超疏水材料研究进展

合集下载

超疏水材料的合成与性能研究

超疏水材料的合成与性能研究

超疏水材料的合成与性能研究近年来,超疏水材料作为一种具有特殊性质的材料引起了广泛的关注。

它具有极低的表面能和出色的防水性能,能够将水和其他液体完全排斥在其表面上,同时对不同形态的液滴表现出独特的润湿行为。

超疏水材料在防水、自清洁、抗污染、微流体传感器、润滑和能源等方面具有广泛的应用前景。

本文将探讨超疏水材料的合成方法和性能研究的最新进展。

一、超疏水材料的合成方法超疏水表面的制备与材料的结构有着密切的关系。

有许多方法可以用来合成超疏水材料,包括化学法、物理法和生物法。

其中,化学法是最常用和有效的方法之一。

1. 化学法化学合成是一种通过表面改性来实现超疏水性的方法。

常见的合成方法之一是利用表面活性剂,通过改变物质的表面能来实现超疏水性。

例如,将纳米颗粒或纳米结构分别溶于表面活性剂中,然后在基材表面上形成涂层。

这样的涂层可以降低基材表面的能量,从而实现超疏水性能。

2. 物理法物理法合成超疏水材料主要包括表面纳米结构化和表面涂层两种方法。

在表面纳米结构化的方法中,通过一系列的制备步骤,将表面的结构化特征的尺寸控制在纳米尺度范围内。

这些纳米结构可以改变表面的形态和化学成分,从而实现超疏水性。

表面涂层法则是将超疏水材料溶液涂覆在基材表面,通过固化形成覆盖层。

这种方法具有简单、易操作的特点。

3. 生物法生物法合成超疏水材料是利用生物体自身的优良特性来实现。

例如,在一些昆虫或植物的表面上,存在特殊的微米级或纳米级结构,使得其表面具有超疏水性。

研究者们通过模仿这些生物体的结构和特性,合成超疏水材料。

这些生物法合成的超疏水材料具有环境友好、可持续等优点。

二、超疏水材料的性能研究超疏水材料不仅具有出色的防水性能,还具有其他一些特殊的性能。

研究者们对超疏水材料的各项性能进行了广泛的研究和探索。

1. 防水性能超疏水材料的防水性能是其最重要的特点之一。

具有超疏水性的材料可以将水和其他液体完全排斥在其表面上,不会吸收任何液体。

中国在超疏水材料研究方面的进展

中国在超疏水材料研究方面的进展

中国在超疏水材料研究方面的进展分子一班 张雷 3013207391Abstract :摘要:具有超疏水性、超双疏性等的微纳复合材料在人们的日常生活和国民生产各个部门都有着广泛的应用前景,因而也引起科学界的广泛关注。

由于固体表面的浸润性决定于其表面的化学组成和表面形貌,因此通过改变固体的表面自由能和表面形貌可以实现对固体材料表面浸润性控制。

近些年来,这方面的研究吸引了许多科学家和课题组的注意。

可以说,超疏水、超双疏材料的制备正成为一个研究的热点问题。

本文在查阅有关文献的基础上,分析中国在超疏水、超双疏材料制备方面的进展。

关键词:超疏水、超双疏、表面改性、润湿性1、背景:表面润湿性是指液体(通常为水)在固体材料表面的铺展能力。

它是固体表面的重要性质之一, 许多物理化学过程,如吸附、润滑、黏合、分散和摩擦等均与表面的润湿性密切相关1。

研究表明, 固体表面的润湿性是由其化学组成和微观几何结构共同决的, 定外场如光、电、磁、热等对固体表面的润湿性也有很大的影响2。

固体表面的润湿性通常用水滴在其表面上形成的接触角来衡量, 接触角小于9 0°的表面称为亲水表面,大于9 0°的表面称为疏水表面, 而超疏水固体表面是指与水的接触角为1 5 0°以上的表面。

自然界中存在很多超疏水表面, 最典型的如以荷叶为代表的多种植物叶子表面(荷叶效应Lotus-effect)、蝴蝶等鳞翅目昆虫的翅膀以及水鸟的羽毛等3。

受这些自然界中现象的启发,许多课题组都开展了超疏水材料制备方面的研究。

2、超疏水材料制备方法分类:2.1 模板法:江雷课题组组报道了一种以多孔氧化铝为模板制备超疏水材料的方法2。

具体是将一定孔径的氧化铝模板覆盖在聚碳酸酯(PC)膜上,然后加热PC膜将其溶化并将其压入模板的孔内,最后除去模板即可得到纳米棒状的阵列结构。

将模板制备成圆筒状重复上述过程可以得到大面积的阵列PC纳米棒。

2.2气相沉积法(CVD)气相沉积法(CVD)是一种制备微米、纳米结构的有效方法4,因此在近年来在材料学和其它领域获得广泛应用。

超疏水表面的研究进展

超疏水表面的研究进展
政策与资金支持
政府和相关机构应提供政策支持和资金扶持,以 促进超疏水表面技术的跨学科合作和技术转化。
05
超疏水表面的最新研究动态
高性能超疏水表面的研究
高耐久性超疏水表面
通过优化材料和制备工艺,提高超疏水表面的耐久性,使其在长期使用过程中保 持稳定的超疏水性能。
多功能超疏水表面
除了超疏水性能外,还具备其他功能,如自清洁、防冰冻、抗腐蚀等,以满足更 多实际应用需求。
形成机制
物理机制
超疏水表面的形成依赖于表面微观结构与空气层 的共同作用,使水滴在表面形成球状,易于滚动 和脱离。
化学机制
通过在表面引入低表面能物质,如氟代烃或硅氧 烷,增加表面的疏水性。
表面微观结构
01
粗糙结构
超疏水表面的微观结构具有复杂的粗糙度,能够 捕获和固定大量空气,降低表面能。
02
微纳复合结构
超疏水表面的研究进 展
目录
• 超疏水表面的基本原理 • 超疏水表面的制备方法 • 超疏水表面的应用领域 • 超疏水表面的研究挑战与展望 • 超疏水表面的最新研究动态
01
超疏水表面的基本原理
定义与特性
定义
超疏水表面是指水滴在表面接触角大于150°,滚防污、防冰、自清洁等 特性。
中的问题。
技术成熟度
目前超疏水表面技术尚未完全成 熟,需要进一步的研究和优化以
提高其性能和稳定性。
跨学科合作与技术转化问题
1 2 3
知识交流与共享
跨学科合作需要不同领域的专家进行深入的知识 交流与共享,以促进超疏水表面技术的创新和发 展。
技术转化效率
将实验室研究成果转化为实际应用需要高效的转 化机制和技术支持,以确保技术的可行性和可持 续性。

超疏水材料研究进展

超疏水材料研究进展

超疏水材料的研究进展2015年5月3日超疏水材料的研究进展摘要:超疏水性材料因为它独特的性质,而在很多方面得到了广泛的应用。

近年来,许多具有特殊润湿性的动植物表面同样受到关注。

通过研究这些表面微观结构,人们成功地仿生制备出各种功能化超疏水表面,从而更好地满足工业中实际应用的需要。

该综述简单地介绍了表面润湿的基本原理和一些自然界中的超疏水表面现象,重点介绍近几年超疏水表面应用的最新研究进展。

最后,对超疏水表面研究的未来发展进行了展望。

关键词:超疏水、仿生、润湿、功能化表面自然界中,经亿万年的自然选择,许多生物的表面都表现出优良的超疏水性能,比如荷叶、花生叶、莲叶等植物表面和水黾、鲨鱼表皮、沙漠甲虫、蝴蝶翅膀等动物体表。

一直以来,这类自然现象都启发着各领域的科学工作者们,尤其是近几十年,仿生超疏水表面以其优越的防腐蚀、自清洁、防覆冰、抗菌等性能,在防腐、自清洁、建筑防水、流体减阻、防污等领域都有广泛的应用[1]。

因此,对超疏水材料进行总结和展望,对这种材料的发展有重要的意义。

1超疏水原理超疏水表面的定义可以从字面意思上进行理解,即指难以湿润的表面,固体表面的湿润性作为固体表面重要的特性之一,不仅受到固体表面粗糙度的影响,还受固体表面化学成分的影响,我们可以用液体与固体的接触角θ来作为是否湿润的判断依据。

接触角越大,表面的疏水效果越好,反之亦然[2]。

当θ=0°时,所表现为完全湿润;当θ<90°时,表面为可湿润,也叫做亲液表面;当θ>90°时,表面则为不湿润的疏离表面;当θ=180°时,则为完全不湿润。

一般θ>150°被称为超疏水表面[3]。

接触角是衡量表面疏水性涂层湿润性的主要指标,但并不是唯一指标,在实际应用中还可以根据前进角、后退角的大小来考虑其动态过程。

前进角与后退角是液滴前进或后退时与固体表面所成的临界角度。

但是如果不断增加或减小固体表面上液滴的体积,不管是粗糙的固体表面还是光滑的固体表面,液滴都无法立即达到平衡状态,这种现象称为接触角的粘滞性。

超疏水材料的研究进展

超疏水材料的研究进展

捷的合成方法制备出有机/无机树莓状结构的微球。

分别采用乳液聚合法和分散聚合法制备出粒径为微米级和纳米级左右的PS 高精度微球。

为制备出微球的阶层结构,可采用简单物理混合的方法,经过疏水化处理后的微球,可将其用于铜网的表面修饰,发现可以得到相同的高效油水分离特性的铜网,呈现出超疏水优良的特性。

1.3 绿色无氟超疏水材料郗盼毅等[4]用模板法通过模板“镜像”效应,以新鲜荷叶为模板,聚二甲基硅氧烷(PDMS)为密封材料,使天然的竹材表面呈现出微纳米层次的乳头状凸起结构;涂覆法是将样品完全浸入含有低表面能材料的化学溶液中,然后进行干燥固化成型;电放技术是用聚合物溶液在电场库仑力的作用下被极度拉伸的情况下形成喷射出高速细流,随后落在基板上形成微/纳米纤维膜。

2 超疏水材料的应用在各个领域,超疏水材料的应用不仅相当广泛而且有极大的进展。

因其优异的超疏水性而具备防腐蚀、自清洁、防覆冰的性能,广泛运用于各个邻域,其中包括对金属材料、纺织材料、木材材料、生物组织、口腔医学等,由此可见超疏水材料有着巨大的发展前景和商业潜力[2]。

2.1 金属材料领域的应用利用超疏水材料的防腐蚀特性,可将超疏水材料作为金属涂层保护金属。

SULTONZODA Firdavs 等[5]用硬脂酸乙醇溶液处理后,铝合金表面获得了铝与水在60 ℃下反应形成的纳米-微米二级粗结构。

另外,硬脂酸在铝合金的表面上具有长的键合分支,从0 引言超疏水材料是一种新型材料,广泛应用于各个领域,用于在金属材料领域则具有保护作用,起到了耐腐蚀的效果。

实验证明经过加工该材料也能起到自清洁及耐磨的能力。

随着超疏水材料应用的增加,所面临的问题也在变多,其稳定性成了该材料发展的研究之重。

1 超疏水材料的简介超疏水虽然是一种新型材料,但在自然界中,许多植物叶表面、鸟禽羽毛都具有超疏水性的特点,如蜻蜓的翅膀、池塘的荷叶等[1]。

目前超疏水材料分为两大类:天然和人工合成。

天然的超疏水材料大多来源于自然界的动植物,具有良好的相适应性并且易降解,具有亲水基团,对环境友好。

高性能超疏水材料的制备与应用研究

高性能超疏水材料的制备与应用研究

高性能超疏水材料的制备与应用研究近年来,高性能超疏水材料的制备与应用研究在科技领域引起了广泛的关注。

这类材料具有特殊的表面结构和化学性质,能够迅速排斥液体,同时还具备优异的自清洁和抗污染能力。

本文将从制备方法和应用前景两个方面探讨高性能超疏水材料的研究进展。

一、制备方法高性能超疏水材料的制备是实现其功能性的首要步骤。

目前已经有多种方法被开发出来,如模板法、化学改性、激光刻蚀等。

其中,模板法是较为常见和经典的一种制备方法。

这种方法通过使用特殊的模板结构来构建高密度、微小尺寸的纳米结构,从而实现疏水材料表面的微纳结构化,以增加接触角。

另一种方法是化学改性,它通过在材料表面引入疏水基团或在材料内部引入纳米颗粒,改变材料的化学性质以提高疏水性能。

激光刻蚀则是一种快速制备微纳结构的方法,通过激光束在材料表面局部熔化和蒸发,形成微小的柱状或碗状结构,从而实现超疏水性能。

二、应用前景由于高性能超疏水材料的独特性能,其应用前景广阔。

首先,该类材料在防污和自清洁方面表现出色。

由于其超疏水性能,液体在其表面无法附着,从而避免了污染物的沾染。

这使得高性能超疏水材料在建筑材料、车身涂层等领域具备了广泛的应用前景。

另外,超疏水材料还能应用于油水分离、水滴操控等技术领域。

例如,利用超疏水材料制备的油水分离膜,在海洋石油开采领域具有重要的应用价值。

与此同时,高性能超疏水材料的制备和应用也面临着一些挑战。

首先,制备过程中的成本较高,限制了其大规模应用。

其次,超疏水材料在长时间使用过程中会受到外界环境的影响,表面结构容易受损,导致超疏水性能下降。

此外,超疏水材料的稳定性和可持续性也是当前研究的重要议题。

为了解决这些问题,学者们正在努力探索新的制备方法和改进现有的技术。

例如,一些研究人员尝试利用生物可降解材料来构建超疏水表面,以提高可持续性。

还有一些人在研究中提出通过混合不同材料形成多级结构,以增强材料的稳定性和耐用性。

总结起来,高性能超疏水材料的制备与应用研究展现了广阔的前景和巨大的应用潜力。

超疏水材料的研究进展

超疏水材料的研究进展

超疏水材料的研究进展摘要:对植物叶表面的超疏水现象研究表明:植物叶表面的微观结构是引起超疏水的根本原因。

本文通过对荷叶表面的研究得到超疏水材料具有的特点:微纳米尺度复合的阶层结构。

通过相分离方法得到超疏水材料,最后对超疏水材料的研究趋势作了展望.关键词:超疏水材料微纳双重结构接触角滚动角Abstract:By studying the nature superhydrophobic bio-surfaces indicates that : the incooperation of micro-structure and nano-structure are both important for the superhydrophobic materials. Such structures are the key for the superhydrophobic material . The phase separation method is employed to prepare the superhydrophobic materials. The latest trends in the study of superhydrophobic materials are also discussed.Key words:Superhydrophobic materials;Micro-structure and nano-structure ; Contect angle; Roll angle引言近年来,植物叶表面的超疏水现象引起了人们的关注。

所谓植物超疏水能力,就是植物叶面具有显著的疏水,脱附,防粘,自清洁功能等。

固体表面浸润性研究的就是材料的疏水能力。

浸润性是指液体可以渐渐渗入或附着在固体表面的特性。

接触角和滚动角是评价固体表面浸润性的重要指标。

所谓超疏水表面一般是指与水的接触角大于150º。

超疏水材料研究进展PPT

超疏水材料研究进展PPT

Sun 等课题组成员为了获取具有荷叶结 构的超疏水表面, 在聚二甲基硅氧烷表面 进行模板法得到了具有荷叶结构的凹模板, 再使用该凹模板得到具有与荷叶表面结构 类似的凸模板, 在扫描电镜下看到了具有 粗糙结构的表面,展现了良好的超疏水性 能。
Manhui Sun,et al.Artificial Lotus Leaf by NanocastingLangmuir, Vol. 21, No. 19, 2005 8979.
J. Mater. Chem. A, 2018, 6, 9049–9056
三、光催化超疏水材料研究进展
一、研究背景
Wenzel 模型
cosɵW =rcosɵe
式中,θW为表观接触角,(°);θY为理想表面 的本征接触角,(°);λ 表示粗糙度因子,是 真实固液界面接触面积与表观固液界面接触面 积的比值,λ≥1
ห้องสมุดไป่ตู้
Cassie模型
cosɵc =f1cosɵ1 + f2cosɵ2
将表面组成分量加入方程中式中,f1和 f2分别 为复合表面中固相与气相的表面积分数,%; θ1和θ2分别为它们的接触角
一、研究背景
Young方程——理想、平滑的固体表面
cosɵ =(γ -γ )/ γ
sg ls lg 式中,γsg、γsl、γlg分别表示固气、固液以及液气之间的界 面张力,N/m
Θ < 90°,表现出亲水的性质, Θ > 90°,表现出疏水的性质
Young Equation
Young方程解释了接触角 和表面能的关系
通过双层涂层制备长期耐用的超疏水和(同时)抗
反射表面,该双层涂层包含部分嵌入通过溶胶生产的有 机二氧化硅粘合剂基质中的三甲基硅氧烷(TMS)表面 功能化的二氧化硅纳米颗粒-凝胶过程。首先将致密且均 匀的有机硅胶层涂覆到玻璃基板上,然后在其上沉积三 甲基硅烷化的纳米球基超疏水层。在热固化之后,两层 变成整体膜,并且疏水性纳米颗粒被永久地固定到玻璃 基板上。经过这种处理的表面在户外暴露2000小时期间 显示出极好的防水性(接触角CA= 168°)和稳定的自 清洁效果。

超疏水高分子薄膜的研究进展1剖析

超疏水高分子薄膜的研究进展1剖析

超疏水高分子材料的研究进展摘要:近十年来,由于超疏水表面在自清洁、防冰冻、油水分离等方面的广泛应用前景,超疏水高分子薄膜的研究受到了极大的关注。

本文综述了超疏水高分子材料的制备方法,并对超疏水高分子材料研究的未来发展进行了展望。

关键词:超疏水,高分子材料,自清洁Developments of super-hydrophobic Ploymeric materialAbstract: In the last decades, super-hydrophobic surface has aroused great interest in both academic and industrial fields owing to their potential application in self-cleaning, anti-icing/fogging, water/oil separation, et al. In this paper, the recent development in super-hydrophobic polymeric membrane is reviewed from both preparation and technique, and the future development direction of the superhydrophobic polymeric surface is also proposed in the end.Key Words: super-hydrophobic, polymeric membrane, self-cleaning.引言自然界是功能性表面的不竭源泉。

植物叶表面的自清洁效果引起了人们的很大的兴趣,在以荷叶为典型代表的自然超疏水表面上充分体现了这种自清洁性质,因此称之为“荷叶效应”[1]。

图 1.1中展示的是水滴和汞在荷叶表面的宏观与微观的照片[2]。

超疏水材料的制备与界面性能研究

超疏水材料的制备与界面性能研究

超疏水材料的制备与界面性能研究引言近年来,随着科技的进步和社会的发展,超疏水材料逐渐成为一种备受关注的新材料。

其独特的界面性能为许多领域带来了诸多新的应用机会。

本文将讨论超疏水材料的制备方法以及其在界面性能方面的研究进展。

一、超疏水材料的制备方法1. 仿生法超疏水材料的仿生法制备是目前较为常用的方法之一。

通过模仿自然界中的疏水表面,如莲叶和罗汉松等,可以使用一系列的化学合成方法制备出具有类似性能的超疏水材料。

这种方法的优势在于具有较高的可控性和易操作性。

2. 组装法组装法是通过自组装或者模板法将微/纳米颗粒有序排列在基底上,形成颗粒阵列或者多孔结构,从而达到超疏水性能。

该方法可以通过调控粒子尺寸、形状和表面修饰等工艺参数,实现对超疏水材料的性能调优,具有很高的灵活性和可扩展性。

3. 化学改性法化学改性法是通过对材料表面进行物理或化学处理,引入各种功能单元以改变其表面性质,从而获得超疏水性能。

常见的方法包括表面修饰、溶液浸涂、溶剂热处理等。

这些方法通常可以在普通材料上实现超疏水效果,提高材料的界面稳定性和抗污染能力。

二、超疏水材料的界面性能研究1. 液滴接触角超疏水材料的液滴接触角是评价其疏水性能的重要指标之一。

接触角的大小直接反映了液滴在材料表面上的展开情况。

通过对超疏水材料接触角的研究,可以揭示材料表面微观结构与界面相互作用之间的关系,为超疏水材料的设计与制备提供参考。

2. 低表面能超疏水材料通常具有很低的表面能。

这一特性使得其表面能远低于液体的表面张力,使液滴在其表面上呈现出球形。

低表面能能够实现超疏水材料的自洁性和抗沾污性,对于减少材料的摩擦系数和提高材料的稳定性有重要作用。

3. 自清洁性超疏水材料的自清洁性是指其表面具有自洁能力,能够将粒子、灰尘等外来物质随液滴的滚动或者风吹而自动清洁干净。

这一特性极大地提高了材料的耐污染性,减少了清洁的频率和强度,对环境保护和材料的长期使用具有重要意义。

超疏水材料的研究进展

超疏水材料的研究进展

第36卷第12期高分子材料科学与工程V o l .36,N o .122020年12月P O L YM E R MA T E R I A L SS C I E N C E A N DE N G I N E E R I N GD e c .2020超疏水材料的研究进展李国滨1,2,刘海峰3,李金辉1,2,曾 晖1,2,李 瑞1,2,黎根盛1,2,靳计灿1,2(1.中山大学化学工程与技术学院,广东珠海519000;2.中山大学广东新材料产业基地联合研究中心,广东佛山528000;3.华南农业大学材料与能源学院,广东广州510000)摘要:近年来,油水分离技术越来越受到人们的重视,而具有特殊润湿性的油水分离材料成为研究热点㊂文中综述了超疏水材料在油水分离领域的研究进展㊂简单地介绍了构建超疏水材料的基本原理,归纳总结了超疏水材料的制备方法如水热法㊁刻蚀法㊁静电纺丝技术㊁自组装技术㊁溶胶-凝胶法和沉积法等方法,并且讨论了不同方法的优缺点及前景,为今后超疏水材料的发展提供理论建议㊂关键词:油水分离;超疏水性;制备中图分类号:T B 34 文献标识码:A 文章编号:1000-7555(2020)12-0142-09d o i :10.16865/j.c n k i .1000-7555.2020.0282收稿日期:2019-11-07基金项目:中山大学广东新材料产业基地联合研究中心项目(20177611071010007,20177611071010008);中山大学本科教学改革研究项目(76110-31911131)通讯联系人:曾晖,主要从事功能性界面材料涂层制备的研究,E -m a i l :z e n g h u i 5@m a i l .s ys u .e d u .c n 生活㊁工业含油废水的排放以及海上泄油事故的频发,导致油污染问题日趋严重,从而造成严重的经济损失,并对生态环境带来极大的损害[1~4]㊂同时,油及油类制品中的含水问题,也带来了一定的应用难题如机械零部件寿命减短㊂油在水中的存在方式主要有4种形态:游离油㊁分散油㊁乳化油及溶解油㊂其中溶解油最难处理,乳化油其次[5]㊂但因溶解油占比几乎可忽略,因此溶解油的分离研究较少㊂目前处理含油污水的传统方式主要有重力㊁浮选㊁化学分散㊁絮凝等方法[6~8],但是这些传统的方法存在一些难于解决的问题如分离效率低下,分离的油不能满足二次使用,只能焚烧处理,造成资源浪费和处理困难㊂另外上述方法中还存在使用大量化学试剂造成二次污染以及设备造价过高难于大规模应用等问题㊂因此,如何使油水分离更加高效㊁便捷和绿色已成为当下重要的研究方向㊂这就要求我们要使用更加先进的方法和材料来实现这一目的㊂研究发现超疏水材料具有优异的油水分离能力,而且膜分离具有高效㊁节能㊁便捷等优点[9],通过运用不同的方法如水热法㊁溶胶凝胶法㊁静电纺丝技术㊁蚀刻法㊁自组装技术等方法可制备出性能更加优越㊁功能更加齐全的超疏水膜分离材料㊂本文在前人的研究基础上,对润湿理论及近些年来超疏水材料的研究成果及进展进行了综述与展望㊂1 超疏水材料的制备及相关润湿理论超疏水材料是指水的接触角超过150ʎ,滞后角低于10ʎ的表面材料㊂超疏水现象可用表面润湿理论进行解释,表面润湿理论主要有Y o u n g [10]方程㊁W e n z e l [11]模型㊁C a s s i e -B a x t e r [12]模型以及滚动角等㊂Y o u n g 方程是一种理想的模型,而W e n z e l 模型和C a s s i e -B a x t e r 模型是Y o u n g 方程的后续完善,主要阐述了表面结构对表面润湿行为的影响㊂滚动角则反映接触角的滞后现象,与前进角和后退角的差值相等㊂另外,研究表明W e n z e l 模型与C a s s i e -B a x t e r 模型可能同时存在,也可以在动态过程中相互转换[13]㊂超疏水材料制备的关键在于表面的化学组成和几何微观结构㊂当固体表面张力低于液体且表面较为粗糙时,材料表面往往表现为憎液[14]㊂因此要获得超憎液表面,一般有2种方法:一是在低能材料表面上构建粗糙结构;二是在粗糙材料表面接枝低表面能基团㊂另外在常见液体中,水的表面张力约72m N /m ,而油的表面张力远小于水(如正十六烷的表面张力为27.5m N /m ),所以超疏水/超亲油表面是能够构造的㊂近年来受到荷叶和水渑等自然表面的启发,研究者们运用了不同的方法在不同的材料表面实现了超疏水/超亲油性㊂如2004年,F e n g 等[15]利用喷雾干燥法将P T F E 的乳液喷涂到洁净的不锈钢网膜上,制备出了一种具有超疏水/超亲油性的不锈钢网膜㊂如F i g.1所示,球形和块状堆叠的粗糙表面微观结构,极大地增强了表面超疏水性能㊂当将水滴放置在不锈钢网膜上时,水滴近似球形,水滴接触角达到156.2ʎʃ2.8ʎ,滚动角仅为4ʎ;油滴滴在网膜上仅240m s 就完全渗透,这说明不锈钢网膜同时具备超疏水性和超亲油性㊂这种特性赋予了不锈钢网膜的油水分离的能力㊂F i g .1 S E Mi m a g e s o fP T F E -c o a t e d s t a i n l e s s s t e e lm e s h s u r f a c e a n d o i l -w a t e r s e pa r a t i o n [14]随着超疏水/超亲油材料成功应用于油水分离领域,人们发现这类材料固有的亲油性质会导致膜孔道堵塞,而且这类材料还存在重复使用性差,寿命短,力学性能较差等问题㊂所以研究者们致力于使用不同的方法如水热法[16,17]㊁溶胶凝胶法[18~20]㊁刻蚀法[21~23]㊁静电纺丝法[24,25]㊁涂覆法[26~32]㊁自组装技术[33~35]㊁沉积法[36~38]等其他方法[39~43]研究出稳定性更好㊁具备多功能化(破乳等)的超疏水/超亲油膜材料㊂F i g .2 F E S E Mi m a ge s of P S F /F E Pm i x e dm a t r i xm e m b r a n e [16]1.1 水热法水热法又称高压溶液法,是指利用高温㊁高压水溶液使得通常难于溶解或者不溶的物质溶解和重结晶,从而构建多级粗糙表面的方法㊂水热法制备的功能纳米材料具有容易得到取向性好且完整的晶体㊁实现均匀的掺杂㊁明显的降低反应温度,而且比较容易控制等优势㊂H u a n g 等[16]利用一锅水热法获得了均匀分布的类花状T i O 2颗粒修饰的棉织物,经过氟烷基硅烷的改性,制备了具有鲁棒性的超疏水织物(T i O 2@f a b -r i c s )㊂水滴在T i O 2@f a b r i c s 表面可以保持160ʎ的静态接触角,滚动角小于10ʎ,说明该材料具有很好的超疏水性能㊂另外T i O 2@f a b r i c s 抗紫外线性能优异㊂J i 等[17]采用非溶剂诱导相分离法(N I P S)成功制备了341 第12期李国滨等:超疏水材料的研究进展具有超疏水表面的聚砜(P S F)/氟化乙丙烯(F E P)混合基质膜(MMM S)㊂如F i g.2所示,制备的材料表面呈现出许多乳突结构㊂另外材料的拉伸强度高,适用于煤油和柴油的油包水乳液的油水分离,经过10次循环后油水分离效率仍能保持在99.79%和99.47%㊂水热法制备纳米材料的优势使得其广受研究者青睐,但是水热法的反应环境是在高温高压条件下,所以对设备要求高,安全性稍差㊂另外也无法大型工业化生产,其能耗相对较高㊂1.2溶胶-凝胶法溶胶-凝胶法是指通过前驱体在液相条件下,进行水解㊁缩合反应,形成透明溶胶,在逐渐凝胶化及经过后续处理得到相应物相的方法㊂溶胶-凝胶法制备超疏水材料过程中具有反应过程易于控制,易于操作;制备的样品均匀性高;另外也可以通过改变工艺参数或者过程来获得不一样的材料㊂H u i等[18]在碱性条件下,运用溶胶-凝胶法以有机硅丙烯酸共聚物(S A S)和硅溶胶为原料,进行原位生长硅溶胶颗粒,然后通过简单喷涂制备了具有超疏水性能的复合涂层㊂该涂层对基底展现出普遍的适应性㊂涂层耐酸碱㊁耐有机溶剂㊁耐紫外老化和耐高温性能好,能够承受至少200次的磨损㊂当所制备的材料应用油水分离时,分离效率在99%以上,并且可重复多次工作㊂Y u a n等[19]以剑麻纤维素为主要原料,利用溶胶-凝胶法获得了纤维素@S i O2气凝胶,炭化形成B C S气凝胶,然后原位组装M n O2纳米片,制备出可压缩㊁多功能的H B C S M气凝胶㊂该材料展现出优异的超疏水性能,水的接触角可达155ʎ,然而在强酸碱条件下不具备超疏水性能㊂H B C S M气凝胶弹性好,可极大地提高回收率,另外油水分离能力强,可实现120.4g/g的吸附量㊂M a l e k i等[20]采用一锅两步酸碱溶胶-凝胶法,以5-(三甲氧基硅基)戊酸(T M S P A)㊁蚕丝蛋白(S F)和聚甲基半硅烷(P M S Q)为原料,制备出轻质可压缩㊁具有分级结构的介大孔的超疏水/超亲油的P M S Q-S FI P N混合气凝胶㊂通过对比2种总硅摩尔量[S i]3.5和[S i]17.5的混合气凝胶体系发现不同S F的含量(15%和40%)都能承受压缩变形80%㊂T M S P A 加入量的增加,结构孔隙将增大,粗糙度增加㊂[S i]3.5形成分级纳米微观三维结构,而[S i]17.5形成的是球状细集的三维开孔结构,因此[S i]3.5比[S i]17.5的混合气凝胶的弹性㊁压缩性和耐久性更好㊂另外,混合气凝胶表现出优异的热稳定性,在350ħ以下能维持稳定㊁具备优良的阻燃和自动灭火功能㊂混合气凝胶展现出优异的对油水及有机污染物的吸收能力(植物油㊁甲苯㊁D M F㊁甲烷㊁丙酮等),其吸收可达到自身质量500%~2644%㊂虽然溶胶凝胶法在制备超疏水材料方面具有低成本㊁易于操作㊁条件温和等优点,但是该方法周期较长,同时所使用的原料多数为有机化合物,对健康有害,制备的产品相对易于开裂㊂1.3刻蚀法刻蚀法是指通过物理或者化学的方式在基材表面形成微纳米结构的方法,包括激光刻蚀㊁化学刻蚀㊁等离子刻蚀,光刻蚀等方式㊂刻蚀法可以在表面进行精准地操作和设计,但是成本较高,经济性较差㊂R e n等[21]通过F e C l3溶液㊁H C l和H2O2溶液两步蚀刻在金属橡胶(M R)表面形成莲花状的微纳米结构,再经过P F D S的修饰,得到水接触角为152ʎ㊁滚动角小于5ʎ的超疏水表面,在油水分离领域具有潜在的应用㊂Y a n g等[22]采用飞秒激光技术在聚四氟乙烯(P T F E)片材表面构建了一层复合纳米粗糙结构,结合机械钻削工艺在膜上生成微通孔阵列结构,制备出具有超疏水性的P T F E膜㊂考察了微孔阵列周期的影响,发现由于微孔密度的减小,油通量随周期而减小,入侵压力变化不明显㊂如F i g.3所示, P T F E膜展现了优异的抗酸碱等腐蚀环境的能力,这种化学稳定性的超疏水性使该油水分离材料具有很好的实际应用前景㊂Z h a等[23]利用飞秒激光烧蚀F-C N F/P V D F纳米复合材料和F-C N F/P S纳米复合材料,成功获得了具有稳定超疏水性能的复合材料㊂C-F键在氟化纳米碳纤维㊁P V D和P S中具有的共价性质,保证了纳米复合材料的化学稳定性;激光烧蚀主要是增加复合材料的表面粗糙度从而增加材料表面疏水性能㊂1.4静电纺丝法静电纺丝法是指在外加电场下聚合物溶液或者熔体通过喷射最终固化形成纤维的方法㊂它一般适用于高分子材料㊂静电纺丝法制备的纤维既具有较大的比表面积,同时纤维上还具有小孔特殊结构,即孔隙率高㊂通过静电纺丝技术制备的超疏水膜材料具有过滤效率高㊁压降低等特点㊂L i u等[24]通过冷冻静电纺丝和冻干煅烧法获得了表面具有多孔的二氧化硅/纳米纤维膜,经过六甲基二硅氮烷改性,制备出了多孔的超疏水/超亲油性441高分子材料科学与工程2020年的二氧化硅/纳米纤维膜㊂对比了聚苯乙烯(P S )和莰烯含量的影响,发现P S 浓度较低时,纺丝易断,气孔不明显;P S 浓度过高,导致结构疏松易断,另外随着纺丝浓度的增加,膜面积先增大后减小㊂同时,随莰烯浓度的增加,膜的孔数也随之增加,但是增加到2m L 时,形成的气孔过大,导致膜煅烧后断裂不连续㊂相较于传统的膜,多孔的纳米纤维膜固持力更小,超疏水性能更佳㊂当应用于油水分离时,吸附能力高达43.7g /g ,多次工作后仍能达到34g /g㊂F i g .3 D u r a b i l i t y o f f e m t o s e c o n d l a s e r i n d u c e dP T F Es u p e r h y d r o ph o b i c s u r f a c e [22]M a 等[25]利用静电纺丝法以聚酰胺酸(P A A )和醋酸纤维素(C A )为原料,获得了具有核鞘结构的P I /C A 纳米纤维膜,然后通过重氟苯并恶嗪(B A F -b t f a )和纳米二氧化硅(S N P s )表面改性,制备出具有超疏水/超亲油性的P I /C A /F -P B /S N P 高柔性纤维膜㊂膜的临界拉伸应力高达130M P a ㊁临界拉伸应变为52%,说明了膜具有很好的柔性㊂另外发现当B A F -b t f a ,S N P s 的质量分数分别为1%,4%时,膜的超疏水/超亲油性最佳,水的接触角为162ʎ㊁油的接触角接近于0ʎ,且渗透通量高达(3106.2ʃ100)L /(m 2㊃h )㊂该膜的耐酸碱㊁耐高温性能好㊂膜具有高效分离油水的能力,分离效率在99%以上㊂1.5 涂覆法涂覆法是一种简单快速获得不同形貌表面的方式,包括喷涂法㊁浸涂法,涂刷法和电泳涂装法㊂喷涂法是利用喷枪将含有活性颗粒喷成雾状,在基材表面沉积形成粗糙结构;浸涂法是将基材浸泡在活性溶液中,沉积附着形成涂装表面;涂刷法是将涂料直接涂覆在表面;电泳涂装法适合于水性涂料㊂D e n g 等[26]提出一种将工业胶黏剂与月桂酸改性的氢氧化铜颗粒制备超疏水水性涂层的方法,并且成功应用在不同基材上如铜网㊁海绵等㊂当水滴放置在涂层上,接触角可达160.3ʎ㊁滑动角小于10ʎ㊂以该材料作为分离膜的油水分离装置实现了对多种油水混合物的高效分离㊂另外该涂层具有一定的抗盐㊁抗酸碱㊁抗紫外和自清洁性能㊂L i u 等[27]利用全水基喷涂法制备了具有强鲁棒性的超疏水性的表面㊂首先将磷酸铝㊁纳米Z n O 颗粒㊁聚四氟乙烯(P T F E )和去离子水按照一定比例混合,得到混合溶液,然后将其喷涂到基板上(陶瓷㊁不锈钢等),最后再进行高温干燥交联固化㊂制备出的超疏水表面在强紫外线下照射12h ,水的接触角仍然大于150ʎ;p H 为1~13时,水的接触角基本保持在150ʎ以上,说明该材料具有良好的耐紫外老化㊁耐酸碱性能㊂基于该材料,他们实现541 第12期李国滨等:超疏水材料的研究进展了多种油水混合物的高效分离㊂L i等[28]利用喷涂法将硅藻土粉末㊁三甲氧基硅烷㊁水性聚氨酯(P U)和乙醇混合的悬浮液喷涂到不锈钢网上,制备出具有耐腐蚀㊁低黏附㊁超疏水性的不锈钢网膜㊂这种耐腐蚀性能主要归于超疏水涂层与多孔中空气的协同作用的结果㊂水滴在制备的粗糙表面能够保持152ʎʃ2ʎ的静态接触角,滑动角为8ʎʃ2ʎ㊂所制备的不锈钢网能够高效分离水与多种油(煤油㊁柴油㊁正己烷㊁庚烷等)的混合液,可重复多次工作㊂L i等[29]通过喷涂法将石蜡蜡烛烟灰(C S)㊁纳米二氧化硅(S i O2)负载在不锈钢网上,制备出具有耐热水㊁耐腐蚀㊁超疏水性的不锈钢网膜㊂水滴在不锈钢网表面的接触角为160ʎʃ1ʎ,滚动角为5ʎʃ1ʎ,而油滴在材料表面快速铺展,接触角为0ʎ,说明材料具有良好的超疏水/超亲油性㊂另外材料可耐受15~93ħ热水㊂如F i g.4(a)所示,发现随着孔隙的增大,水的接触角略微下降,而滑动角呈现相反的趋势㊂基于该不锈钢网制备的油水分离装置,实现了多种油水混合物的高效分离㊂G a o等[30]利用电喷雾法制备出表面具有微纳米复合微球的超疏水聚偏氟乙烯(P V D F)/二氧化硅(S i O2)复合材料涂层㊂考察了P V D F和S i O2含量的影响,发现P V D F占6%~12%㊁S i O2含量在4%~8%时,超疏水性能最好,水的接触角可达162ʎ,滚动角小于1ʎ㊂所制备的膜能够高效地分离二氯甲烷混合油水,可重复工作多次㊂同时,该涂层具有很好的抗腐蚀能力㊂W a n g等[31]利用单宁酸(T A)-氨基丙基三乙基硅烷(A P T E S)涂料涂覆在多种基底材料表面如铜网㊁P T F E等,经过O D S改性,制备出具有超疏水性的材料如铜网片-(T A-A P T E S)-O D S㊂当将所制备的材料应用于油水分离时,分离效率高达99%以上,并且可重复多次工作㊂H s i e h等[32]采用自旋涂覆法将全氟烷基甲基丙烯酸共聚物改性的C N T s负载在碳纤维(C F)上,制备出具有双层粗糙纳米/亚微米结构的超疏水性的C N T-C F膜㊂如F i g.4(b)所示,同一厚度下,C N T-C F膜比C F膜油水分离效率更高,最高可达99.7%㊂另外C N T-C F膜的超疏水性随着厚度的增加而减小的趋势更小㊂F i g.4(a)E f f e c t o f s t a i n l e s s s t e e lm e s ha p e r t u r e o nw a t e r c o n t a c t a n g l e(W C A)a n ds l i d i n g a n g l e(S A)[28];(b)v a r i a t i o no f o i l-w a t e r s e p a r a t i o n e f f i c i e n c y w i t hC Fm e m b r a n e t h i c k n e s s[32]1.6自组装技术自组装技术是模仿自然环境分子自组装形成特地结构的颗粒,以分子水平构建功能材料表面的方法㊂具有粒径可控,分散性好,操作简便等优点,但是对条件控制要求严格㊂C h e n等[33]采用自组装法在无机纸上获得了自粗化超细羟基磷灰石纳米线(H A P NW S),经过油酸钠改性,得到具有层状结构的超疏水性的无机纸㊂当油酸钠改性时间为2h时,达到最大静态接触角154.55ʎʃ0.66ʎ㊂该材料具备一定的油水分离能力,但是不耐受高温㊂H a n等[34]以无氟苯并恶嗪为主要原料,采用金属离子诱导分子自组装和外延生长法制备出具有超疏水/超亲油性的金属-聚苯并恶嗪微纳米球(M-P B Z s)㊂M-P B Z s展现出良好的抗污㊁易清洁的特性㊂以该材料组装的油水分离装置,实现了对多种油水乳液的高效分离,并且可重复多次工作㊂W a n g等[35]采用共价逐层组装法,制备出具有超疏水性的双层泡沫铜纳米膜㊂首先用K O H-K2S2O8化学改性,使表面形成花瓣状突起结构,再通过加热三氮二硫硅烷化合物(T E S P A)自组装形成单层膜,然后用全氟癸基三氯硅烷(P F D T C S)降低其表面能,使得膜具有超疏641高分子材料科学与工程2020年水/超亲油性㊂这是首次将一种具有抗铜腐蚀及又作为活化界面的多功能聚合物纳米膜引入铜表面㊂该材料具有很好的化学稳定性和耐久性,另外发现-S S-基团和C u(I)S可以提高双层纳米膜的化学稳定性及耐久性;S i-O-S i键网络增强了双层纳米膜的重用性和分离效率㊂基于泡沫铜网膜,实现了油水混合物的高效分离,并且可重复使用㊂1.7沉积法沉积法是一种低成本,简便有效地制备多级微纳米粗糙结构的方法,包括化学沉积法和电化学沉积法㊂化学沉积法是指基材在活性组分氛围中其表面发生化学反应,从而形成多级微纳米结构或改性表面;电化学沉积法是指采用阴极还原和阳极氧化的方式,在表面沉积形成微纳米结构㊂B u等[36]用单宁酸(T A)改性三聚氰胺甲醛海绵(M F)或者织物,之后在表面沉积纳米银颗粒,接着使用1H,1H,2H,2H-全氟葵硫醇降低表面能,赋予该材料超疏水性㊂所制备的超疏水性的海绵实现了对油水混合物和有机污染物(橄榄油㊁环己烷和甲醇等)自身质量66~150倍的吸附,同时超疏水性的织物也实现了对油水废弃物大于95%的分离效率㊂L i n等[37]将商用纳米碳纤维(C N F s)和聚二甲基硅氧烷(PD M S)嵌入不锈钢网(S S M),制备出具有抗生物㊁化学侵蚀及力学稳定性的超疏水/超亲油性的S S M/C N T S-P D M S㊂基于该材料,实现了对水/甲苯乳液的分离,并且在不含表面活性剂时,表现出高通量(2970L/(m2㊃h))分离;然而在含有表面活性剂时,由于表面活性剂引起的黏度差,导致分离通量较低㊂另外该材料在磨损后仍具备油水分离能力,且只需经过再次涂覆P D M S即可恢复性能㊂W a n g等[38]利用可控电沉积法和化学改性的方法获得了具有超疏水/超亲油性的三维多孔泡沫铜(S O C F)㊂这是首次应用了孔径大于乳化液滴的三维多孔材料来分离乳化油水混合物㊂以此材料制备的油水分离装置,能实现对多种油水乳液的高效分离,而且具有高油通量㊂S O C F的破乳现象主要归于材料本身超亲油性和笼状结构的促进及自升效应的协同作用㊂考察了电沉积时间对该材料的影响,发现随着电沉积时间延长,力学强度迅速增加㊁孔径呈线性减小㊁油通量也逐渐减小㊁水的浸入压力增大㊂另外S O C F展现出惊人的耐磨性能㊂利用沉积法制备超疏水材料是有效的,但是仍然存在一些问题,比如制备过程较为复杂,不利于工业化生产,制品的稳定性稍差等㊂1.8其它方法W a n g等[39]以聚氨酯为骨架,将其浸入含有多巴胺㊁粉煤灰(F A)和十二烷基硫醇(D T)的碱性水/乙醇溶液中,浸泡后取出干燥㊂聚氨酯表面附着了P D A/F A涂层,从而制备出超疏水/超亲油性的泡沫㊂P D A/F A涂层的微纳米结构和聚氨酯的微孔结构的协同作用,极大地提高了疏水性㊂F A的引入赋予了泡沫优异的阻燃性能,另外当F A质量分数为0.2%时,水的接触角达到最大,且油水分离效率最高㊂基于此材料,实现了对多种水包油乳液如正己烷㊁汽油㊁柴油等的有效分离㊂H a n等[40]在铜网或者海绵(M F)上热诱导聚多巴胺(P d o p)颗粒的形成,经过十八胺(O D A)改性,获得了具有超疏水/超亲油性的C u/h-P d o p/O D A及M F/h-P d o p/O D A㊂考察了热处理温度及时间的影响,发现热处理温度为120ħ㊁热处理时间为12h时,材料表面覆盖的P d o p最为稳定㊁均匀㊁致密,同时还发现O D A晶体形貌,受O D A及P d o p协同作用的影响,材料表面覆盖P d o p 颗粒越均匀,越有利于形成具有层次性的O D A晶体形貌㊂所制备的铜网能够高效分离油水混合物,海绵吸附性能好㊂但是对于涂层来讲,耐酸碱㊁耐盐较差,虽然大多能维持水的接触角在140ʎ以上㊂C h e n等[41]以棉织物为基底,多巴胺为原料,高碘酸钠为氧化剂,十八硫醇为改性剂获得了具有超疏水性的棉织物㊂所制备的超疏水棉织物成功地实现1,2-二氯乙烷/水的分离㊂此外,即使经过长时间紫外线照射和90ħ热水的浸泡,该材料仍然保持了原有的特殊润湿性㊂这种光照和耐热水的稳定性可以使所制备的材料工作在暴晒或者热水环境中㊂C h e n g等[42]通过滴铸表面聚乙烯溶液改性,获得了超疏水性的涂层材料,可应用于不同基底材料如铜网㊁聚氨酯等㊂HD P E涂层展现出良好的热磨损性能和化学稳定性,这归于H D P E涂层随机分布的块状片状结构㊂基于该材料,实现了多种油水混合物的高效分离㊂L i u等[43]运用一种集粗糙形貌构建和化学修饰一体化的方法,制备出具有抗大雨冲击的超疏水/超亲油性的P D M S膜㊂水滴在膜表面的接触高达170ʎʃ0.5ʎ,滚动角接近0ʎ;而油滴在膜表面快速铺展,说明膜具有很好的超疏水/超亲油性㊂该材料具有优异的热稳定性,但是不耐受酸碱侵蚀㊂另外P D M S膜磨损后可经过二次化学改性即可恢复性能㊂通过以上各种方法如水热法㊁溶胶凝胶法㊁刻蚀741第12期李国滨等:超疏水材料的研究进展法㊁静电纺丝法㊁涂覆法㊁自组装技术㊁沉积法等其他方法在不同材料上(如具有可降解的蚕丝蛋白㊁聚多巴胺㊁单宁酸㊁化纤物质㊁矿物颗粒等)制备的超疏水/超亲油性的材料,可实现油包水乳浊液或者重油/水的分离,而且现今所制备的超疏水/超亲油性的材料在环境稳定性和化学稳定性上得到了很大的改善㊂但是无法很有效地分离轻油/水以及水包油乳浊液,同时也存在着一些问题比如目前许多方法在操作上比较复杂,成本相对较高,无法实现大规模的生产㊂2结语基于不同材料㊁不同方法构建超疏水膜分离材料可以实现油包水乳液及重油/水的分离,并且所构建的材料的稳定性及重复利用率得到很大的提高,同时材料的功能也朝着多元化发展㊂但是构建的材料大多数较为复杂,难于在工业上运用㊂目前制备超疏水膜分离材料的方法多种多样,而且每种方法都有其各自特性㊂采用水热法㊁刻蚀法㊁自组装技术等来处理金属或非金属材料都能得到理想的微米结构,并且水热法㊁刻蚀法等能够直接处理表面且不经过修饰,即可获得超疏水材料㊂但是水热法对设备要求高,且安全性较差;刻蚀法成本高,不易大规模制备,自组装技术对条件要求苛刻㊂静电纺丝技术适用于制备超润湿薄膜,此类方法优点在于无需多步操作,制备的纺丝具有高比表面积㊁高孔隙率等性能㊂另外可调控纤维直径来提高分离效率㊂但是静电纺丝技术制备的纺丝强度相对较弱,且较难分离纤维长丝与短纤维㊂溶胶-凝胶法制备流程简单㊁可实现工艺的改参或者变更,实现生产不同的制品,但是它具有周期长㊁制品容易开裂等问题㊂涂覆法具有简便㊁灵活等特点,并且其中喷涂法喷涂的涂层均匀性好,黏附强度高,利于机械化生产和工业化,但是涂覆法制备的涂层存在容易产生流挂㊁涂层干燥时收缩并且可能开裂㊂综合来讲,目前多种方式制备的超疏水膜材料大多处于实验室阶段,所处的实验环境离实际应用相差甚远,应用在工业上的少,所以如何以简便有效的方式制备出高效稳定的超疏水膜分离材料仍是未来发展的重点方向㊂参考文献:[1] D a l t o nT,J i nD.E x t e n t a n d f r e q u e n c y o f v e s s e l o i l s p i l l s i nU Sm a r i n e p r o t e c t e d a r e a s[J].M a r i n e P o l l u t i o nB u l l e t i n,2010,60: 1939-1945.[2] J a d h a vSR,V e m u l aP K,K u m a rR,e t a l.S u g a r-d e r i v e d p h a s e-s e l e c t i v em o l e c u l a r g e l a t o r sa s m o d e ls o l i d i f i e r sf o ro i ls p i l l s[J].A n g e w a n d t eC h e m i e,2010,122:7861-7864.[3] H a s s l e rB.A c c i d e n t a l v e r s u s o p e r a t i o n a l o i l s p i l l s f r o ms h i p p i n gi n t h e b a l t i c s e a:r i s k g o v e r n a n c e a n dm a n a g e m e n t s t r a t e g i e s[J].AM B I O,2011,40:170-178.[4]刘山虎,许庆峰,邢瑞敏,等.超疏水油水分离材料研究进展[J].化学研究,2015,26(6):561-569,574.L i uS H,X u Q F,X i n g R M,e ta l.R e s e a r c h p r o g r e s so f s u p e r h y d r o p h o b i c m a t e r i a l s f o r o i l-w a t e r s e p a r a t i o n[J].C h e m i c a lR e s e a r c h,2015,26(6):561-569,574.[5]杨继斌,王会才,孙强,等.基于超润湿材料的乳液油水分离研究进展[J].高分子材料科学与工程,2018,34(4):165-171.Y a n g JB,W a n g H C,S u n Q,e ta l.P r o g r e s so fo i l-w a t e re m u l s i o n s e p a r a t i o n b a s e d o n s u p e r w e t t i n g m a t e r i a l s[J].P o l y m e rM a t e r i a l sS c i e n c e&E n g i n e e r i n g,2018,34(4):165-171.[6] N o r d v i kAB,S i mm o n s JL,B i t t i n g K R,e t a l.O i l a n dw a t e rs e p a r a t i o ni n m a r i n e o i ls p i l lc l e a n-u p o p e r a t i o n s[J].S p i l l S c i e n c e&T e c h n o l o g y B u l l e t i n,1996,3:107-122. [7] G a a s e i d n e sK,T u r b e v i l l eJ.S e p a r a t i o no fo i l a n d w a t e r i no i ls p i l lr e c o v e r y o p e r a t i o n s[J].P u r e a n d A p p l i e d C h e m i s t r y, 1999,71:95-101.[8] W a n g B,L i a n g W,G u oZ,e ta l.B i o m i m e t i cs u p e r-l y o p h o b i ca n d s u p e r-l y o p h i l i cm a t e r i a l s a p p l i e d f o r o i l/w a t e r s e p a r a t i o n:an e w s t r a t e g y b e y o n d n a t u r e[J].C h e m i c a lS o c i e t y R e v i e w s, 2015,44:336-361.[9]朱华星,张贤明,韩超,等.过滤与分离技术在废油中的应用研究[J].重庆工商大学学报(自然科学版),2016,33(1):97-101.Z h uH X,Z h a n g X M,H a nC,e ta l.A p p l i c a t i o no f f i l t r a t i o na n d s e p a r a t i o n t e c h n o l o g i e s t o w a s t e o i l[J].J o u r n a l o fC h o n g q i n g T e c h n o l o g y a n dB u s i n e s s(N a t u r a l S c i e n c e sE d i t i o n),2016,33(1):97-101.[10] Y o u n g T.A n e s s a y o n t h e c o h e s i o no f f l u i d s[C]//A b s t r a c t s o ft h e P a p e r s P r i n t e di n t h e P h i l o s o p h i c a l T r a n s a c t i o n s o ft h eR o y a l S o c i e t y o fL o n d o n.L o n d o n:t h eR o y a lS o c i e t y,1832: 171-172.[11] W e n z e lR N.R e s i s t a n c eo f s o l i ds u r f a c e s t ow e t t i n g b y w a t e r[J].I n d u s t r i a l&E n g i n e e r i n g C h e m i s t r y,1936,28:988-994.[12] C a s s i eABD,B a x t e r S.W e t t a b i l i t y o f p o r o u s s u r f a c e s[J].T r a n s a c t i o n s o f t h eF a r a d a y S o c i e t y,1944,40:546-551.[13] V r a n c k e nRJ,H a l i m K,K oH,e t a l.F u l l y r e v e r s i b l e t r a n s i t i o nf r o m W e n z e l t o C a s s i e-B a x t e r s t a t e s o n c o r r ug a t e ds u p e r h y d r o p h o b i cs u r f a c e s[J].L a n g m u i r t h e A c s J o u r n a l o fS u r f a c e s&C o l l o i d s,2010,26:3335-3341.[14] B i r j a n d i FC,S a r g o l z a e i J.S u p e r-n o n-w e t t a b l e s u r f a c e s:a r e v i e w[J].C o l l o i d sa n dS u r f a c e s A:P h y s i c o c h e m i c a la n d E n g i n e e r i n gA s p e c t s,2014,448:93-106.[15] F e n g L,Z h a n g Z,M a i Z,e t a l.As u p e r-h y d r o p h o b i c a n ds u p e r‐o l e o p h i l i cc o a t i n g m e s hf i l mf o r t h es e p a r a t i o no fo i la n dw a t e r[J].A n g e w a n d t eC h e m i e,2004,116:2046-2048.841高分子材料科学与工程2020年。

仿生超疏水材料的研究进展及应用2400字

仿生超疏水材料的研究进展及应用2400字

仿生超疏水材料的研究进展及应用2400字摘要:在仿生研究领域,许多奇特的微/纳生物表面现象给予人们大量的启示。

比如荷叶效应、水黾在水面上奔跑以及蝴蝶翅膀的自洁,引发了人们对超疏水材料的研究兴趣。

本文综述了仿生超疏水表面的润湿性原理、主要制备方法和应用。

毕业关键词:仿生超疏水;润湿性;制备方法;应用在时间的长河中,大自然不断地孕育生命,每一个生命体都具有其独特的艺术性、科学性。

人类在不断适应自然、认识自然的同时,逐渐开始研究自然。

仿生研究是人们学习自然,提高现有技术的有效手段。

在仿生研究领域,许多奇特的微纳生物表面现象给予了人们大量的启示与想象空间[1]。

比如荷叶效应[2] 、水黾在水面上奔跑以及蝴蝶翅膀的自洁[3],引发了人们对仿生超疏水材料的研究兴趣。

1 润湿性原理固体表面的润湿性[4]对揭示表面亲、疏水性,强化表面疏水性能和制备疏水表面具有重要意义。

描述润湿性的指标为与水的接触角,接触角小于9O°,为亲水表面,接触角大于90°,为疏水表面,接触角大于150°,则称为超疏水表面。

Wenzel[5]假设液体始终填满固体表面上的凹槽结构,粗糙表面的表观接触角θ?与光滑平坦表面本征接触角θ存在以下关系:r(γs-g-γl-s)/γl-g=cosθ?=r cosθ,式中r是材料表面的粗糙度因子,为固液界面实际接触面积与表观接触面积之比。

而Cassie[6]认为疏水表面上的液滴不能填满粗糙表面上的凹槽,凹槽中液滴下存留空气,从而表观上的固液接触实际上是固液、固气接触共同组成,提出cosθ?=fs(1+ cosθ)-1,式中:fs是复合接触面中凸起固体面积与表观接触面积之比,其值小于1。

而Cassie和Baxter[7]从热力学角度得到适合任何复合表面接触的Cassie-Baxter方程cosθ?=f1cosθ1+ f2cosθ2,式中θ?是复合表面的表观接触角,f1、f2分别是两种介质在固体表面上所占面积的比例,θ1、θ2分别是2种介质界面间(固液、气液)的本征接触角。

超疏水表面制备工艺研究

超疏水表面制备工艺研究

超疏水表面制备工艺研究近年来,超疏水材料的制备技术在科学界引起越来越多的关注。

其疏水性能极强,可以应用于防水、油污污染防治、生物医用材料等多个领域。

在此,我们将探讨一下超疏水表面制备的相关技术及其研究进展。

一、超疏水表面的特性超疏水表面指的是水接触此表面时呈现出非常小的接触角,通常小于150度,因此雨滴在表面上不易停留,甚至其自身的重力都可能使其滑落,即具备“莲叶效应”。

在超疏水表面上,水珠几乎无法湿润,微小的颗粒和油类污物也可以轻松被溶解或清除,具有优异的特性。

二、超疏水表面的制备工艺1、界面微纳加工法此法是以微纳技术为基础,通过人工调整界面结构和形貌,来达到提高表面疏水性的目的。

其优点在于结构可调、表面性能优异。

其缺点在于工艺复杂,成本较高。

2、激光转移法激光转移法是以激光脉冲为工具,通过材料表面和激光之间的相互作用,实现表面特性的改变。

其优点在于可实现大规模高效制备,其缺点在于目前的工艺条件下,其表面性能尚不完全符合超疏水需要。

3、自组装法自组装法是通过在微纳结构表面,构造可控的疏水颗粒层数来实现疏水表面的制备。

其优点在于工艺简单、成本低廉,适用于大规模制备。

其缺点在于对层数的控制较为困难,制备的材料长期使用可能出现脱层等情况。

三、超疏水表面制备技术进展在研究超疏水表面制备技术的过程中,业界一直在寻求更为高效、成本更低的制备方法,以用于工业化生产。

近年来,利用生物中的天然超疏水结构制备超疏水材料的技术成为一个新的研究方向。

例如,利用蜡叶、蝴蝶翅膀等自然物资,进行仿生学研究,制备出具有超疏水特性的材料。

此外,利用人工智能进行超疏水材料的设计研究也引起了学界的广泛关注,通过计算机模拟、深度学习等技术,来确定最佳的微观结构和形状参数,为超疏水表面的制备提供了新的途径。

总结而言,超疏水材料作为一种新型材料,其制备技术与应用领域正在不断拓展,未来有望能够广泛应用于生活、环保、生物医学等众多领域。

超疏水材料的研究现状及应用

超疏水材料的研究现状及应用

超疏水材料的研究现状及应用摘要:超疏水表面材料具有防水、防污、可减少流体的粘滞等优良特性,是目前功能材料研究的热点之一。

由于超疏水表面在自清洁表面、微流体系统和生物相容性等方面的潜在应用,有关超疏水表面的研究引起了极大的关注,本文简述了超疏水表面的制备方法,归纳了超疏水表面的应用,对超疏水表面研究的发展进行了展望。

关键词:超疏水表面材料;微流体系统;表面制备方法;表面应用Superhydrophobic materials Researchand ApplicationLi Yongliang(Jiangnan University, College of Chemistry and Materials Engineering JiangsuWuxi 214122,China)Abstract:Superhydrophobic surface material with a waterproof, anti-fouling, can reduce the viscosity of the fluid and other excellent features, is currently one of the hot functional materials. As super-hydrophobic surface in the self-cleaning surfaces, microfluidic systems, biocompatibility and other potential applications, research on super-hydrophobic surface caused a great deal of attention, this paper outlines the super-hydrophobic surface preparation methods, summarized the super-hydrophobic surface application of research for the development of super-hydrophobic surfaces were discussed.Keywords:Superhydrophobic surface material; Microfluidic systems; Surface preparation methods; Surface application近年来,植物叶表面的超疏水现象引起了人们的关注。

超疏水表面研究进展

超疏水表面研究进展

随着当前社会的不断发展和科技的快速进步,高效、节能、绿色环保等概念深入人心,具有自我清洁本领的超疏水表面越来越成为当前热门研究方向之一。

超疏水表面的研究起源于植物学家Barthlott 和Neihuis [1]对植物叶子的研究,首次发现引起植物表面自清洁效果的是植物叶片上的微米级乳突和蜡质晶体,如图1所示。

江雷[2]认为引起超疏水效果的另一重要原因是乳突和蜡质晶体表面存在纳米级结构。

一般来说,“荷叶效应”指的是荷叶具备叶面自清洁的能力,即滴在荷叶表面的雨滴无法在荷叶表面停留而会立即滚落下去,附着在荷叶表面的污染物会随着雨滴的滚落而被带走,留下洁净的荷叶表面。

此外,水稻叶子[3]、蝴蝶翅膀[4]、水黾的腿[5,6]、蝉的翅膀[7]等也具有疏水的本领。

疏水性能的强弱通常使用接触角来表示,接触角大于150°和滚动角小于10°的固体表面,可以被认为超疏水表面[3,8]。

超疏水表面有诸多应用领域,如表面自清洁[9]、金属防腐[10]、油水分离[11]、防结冰[12]和流体减阻[13]等。

本文介绍了制备超疏水表面的基本方法、含氟和无氟超疏水表面的研究进展,并根据当前超疏水表面的特点对未来新材料进行了展望。

1制备疏水表面的基本方法材料的表面能和表面粗糙度对接触角具有重要的影响[14],一般需要在低表面能表面构建粗糙结构或在粗糙表面上修饰低表面能物质来制备疏水及超疏水表面[2]。

1.1降低材料表面能许多优秀的材料原为亲水性,其表面能较高,如SiO 2[15]、TiO 2[16]等材料,需要对其进行低表面能化处理才能变为疏水材料。

Hare 等人[17]的研究表明,当氟元素被氢元素取代后,其表面自由能是增加的,即碳氟化合物和碳氢化合物表面能的排列顺序为-CH 2->-CH 3>-CF 2->-CF 2H>-CF 3,这说明含氟或全氟化合物拥有极低的表面能。

一般可以将高表面能的固体表面浸泡在低表面能化合物的溶液中来降低固体表面能,如Liu 等摘要超疏水表面由于其独特的润湿性,在自清洁等领域具有非常重要的作用。

超疏水材料研究进展

超疏水材料研究进展

超疏水材料研究进展摘要:本文介绍了超疏水材料的性质、应用、转变、制备以及存在的问题等。

详细介绍了超疏水材料在流体减阻中、抗腐蚀中、建筑防污耐水等领域内、微流体控制方面的应用和常用的几种制备方法。

关键词:超疏水材料;超疏水应用;制备1 引言近年来,超疏水材料引起了人们的普遍关注。

所谓超疏水材料,就是指水在材料平面上的接触角大于150°的材料。

超疏水材料的特性最初是在荷叶上发现的,荷叶表面的超疏水特性赋予了它们非常好的自清洁效应,污染物很容易被水滴带走[1]。

有关超疏水的基础理论研究始于上世纪50年代,因其优异的自洁性有望在国防、众多工业领域和日常生活等方面有广阔的应用前景,研究工作备受各国重视。

固体表面的润湿性是由其化学组成和表面微观结构共同决定的。

目前,通过对荷叶表面自洁性的仿生研究表明,因其层级微、纳米结合的双微观结构和覆盖在上面的低表面能物质的协同效应而表现出完美的疏水性[2]。

人们通常用液体在材料表面的接触角来表征材料表面的润湿性。

按照水滴在材料表面接触角大小的不同,我们可以将材料进行如下分类当接触角小于90º时,我们认为这种材料是亲水材料;如果水滴在材料表面的接触角小于5º,那么这种材料是超亲水材料,例如经浓硫酸和双氧水(体积比为7:3)处理过的硅片,水滴在它的上面会立刻铺展开,展示出超亲水的性质;当材料表面接触角大于90º时,我们认为这种材料是疏水材料;如果材料的表面接触角大于150º那么我们认为这种材料是超疏水材料,例如我们前面所提到的荷叶,水滴在其表面的接触角大于150º,不能稳定停留,极易滑落,因而造就了它“出淤泥而不染”的性质。

如图1所示,(a)为亲水,(b)为疏水。

(a) (b)图1 接触角示意图2 超疏水材料的用途2.1 超疏水材料在流体减阻中的应用超疏水表面的一个突出的性质是滑移效应的出现, 这一点已被广泛认可[3]。

超疏水材料的应用与研究进展

超疏水材料的应用与研究进展

超疏水材料的应用与研究进展关键信息项:1、超疏水材料的定义及性能特点接触角:____________________________滚动角:____________________________表面粗糙度:____________________________化学组成:____________________________2、应用领域自清洁表面:____________________________防腐蚀:____________________________油水分离:____________________________减阻:____________________________生物医学:____________________________3、研究进展新型材料的开发:____________________________制备方法的改进:____________________________性能优化策略:____________________________理论模型的完善:____________________________11 超疏水材料的定义及性能特点超疏水材料通常是指与水的接触角大于 150°,滚动角小于 10°的材料。

其具有独特的表面性能,这主要归因于材料的表面化学组成和微观结构。

111 接触角接触角是衡量材料超疏水性的关键指标之一。

当水滴在材料表面上形成的接触角越大,表明材料的疏水性能越强。

112 滚动角滚动角则反映了水滴在材料表面上的移动容易程度。

较小的滚动角意味着水滴能够轻易地从表面滚落,进一步体现了材料的超疏水性。

113 表面粗糙度材料表面的粗糙度对超疏水性起着重要作用。

适当的粗糙度可以增加空气在表面的留存,增强疏水效果。

114 化学组成材料的化学组成决定了其表面能的高低。

低表面能的化学物质有助于实现超疏水性能。

12 应用领域超疏水材料由于其优异的性能,在多个领域展现出了巨大的应用潜力。

超疏水材料的制备与性质研究进展

超疏水材料的制备与性质研究进展

超疏水材料的制备与性质研究进展关键信息项1、超疏水材料的制备方法化学气相沉积法溶胶凝胶法静电纺丝法蚀刻法模板法自组装法2、超疏水材料的性质接触角滚动角表面能耐腐蚀性耐磨性稳定性光学性能热稳定性3、研究进展新型制备工艺的开发性能优化策略应用领域拓展11 引言超疏水材料因其独特的表面性质在众多领域展现出巨大的应用潜力,对其制备方法和性质的研究具有重要的科学意义和实际应用价值。

111 超疏水材料的定义超疏水材料通常是指与水的接触角大于 150°,滚动角小于 10°的材料。

112 超疏水现象的原理主要基于材料表面的微观结构和低表面能物质的协同作用。

12 超疏水材料的制备方法121 化学气相沉积法通过气态物质在固体表面发生化学反应并沉积形成超疏水涂层。

优点:涂层均匀、致密。

缺点:设备复杂、成本较高。

122 溶胶凝胶法利用溶胶凝胶过程制备超疏水材料。

优点:工艺简单、成本相对较低。

缺点:制备周期较长。

123 静电纺丝法通过高压电场将聚合物溶液或熔体拉伸成纤维,形成具有超疏水性能的纤维膜。

优点:可制备纳米级纤维。

缺点:纤维的均匀性较难控制。

124 蚀刻法对材料表面进行蚀刻处理,构建微纳结构。

优点:操作相对简单。

缺点:对蚀刻条件要求较高。

125 模板法以特定的模板为基础制备超疏水材料。

优点:可精确控制结构。

缺点:模板的制备和去除较为复杂。

126 自组装法分子或纳米粒子在一定条件下自发地组装形成超疏水结构。

优点:自适应性强。

缺点:过程较难控制。

13 超疏水材料的性质131 接触角衡量超疏水性能的重要指标,接触角越大,超疏水性能越好。

132 滚动角反映水滴在材料表面滚动的难易程度,滚动角越小,表面越容易排水。

133 表面能低表面能是实现超疏水的关键因素之一。

134 耐腐蚀性超疏水涂层能有效提高材料的耐腐蚀性能。

135 耐磨性在实际应用中,耐磨性决定了超疏水材料的使用寿命。

136 稳定性包括热稳定性、化学稳定性和机械稳定性等。

超疏水材料的制备与性能研究

超疏水材料的制备与性能研究

超疏水材料的制备与性能研究一、引言超疏水材料是一种优秀的功能材料,具有广泛的应用前景。

它能够将水珠在其表面上形成非常小的接触角,使水滴迅速滑落,并且不会被液滴湿润。

超疏水材料的制备与性能研究是当前材料科学领域的热点之一。

本文将重点探讨超疏水材料的制备方法以及相关性能研究的进展。

二、超疏水材料的制备超疏水材料的制备方法众多,对不同的材料有着不同的要求。

在过去的几年里,研究人员提出了许多新颖的制备方法,其中最为常见的是模板法、自组装法和刻蚀法。

1. 模板法模板法是一种常见的制备超疏水材料的方法。

通过制备具有特定孔径和表面形貌的模板材料,将其表面涂覆上具有疏水性的材料,然后经过一系列的处理和去除模板,最终制备出超疏水材料。

这种方法在制备微纳米结构上具有很大的潜力,可以应用于各种材料的超疏水表面制备。

2. 自组装法自组装法是一种简单有效的制备超疏水材料的方法。

通过在溶液中加入特定的分子,可以使其在表面自组装成纳米结构,从而实现超疏水性。

这种方法具有制备成本低、操作简单等优点,因此得到了广泛的应用。

3. 刻蚀法刻蚀法是一种通过刻蚀材料表面,形成微纳米结构从而实现超疏水性的方法。

该方法通过将材料放置在特定的蚀刻剂中,使其表面发生化学反应,形成纳米级别的结构。

这种方法制备出的超疏水材料具有良好的稳定性和可重复性。

三、超疏水材料的性能研究超疏水材料的性能研究主要涉及到接触角、滚动角和自洁性等方面。

1. 接触角超疏水材料的接触角是评价其超疏水性能的重要指标。

接触角越大,表示材料表面对液滴的抗湿能力越强。

因此,研究人员通过不同方法测量材料表面的接触角,以评估其超疏水性能。

2. 滚动角滚动角是评价超疏水材料自清洁能力的重要指标。

滚动角越小,表示材料表面对液滴的附着力越弱,液滴可以更容易滚落。

滚动角的研究可以帮助人们更好地理解超疏水表面的自清洁机制。

3. 自洁性超疏水材料因其自清洁性而备受关注。

自洁性是指材料表面能够通过自身的特性去除灰尘和杂质,保持表面的洁净。

金属材料表面超疏水涂层的研究进展

金属材料表面超疏水涂层的研究进展

金属材料表面超疏水涂层的研究进展目录一、内容描述 (2)1. 超疏水涂层的定义与意义 (3)2. 金属材料表面处理技术的发展背景 (4)二、超疏水涂层材料的研究进展 (5)1. 纳米材料在超疏水涂层中的应用 (6)纳米TiO2、SiO2等颗粒的制备与应用 (7)纳米复合材料的设计与性能优化 (9)2. 有机高分子材料在超疏水涂层中的应用 (10)涂层材料的表面接枝改性技术 (11)自组装单分子层的构筑与性能研究 (12)3. 生物启发型超疏水涂层的研究 (13)蜡烛蜡、硅酮等生物启发材料的模仿与应用 (14)生物矿化原理在涂层设计中的应用 (15)三、超疏水涂层制备方法的研究进展 (17)1. 化学气相沉积法 (18)2. 动力学激光沉积法 (19)3. 离子束溅射法 (20)4. 溶液沉积法 (21)5. 微纳加工技术 (22)四、超疏水涂层性能评价及优化策略 (23)1. 表面张力与接触角测量 (24)2. 耐磨性、耐腐蚀性等性能评估 (26)3. 涂层稳定性与耐久性分析 (27)4. 性能优化策略与实验方法 (28)五、超疏水涂层在特定领域的应用研究进展 (29)1. 抗生物污染涂层的研发与应用 (30)2. 防腐蚀保护涂层的性能研究 (32)3. 光学性能改进的超疏水涂层设计 (33)4. 涂层在航空航天、电子电气等领域的应用探索 (34)六、结论与展望 (35)1. 超疏水涂层技术的发展趋势 (36)2. 存在的问题与挑战 (38)3. 未来研究方向与应用前景展望 (39)一、内容描述随着科技的不断发展,材料科学领域对于表面性能的要求日益提高,尤其是在防水、防污、自清洁等方面具有特殊需求的材料。

金属材料作为现代工业的重要基础材料,其表面性能的优劣直接影响到产品的使用寿命和可靠性。

对金属材料表面进行超疏水涂层的研发和应用成为了当前研究的热点。

超疏水涂层是一种具有特殊表面性能的涂层,其表面的水接触角大于150,表现出“荷叶效应”,即水滴在涂层表面上能够迅速滚落,而不会附着和渗透。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超疏水材料研究进展Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT超疏水材料研究进展摘要:本文介绍了超疏水材料的性质、应用、转变、制备以及存在的问题等。

详细介绍了超疏水材料在流体减阻中、抗腐蚀中、建筑防污耐水等领域内、微流体控制方面的应用和常用的几种制备方法。

关键词:超疏水材料;超疏水应用;制备1 引言近年来,超疏水材料引起了人们的普遍关注。

所谓超疏水材料,就是指水在材料平面上的接触角大于150°的材料。

超疏水材料的特性最初是在荷叶上发现的,荷叶表面的超疏水特性赋予了它们非常好的自清洁效应,污染物很容易被水滴带走[1]。

有关超疏水的基础理论研究始于上世纪50年代,因其优异的自洁性有望在国防、众多工业领域和日常生活等方面有广阔的应用前景,研究工作备受各国重视。

固体表面的润湿性是由其化学组成和表面微观结构共同决定的。

目前,通过对荷叶表面自洁性的仿生研究表明,因其层级微、纳米结合的双微观结构和覆盖在上面的低表面能物质的协同效应而表现出完美的疏水性[2]。

人们通常用液体在材料表面的接触角来表征材料表面的润湿性。

按照水滴在材料表面接触角大小的不同,我们可以将材料进行如下分类当接触角小于 90o 时,我们认为这种材料是亲水材料;如果水滴在材料表面的接触角小于5o,那么这种材料是超亲水材料,例如经浓硫酸和双氧水(体积比为 7:3)处理过的硅片,水滴在它的上面会立刻铺展开,展示出超亲水的性质;当材料表面接触角大于 90o 时,我们认为这种材料是疏水材料;如果材料的表面接触角大于 150o那么我们认为这种材料是超疏水材料,例如我们前面所提到的荷叶,水滴在其表面的接触角大于 150o,不能稳定停留,极易滑落,因而造就了它“出淤泥而不染”的性质。

如图1所示,(a)为亲水,(b)为疏水。

(a) (b)图1 接触角示意图2 超疏水材料的用途超疏水材料在流体减阻中的应用超疏水表面的一个突出的性质是滑移效应的出现, 这一点已被广泛认可[3]。

随着疏水表面滑移效应的发现, 人们开始重视研究基于疏水表面滑移效应所产生的减阻新技术. Watanabe 等[4]研究了内壁覆盖氟烷烃改性的丙烯酸树脂条纹的超疏水圆管的减阻性能,实测的压强 - 速度剖面曲线表明, 当雷诺数为 500~10000 时, 阻力下降达 14%, 对应的滑移长度达 450μm。

Bechert 等[5]受到鲨鱼表皮三维肋条结构的减阻性能的启发, 从实验出发研究了具有类似结构的新型机翼表面的减阻性能, 结果表明这种表面比光滑的机翼表面剪应力降低 %。

Koeltzsch 等[6]研究了具有分叉型肋条结构的管道内壁表面的减阻性能, 以及不同肋条结构的影响效果, 这为输油管道内壁的减阻方法提供了新思路。

王家楣等[7]从船首底部喷气生成微气泡出发研究了不同雷诺数、不同微气泡浓度下的减阻试验, 为微气泡减阻技术的应用提供了依据。

徐中等[8]采用标准κ - ε湍流模型对凹坑形表面在空气介质中不同条件下的流动进行了模拟, 得到的最大减阻率达到 %.超疏水材料在抗腐蚀中的应用通过超疏水膜技术在金属表面形成一层超疏水性的膜层,可以有效地增强金属表面阻抗、降低腐烛电流密度,使平衡腐烛电位向正方向移动,提高金属的防腐能力。

超疏水膜技术应用于金属防腐已有大量研究。

刘涛[9]在铜、锅及铁锅金属间化合物表面制备出超疏水薄膜,电化学测试拟合数据显示,超疏水表面对于铜、锅、铁招金属间化合物的缓烛效率可分别达到99%, 97%和86%。

刘通等[10]在金属招表面制备了一层稳定的近似珊瑚状的超疏水膜,海水的接触角大于150°, Yansheng Yin等[11]在错样品表面制备了接触角为154°的超疏水表面。

电化学测试表明,超疏水膜显着地降低了腐蚀电流密度、腐烛速率和双电层电容。

超疏水材料在建筑防污耐水等领域内的应用[12]建筑物表面的污染主要是由于空气中微小颗粒的粘附和雨!雪等的覆盖污染"超疏水材料因其独特的疏水性,在建筑物内外墙!玻璃及金属框架等的防水!防雪和耐沾污等方面均有广泛的应用前景,可大大降低建筑物的清洁及维护成本,使得建筑物能长久保持亮丽的外观"目前,超疏水表面材料在建筑防污染方面的产品主要是涂层及防护液等,如中科赛纳技术有限公司采用纳米合成技术制备的纳米超疏水自清洁玻璃涂层"该涂层一般为无色透明!无毒!无污染牢固度高且具有自清洁!防结冰!抗氧化等功能"德国STO公司同样根据荷叶效应原理开发了有机硅纳米乳胶漆"。

超疏水材料在微流体控制方面的应用超疏水材料表面所具有的不浸润性及低表面粘滞力,使其在微流体控制应用方面也有十分出色的表现。

比如控制微液滴的运动和流动,并以此制造微液滴控制针头,使得在实验或者生产过程中对液体滴加计量能够精确控制,实验试剂的添加将更得心应手。

如果将这类技术运用到诸如静电喷涂领域,比如用超疏水材料制造喷漆喷胶等的喷头,将会使喷涂的液滴更加均匀,雾化效果更好,可以运用在对喷涂效果有特殊要求的场合"另外如果以这类材料制作毛细管类的材料,将会使液滴的虹吸量更少,可以制造体积更小精密度更高的液体传输设备。

3表面润湿性的转变响应性材料使得人们能够通过外界刺激来改变材料的各种性质,在这里我们主要介绍通过外界刺激来智能地控制表面润湿性行为。

表面湿润性的转变方法主要有电场诱导,应力作用,光响应,温度响应和pH 值响应等。

Lahnn教授首次利用带有亲水性端基的长链烷烃在电场作用下的构型变化,实现了电场诱导的浸润性的转变[12]。

教授也进行了由固体电解质与电化学活性的导电聚合物相结合构成的电润湿开关的研究[13]。

长春应化所的韩艳春教授研究小组[14]报道了三角形网结构的聚酰胺膜,通过对此膜双轴方向的拉伸和恢复,可以实现从超疏水到超亲水的可逆转变。

Fujishima教授领导的研究小组报道了在紫外光照射的条件下TiO2材料能够产生同时超亲水和超亲油的性质[15]。

利用电化学、水热合成等方法构筑表面粗糙的SnO2、ZnO、TiO2、WO3和V2O5等光敏材料,通过紫外光的照射,这些材料可以实现超亲水和超疏水之间的可逆转变。

江雷教授[16]将含有这种高分子的共聚物接枝到了粗糙的硅片表面,从而实现了由温度控制的超亲水超疏水的可逆转变。

而如果将聚异丙基丙烯酰胺的共聚物接枝在平整的硅片表面,那么它只能实现亲水和疏水之间的转化。

Whitesides研究小组[17]首先报道了平滑表面上pH值响应的润湿性行为,他们将极性有机官能团,如羧基和氨基等修饰于低密度的聚苯乙烯表面,并测量了这些表面含有机酸和碱性基团的接触角随pH值的变化。

4 超疏水材料的制备人们发现材料表面的超疏水性质是材料表面的化学组成及表面结构共同作用的结果。

北京化学所的江雷教授首次提出了“二元协同作用”这一概念[18]。

根据这一概念,超疏水表面通常需要经由两步获得:(1)在材料的表面构筑粗糙结构;(2)在粗糙表面上接枝低表面能的试剂。

基于这两条基本原则,许多方法被用来构建超疏水表面,其中最常用的制备手段有:层层组装法、溶液浸泡法、电化学沉积法、模板法和气相沉积法等。

层层组装法吉林大学孙俊奇教授的研究小组[19]报道了一种利用层层组装技术将粒径为220 纳米的二氧化硅小球生长到粒径为 600 纳米二氧化硅小球上的方法,整个体系为呈树莓状的二元纳微分级结构。

这些树莓状的小球经过疏水试剂接枝后,接触角达到了 157°,滚动角小于 5°。

相反,对于单一粒径的二氧化硅微球而言,经同样方法处理后,所得到的膜层的接触角为 147°,滚动角为 30°。

溶液浸泡法Bell 教授利用简单的置换反应,将铜片或锌片放入金或银的盐溶液中,由于在金属活动顺序表中,铜和锌要比金和银活泼,因此在铜片和锌片的表面上会生长出金或者银的纳米粒子,从而增加了材料表面的粗糙度,如图2所示[20],经过疏水试剂的处理后,表面接触角可以到达到 180°。

图2以上方法是通过两步来实现超疏水表面制备的:第一,在材料表面构造粗糙结构;第二,在粗糙结构的表面接枝疏水试剂。

姚建年教授的研究团队最近报道了一种通过溶液浸泡法一步制备超疏水材料的方法,这种方法将表面粗糙处理和表面接枝通过一步来完成:他们将表面光滑的铜片放在特定 [Ag(NH3)2]OH溶液中,经过6个小时的浸泡后,在铜片表面出现了类似于玫瑰花花瓣的结构,测试其接触角达到了156°,如图3所示[21]。

图3电化学沉积法电化学沉积法是制备超疏水薄膜的常用方法,它通过氧化还原反应,在工件表面沉积出微纳米结构。

通过调整反应时间、沉积电压等参数,对沉积表面形貌进行控制。

Giovanni Zangari等[22]将Si基体处理为多孔硅片,再将Au离子沉积到多孔硅片基体上获得树枝状的Au簇,经过化学修饰后,得到了将近180°的超疏水表面;Liu Hongtao等[23]在碳钢表面,利用双层纳米复合电刷镀方法制备出纳米-C/Ni和纳米-Cu/Ni复合双层镀层,经过低能物质修饰后,这种镀层表面的水接触角达到°、滚动角为5°,并且这一超疏水表面具有优异的抗腐蚀特性;Chen Zhi等[24]以乙醇溶液溶解的CoCl2为电解液在不锈钢表面利用电沉积法一步制备出接触角高达160°的超疏水表面。

模板法清华大学的王晓工教授,通过揭起软刻蚀的方法,制备了仿生的荷叶表面[25]。

首先,他将聚二甲基硅氧烷模板的预聚体压印在荷叶的表面,在适当条件时预聚体聚合后被揭起,就得到了与荷叶表面完全相反的反相 PDMS 结构。

接着再以这种反相结构为模板,在高分子 epoxy-based azo polymer(BP-AZ-CA)上面利用微接触印刷技术再次压印,得到与 PDMS 模板表面形貌刚好相反的高分子图案而这种图案与荷叶表面的形貌完全一致,如图 4 所示。

测试其表面接触角为 156°。

对比而言,平整的 BP-AZ-CA 高分子模板表面接触角只有 82°。

图4气相沉积法江雷教授的研究小组报道了利用化学气相沉积(CVD)法在石英基底上制备了各种图案结构,如蜂房状、柱状和岛状的阵列碳纳米管膜,如图5所示[26]。

结果表明,水在这些膜表面的接触角都大于160°,滚动角都小于5°,纳米结构和微米结构在表面的阶层排列被认为是产生这种高接触角,低滚动角的主要原因。

图55制备超疏水表面材料存在的问题在制备超疏水表面过程中,往往要构建微纳米级的双微观结构,正是由于微纳米级的粗糙结构再覆以低表面能物质使得具有优良的疏水性能。

相关文档
最新文档