');%读取图像subplot(2,2,1),imshow(I),title('源图像')J=rgb2gray(I)%灰度处理subplot(2,2,2),imshow(J) %输出图像title('灰度图像') %在原始图像中加标题subplot(2,2,3),imhist(J) %输出原图直方图title('原始图像直方图')0100200subplot(1,2,2),imshow(K)对数运算:I=imread('E:\dog.jpg');subplot(2,2,1),imshow(I),title('源图像')J=rgb2gray(I)%灰度处理subplot(2,2,2),imshow(J),title('灰度变换后图像') J1=log(1+double(J));subplot(2,2,3),imshow(J1,[]),title('对数变换后')指数运算:I=imread('E:\dog.jpg');f=double(I);g=(2^2*(f-1))-1f=uint8(f);g=uint8(g);subplot(1,2,1);subimage(f),title('变换一') subplot(1,2,2);subimage(g),title('变换二')100 200 300100 200 300加法运算:clc;clear all;close all;i = imread('E:\dog.jpg');j = imnoise(i,'gaussian',0,0.02); subplot(1,3,1),imshow(i),title('图一') subplot(1,3,2),imshow(j),title('图二') k=zeros(242,308);for p=1:100j = imnoise(i,'gaussian',0,0.02);j1 = im2double(j);k = k + j1;endk=k/100;subplot(1,3,3),imshow(k),title('图三')实验二实验名称:图像变换实验目的:(1)进一步对matlab的了解和使用;(2)学习如何在matlab中对数字图像的处理;实验原理:图像和其他信号一样,既能在空间域处理,也能在频率域处理。

数字图像处理实验4空间域和频率域图像处理

数字图像处理实验4空间域和频率域图像处理
傅立叶变换(Fourier Transform)是线性系统分析的一个有力工具,它能够定量分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪声等的作用。通过实验培养这项技能,将有助于解决大多数图像处理问题。对任何想在工作中有效应用数字图像处理技术的人来说,学习好傅立叶变换很有必要。
对于二维信号,二维傅立叶变换定义为:
8、掌握利用MATLAB工具箱实现频域图像处理
要求
1、将直方图增强和空间域滤波结果打印出来提交;
2、提交程序源代码M文件;
3、比较直方图增强前后图像的视觉效果有何不同。
3
1、计算机一台;
2、MATLAB软件一套;
3、移动存储器(U盘等);
4、实验图像若干。
4
4实验图像原图均衡化图50001000015000原图灰度直方图10020050001000015000均衡化直方图100200实用文档原图高斯滤波运动平衡滤波实用文档原图2d傅里叶变换图fftshift增强图平移图平移后的傅里叶变换图旋转45度图旋转45度后的傅里叶变换图尺度变换图尺度变换后的傅里叶变换图5实验步骤打开计算机并启动matlab程序在work文件夹下找到待处理的:《数字图像处理》课程实验
题目:实验四空间域和频率域图像处理
实验类别:【验证实验】
班级:电子1313
学号:131003430326
姓名:吴限
1
题目
空间域和频率域图像处理
内容
图像灰度变换与空间域滤波属于空域图像处理方法,直接对图像像素进行处理。图像灰度变换采用MATLAB工具箱中的灰度变换函数、直方图处理函数等函数及其相应的语法格式对实验一生成的图像进行处理。空间域滤波采用MATLAB工具箱中提供的空间域滤波器对图像进行空间域滤波处理。

图像处理综合实验报告

图像处理综合实验报告

图像处理综合实验报告一、引言图像处理是计算机科学中的重要研究领域,其应用范围广泛,涵盖了图像增强、图像分割、图像识别等多个方面。

本实验旨在通过综合实验的方式,探索图像处理的基本方法和技术,并对实验结果进行分析和总结。

二、实验目的1. 了解图像处理的基本概念和原理;2. 熟悉常用的图像处理工具和算法;3. 掌握图像处理中常见的操作和技术;4. 分析实验结果并提出改进意见。

三、实验步骤1. 实验准备在实验开始之前,我们需要准备一台计算机和图像处理软件,例如MATLAB、Python等。

同时,需要收集一些图像数据作为实验样本。

2. 图像增强图像增强是图像处理中常用的操作,旨在改善图像的质量和视觉效果。

我们可以通过调整图像的亮度、对比度、色彩等参数来实现图像增强。

在实验中,我们可以选择一些常见的图像增强算法,如直方图均衡化、灰度拉伸等。

3. 图像滤波图像滤波是图像处理中常用的技术,用于去除图像中的噪声和平滑图像。

常见的图像滤波算法包括均值滤波、中值滤波、高斯滤波等。

在实验中,我们可以选择适合实验样本的滤波算法,并对比不同滤波算法的效果。

4. 图像分割图像分割是将图像划分为不同的区域或对象的过程。

常见的图像分割算法包括阈值分割、边缘检测、区域生长等。

在实验中,我们可以选择一种或多种图像分割算法,并对比它们的分割效果和计算复杂度。

5. 图像识别图像识别是图像处理的重要应用之一,它可以用于识别和分类图像中的对象或特征。

在实验中,我们可以选择一些常用的图像识别算法,如模板匹配、神经网络等,并通过实验样本进行图像识别的实验。

四、实验结果与分析1. 图像增强实验结果我们选取了一张低对比度的图像作为实验样本,经过直方图均衡化和灰度拉伸处理后,图像的对比度得到了明显的改善,细节部分更加清晰。

2. 图像滤波实验结果我们选取了一张带有高斯噪声的图像作为实验样本,经过均值滤波、中值滤波和高斯滤波处理后,图像的噪声得到了有效的去除,图像更加平滑。

数字图像处理实验报告 空域图像增强技术

数字图像处理实验报告 空域图像增强技术

课程名称:实验项目:实验地点:专业班级:学号:学生姓名:指导教师:2012年月日实验一 空域图像增强技术一、 实验目的1结合实例学习如何在视频显示程序中增加图像处理算法;2理解和掌握图像的线性变换和直方图均衡化的原理和应用;3了解平滑处理的算法和用途,学习使用均值滤波、中值滤波和拉普拉斯锐化进行图像增强处理的程序设计方法;4 了解噪声模型及对图像添加噪声的基本方法。

二、 实验原理1 灰度线性变换就是将图像中所有点的灰度按照线性灰度变换函数进行变换。

)],([),(y x f T y x g =⎪⎩⎪⎨⎧<≤+-<≤+-≤≤=255),(]),([),( ]),([),(0 ),(),(y x f b g b y x f b y x f a g a y x f a y x f y x f y x g b a γβαn y m x ,2,1 ,,,2,1==2 直方图均衡化通过点运算将输入图像转换为在每一级上都有相等像素点数的输出图像。

按照图像概率密度函数PDF 的定义:1,...,2,1,0 )(-==L k nn r p k k r 通过转换公式获得:1,...,2,1,0 )()(00-====∑∑==L k n n r p r T s k j k j j j r k k3 均值(中值)滤波是指在图像上,对待处理的像素给定一个模板,该模板包括了其周围的临近像素。

将模板中的全体像素的均值(中值)来代替原来像素值的方法。

4 拉普拉斯算子如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------111181111 拉普拉斯算子首先将自身与周围的8个像素相减,表示自身与周围像素的差异,再将这个差异加上自身作为新像素的灰度。

三、 实验步骤1 启动MA TLAB 程序,对图像文件分别进行灰度线性变换(参考教材57页,例4.1)、直方图均衡化、均值滤波、中值滤波和梯度锐化操作。

添加噪声,重复上述过程观察处理结果。

实验二 空间域图像增强

实验二 空间域图像增强

实验二空间域图像增强一、实验目的1、了解空间域图像增强的各种方法(点处理、掩模处理);2、通过编写程序掌握采用直方图均衡化进行图像增强的方法;3、使用邻域平均法编写程序实现图像增强,进一步掌握掩模法及其改进(加门限法)消除噪声的原理;二、 实验环境及开发工具Windws2000/XP 、MATLAB 6.x 、Visual C++、Visual Basic 或其它 三、 实验方法对如图所示的两幅128×128、256级灰度的数字图像fing_128.img 和cell_128.img 进行如下处理:(1)对原图像进行直方图均衡化处理,同屏显示处理前后图像及其直方图,比较异同,并回答为什么数字图像均衡化后其直方图并非完全均匀分布。

(2)对原图像加入点噪声,用4-邻域平均法平滑加噪声图像(图像四周边界不处理,下同),同屏显示原图像、加噪声图像和处理后的图像。

①不加门限; ②加门限),(21n m f T =,(其中∑∑=i jj i f N n m f ),(1),(2) 四、实验结果及分析1、直方图均衡化处理程序如下:clc;fid=fopen('F:\数字图像\图像\img\fing_128.img','r');指纹图fing_128.img 显微医学图像f=fread(fid,[128,128],'uchar'); subplot(2,1,1);imshow(f,[0,255]);q=zeros(1,256);for x=1:128for y=1:128q(f(x,y)+1)=q(f(x,y)+1)+1; endends=q./(128*128);X=0:255;subplot(2,1,2);bar(X,s');figure;t=zeros(1,256);t(1)=s(1);for i=2:256t(i)=t(i-1)+s(i);endsubplot(2,1,1);bar(X,t');t0=floor(255*t+0.5); subplot(2,1,2);bar(X,t0');figure;t1=zeros(1,256);for i=1:256t1(t0(i)+1)=s(i)+t1(t0(i)+1); endsubplot(2,1,1);bar(X,t1');f1=zeros(128,128)for x=1:128for y=1:128f1(x,y)=t0(f(x,y)+1);endendsubplot(2,1,2);imshow(f1,[0,255]);运行结果:(1)、指纹均衡化处理(2)、细胞的均衡化处理2、对原图像加入点噪声程序代码不加门限:clc;fid=fopen('F:\数字图像\图像\img\fing_128.img','r');f=fread(fid,[128,128],'uchar');subplot(2,2,1);imshow(f,[0,255]);for x=1:128for y=1:128if x==yf(x,y)=255;elseifx+y==100f(x,y)=0;endendendsubplot(2,2,2);imshow(f,[0,255]);f0=f;for x=2:127for y=2:127f0(x,y)=(f((x-1),y)+f((x+1),y)+f(x,(y-1))+f(x,(y+1)))./4;endendsubplot(2,2,3);imshow(f0,[0,255]);t=fft2(f);T=t(1,1)/128;f1=f;for x=2:127for y=2:127h=(f((x-1),y)+f((x+1),y)+f(x,(y-1))+f(x,(y+1)))./4;if abs(f(x,y)-h)>Tf1(x,y)=h;elsef1(x,y)=f(x,y);endendendsubplot(2,2,4);imshow(f1,[0,255]);运行结果:加门限:clc;fid=fopen('F:\数字图像\图像\img\fing_128.img','r');fg=fread(fid,[128,128],'uchar');subplot(2,2,1);imshow(fg,[0,255]);a=randn(128,128);f=a.*20+fg;subplot(2,2,2);imshow(f,[0,255]);f0=f;for x=2:127for y=2:127f0(x,y)=(f((x-1),y)+f((x+1),y)+f(x,(y-1))+f(x,(y+1)))./4;endendsubplot(2,2,3);imshow(f0,[0,255]);t=fft2(f);T=t(1,1)/128;f1=f;for x=2:127for y=2:127h=(f((x-1),y)+f((x+1),y)+f(x,(y-1))+f(x,(y+1)))./4;if abs(f(x,y)-h)>Tf1(x,y)=h;elsef1(x,y)=f(x,y);endendendsubplot(2,2,4);imshow(f1,[0,255]);运行结果:(1)细胞加入噪声及去噪3、结果分析(1)直方图均衡化处理后图像的对比度增强,变得相对清晰,达到了图像增强的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数字图像处理与分析》
实验报告
实验项目图像空间域处理的综合实验
教师评语:
一、实验目的与要求
实验目的:
1、通过本实验理解图像空间域处理的主要算法思想及其用途;
2、理解实际的图像处理过程实际上是一个多种方法综合应用达到预期效果
的过程。

实验要求:
1、综合应用学过的图像空间域处理方法,对图像库中的Fig3.46(a).jpg实现增强,主要步骤参考教材的P103—P105(即:图3.43的过程),达到教材最后的实验结果;
2、分析上述实验过程各个步骤所应注意的问题及解决途径。

二、实验方案
1.
i=imread('C:\Users\Change\Desktop\数字图像处理
\images_chapter_03\Fig3.46(a).jpg','jpg');
z=double(i);
y=fspecial('laplacian',0.5);
x=imfilter(z,y);
subplot(241)
imshow(i)
title('(a)原图')
subplot(242)
imshow(x,[])
title('(b)拉普拉斯操作后')
x1=z+x;
subplot(243)
imshow(x1,[])
title('(c)原图与拉普拉斯操作相加后')
y2=fspecial('sobel');
t=y2';
h=imfilter(i,y2);
k=imfilter(i,t);
x2=abs(h)+abs(k);
subplot(244)
imshow(x2)
title('(d)经sobel处理后')
y3=ones(5,5)/25;
x3=imfilter(x2,y3);
subplot(245)
imshow(x3)
title('(e)经均值滤波平滑后的sobel图') w=double(x3);
x4=x1.*w;
subplot(246)
imshow(x4,[])
title('(f)有(c)和(e)相乘')
x5=x4+z;
subplot(247)
imshow(x5,[])
title('(g)由(a)和(f)相加')
x6=x5.^0.5;
subplot(248)
imshow(x6,[])
title('(h)对(g)幂律变换')
2.
(1)进行拉普拉斯操作时,要注意进行图片的标定;(2)进行sobel处理时,要对算法进行转置,并用原来的算法与转置后的算法分别对图像处理,然后将处理结果的绝对值相加;
(3)根据图片的情况选择合适的滤波器,算法增强图像。

三、实验结果和数据处理
1.。

相关文档
最新文档