七年级数学上册几何图形初步易错题(Word版 含答案)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学几何模型部分解答题压轴题精选(难)
1.已知,
,点 E 是直线 AC 上一个动点(不与 A,C 重合),点 F 是 BC 边上一个定
点, 过点 E 作 G.
,交直线 AB 于点 D,连接 BE,过点 F 作
,交直线 AC 于点
(1)如图①,当点 E 在线段 AC 上时,求证:
.
(2)在(1)的条件下,判断
,所以
(1)若∠ E=60°,则∠ F=________; (2)请探索∠ E 与∠ F 之间满足的数量关系?说明理由. (3)如下图所示,已知 EP 平分∠ BEF,FG 平分∠ EFD,反向延长 FG 交 EP 于点 P,求∠ P 的度数;
【答案】 (1)90° (2)解:如图,分别过点 E,F 作 EM∥ AB,FN∥ AB
这三个角的度数和是否为一个定
值? 如果是,求出这个值,如果不是,说明理由.
(3)如图②,当点 E 在线段 AC 的延长线上时,(2)中的结论是否仍然成立?如果不成
立, 请直接写出
之间的关系.
(4)当点 E 在线段 CA 的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直
接 写出
之间的关系.
【答案】 (1)解:∵ ∴
交 BE 于 点 H , 根 据 平 行 线 性 质 定 理 ,
,
,即可得到答案.(3)过点 G 作
交 BE 于点 H,得到
,因为
,所以
,得到
,
即可求解.(4)过点 G 作
交 BE 于点 H,得∠ DEC=∠ EGH,因为
,推得∠ HGF+∠ BFG=180°,即可求解.
2.如图下图所示,已知 AB//CD, ∠ B=30°,∠ D=120°;
交 BE 于点 H
∴ (2)中的关系不成立,∠ EGF、∠ DEC、∠ BFG 之间关系为:∠ EGF-∠ DEC+∠ BFG=180°
故答案为:不成立,∠ EGF-∠ DEC+∠ BFG=180°
【分析】(1)根据两条直线平行,内错角相等,得出
;两条直线平行,
同位角相等,得出
Байду номын сангаас
,即可证明
.(2)过点 G 作
(3)解:如图,过点 F 作 FH∥ EP
由(2)知,∠ EFD=∠ BEF+30° 设∠ BEF=2x°,则∠ EFD=(2x+30)° ∵ EP 平分∠ BEF,GF 平分∠ EFD ∴ ∠ PEF= ∠ BEF=x°,∠ EFG= ∠ EFD=(x+15)° ∵ FH∥ EP ∴ ∠ PEF=∠ EFH=x°,∠ P=∠ HFG ∵ ∠ HFG=∠ EFG-∠ EFH=15° ∴ ∠ P=15° 【解析】【解答】解:(1)分别过点 E、F 作 EM∥ AB,FN∥ AB,则有 AB∥ EM∥ FN∥ CD. ∴ ∠ B=∠ BEM=30°,∠ MEF=∠ EFN,∠ DFN=180°-∠ CDF=60°, ∴ ∠ BEF=∠ MEF+30°,∠ EFD=∠ EFN+60°, ∴ ∠ EFD=∠ BEF+30°=90°. 【分析】(1)分别过点 E、F 作 AB 的平行线,根据平行线的性质即可求解; (2)根据平行线的性质可得∠ DFN=60°,∠ BEM=30°,∠ MEF=∠ NFE,即可得到结论; (3)过点 F 作 FH∥ EP,设∠ BEF=2x°,根据(2)中结论即可表示出∠ BFD,根据角平分线 的定义可得∠ PEF=x°,∠ EFG=(x+15)°,再根据平行线的性质即可得到结论. 3.已知如图,∠ COD=90°,直线 AB 与 OC 交于点 B , 与 OD 交于点 A , 射线 OE 与射线 AF 交于点 G.
的代数式表示)
(4)若 OE 将∠ BOA 分成 1︰2 两部分,AF 平分∠ BAD , ∠ ABO= (30°< α <90°) ,求 ∠ OGA 的度数.(用含 的代数式表示) 【答案】 (1)21°
(2)14°
(3)解:∵ ∠ BOA=90°,∠ OBA=α, ∴ ∠ BAD=∠ BOA+∠ ABO=90°+α, ∵ ∠ BOA=90°,∠ GOA= ∠ BOA,∠ GAD= ∠ BAD ∴ ∠ GAD=30°+ α,∠ EOA=30°, ∴ ∠ OGA=∠ GAD−∠ EOA= α. (4)解:当∠ EOD:∠ COE=1:2 时, ∴ ∠ EOD=30°, ∵ ∠ BAD=∠ ABO+∠ BOA=α+90°, ∵ AF 平分∠ BAD, ∴ ∠ FAD= ∠ BAD, ∵ ∠ FAD=∠ EOD+∠ OGA, ∴ 2×30°+2∠ OGA=α+90°, ∴ ∠ OGA= α+15°; 当∠ EOD:∠ COE=2:1 时,则∠ EOD=60°, 同理得到∠ OGA= α−15°, 即∠ OGA 的度数为 α+15°或 α−15°. 【解析】解:(1)∵ ∠ BOA=90°,∠ OBA=42°,
∴ EM∥ AB∥ FN ∴ ∠ B=∠ BEM=30°,∠ MEF=∠ EFN 又∵ AB∥ CD,AB∥ FN ∴ CD∥ FN ∴ ∠ D+∠ DFN=180° 又∵ ∠ D =120° ∴ ∠ DFN=60° ∴ ∠ BEF=∠ MEF+30°,∠ EFD=∠ EFN+60° ∴ ∠ EFD=∠ MEF +60° ∴ ∠ EFD=∠ BEF+30°
(1)若 OE 平分∠ BOA , AF 平分∠ BAD , ∠ OBA=42°,则∠ OGA=________;
(2)若∠ GOA= ∠ BOA , ∠ GAD= ∠ BAD , ∠ OBA=42°,则∠ OGA=________; (3)将(2)中的“∠ OBA=42°”改为“∠ OBA= ”,其它条件不变,求∠ OGA 的度数.(用含
∵ ∴
∴
(2)解: 过点 G 作 ∴ ∵ ∴ ∴
∴
即
这三个角的度数和为一个定值,是 交 BE 于点 H
(3)解:过点 G 作 ∴ ∵ ∴ ∴
∴
即
交 BE 于点 H
故
的关系仍成立
(4)不成立| ∠ EGF-∠ DEC+∠ BFG=180° 【解析】【解答】解:(4)过点 G 作
∴ ∠ DEC=∠ EGH ∵ ∴ ∴ ∠ HGF+∠ BFG=180° ∵ ∠ HGF=∠ EGF-∠ EGH ∴ ∠ HGF=∠ EGF-∠ DEC ∴ ∠ EGF-∠ DEC+∠ BFG=180°
1.已知,
,点 E 是直线 AC 上一个动点(不与 A,C 重合),点 F 是 BC 边上一个定
点, 过点 E 作 G.
,交直线 AB 于点 D,连接 BE,过点 F 作
,交直线 AC 于点
(1)如图①,当点 E 在线段 AC 上时,求证:
.
(2)在(1)的条件下,判断
,所以
(1)若∠ E=60°,则∠ F=________; (2)请探索∠ E 与∠ F 之间满足的数量关系?说明理由. (3)如下图所示,已知 EP 平分∠ BEF,FG 平分∠ EFD,反向延长 FG 交 EP 于点 P,求∠ P 的度数;
【答案】 (1)90° (2)解:如图,分别过点 E,F 作 EM∥ AB,FN∥ AB
这三个角的度数和是否为一个定
值? 如果是,求出这个值,如果不是,说明理由.
(3)如图②,当点 E 在线段 AC 的延长线上时,(2)中的结论是否仍然成立?如果不成
立, 请直接写出
之间的关系.
(4)当点 E 在线段 CA 的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直
接 写出
之间的关系.
【答案】 (1)解:∵ ∴
交 BE 于 点 H , 根 据 平 行 线 性 质 定 理 ,
,
,即可得到答案.(3)过点 G 作
交 BE 于点 H,得到
,因为
,所以
,得到
,
即可求解.(4)过点 G 作
交 BE 于点 H,得∠ DEC=∠ EGH,因为
,推得∠ HGF+∠ BFG=180°,即可求解.
2.如图下图所示,已知 AB//CD, ∠ B=30°,∠ D=120°;
交 BE 于点 H
∴ (2)中的关系不成立,∠ EGF、∠ DEC、∠ BFG 之间关系为:∠ EGF-∠ DEC+∠ BFG=180°
故答案为:不成立,∠ EGF-∠ DEC+∠ BFG=180°
【分析】(1)根据两条直线平行,内错角相等,得出
;两条直线平行,
同位角相等,得出
Байду номын сангаас
,即可证明
.(2)过点 G 作
(3)解:如图,过点 F 作 FH∥ EP
由(2)知,∠ EFD=∠ BEF+30° 设∠ BEF=2x°,则∠ EFD=(2x+30)° ∵ EP 平分∠ BEF,GF 平分∠ EFD ∴ ∠ PEF= ∠ BEF=x°,∠ EFG= ∠ EFD=(x+15)° ∵ FH∥ EP ∴ ∠ PEF=∠ EFH=x°,∠ P=∠ HFG ∵ ∠ HFG=∠ EFG-∠ EFH=15° ∴ ∠ P=15° 【解析】【解答】解:(1)分别过点 E、F 作 EM∥ AB,FN∥ AB,则有 AB∥ EM∥ FN∥ CD. ∴ ∠ B=∠ BEM=30°,∠ MEF=∠ EFN,∠ DFN=180°-∠ CDF=60°, ∴ ∠ BEF=∠ MEF+30°,∠ EFD=∠ EFN+60°, ∴ ∠ EFD=∠ BEF+30°=90°. 【分析】(1)分别过点 E、F 作 AB 的平行线,根据平行线的性质即可求解; (2)根据平行线的性质可得∠ DFN=60°,∠ BEM=30°,∠ MEF=∠ NFE,即可得到结论; (3)过点 F 作 FH∥ EP,设∠ BEF=2x°,根据(2)中结论即可表示出∠ BFD,根据角平分线 的定义可得∠ PEF=x°,∠ EFG=(x+15)°,再根据平行线的性质即可得到结论. 3.已知如图,∠ COD=90°,直线 AB 与 OC 交于点 B , 与 OD 交于点 A , 射线 OE 与射线 AF 交于点 G.
的代数式表示)
(4)若 OE 将∠ BOA 分成 1︰2 两部分,AF 平分∠ BAD , ∠ ABO= (30°< α <90°) ,求 ∠ OGA 的度数.(用含 的代数式表示) 【答案】 (1)21°
(2)14°
(3)解:∵ ∠ BOA=90°,∠ OBA=α, ∴ ∠ BAD=∠ BOA+∠ ABO=90°+α, ∵ ∠ BOA=90°,∠ GOA= ∠ BOA,∠ GAD= ∠ BAD ∴ ∠ GAD=30°+ α,∠ EOA=30°, ∴ ∠ OGA=∠ GAD−∠ EOA= α. (4)解:当∠ EOD:∠ COE=1:2 时, ∴ ∠ EOD=30°, ∵ ∠ BAD=∠ ABO+∠ BOA=α+90°, ∵ AF 平分∠ BAD, ∴ ∠ FAD= ∠ BAD, ∵ ∠ FAD=∠ EOD+∠ OGA, ∴ 2×30°+2∠ OGA=α+90°, ∴ ∠ OGA= α+15°; 当∠ EOD:∠ COE=2:1 时,则∠ EOD=60°, 同理得到∠ OGA= α−15°, 即∠ OGA 的度数为 α+15°或 α−15°. 【解析】解:(1)∵ ∠ BOA=90°,∠ OBA=42°,
∴ EM∥ AB∥ FN ∴ ∠ B=∠ BEM=30°,∠ MEF=∠ EFN 又∵ AB∥ CD,AB∥ FN ∴ CD∥ FN ∴ ∠ D+∠ DFN=180° 又∵ ∠ D =120° ∴ ∠ DFN=60° ∴ ∠ BEF=∠ MEF+30°,∠ EFD=∠ EFN+60° ∴ ∠ EFD=∠ MEF +60° ∴ ∠ EFD=∠ BEF+30°
(1)若 OE 平分∠ BOA , AF 平分∠ BAD , ∠ OBA=42°,则∠ OGA=________;
(2)若∠ GOA= ∠ BOA , ∠ GAD= ∠ BAD , ∠ OBA=42°,则∠ OGA=________; (3)将(2)中的“∠ OBA=42°”改为“∠ OBA= ”,其它条件不变,求∠ OGA 的度数.(用含
∵ ∴
∴
(2)解: 过点 G 作 ∴ ∵ ∴ ∴
∴
即
这三个角的度数和为一个定值,是 交 BE 于点 H
(3)解:过点 G 作 ∴ ∵ ∴ ∴
∴
即
交 BE 于点 H
故
的关系仍成立
(4)不成立| ∠ EGF-∠ DEC+∠ BFG=180° 【解析】【解答】解:(4)过点 G 作
∴ ∠ DEC=∠ EGH ∵ ∴ ∴ ∠ HGF+∠ BFG=180° ∵ ∠ HGF=∠ EGF-∠ EGH ∴ ∠ HGF=∠ EGF-∠ DEC ∴ ∠ EGF-∠ DEC+∠ BFG=180°