流体的运动习题解答

合集下载

化工原理课后习题答案第一章流体流动答案

化工原理课后习题答案第一章流体流动答案

第一章 流体流动习题解答1.解:(1) 1atm=101325 Pa=760 mmHg真空度=大气压力—绝对压力,表压=绝对压力—大气压力 所以出口压差为p =461097.8)10082.0(10132576.00⨯=⨯--⨯N/m 2(2)由真空度、表压、大气压、绝对压之间的关系可知,进出口压差与当地大气压无关,所以出口压力仍为41097.8⨯Pa 2.解: T=470+273=703K ,p=2200kPa混合气体的摩尔质量Mm=28×0.77+32×0.065+28×0.038+44×0.071+18×0.056=28.84 g/mol混合气体在该条件下的密度为:ρm=ρm0×T0T×pp0=28.8422.4×273703×2200101.3=10.858 kg/m33.解:由题意,设高度为H 处的大气压为p ,根据流体静力学基本方程,得 dp=-ρgdH大气的密度根据气体状态方程,得 ρ=pMRT根据题意得,温度随海拔的变化关系为 T=293.15+4.81000H代入上式得ρ=pMR (293.15-4.8×10-3H )=-dpgdh移项整理得dpp=-MgdHR293.15-4.8×10-3H对以上等式两边积分,101325pdpp=-0HMgdHR293.15-4.8×10-3H所以大气压与海拔高度的关系式为 lnp101325=7.13×ln293.15-4.8×10-3H293.15即:lnp=7.13×ln1-1.637×10-5H+11.526(2)已知地平面处的压力为101325 Pa ,则高山顶处的压力为 p 山顶=101325×330763=45431 Pa将p 山顶代入上式ln 45431=7.13×ln1-1.637×10-5H+11.526 解得H =6500 m ,所以此山海拔为6500 m 。

流体力学习题解答4

流体力学习题解答4

习 题 四1. 油(μ=3⨯103-kg/m*s )和水(μ=1.14⨯103-kg/m*s )在管径d=100mm 的圆管中流动,如果压力降相同,流态都是层流,试求这两种流动中管轴线上的流速之比。

2. 动力粘度μ=0.072kg/m*s 的油在管径d=0.1m 的圆管中作层流运动,流量Q=3⨯103-m 3/s ,试计算管壁切应力τ0。

3. 水(运动粘度υ=106-m2/s )在直径d=200mm ,长l=20m 的圆管流动,流量Q=24⨯103-m 3/s ,如果管壁粗糙度∆=0.2mm ,求沿程水头损失。

4. 圆管直径d=80mm ,当流量很大时,测得沿程损失系数是一个常数,其值为λ=0.025,试计算管壁的粗糙度∆。

5. 一条管道,新使用时,相当粗糙度∆/d=104-,使用多年后,发现在水头损失相同的情况下,流量减少了35%,试估算此旧管的相对粗糙度。

6. 如图,串联管道由两段管组成,其长度和直径分别为l 1=500m ,d 1=300mm ,l 2=400m ,d 2=250mm ,壁面粗糙度都是∆=0.6mm ,水位H=10m ,如果沿程损失系数按阻力平方区计算,求流量Q 。

11题图7. 一段水管,长l=150m ,流量Q=0.12 m 3/s ,该管段内总的局部损失系数为ζ=5,沿程损失系数那λ=3.002.0d计算,如果要求水头损失h=3.96m ,求管径d 。

8. 为了测量截面突然扩大的局部损失系数ζ和管道沿程损失系数λ,在管道三个截面上装有测压管,其中测压管1在扩大前端,其余两个测压管等距离地安装在下游,已知三支测压管液面读数为h 1=156.5mm, h 2=163mm, h 3=113mm ,管径d=15mm ,D=20mm ,长度l=100mm ,测得流量Q=2.65⨯104-m 3/s ,求ζ和λ的值。

15题图9. 一条输油管道,直径d=250mm ,长l=6.5km ,壁面粗糙度∆=0.8mm ,流量Q=0.06 m 3/s ,油的运动粘度υ=2.4⨯106-m 2/s ,求沿程损失。

第1章流体流动习题解答

第1章流体流动习题解答

第一章 流体流动1-1某敞口容器内盛有水与油。

如图所示。

已知水及油的密度分别为1000和860kg/m 3,解:h 1=600mm ,h 2=800mm ,问H 为多少mm ?习题1-1附图mH H H m kg m kg mm h mm h 32.181.91080.081.91060.081.9860?,/860/10,800,6003333321=∴⨯=⨯⨯+⨯⨯===== 油水,解:ρρ1-2有一幢102层的高楼,每层高度为4m 。

若在高楼范围内气温维持20℃不变。

设大气静止,气体压强为变量。

地平面处大气压强为760mmHg 。

试计算楼顶的大气压强,以mmHg 为单位。

⎰⎰=∴-=⨯⨯⨯-=⨯⨯-=⎩⎨⎧---⨯=⨯⨯=----=---127.724,04763.040810190.181.9)760/(10190.181.910190.1)2.2938314/(29151408055P P p mmHgp p Ln dz p dp p p gdz d ②代入①,得②①解:ρρ1-3某水池,水深4米,水面通大气,水池侧壁是铅垂向的。

问:水池侧壁平面每3米宽度承受水的压力是多少N ?外界大气压为1atm 。

解:N dz gz P F 64023501045.12/481.9103410013.13)(3⨯=⨯⨯⨯+⨯⨯⨯=+=⎰水ρ 1-4外界大气压为1atm ,试按理想气体定律计算0.20at (表压)、20℃干空气的密度。

空气分子量按29计。

543(1.013100.209.8110)291.439/8314293.2PM kg m RT ρ⨯+⨯⨯⨯===⨯解:1-5有个外径为R 2、内径为R 1为的空心球,由密度为ρ’的材料制成。

若将该球完全淹没在某密度为ρ的液体中,若球能在任意位置停留,试求该球的外径与内径之比。

设球内空气重量可略。

3/1'1232'3132)/1(/)3/4())3/4(--=∴=-ρρρπρπR R gR g R R (解:1-6为放大以U 形压差计测气体压强的读数,采用倾斜式U 形压差计。

物理学第3版习题解答_第1章流体的运动

物理学第3版习题解答_第1章流体的运动

v1
(2)
2( 1 ) gr 2 2(0.94 103 1.034 103 ) 10 (1.0 10 6 ) 2 1.9 10 7 m / s 9 9 1.1 10 3
v2
2( 1 )( 2 x)r 2 3.8 10 4 m / s 9
l-2 有一水管,如图所示,设管中的水作稳定流动。水流过 A 管后,分 B、C 两支管流出。已知三管 的横截面积分别为 SA=100 cm2,SB=40 cm2,SC=80 cm2。A、B 两管中的流速分别为 vA=40 cm·s-1 及 vB=30 cm·s-1。则 C 管中的流速 vC 等于多少? 解:根据连续性原理,得
根据连续性方程,得
v2
S1v1 2 6m / s S2
根据伯努利方程,得
h1 0.9m
2
1-9 一个顶端开口的圆筒容器, 高为 20 cm, 直径为 10 cm, 在圆筒的底部中心, 开一横截面积为 1 cm2 的小圆孔,水从圆筒的顶部以 140 cm3·s-1 的流量由水管注入圆筒内。问圆筒中的水面可以升到多大的高 度? 解: v1 1.4m / s 根据伯努利方程方程,得
1-24 粘度 0.8 Pa·s 的甘油流过半径 1.0 cm 的管子,由于粘滞性在 2 m 长的管中产生的压强降落为 9.6×103 Pa。求管心处的流速。
5
解:
v
p 2 R 0.15m / s 4l
1-25 液体中有一个直径为 1 mm 的空气泡。如液体的粘度为 0.15 Pa·s,密度为 0.9×103 kg·m-3, 问空气泡在该液体中匀速上升的速度多大?(空气密度 1.3kg·m-3) 解:
根据伯努利方程,得

流体力学习题解答

流体力学习题解答

《流体力学》选择题库第一章 绪论1.与牛顿内摩擦定律有关的因素是:A 、压强、速度和粘度;B 、流体的粘度、切应力与角变形率;C 、切应力、温度、粘度和速度;D 、压强、粘度和角变形。

2.在研究流体运动时,按照是否考虑流体的粘性,可将流体分为:A 、牛顿流体及非牛顿流体;B 、可压缩流体与不可压缩流体;C 、均质流体与非均质流体;D 、理想流体与实际流体。

3.下面四种有关流体的质量和重量的说法,正确而严格的说法是 。

A 、流体的质量和重量不随位置而变化;B 、流体的质量和重量随位置而变化;C 、流体的质量随位置变化,而重量不变;D 、流体的质量不随位置变化,而重量随位置变化。

4.流体是 一种物质。

A 、不断膨胀直到充满容器的;B 、实际上是不可压缩的;C 、不能承受剪切力的;D 、在任一剪切力的作用下不能保持静止的。

5.流体的切应力 。

A 、当流体处于静止状态时不会产生;B 、当流体处于静止状态时,由于内聚力,可以产生;C 、仅仅取决于分子的动量交换;D 、仅仅取决于内聚力。

6.A 、静止液体的动力粘度为0; B 、静止液体的运动粘度为0;C 、静止液体受到的切应力为0;D 、静止液体受到的压应力为0。

7.理想液体的特征是A 、粘度为常数B 、无粘性C 、不可压缩D 、符合RT p ρ=。

8.水力学中,单位质量力是指作用在单位_____液体上的质量力。

A 、面积B 、体积C 、质量D 、重量 9.单位质量力的量纲是A 、L*T -2B 、M*L 2*TC 、M*L*T(-2)D 、L(-1)*T 10.单位体积液体的重量称为液体的______,其单位。

A 、容重N/m 2B 、容重N/M 3C 、密度kg/m 3D 、密度N/m 311.不同的液体其粘滞性_____,同一种液体的粘滞性具有随温度______而降低的特性。

A 、相同降低 B 、相同升高 C 、不同降低 D 、不同升高 12.液体黏度随温度的升高而____,气体黏度随温度的升高而_____。

流体流动习题及答案

流体流动习题及答案

流体流动习题及答案Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】一、单选题1.单位体积流体所具有的()称为流体的密度。

AA 质量;B 粘度;C 位能;D 动能。

2.单位体积流体所具有的质量称为流体的()。

AA 密度;B 粘度;C 位能;D 动能。

3.层流与湍流的本质区别是()。

DA 湍流流速>层流流速;B 流道截面大的为湍流,截面小的为层流;C 层流的雷诺数<湍流的雷诺数;D 层流无径向脉动,而湍流有径向脉动。

4.气体是()的流体。

BA 可移动;B 可压缩;C 可流动;D 可测量。

5.在静止的流体内,单位面积上所受的压力称为流体的()。

CA 绝对压力;B 表压力;C 静压力;D 真空度。

6.以绝对零压作起点计算的压力,称为()。

AA 绝对压力;B 表压力;C 静压力;D 真空度。

7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。

DA 真空度;B 表压力;C 相对压力;D 绝对压力。

8.当被测流体的绝对压力()外界大气压力时,所用的测压仪表称为压力表。

AA 大于;B 小于;C 等于;D 近似于。

9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。

AA 压力表;B 真空表;C 高度表;D 速度表。

10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。

DA 大气压;B 表压力;C 相对压力;D 绝对压力。

11. 流体在园管内流动时,管中心流速最大,若为湍流时,平均流速与管中心的最大流速的关系为()。

BA. Um=1/2Umax;B. Um=;C. Um=3/2Umax。

12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( )。

AA. 与指示液密度、液面高度有关,与U形管粗细无关;B. 与指示液密度、液面高度无关,与U形管粗细有关;C. 与指示液密度、液面高度无关,与U形管粗细无关。

流体流动习题(计算题)解答

流体流动习题(计算题)解答

习题解答1-41一敞口贮槽中装有油(密度为917kg/m 3)和水,液体总深度为3.66m ,其中油深为3m 。

试计算油水分界处及贮槽底面的压力,分别用绝压和表压表示。

(当地大气压为101.3kPa )解:油水分界处:表压: 绝压:贮槽底面的压力: 表压:绝压:1-42用U 形压力计测量容器内液面上方的压力,指示液为水银。

已知该液体密度为900kg/m 3,h 1=0.3m ,h 2=0.4m ,R=0.4m 。

试求: (1)容器内的表压;(2)若容器内的表压增大一倍,压力计的读数R ‘。

解:(1)如图,1-2为等压面。

则容器内表压:(2)当容器内的表压增大一倍时,此时整理得1-43如图所示,用复式压差计测量某蒸汽锅炉液面上方的压力,指示液为水银,两U 形压差计间充满水。

相对于某一基准面,各指示液界面高度分别为z 0=2.0m, z 2=0.7m, z 4=1.8m, z 6=0.6m, z 7=2.4m 。

试计算锅炉内水面上方的蒸汽压力。

解:等压面:kPa gh p 0.27381.9917111=⨯⨯==ρkPap 12810013.1107.2541=⨯+⨯=kPagh p p 5.3366.081.91000107.242212=⨯⨯+⨯=+=ρkPap 13510013.110347.3542=⨯+⨯=)(211h h g p p ++=ρgR p p a 02ρ+=gR p h h g p a 021)(ρρ+=++kPa h h g gR p p a 2.4781.97.090081.94.013600)(210=⨯⨯-⨯⨯=+-=-ρρ2'2'2R R h h -+=)2()('21'02'1'0'RR h h g gR h h g gR p -++-=+-=ρρρρ表2/)2/(021'g g R h h g p R ρρρ--++=‘表m77.02/81.990081.913600)2/4.07.0(81.9900102.4723=⨯-⨯-⨯⨯+⨯⨯=654321,,p p p p p p ===)(10012z z g p p p a -+==ρ整理得蒸汽表压为1-44精馏塔底部用蛇管加热使液体汽化,液体的饱和蒸汽压为 1.093×105Pa ,液体密度为950 kg/m 3。

02章流体运动习题解答第二版

02章流体运动习题解答第二版

第二章 流体的流动习题解答2-1 注射器活塞的面积为1.2cm 2,注射针头截面积为1.0mm 2,当注射器水平放置时,用的力推动活塞移动了 4.0cm.问药液从注射器中流出所用的时间为多少解:设针管活塞处为点1,针头为点2, 根据伯努利方程可得2222112121v v ρρ+=+p p (水平管) 由于S 1>>S 2 ,针管活塞处的流速为二阶小量,可以忽略 所以两点的压强差为SFp ==∆2221v ρ, 133242s m 0.9mkg 100.1m 102.1N9.422---⋅=⋅⨯⨯⨯⨯==ρS F v 由2211v v S S =得12241261221s m 105.7m102.1s m 0.9m 10-----⋅⨯=⨯⋅⨯==S S v v 所以 s 53.0sm 105.7m100.412211=⋅⨯⨯==---v L t 2-2 已知微风、强风、大风、暴风、12级飓风的风速分别为:~、~、~、~、~36.9m ·s 1,空气密度取1.25kg ·m 3试求它们的动压(用kg ·m 2表示),并分析相对应的陆地地面可能的物体征象.解:由动压公式:2v ρ21=动压p 得 22213m kg 723.0sm 102)s m 4.3(m kg 25.121----⋅=⋅⨯⋅⨯⋅==21v ρ微风1p 222132m kg 82.1sm 102)s m 4.5(m kg 25.121----⋅=⋅⨯⋅⨯⋅==22v ρ微风p 微风的动压为: ~1.82 kg ·m 2.陆地地面可能的物体征象:树叶与微枝摇动不息,旌旗展开. 同理可得:强风的动压为:~11.9 kg ·m 2.陆地地面可能的物体征象:大树枝摇动,电线呼呼有声,打伞困难.大风的动压为:~26.8 kg ·m 2.陆地地面可能的物体征象:树枝折断,逆风行进阻力甚大. 暴风的动压为:~50.4 kg ·m 2.陆地地面可能的物体征象:坚固的房屋也有被毁坏的可能,伴随着广泛的破坏.12级飓风动压为:~86.8 kg ·m 2.陆地地面可能的物体征象:大树可能被连根拔起,大件的物体可能被吹上天空,破坏力极大.2-3 一稳定的的气流水平地流过飞机机翼,上表面气流的速率是80m ·s 1,下表面气流的速率是60 m ·s 1. 若机翼的面积为8.0m 2,问速率差对机翼产生的升力为多少空气的平均密度是l. 25kg ·m 3.解: 根据伯努利方程,上下两表面因速率差产生的压强差为])s m 60()s m 80[(m kg 25.121)(212121212132下2上2下2上---⋅-⋅⋅⨯=-=-=∆v v v v ρρρp 33m N 1075.1-⋅⨯=N 100.70.41075.1)2/(33⨯=⨯⨯=⋅∆=S p F2-4 水管里的水在绝对压强为×l05Pa 的作用下流入房屋,水管的内直径为2.0cm ,管内水的流速为4.0m ·s 1,引入5m 高处二层楼浴室的水管内直径为1.0cm. 求浴室内水的流速和压强.解: 设室外水管截面积为S 1,流速为v 1;浴室小水管的截面积为S 2,流速为v 2。

化工原理--流体流动-习题及答案

化工原理--流体流动-习题及答案

一、单选题1.单位体积流体所具有的()称为流体的密度。

AA质量;B粘度;C位能;D动能。

2.单位体积流体所具有的质量称为流体的()。

AA密度;B粘度;C位能;D动能。

3.层流与湍流的本质区别是()。

DA湍流流速〉层流流速;B流道截面大的为湍流,截面小的为层流;C层流的雷诺数(湍流的雷诺数;D层流无径向脉动,而湍流有径向脉动。

4.气体是()的流体。

BA可移动;B可压缩;C可流动;D可测量。

5.在静止的流体内,单位面积上所受的压力称为流体的()。

C A绝对压力;B表压力;C静压力;D真空度。

6.以绝对零压作起点计算的压力,称为()。

AA绝对压力;B表压力;C静压力;D真空度。

7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。

DA真空度;B表压力;C相对压力;D绝对压力。

8.当被测流体的绝对压力()外界大气压力时,所用的测压仪表称为压力表。

AA大于;B小于;C等于;D近似于。

9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。

AA压力表;B真空表;C高度表;D速度表。

10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。

D A大气压;B表压力;C相对压力;D绝对压力。

11.流体在园管内流动时,管中心流速最大,若为湍流时,平均流速与管中心的最大流速的关系为()。

BA. Um= 1/2Umax;B. Um=0.8Umax;C. Um=3/2Umax。

12.从流体静力学基本方程了解到U型管压力计测量其压强差是()。

AA.与指示液密度、液面高度有关,与U形管粗细无关B.与指示液密度、液面高度无关,与U形管粗细有关;C.与指示液密度、液面高度无关,与U形管粗细无关。

13.层流底层越薄()。

CA.近壁面速度梯度越小;B.流动阻力越小;C.流动阻力越大;D.流体湍动程度越小。

14.双液体U形差压计要求指示液的密度差() CA.大;B.中等;C.小;D.越大越好。

15.转子流量计的主要特点是()。

02章流体运动习题解答(喀蔚波)第二版

02章流体运动习题解答(喀蔚波)第二版

第二章 流体的流动习题解答2-1 注射器活塞的面积为1.2cm 2,注射针头截面积为1.0mm 2,当注射器水平放置时,用4.9N 的力推动活塞移动了4.0cm .问药液从注射器中流出所用的时间为多少?解:设针管活塞处为点1,针头为点2, 根据伯努利方程可得2222112121v v ρρ+=+p p (水平管) 由于S 1>>S 2 ,针管活塞处的流速为二阶小量,可以忽略所以两点的压强差为S F p ==∆2221v ρ, 133242s m 0.9mkg 100.1m 102.1N 9.422---⋅=⋅⨯⨯⨯⨯==ρS F v 由2211v v S S =得12241261221s m 105.7m102.1s m 0.9m 10-----⋅⨯=⨯⋅⨯==S S v v 所以 s 53.0sm 105.7m 100.412211=⋅⨯⨯==---v L t 2-2 已知微风、强风、大风、暴风、12级飓风的风速分别为:3.4~5.4、10.8~13.8、17.2~20.7、24.5~28.4、32.7~36.9m ·s -1,空气密度取1.25kg ·m -3试求它们的动压(用kg ·m -2表示),并分析相对应的陆地地面可能的物体征象. 解:由动压公式:2v ρ21=动压p 得 22213m kg 723.0sm 102)s m 4.3(m kg 25.121----⋅=⋅⨯⋅⨯⋅==21v ρ微风1p 222132m kg 82.1s m 102)s m 4.5(m kg 25.121----⋅=⋅⨯⋅⨯⋅==22v ρ微风p 微风的动压为: 0.723~1.82 kg·m -2.陆地地面可能的物体征象:树叶与微枝摇动不息,旌旗展开.同理可得:强风的动压为:7.29~11.9 kg·m -2.陆地地面可能的物体征象:大树枝摇动,电线呼呼有声,打伞困难.大风的动压为:18.5~26.8 kg ·m -2.陆地地面可能的物体征象:树枝折断,逆风行进阻力甚大.暴风的动压为:37.5~50.4 kg ·m -2.陆地地面可能的物体征象:坚固的房屋也有被毁坏的可能,伴随着广泛的破坏.12级飓风动压为:66.8~86.8 kg ·m -2.陆地地面可能的物体征象:大树可能被连根拔起,大件的物体可能被吹上天空,破坏力极大.2-3 一稳定的的气流水平地流过飞机机翼,上表面气流的速率是80m ·s -1,下表面气流的速率是60 m ·s -1. 若机翼的面积为8.0m 2,问速率差对机翼产生的升力为多少?空气的平均密度是l. 25kg ·m -3.解: 根据伯努利方程,上下两表面因速率差产生的压强差为])s m 60()s m 80[(m kg 25.121)(212121212132下2上2下2上---⋅-⋅⋅⨯=-=-=∆v v v v ρρρp 33m N 1075.1-⋅⨯=N 100.70.41075.1)2/(33⨯=⨯⨯=⋅∆=S p F2-4 水管里的水在绝对压强为4.0×l05Pa 的作用下流入房屋,水管的内直径为2.0cm ,管内水的流速为4.0m ·s -1,引入5m 高处二层楼浴室的水管内直径为1.0cm . 求浴室内水的流速和压强.解: 设室外水管截面积为S 1,流速为v 1;浴室小水管的截面积为S 2,流速为v 2。

流体的运动详细答案解析

流体的运动详细答案解析

习题2-1.一水平圆管,粗处的直径为8cm ,流速为1m•s –1,粗处的直径为细处的2倍,求细处的流速和水在管中的体积流量.2-2.将半径为2cm 的引水管连接到草坪的洒水器上,洒水器装一个有20个小孔的莲蓬头,每个小孔直径为0.5cm .如果水在引水管中的流速为1m•s –1,试求由各小孔喷出的水流速度是多少?2-3.一粗细不均匀的水平管,粗处的截面积为30cm 2,细处的截面积为10cm 2.用此水平管排水,其流量为3×10–3m 3•s –1.求:(1)粗细两处的流速;(2)粗细两处的压强差.2-4.水在粗细不均匀的管中做定常流动,出口处的截面积为10cm 2,流速为2m•s –1,另一细处的截面积为2cm 2,细处比出口处高0.1m .设大气压强P 0≈105Pa ,若不考虑水的黏性,(1)求细处的压强;(2)若在细处开一小孔,水会流出来吗?2-5.一种测流速(或流量)的装置如2-5图所示.密度为ρ的理想液体在水平管中做定常流动,已知水平管中A 、B 两处的横截面积分别为S A 和S B ,B 处与大气相通,压强为P 0.若A 处用一竖直细管与注有密度为ρ'(ρ<ρ')的液体的容器C 相通,竖直管中液柱上升的高度为h ,求液体在B 处的流速和液体在管中的体积流量.2-6.用如图2-6图所示的装置采集气体.设U 形管中水柱的高度差为3cm ,水平管的横截面积S 为12cm 2,气体的密度为2kg•m –3.求2min 采集的气体的体积.2-7.一开口大容器底侧开有一小孔A ,小孔的直径为2cm ,若每秒向容器内注入0.8L 的水,问达到平衡时,容器中水深是多少?2-8.设37℃时血液的黏度η=3.4×10–3Pa•s ,密度ρ=1.05×103kg•m –3,若血液以72cm•s –1的平均流速通过主动脉产生了湍流,设此时的雷诺数为1000,求该主动脉的横截面积.2-9.体积为20cm 3的液体在均匀水平管内从压强为 1.2×105Pa 的截面流到压强为1.0×105Pa 的截面,求克服黏性力所作的功.2-10.某段微血管的直径受神经控制而缩小了一半,如果其他条件不变,问通过它的血流量将变为原来的多少?2-11.假设排尿时,尿从计示压强为5.33×103 Pa 的膀胱经过尿道后由尿道口排出,已知尿道长4cm ,体积流量为21cm 3•s –1,尿的黏度为6.9×10–4 Pa•s ,求尿道的有效直径.2-12.某条犬的一根大动脉,内直径为8mm ,长度为10cm ,流过这段血管的血流流量为1cm 3•s –1,设血液的黏度为2.0×10–3Pa•s .求:(1)血液的平均速度;(2)这段动脉管的流阻;(3)这段血管的血压降落.2-13.设某人的心输出量为8.2×10–5 m 3•s –1,体循环的总压强差为1.2×104Pa ,试求此人体循环的总流阻(也称总外周阻力).2-14.液体中有一空气泡,其直径为lmm ,密度为1.29 kg•m –3,液体的密度为0.9×103 kg•m –3,黏度为0.15Pa•s .求该空气泡在液体中上升的收尾速度.2-15.一个红细胞可近似看为一个直径为5.0×10–6m 、密度为1.09×103kg•m –3的小球.设习题2-5 习题2-6血液的黏度为1.2×10–3Pa•s ,密度为1.03×103kg•m –3.试计算该红细胞在37℃的血液中沉淀2cm 所需的时间.如果用一台加速度为106g 的超速离心机,问沉淀同样距离所需时间又是多少?2-1.一水平圆管,粗处的直径为8cm ,流速为1m•s -1,粗处的直径为细处的2倍,求细处的流速和水在管中的体积流量.解:(1)已知:d 1=8cm ,v 1=1m•s -1,d 1= 2d 2.求:v 2=?,Q =?根据连续性方程1122S S =v v ,有22112244d d ππ=v v ,代入已知条件得()12144m s -==⋅v v(2)水的体积流量为()()2223311122118101 5.02410m s 44Q S S d ππ---====⋅⨯⨯=⨯⋅v v v2-2.将半径为2cm 的引水管连接到草坪的洒水器上,洒水器装一个有20个小孔的莲蓬头,每个小孔直径为0.5cm .如果水在引水管中的流速为1m•s -1,试求由各小孔喷出的水流速度是多少?解:已知:总管的半径r 1=2cm ,水的流速v 1=1m•s -1;支管的半径为r 2=0.25cm ,支管数目为20.求:v 2=?根据连续性方程1122S nS =v v ,有221122r n r ππ=v v ,代入数据,得()()222222101200.2510--⨯⨯=⨯⨯v 从而,解得小孔喷出的水流速度()12 3.2m s -=⋅v .2-3.一粗细不均匀的水平管,粗处的截面积为30cm 2,细处的截面积为10cm 2.用此水平管排水,其流量为3×10-3 m 3•s -1.求:(1)粗细两处的流速;(2)粗细两处的压强差.解:已知:S 1=30cm 2,S 2=10cm 2,Q =3×10-3 m 3•s -1.求:(1) v 1=?,v 2=?;(2) P 1-P 2=?(1)根据连续性方程1122Q S S ==v v ,得()()33111244123103101m s , 3m s 30101010Q Q S S ------⨯⨯===⋅===⋅⨯⨯v v (2)根据水平管的伯努利方程22112211++22P P ρρ=v v ,得粗细两处的压强差 ()()22322312211111031410Pa 222P P ρρ-=-=⨯⨯-=⨯v v 2-4.水在粗细不均匀的管中做定常流动,出口处的截面积为10cm 2,流速为2m•s -1,另一细处的截面积为2cm 2,细处比出口处高0.1m .设大气压强P 0≈105Pa ,若不考虑水的黏性,(1)求细处的压强;(2)若在细处开一小孔,水会流出来吗?解:(1) 已知:S 1=10cm 2,v 1=2m•s -1,S 2=2cm 2,P 1= P 0≈105Pa ,h 2-h 1=0.1m .求:P 2=? 根据连续性方程S 1v 1=S 2v 2,得第二点的流速()111212 510m s S S -===⋅v v v 又根据伯努利方程2211122211+g +g 22P h P h ρρρρ+=+v v ,得第二点的压强 ()()()()()222112125322341-g 211010210109.80.12=5.10210Pa P P h h ρρ=++-=+⨯⨯-+⨯⨯-⨯v v (2) 因为()4205.10210Pa P P =⨯<,所以在细处开一小孔,水不会流出来.2-5.一种测流速(或流量)的装置如右图所示.密度为ρ的理想液体在水平管中做定常流动,已知水平管中A 、B 两处的横截面积分别为S A 和S B ,B 处与大气相通,压强为P 0.若A 处用一竖直细管与注有密度为ρ'(ρ<ρ')的液体的容器C 相通,竖直管中液柱上升的高度为h ,求液体在B 处的流速和液体在管中的体积流量. 解:根据水平管的伯努利方程22A A B B 1122P P ρρ+=+v v 和连续性方程A A B B S S =v v ,解得B 处的流速B S =v 又由竖直管中液柱的高度差,可知B A P P gh ρ'-=,因而B 处的流速为B S =v 进而得水平管中液体的体积流量为B B A Q S S S ==v 习题2-52-6.用如下图所示的装置采集气体.设U 形管中水柱的高度差为3cm ,水平管的横截面积S 为12cm 2,气体的密度为2kg•m -3.求2min 采集的气体的体积. 解:根据水平管的伯努利方程2211221122P P ρρ+=+v v , 因弯管处流速v 2=0,因此上式可化为211212P P ρ+=v , 又由U 形管中水柱的高度差知1、2两处的压强差为21P P gh ρ-=水,联立上面两式,解得气体的流速()1117.15m s -===⋅v 2min 采集的气体的体积为()4311121017.32260 2.5m V S t -=∆=⨯⨯⨯⨯=v2-7.一开口大容器底侧开有一小孔A ,小孔的直径为2cm ,若每秒向容器内注入0.8L 的水,问达到平衡时,容器中水深是多少?解:已知: Q =0.8L ,r 2=1cm .根据连续性方程Q =S 1v 1=S 2v 2,可得小孔处的流速()()312222220.810 2.55m s 3.14110Q Q S r π---⨯====⋅⨯⨯v 又因容器的截面积S 1远大于小孔的截面积S 2,所以v 1≈0.根据伯努利方程 2211122211+g +g 22P h P h ρρρρ+=+v v 因容器上部和底部小孔均通大气,故P 1=P 2=P 0≈1.0×105Pa ,将已知条件代入上式,得 21221g g 2h h ρρρ=+v解得 ()22212 2.550.332m 2g 29.8h h -===⨯v 2-8.设37℃时血液的黏度η=3.4×10-3Pa•s ,密度ρ=1.05×103kg•m -3,若血液以72cm•s -1的平均流速通过主动脉产生了湍流,设此时的雷诺数为1000,求该主动脉的横截面积. 解:根据雷诺数的定义e r R ρη=v ,可知主动脉的半径e R r ηρ=v , 习题2-6代入已知条件,得33323.4101000 4.510m 1.05107210e R r ηρ---⨯⨯===⨯⨯⨯⨯v , 进一步得到主动脉的横截面积()223523.14 4.510=6.3610m S r π--==⨯⨯⨯2-9.体积为20cm 3的液体在均匀水平管内从压强为 1.2×105Pa 的截面流到压强为1.0×105Pa 的截面,求克服黏性力所作的功. 解:根据黏性流体的伯努利方程221112221122P gh P gh ρρρρ++=+++v v w 又因为在均匀水平管中,即v 1=v 2,h 1=h 2,因此单位体积液体克服黏性力做的功12P P =-w那么体积为20cm 3的液体克服黏性力所作的功()()55612 1.210 1.01020100.4J W P P V -=-=⨯-⨯⨯⨯= 2-10.某段微血管的直径受神经控制而缩小了一半,如果其他条件不变,问通过它的血流量将变为原来的多少?解:根据泊肃叶定律知,其他条件不变时,体积流量与半径的四次方成正比.因此,其他条件不变,直径缩小了一半,则通过它的血流量将变为原来的1/16.2-11.假设排尿时,尿从计示压强为5.33×103 Pa 的膀胱经过尿道后由尿道口排出,已知尿道长4cm ,体积流量为21cm 3•s -1,尿的黏度为6.9×10-4 Pa•s ,求尿道的有效直径.解:根据泊肃叶定律,体积流量4π8r P Q Lη∆= 得尿道的有效半径11426444388 6.91041021107.2610m π 3.14 5.3310LQ r P η----⎛⎫⨯⨯⨯⨯⨯⨯⎛⎫===⨯ ⎪ ⎪∆⨯⨯⎝⎭⎝⎭故尿道的有效直径为3=1.4510m d -⨯.2-12.某条狗的一根大动脉,内直径为8mm ,长度为10cm ,流过这段血管的血流流量为1cm 3•s -1,设血液的黏度为2.0×10-3Pa•s .求:(1)血液的平均速度;(2)这段动脉管的流阻;(3)这段血管的血压降落.解:(1)根据体积流量的定义,得血液的平均速度()()61231100.02m s 3.14410Q S ---⨯===⋅⨯⨯v (2) 根据流阻的定义:R =8ηL/πr 4,可得该段动脉管的流阻()()326544388 2.010*******N s m 3.14410L R r ηπ----⨯⨯⨯⨯===⨯⋅⋅⨯⨯ (3) 根据泊肃叶定律:P Q R∆=,得这段血管的血压降落 ()661102102Pa P QR -∆==⨯⨯⨯=2-13.设某人的心输出量为8.2×10-5 m 3•s -1,体循环的总压强差为1.2×104Pa ,试求此人体循环的总流阻(也称总外周阻力).解:根据泊肃叶定律,得此人体循环的总流阻()48551.210 1.4610N s m 8.210P R Q --∆⨯===⨯⋅⋅⨯ 2-14.液体中有一空气泡,其直径为lmm ,密度为1.29 kg•m -3,液体的密度为0.9×103 kg•m -3,黏度为0.15Pa•s .求该空气泡在液体中上升的收尾速度.解:当空气泡在液体所受的重力、黏性阻力与浮力达到平衡时,小球速率达到最大,此后它将匀速上升,即33m 44633r g r r g πρπηπρ'+=v 从而得空气泡在液体中上升的收尾速度()()()()232331m 20.51029.80.910 1.29 3.2610m s 990.15r g ρρη---⨯⨯'=-=⨯⨯⨯-=⨯⋅⨯v 2-15.一个红细胞可近似看为一个直径为5.0×10-6m 、密度为1.09×103kg•m -3的小球.设血液的黏度为1.2×10-3Pa•s ,密度为1.03×103kg•m -3.试计算该红细胞在37℃的血液中沉淀2cm 所需的时间.如果用一台加速度为106g 的超速离心机,问沉淀同样距离所需时间又是多少?解:(1)红细胞在液体所受的重力与黏性阻力和浮力达到平衡,速率达到最大,此后它将匀速下降,即33m 44633r g r g r πρπρπη'=+v 从而得红细胞的收尾速度()()()()262371m 32 2.5109.82 1.09 1.0310 6.810m s 99 1.210r g ρρη----⨯⨯⨯'=-=⨯-⨯=⨯⋅⨯⨯v所以该红细胞在37℃的血液中沉淀2cm 所需的时间()247210 2.9410s 6.810t --⨯==⨯⨯ (2)如果用一台加速度为106g 的超速离心机,则红细胞的收尾速度为()61m m100.68m s -''==⋅v v 所以该红细胞在37℃的血液中沉淀同样距离所需时间()6210 2.9410s t t --'==⨯。

流体的运动 习题解答

流体的运动 习题解答

第三章 流体的运动习题解答1.应用连续性方程的条件是什么?答:不可压缩的流体作定常流动。

2.在推导伯努利方程的过程中,用过哪些条件?伯努利方程的物理意义是什么?答:在推导伯努利方程的过程中,用过条件是不可压缩、无内摩擦力的流体(即理想流体)作定常流动。

方程的物理意义是理想流体作定常流动时,同一流管的不同截面处,单位体积流体的动能、势能与该处压强之和都是相等的。

3.两条木船朝同一方向并进时,会彼此靠拢甚至导致船体相撞。

试解释产生这一现象的原因。

答:因为当两条木船朝同一方向并进时,两船之间水的流速增加,根据伯努利方程可知,它们间的压强会减小,每一条船受到外侧水的压力大,因此两船会彼此靠拢甚至导致船体相撞。

4.冷却器由19根Φ20×2mm (即管的外直径为20mm ,壁厚为2mm )的列管组成,冷却水由Φ54×2mm 的导管流入列管中,已知导管中水的流速为1.4m/s ,求列管中水流的速度。

解:已知Φ120×2mm ,d 1=20-2×2=16mm ,n 1=19,Φ254×2mm ,d 2=54-2×2=50mm ,v 2=1.4m/s ,根据连续性方程知:S 0v 0= S 1v 1+S 2v 2 +……+S n v n ,则72.016194.15041412221122221122211221=⨯⨯==ππ==d n d d n d S n S v v v v m/s5.水管上端的截面积为4.0×10-4m 2,水的流速为5.0 m/s ,水管下端比上端低10m ,下端的截面积为8.0×10-4m 2。

(a)求水在下端的流速;(b)如果水在上端的压强为1.5×105Pa ,求下端的压强。

解:(a)已知S 1=4.0×10-4m 2,v 1=5.0 m/s ,h 1=10m ,S 2=8.0×10-4m 2,1p =1.5×105Pa ,根据连续性方程:S 1v 1=S 2v 2 知:5.2100.80.5100.4442112=⨯⨯⨯==--S S v v ( m/s ) (b) 根据伯努利方程知:222211212121p gh p gh ++=++ρρρρv v ,h 2=0,水ρ=1.0×103 kg/m 3(Pa)106.25.2100.121105.11010100.15100.121212152353232221121⨯=⨯⨯⨯-⨯+⨯⨯⨯+⨯⨯⨯=--++=gh p gh p ρρρρv v 26.水平的自来水管粗处的直径是细处的两倍。

流体力学课后作业答案

流体力学课后作业答案

49
2.37 圆柱体直径d=2m,长l=5m,放置于60°的斜
面上,求水作用于圆柱体上的静水总压力大小及其

作用方向。


解: Px ghxC Ax

9800 d cos 60 d cos 60 5
2
60°
24.5kN
V

1 2
V圆

V三角
[1 (d )2
22
1 d sin 60 2
0


R3 H3
h3dh
=39.6N m
33
1-13 水暖系统为防止水温升高时体积膨胀将水管胀裂, 在系统顶部设膨胀水箱,若系统内水的总体积V=8m3,
流 体 力
加温前后温差为50ºC,水的体膨胀系数为0.0005 1/ºC, 学
求膨胀水箱的最小容积。
dV
解:由
V

V dt
dV V dt V 0.0005508 0.2m3
若反向流动,Q不变,Re不变,λ不变,hf不变,
所以h不变,只是反向高差为9cm。
26
4-20 环形断面管道中水温10℃,流量Q=400L/min,
当量粗糙高度K=0.15mm,d=75mm,D=100mm。求 流
在管长l=300m管段上的沿程水头损失。

解: v Q 4Q 1.94m/s
34
第二章习题解答
2-29 有一容器上部盛油h1=1m,ρ1=800kg/m3,下部盛水 h2=2m,侧壁倾角θ=60º。求容器壁上单宽静水压力及作用 位置。
解:F1 1gh1C A1
油 h1
8009.8 0.5 (1/ sin 60) 1 4.52kN

《流体力学》课后习题详细解答

《流体力学》课后习题详细解答
克服轴承摩擦所消耗的功率为
1-8解:
或,由 积分得
1-9解:法一:5atm
10atm
=0.537 x 10-9x (10-5) x98.07 x 103= 0.026%
法二: ,积分得
1-10解:水在玻璃管中上升高度
h =
水银在玻璃管中下降的高度
H= mm
第二章流体静力学
2-1解:已知液体所受质量力的x向分量为–a ,z向分量为-g。液体平衡方程为
重心C位于浮心之上,偏心距
沉箱绕长度方向的对称轴y轴倾斜时稳定性最差。浮面面积A=15m2。浮面关于y
轴的惯性矩和体积排量为
定倾半径
可见, >e,定倾中心高于重心,沉箱是稳定的。
第三章流体运动学
3-1解:质点的运动速度
质点的轨迹方程
3-Байду номын сангаас解:
由 和 ,得

3-3解:当t=1s时,点A(1,2)处的流速
线速度u = 0r,速度环量
(2)半径r+dr的圆周封闭流线的速度环量为

忽略高阶项2 0dr2,得d
(3)设涡量为 ,它在半径r和r+dr两条圆周封闭流线之间的圆环域上的积分为d 。因为 在圆环域上可看作均匀分布,得
将圆环域的面积dA=2 rdr代入该式,得
可解出 =2 + dr/r。忽略无穷小量 dr/r,最后的涡量
沉箱绕长度方向的对称轴y倾斜时稳定性最差。浮面面积A=15m2.浮面关于y轴的惯性矩和体积排量为
定倾半径
可见, ,定倾中心低于重心,沉箱是不稳定的。
(2)沉箱的混凝土体积
沉箱的重量
沉箱水平截面面积
设吃水深度为h,取水的密度 =1000kg/m3.浮力F等于重量G。有

化工原理习题第一部分流体流动解答

化工原理习题第一部分流体流动解答

化⼯原理习题第⼀部分流体流动解答化⼯原理习题:第⼀部分流体流动⼀、填空1.流体在圆形管道中作层流流动,如果只将流速增加⼀倍,则阻⼒损失为原来的 2 倍;如果只将管径增加⼀倍⽽流速不变,则阻⼒损失为原来的 1/4 倍。

2.离⼼泵的特性曲线通常包括 H-Q 曲线、η-Q 和 N-Q 曲线,这些曲线表⽰在⼀定转速下,输送某种特定的液体时泵的性能。

3.处于同⼀⽔平⾯的液体,维持等压⾯的条件必须是静⽌的、连通着的、同⼀种连续的液体。

流体在管内流动时,如要测取管截⾯上的流速分布,应选⽤⽪托流量计测量。

4.⽜顿粘性定律的表达式τ=µ,其应⽤条件是⽜顿型流体层(滞)流流体。

5.如果流体为理想流体且⽆外加功的情况下,写出:单位质量流体的机械能衡算式为常数=++=gp g u z E ρ22 ;单位重量流体的机械能衡算式为常数=++=p u gz E 22ρρ;单位体积流体的机械能衡算式为常数=++=gp g u z E ρ22; 6.有外加能量时以单位体积流体为基准的实际流体柏努利⽅程为 z 1ρg+(u 12ρ/2)+p 1+W s ρ= z 2ρg+(u 22ρ/2)+p 2 +ρ∑h f ,各项单位为 Pa (N/m 2)。

7.⽓体的粘度随温度升⾼⽽增加,⽔的粘度随温度升⾼⽽降低。

8.流体在变径管中作稳定流动,在管径缩⼩的地⽅其静压能减⼩。

9.并联管路中各管段压强降相等;管⼦长、直径⼩的管段通过的流量⼩。

10 在离⼼泵⼯作时,⽤于将动能转变为压能的部件是____泵壳__________。

11.测流体流量时,随流量增加孔板流量计两侧压差值将增加,若改⽤转⼦流量计,随流量增加转⼦两侧压差值将不变。

12. 离⼼泵的轴封装置主要有两种:填料密封和机械密封。

13.若被输送的流体粘度增⾼,则离⼼泵的压头降低,流量减⼩,效率降低,轴功率增加。

14.雷诺准数的表达式为_____ Re=duρ/µ___________。

医用物理习题集(第三章 流体的运动)

医用物理习题集(第三章 流体的运动)

第三章 流体的运动一.目的要求:1.掌握理想流体和稳定流动的概念,连续性方程和伯努利方程的物理意义并熟练应用,掌握粘滞定律和泊肃叶定律的意义和应用。

2.理解粘性流体伯努利方程的物理意义,层流和湍流,雷诺数,斯托克斯定律及应用。

二.要点:1.理想流体是流体的理想模型。

绝对不可压缩和没有内摩擦力(即没有粘滞性)的流体称为理想流体。

2.连续性方程2211v S v S Q ==是绝对不可压缩的流体稳定流动时体积流量守恒的数学表述,是质量流量守恒在绝对不可压缩的流体稳定流动时的特例。

3.伯努利方程从能量的角度研究流体的运动规律,是流体动力学基本方程,其适用条件是:理想流体、稳定流动。

对同一流管中的各截面或同一流线上的各点都有:常量=++gh v P ρρ221该方程是理想液体作稳定流动时的功能关系。

要掌握在各种条件下,该方程的具体应用。

4.实际液体流动时由于具有内摩擦力f 形成层流,各液层间速度差异的程度用速度梯度dxdv 来描述。

牛顿层流关系式dx dvS f η=给出了内摩擦力与速度梯度的关系,同时也给出粘度dxdvS f⋅=η的物理意义。

要注意η取决于液体本身的性质并与温度有关。

5.流体发生湍流时所消耗的能量比层流多,雷诺数ηρvrR e =可帮助我们判断在什么情况下容易产生湍流。

6.泊肃叶定律给出了实际液体在水平均匀细圆管中稳定流动时,流量或某一截面处平均流速与管径、管长、管两端压强差、液体粘度之间的关系。

fR P L P s L P R Q ∆=∆=∆=ηπηπ8824 或 L Ps L P R v ηπη882∆=∆= 流阻4288RLS L R f πηπη==,其串联、并联规律与电学中电阻的串联并联规律对应。

并应注意流管半径的微小变化会引起流阻的很大变化。

实际液体在水平均匀细圆管中稳定流动时,是分层流动,流速v 沿管径方向呈抛物线分布:)(22214r R LP P v --=η。

在管轴处)0(=r ,速度取得最大值:2214R LP P v η-=max ,在管壁处)(R r =,速度取得最小值0 。

第1章 流体流动 习题及参考答案

第1章  流体流动 习题及参考答案

一、单选题1.单位体积流体所具有的()称为流体的密度。

AA 质量;B 粘度;C 位能;D 动能。

2.单位体积流体所具有的质量称为流体的()。

AA 密度;B 粘度;C 位能;D 动能。

3.层流与湍流的本质区别是()。

DA 湍流流速>层流流速;B 流道截面大的为湍流,截面小的为层流;C 层流的雷诺数<湍流的雷诺数;D 层流无径向脉动,而湍流有径向脉动。

4.气体是()的流体。

BA 可移动;B 可压缩;C 可流动;D 可测量。

5.在静止的流体内,单位面积上所受的压力称为流体的()。

CA6A7A8A9.(A10AA. 恒截面、恒压差;B. 变截面、变压差;C. 恒流速、恒压差;D. 变流速、恒压差。

16.层流与湍流的本质区别是:( )。

DA. 湍流流速>层流流速;B. 流道截面大的为湍流,截面小的为层流;C. 层流的雷诺数<湍流的雷诺数;D. 层流无径向脉动,而湍流有径向脉动。

17.圆直管内流动流体,湍流时雷诺准数是()。

BA. Re ≤ 2000;B. Re ≥ 4000;C. Re = 2000~4000。

18.某离心泵入口处真空表的读数为 200mmHg ,当地大气压为101kPa, 则泵入口处的绝对压强为()。

AA. 74.3kPa;B. 101kPa;C. 127.6kPa。

19.在稳定流动系统中,水由粗管连续地流入细管,若粗管直径是细管的2倍,则细管流速是粗管的()倍。

CA. 2;B. 8;C. 4。

20.流体流动时产生摩擦阻力的根本原因是()。

CA. 流动速度大于零;B. 管边不够光滑;C. 流体具有粘性。

21.在相同条件下,缩小管径,雷诺数()。

AA. 增大;B. 减小;C. 不变。

22.水在园形直管中作滞流流动,流速不变,若管子直径增大一倍,则阻力损失为原来的()。

AA. 1/4;B. 1/2;C. 2倍。

23.单位时间内流过管道任意截面的流体量称为()。

第三章 流体的运动习题解答

第三章 流体的运动习题解答

第三章流体的运动习题解答2-1 有人认为从连续性方程来看管子愈粗流速愈慢,而从泊肃叶定律来看管子愈粗流速愈快,两者似有矛盾,你认为如何?为什么?解:对于一定的管子,在流量一定的情况下,管子愈粗流速愈慢;在管子两端压强差一定的情况下,管子愈粗流速愈快。

2-2水在粗细不均匀的水平管中作稳定流动。

已知截面S1处的压强为110P a,流速为0.2m/s,截面S2处的压强为5P a,求S2处的流速(内摩擦不计)。

解:由伯努利方程在水平管中的应用P1+=P2+代入数据110+0.5×1.0×103×0.22=5+0.5×1.0×103×得=0.5 m/s2-3 水在截面不同的水平管中作稳定流动,出口处的截面积为管的最细处的3倍。

若出口处的流速为2m/s,问最细处的压强为多少?若在此最细处开一小孔,水会不会流出来?解:由连续性方程S1v1=S2v2,得最细处的流速v2=6m/s,再由伯努利方程在水平管中的应用P1+=P2+代入数据 1.01×105+0.5×1.0×103×62=P2+0.5×1.0×103×62得: 管的最细处的压强为P2=0.85×105P a可见管最细处的压强0.85×105P a,小于大气压强 1.01×105P a,所以水不会流出来。

2-4在水平管的某一点,水的流速为2m/s,高出大气压的计示压强为104P a,管的另一点高度比第一点降低了1m,如果在第二点处的横截面积是第一点的半,求第二点的计示压强。

解:由连续性方程S1v1=S2v2,得第二点处的流速v2=4m/s,再由伯努利方程求得第二点的计示压强为P2-P= P1-P-+ρgh 代入数据得P2-P=1.38×104(P a)第二点的计示压强为 1.38×104P a2-5一直立圆形容器,高0.2m,直径为0.1m,顶部开启,低部有一面积为10-4m2的小孔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章流体的运动习题解答1.应用连续性方程的条件是什么?答:不可压缩的流体作定常流动。

2.在推导伯努利方程的过程中,用过哪些条件?伯努利方程的物理意义是什么?答:在推导伯努利方程的过程中,用过条件是不可压缩、无内摩擦力的流体(即理想流体)作定常流动。

方程的物理意义是理想流体作定常流动时,同一流管的不同截面处,单位体积流体的动能、势能与该处压强之和都是相等的。

3.两条木船朝同一方向并进时,会彼此靠拢甚至导致船体相撞。

试解释产生这一现象的原因。

答:因为当两条木船朝同一方向并进时,两船之间水的流速增加,根据伯努利方程可知,它们间的压强会减小,每一条船受到外侧水的压力大,因此两船会彼此靠拢甚至导致船体相撞。

4.冷却器由19根Φ20×2mm(即管的外直径为20mm,壁厚为2mm)的列管组成,冷却水由Φ54×2mm的导管流入列管中,已知导管中水的流速为1.4m/s,求列管中水流的速度。

解:已知Φ120×2mm,d1=20-2×2=16mm,n1=19,Φ254×2mm,d2=54-2×2=50mm ,v 2=1.4m/s ,根据连续性方程知:S 0v 0= S 1v 1+S 2v 2 +……+S n v n ,则72.016194.15041412221122221122211221=⨯⨯==ππ==d n d d n d S n S v v v v m/s5.水管上端的截面积为4.0×10-4m 2,水的流速为5.0 m/s ,水管下端比上端低10m ,下端的截面积为8.0×10-4m 2。

(a)求水在下端的流速;(b)如果水在上端的压强为1.5×105Pa ,求下端的压强。

解:(a)已知S 1=4.0×10-4m 2,v 1=5.0 m/s ,h 1=10m ,S 2=8.0×10-4m 2,1p =1.5×105Pa ,根据连续性方程:S 1v 1=S 2v 2 知:5.2100.80.5100.4442112=⨯⨯⨯==--S S v v ( m/s ) (b) 根据伯努利方程知:222211212121p gh p gh ++=++ρρρρv v ,h 2=0,水ρ=1.0×103 kg/m 3(Pa)106.25.2100.121105.11010100.15100.121212152353232221121⨯=⨯⨯⨯-⨯+⨯⨯⨯+⨯⨯⨯=--++=gh p gh p ρρρρv v 26.水平的自来水管粗处的直径是细处的两倍。

如果水在粗处的流速和压强分别是1.00 m/s 和1.96×105Pa ,那么水在细处的流速和压强各是多少? 解:(a)已知d 1=2 d 2,v 1=1.00m/s ,1p =1.96×105Pa ,根据连续性方程知:S 1v 1=S 2v 200.400.1)2(4141222222121*********=⨯==ππ==d d d d d d S S v v v v (m/s) (b) 根据伯努利方程知(水平管):222112121p p 2+=+v v ρρ 52352322121210885.100.410211096.100.110212121⨯=⨯⨯-⨯+⨯⨯=-+=v v ρρp p (Pa)7.利用压缩空气,把水从一密封的筒内通过一根管以1.2 m/s 的流速压出。

当管的出口处高于筒内液面0.60m 时,问筒内空气的压强比大气压高多少?解:已知v 1=1.2m/s ,h 1=0.60m ,1p =0p ,根据伯努利方程知:222211212121p gh p gh ++=++ρρρρv v 由于S 1<< S 2,则v 2=0,因此332312102106.66.08.9102.1102121⨯=⨯⨯+⨯⨯=+=-gh p p ρρv (Pa)8.汾丘里流速计主管的直径为0.25m ,细颈处的直径为0.10m ,如果水在主管的压强为5.5×104Pa ,在细颈处的压强为4.1×104Pa ,求水的流量是多少?解:已知d 1=0.25m ,d 2=0.10m ,1p =5.5×104Pa ,2p =4.1×104Pa ,根据汾丘里流速计公式知:/s)(m 102.4)1.025.0(1010)1.45.5(21.025.014.341)()(241)()2(32443422424121222122212121-⨯=-⨯⨯-⨯⨯⨯⨯⨯=--π=--=d d p p d d S S p p S S Q ρρ9.一水平管道内直径从200mm 均匀地缩小到100mm ,现于管道中通以甲烷(密度ρ=0.645 kg/m 3),并在管道的1、2两处分别装上压强计(如图3-1),压强计的工作液体是水。

设1处U 形管压强计中水面高度差h 1=40mm ,2处压强计中水面高度差h 2=-98mm (负号表示开管液面低于闭管液面),求甲烷的体积流量Q 。

解:已知d 1=200mm=0.200m ,d 2=100mm=0.100m ,ρ=0.645kg/m 3,'ρ=1.0×03kg/m 3,h 1=40mm=0.040m ,h 2=-98mm=-0.098m ,根据汾丘里流速计公式知:)s m (525.0)1.02.0(645.0)098.0040.0(8.9100.121.02.014.341)()('241)()2(344322424121222122212121 /=-⨯+⨯⨯⨯⨯⨯⨯⨯⨯=--π=-=d d h h g d d S S p p S S Q ρρρ-10.将皮托管插入河水中测量水速,测得其两管中水柱上升的高度各为0.5cm 和5.4cm ,求水速。

解:已知h 1=5.4cm=0.054m ,h 2=0.5cm=0.005m ,根据比托管流速计公式知:98.0)005.0054.0(8.92)(221=-⨯⨯=-=h h g v (m/s)11.如果图3-2所示的装置是一采气管,采集CO 2气体,如果压强计的水柱差是2.0cm ,采气管的横截面积为10cm 2。

求5分钟所采集的CO 2的量是多少m 3?已知CO 2的密度为2kg/m 3。

解:已知h =2.0cm=0.02m ,S =10cm 2,t =5min ,ρ=2kg/m 3,'ρ=1.0×03kg/m 3,根据比托管流速计公式知:14202.08.9100.12'23=⨯⨯⨯⨯==ρρghv (m/s)所以5min 采集的CO 2为:334102.4)m (2.4605141010⨯==⨯⨯⨯⨯==-vt V S (L)12.水桶底部有一小孔,桶中水深h =0.3m 。

试求在下列情况下,从小孔流出的水相对于桶的速度:(a)桶是静止的;(b)桶匀速上升。

解:(a)已知h 1=0.30m ,021p p p ==,S 1>> S 2,桶是静止时,根据伯努利方程知: 222211212121p gh p gh ++=++ρρρρv v ,由于S 1>> S 2,则v 1=0,因此 42.23.08.92212=⨯⨯==gh v (m/s)(b)桶匀速上升时,v 2=2.42 (m/s)13.注射器的活塞截面积S 1=1.2cm 2,而注射器针孔的截面积S 2=0.25mm 2。

当注射器水平放置时,用f =4.9N 的力压迫活塞,使之移动l =4cm ,问水从注射器中流出需要多少时间?解:已知S 1=1.2cm 2,S 2=0.25mm 2,f =4.9N ,l =4cm ,作用在活塞上的附加压强:4411008.4102.19.4⨯=⨯==∆-S f p (pa),根据水平管的伯努利方程知: 2221212121p p +=+v v ρρ 由于p p p ∆+=01,02p p =,S 1>> S 2,则v 1≈0,因此91011008.422)234212=⨯⨯⨯=∆=-(=ρρp p p v (m/s) 根据连续性方程知:S 1v 1=S 2v 20188.0102.191025.0461221=⨯⨯⨯==--S S v v (m/s)13.20188.004.01===v l t (s)14.用一截面为5.0cm 2的虹吸管把截面积大的容器中的水吸出。

虹吸管最高点在容器的水面上1.20m 处,出水口在此水面下0.60m 处。

求在定常流动条件下,管内最高点的压强和虹吸管的流量。

解:(a)已知S D =5.0cm 2=5.0×10-4m 2,h B =1.20m ,h D =-0.60m ,S A >> S D ,如图3-10所示,选取容器内液面A 为高度参考点,对于A 、D 两处,0p p p D A ===1.013×105 Pa ,应用伯努利方程,则有:D D A A gh gh ρρρρ+=+222121v v 43.36.08.922)(2=⨯⨯==-=AD D A D gh h h g v (m/s)B 、D 两处(均匀管)应用伯努利方程得: D D B B p gh p gh +=+ρρ5351084.0)20.160.0(8.91010013.1)(⨯=--⨯⨯+⨯=-+=B D D B h h g p p ρ(pa) (b)Q =S D v D = 5.0×10-4×3.43=1.72×10-3 (m 3/s)15.匀速地将水注入一容器中,注入的流量为Q =150 cm 3/s ,容器的底部有面积S =0.50cm 2的小孔,使水不断流出。

求达到稳定状态时,容器中水的高度。

解:已知Q =150 cm 3/s=1.5×10-4m 3/s ,S 2=0.5cm 2=5.0×10-5m 2,因为以一定流量为Q 匀速地将水注入一容器中,开始水位较低,流出量较少,水位不断上升,流出量也不断增加,当流入量等于流出量时,水位就达到稳定,则:gh 22=v 和gh S Q 222=45.0102)100.5()1050.1(225242222=⨯⨯⨯⨯=⨯=--g S Q h (m)16.如图3-3所示,两个很大的开口容器B 和F ,盛有相同的液体。

由容器B 底部接一水平管子BCD ,水平管的较细部分C 处连接到一竖直的E 管,并使E 管下端插入容器F 的液体内。

假设液流是理想流体作定常流动。

相关文档
最新文档