材料科学与工程学导论
材料科学和工程导论(ppt 16页)
材料的地位和作用
材料是人类社会发展的基础和先 导,是人类社会进步的里程碑和划 时代的标志。材料和能源、信息被 称为人类社会的“三大支柱”。
5
材料的地位和作用
一种重要新材料的发现和使用, 都把人类支配自然的能力提高到一 个新水平,材料科学技术的每一次 重大突破都会引起生产技术的重大 变革,甚至引起一次世界性的技术 变革,从而把人类物质文明和精神 文明推向前进。
学 与 工
程
结构
陶瓷 电子材料 金属 高分子材料
材料科学与工程的纵向或横向分类方法
15
快乐总和宽厚的人相伴,财富总与诚信的人 伴,聪明总与高尚的人相伴,魅力总与幽默 人相伴,健康总与阔达的人相伴。人生就有 多这样的奇迹,看似比登天还难的事,有时 而易举就可以做到,其中的差别就在于非凡 信念。影响我们人生的绝不仅仅是环境,其 是心态在控制个人的行动和思想。同时,心 也决定了一个人的视野和成就,甚至一生无 你觉得自己多么了不起,也永远有人比更强
进行改革;
• 按照“四要素”原则重新构建材料科学与
工程的大材料学科。
13
基本性能效能
ba
受环境影响 (气氛 温度
受力状态)
成合分成/制备
组织结构
制备与 加工
结构效/能成分 (使用性能)
性质
理论及材料 与工艺设计
材料科学与工程的内涵
14
材料科学与工程的形成和发展 材料科学与工程
使用
材
料
四 加工
科
要 素 性能
6
材料科学与工程的形成和发展
材料科学与工程的形成与发 展,反映了学科发展从细分 到整合(综合)的基本规律。
7
材料科学与工程的形成和发展
材料科学与工程导论
材料科学与工程导论
材料科学与工程是一门研究材料的性能、结构、制备和应用的学科,它涉及到各种材料,包括金属、陶瓷、高分子材料和复合材料等。
材料科学与工程的发展对于现代工业、能源、医疗、环境等领域都具有重要意义。
首先,材料科学与工程的研究对象是各种材料的性能和结构。
通过对材料的组成、微观结构和宏观性能进行研究,可以揭示材料的内在规律,为材料的设计、制备和应用提供科学依据。
其次,材料科学与工程的研究内容包括材料的制备和加工技术。
材料的制备和加工技术直接影响到材料的性能和应用范围,因此对于材料的制备和加工技术的研究具有重要意义。
另外,材料科学与工程还涉及到材料的应用和性能调控。
通过对材料的应用和性能进行研究,可以开发出具有特定功能和性能的材料,满足不同领域的需求。
总的来说,材料科学与工程是一门重要的交叉学科,它涉及到多个领域,对于现代社会的发展具有重要意义。
随着科学技术的不断发展,材料科学与工程也在不断取得新的进展,为人类社会的发展做出了重要贡献。
在材料科学与工程领域,我们需要不断深化对材料的认识,推动材料科学与工程的发展,为人类社会的可持续发展做出更大的贡献。
希望通过我们的努力,能够推动材料科学与工程领域的发展,为人类社会的进步做出更大的贡献。
材料科学与工程专业导论课程学生学习感悟
材料科学与工程专业导论课程学生学习感悟第一篇:材料科学与工程专业导论课程学生学习感悟专业导论课程学生学习感悟--2011级材料科学与工程全体学生对于一名材料科学与工程专业的本科生来说,材料科学导论是学习材料专业的学生最先接触的一门专业知识课。
材料科学与工程导论不仅可以整体的向我们概述本专业所要学习的内容,而且还能在一定程度上激发我们对本专业的学习兴趣,它的关键在于课业比较系统的了解材料科学领域的研究方向和研究内容,同时,这门课还有着培养学生学习材料科学相关知识的兴趣的作用。
很显然,此门课的重要性不言而喻。
进入材料科学与工程专业导论的学习已经有一段时间了,经历这个阶段,有了对这个专业知之甚少到现在有所了解的转变。
通过杨文斌教授第一节专业导论课对于本专业的引入,更结合材料在于美国苹果公司手机上的运用,让我们颇为真实地感受了材料的魅力,引起我们的广泛兴趣。
最初,对于材料的学习、将来的就业方向等等问题,我很是疑惑。
杨教授就国内外材料领域发展的新动向切入主题,带领我们见识了当下国内外社会、经济发展为材料科学的发展所创造的机遇,这让我对于本专业的前景信心满满。
杨教授再对材料科学与工程“四要素”进行深入浅出的讲解,激发了我们学习的好奇心,对于本专业的课程学习也有了一定理解。
杨教授还带着我们观看了本学院在材料研究方面的一些科研成果,我们看得不亦乐乎。
紧接着,观看了在将来学习中要用的一些机器,再加之杨教授的讲解,对于这个专业有了更进一步的认识。
在听了邱仁辉副院长对材料科学与工程简介的解说之后,我更了解了材料在于生活中的广泛利用,对材料所起的作用想要更加深入的学习。
他所安排的课程学习让我们更加全面地认识了材料这个专业,并且就我们这个专业在国际领域的发展进行讲解,融入邱副院长自己所研究的科研内容,这都令我们耳目一新。
在谈到材料的研究应用时,邱副院长很是高兴,因为本专业开办以来我们学院取得了10多项国家科研基金,在科学研究方面也是硕果累累。
“材料科学与工程导论”——课程教学大纲
“材料科学与工程导论”——课程教学大纲课程名称:材料科学与工程导论
课程学分:3学分
课程类型:必修课
先修课程:无
一、课程目标
本课程旨在向学生介绍材料科学与工程的基本概念和原理,培养学生
对材料研究的兴趣和基本研究能力,为学生今后深入学习和开展相关研究
奠定坚实的基础。
二、教学内容
1.材料科学与工程的基本概念和发展历史
2.材料的分类和特性
3.材料结构与性能关系
4.材料的制备与加工技术
5.材料测试与表征方法
6.材料应用与发展前景
三、教学方法
本课程采用理论授课、实验操作、案例分析等教学方法相结合。
在课
堂上,教师将讲解材料科学与工程的基本概念和原理,引导学生进行讨论
和思考,并通过实验操作和案例分析培养学生的实践能力和问题解决能力。
四、教学评估与考核
1.平时成绩占总评成绩的30%,包括课堂表现、作业完成情况等。
2.期中考试占总评成绩的30%,考查学生对课程内容的理解和应用能力。
3.期末考试占总评成绩的40%,考查学生对整个课程的掌握程度。
五、教材与参考书目
教材:。
材料科学与工程导论及总结
材料科学与工程导论及总结内容:学习材料学的基本知识;主要涉及到各种材料的组成、结构、性能、应用以及它们之间的关系。
目的:材料类专业的入门课及专业基础课之一。
了解材料的基本知识,逐步扩大材料的专业知识面,培养分析和解决有关材料问题的初步能力。
1、材料的定义与分类材料是人类用来制造有用的构件、器件或物品的物质。
材料与物质的区别:①对材料而言,可采用“好”或“不好”等字眼加以评价,对物质则不能这样;②材料总是和一定的用途相的;③材料可由一种物质或若干种物质构成;④同一种物质,由于制备方法或加工方法的不同,可成为用途各异的不同类型的材料。
按化学组成和结构特点:金属材料、无机非金属材料、高分子材料、复合材料按材料性能:结构材料、功能材料按使用领域:建筑材料、电子材料、耐火材料、医用材料……2、材料的地位和作用材料是人类社会发展的基础和先导,是人类社会进步的里程碑和划时代的标志。
材料、能源、信息被称为人类社会的“三大支柱”。
纵观人类利用材料的历史,可以清楚地看到,每一种重要新材料的发现和应用,都把人类支配自然的能力提高到一个新的水平。
材料科学技术的每一次重大突破都会引起生产技术的重大变革,甚至引起一次世界性的技术革命,大大地加速社会发展的进程,从而把人类物质文明推向前进。
人类文明的发展史就是材料的发展史材料的发展史就是人类文明的发展史石器时代、青铜器时代、铁器时代、• • •、半导体时代新材料是高技术发展的基础,是工业革命和产业发展的先导3、材料的性质材料性质:是材料的功能特性和效应的描述,是材料对电.磁.光.热.机械载荷的反应。
材料性质描述:力学性质:强度、硬度、刚度、塑性、韧性材料在力的作用下所表现出的特性即为材料的力学性质。
(1)弹性模量弹性模量是指材料在弹性极限范围内,应力与应变(即与应力相对应的单位变形量)的比值,用E表示,即:(2)强度在外力作用下,材料抵抗变形和断裂的能力称为强度。
(有多种强度类型)材料在外力作用下发生塑性变形的最小应力叫屈服强度,用σs表示。
材料科学与工程导论第六版william
材料科学与工程导论第六版william摘要:一、材料科学与工程的概述1.材料科学与工程的定义2.材料科学与工程的学科体系二、材料科学与工程的历史发展1.古代材料的使用2.现代材料科学的发展3.我国材料科学与工程的发展三、材料的基本性能与分类1.材料的力学性能2.材料的物理性能3.材料的化学性能4.材料的分类四、材料制备与加工技术1.材料制备的基本过程2.常见材料加工技术五、材料的性能与应用1.结构材料2.功能材料3.复合材料4.超导材料六、材料科学与工程的展望1.新型材料的研发2.可持续发展与环保材料3.材料科学与工程的跨学科发展正文:材料科学与工程专业是一门研究材料的制备、性能、加工以及应用的基础理论与实践相结合的学科。
材料科学与工程专业涵盖了金属材料、无机非金属材料、高分子材料和复合材料等领域。
材料科学与工程专业有着悠久的历史,可以追溯到古代。
随着人类社会的发展,对材料的需求不断增加,推动了材料科学的发展。
在我国,材料科学与工程的发展始于上世纪50 年代,经过几十年的发展,已经在很多领域取得了显著的成果。
材料的基本性能主要包括力学性能、物理性能和化学性能。
力学性能主要包括强度、硬度、韧性等;物理性能主要包括导电性、导热性、磁性等;化学性能主要包括耐腐蚀性、抗氧化性等。
根据这些性能,材料可分为金属材料、无机非金属材料、高分子材料和复合材料等。
材料制备与加工技术是实现材料性能与应用的关键环节。
材料制备的基本过程包括原料选择、制备方法、成型与加工等。
常见的材料加工技术有冶炼、铸造、锻造、轧制、拉拔、焊接、切削等。
材料科学与工程专业的研究领域广泛,涉及结构材料、功能材料、复合材料和超导材料等。
结构材料主要包括金属材料、陶瓷材料和塑料等,用于承载和传递力的部件;功能材料主要包括磁性材料、导电材料、光学材料等,用于实现特定功能的部件;复合材料是由两种或多种材料组合而成,兼具各种材料的优点;超导材料是指在低温下具有超导性的材料,具有很高的科研价值和应用前景。
材料科学与工程学导论
复合材料的基本理论
短纤维增韧机理
短纤维增韧复合材料的制备工艺比长纤维的简 便。通常是将长纤维剪断,再与基体粉体材料 混合、热压制得。在热压时,短纤维沿压力方 向择优取向,产生性能上的各向异性。当短纤 维的质量分数适当时,复合材料的断裂功显著 提高,从而使断裂韧性得到提高。
材料科学与工程学导论
材料科学与工程学导论
复合材料的界面
纤维增强金属基复合材料界面的类型 I。纤维与基体互不反应、互不溶解的界面。 II。纤维与基体不反应、但相互溶解的界面。 III。纤维与基体反应形成界面反应层。
材料科学与工程学导论
复合材料的界面
界面结合的类型
I。机械结合:借助增强纤维表面凹凸不平的形态而产生的
机械铰合和基体与纤维之间的摩擦阻力形成。
良好的高温性能
增强纤维的熔点都很高,并且在高温下仍具有较
高的强度
材料科学与工程学导论
纤维增强复合材料的纤维种类
纤维增强复合材料中主要的新型纤维与晶须有:
碳纤维、硼纤维、芳纶纤维、碳化硅纤维、氧化铝 纤维以及碳化硅晶须、氧化铝晶须等。
这些纤维与晶须的主要特点是:
密度低、强度高、弹性模量高、线膨胀系数小等 特点。
材料科学与工程学导论
复合材料的基本理论
复合原理
1。纤维增强复合材料的复合原理
外载荷与纤维方向垂直
σc= σf = σm。 εc = εfVf+εmVm。 1/Ec = Vf/Ef+Vm/Em。
材料科学与工程学导论
复合材料的基本理论
复合原理
2。颗粒增强复合材料的复合原理 ρc = ρpVp+ρmVm。
材料科学与工程学导论
金属基复合材料
颗粒增强金属基复合材料
“材料科学与工程导论”——课程教学大纲
北京工业大学“材料科学与工程导论”——课程教学大纲英文名称:Introduction to Materials Science and Engineering课程编号:0000274课程类型:学科基础必修课学时:32 学分:2.0适用对象:材料类本科生先修课程:大学物理、高等数学、工程力学使用教材及参考书:[1] 许并社,材料科学概论,北京工业大学出版社,2002[2] 冯端、师昌绪、刘治国,材料科学导论,化学工业出版社,2002[3] 张钧林、严彪、王德平、袁华,材料科学基础,化学工业出版社,2006[4] 周达飞,材料概论,化学工业出版社,2001[5] William D. Callister, David G. Rethwisch, Fundamentals of Materials Science andEngineering: An Integrated Approach, John Wiley & Sons INC, 2008[6] 美国国家研究委员会,90年代的材料科学与材料工程,航空工业出版社,1992[7] 李恒德、师昌绪,中国材料发展现状及迈入新世纪对策,山东科学技术出版社,2002一、课程性质、目的和任务《材料科学与工程导论》是面向材料学院二年级本科生开设的专业基础必修课。
其目的是使学生了解材料科学在经济社会发展中的作用以及材料科学与工程学的形成与学科发展趋势。
以材料“四要素”及其相互关系为中心,使学生建立从材料设计、组织控制、制备加工到性能评价与工程应用的概念体系,在掌握材料共性规律与特点的基础上,使学生理解材料科学与工程内涵,学会分析材料问题的方法。
以案例的形式,介绍典型金属及无机非金属的结构与功能材料的研究规律,强化学生对“四要素”的理解。
二、课程教学内容及要求第一章绪论1.1 材料的定义与分类[1]1.2 材料在人类社会发展进程中的地位和作用[2]1.2.1 材料是人类文明进步的里程碑1.2.2 材料是经济和社会发展的基础和先导1.2.2.1 新材料是工业革命和产业发展的先导1.2.2.2 新材料是社会现代化的先导1) 21世纪重点发展的高技术领域的进展和趋势2) 新材料技术是高技术发展的基础1.2.2.3 新材料技术是一切工业发展的关键共性基础1.3 材料科学与工程的形成和发展[3]1.3.1 美国材料科学与工程的形成与发展1.3.2 我国材料学科的改革与发展1.4 本课程设置与北工大材料科学与工程学科改革[3]第二章材料“四要素”是材料研究与应用的共性基础2.1 什么是材料的“四要素”?[1]2.1.1 材料的性质2.1.1.1 材料的主要力学性质:强度、硬度、刚度、塑性、韧性。
材料科学与工程导论
材料科学与工程导论材料科学与工程导论1 本课程的基本概念:材料科学虽然是一门基础科学,但是它涉及到诸如本课程的基本概念:表面物理学、表面化学、金属学、陶瓷学、高分子学、传热学、传质学等多个学科的理论;同时也与信息科学、生命科学、深海和深空科学等现代科学技术紧密相连。
1.1材料与人类文明一、材料与人类文明发展(历史贡献)--石器时代、铜器时代、铁器时代、钢铁时代、合成材料时代、复合材料时代……陶器(china) 1.陶器出現是人类跨入新石器时代的重要标志之一,2.据目前已知的考古资料,中国的陶器制作至少已8000年以上的历史。
青铜:第一种合金1.青铜,古称金或吉金,是红铜与其它化学元素(锡、镍、铅、磷等)的合金。
2.史学上所称的“青铜时代”是指大量使用青铜工具及青铜礼器的时期。
3.到春秋战国時期,齐国工匠总结科技经验写成的《考工记》一书中,提出了「金有六齐」,这是世界科技史上最早的冶铜经验总结。
二、材料与人类现代文明--材料是发展高科技的先导和基石(一)支撑人类现代文明大厦的四大支柱技术1.材料科学与技术2.生物科学与技术3.能源科学与技术4.信息科学与技术* 其中材料是基础!材料的应用:计算机与材料;飞机和材料;复合科学材料能源。
(二)新能源材料则是指实现新能源的转化和利用以及发展新能源技术中所要用到的关键材料。
1.主要包括储氢电极合金材料为代表的镍氢电池材料;2.嵌锂碳负极和LiCoO2正极为代表的锂离子电池材料、燃料电池材料;3.Si半导体材料为代表的太阳能电池材料;4.铀、氘、氚为代表的反应堆核能材料等。
1.2材料科学概论化学成分不同的材料其性能也不相同。
但对于同一成分的材料,通过不同的加工工艺也可以使其性能发生极大的变化。
*可见,除化学成分外,材料内部的结构和组织状态也是决定材料性能的重要因素。
*材料科学与工程( MSE )四要素:材料的合成与制备;成分与组织结构;材料特性;服役行为与使用寿命。
《材料科学与工程导论》课程报告 材料学专业
1什么是纳米材料及其性能
1.1什么是纳米材料
纳米材料是指在三维空间中至少有一维处于纳米尺度 (1-100nm)或者由它们作为基本单元构成的材料。
1.2纳米材料的性能
表面与界面的效应 小尺寸效应 量子尺寸效应 宏观量子隧道效应
2纳米材料的发展历程
2.1纳米材料的起源
纳米技术的灵感,来源于已故的物理学家查德.费曼 1959年所做的一次性题为在底部还有很大空间的演讲, 范曼质疑,从单个分子甚至原子开始进行组装,为什么 不能制造出物品。
纳米材料在短短几十年间,发展之迅猛我们有 目共睹。它不仅在我们日常生活中亦或者是其 它领域都发挥着重要作用。我们都相信,它对 我们以后的生活有很大的促进作用。另外,我 们以前对纳米材料知之甚少,我们现在所了解 的也只是通过查找大量资料获得,所以,有什 么不周到的地方还请老师指出和见谅。
5 参考文献
《材料科学与工程导论》课程报告
纳米材料的发展以及对 现代生活的应用
报告内容
0 引言 1 什么是纳米材料及其性能
1.1 什么是纳米材料 1.2 纳米材料的性能 2 纳米材料的发展历程 2.1 纳米材料的起源 2.2 纳米材料的发展 3 纳米材料对现代生活的应用 3.1 力学性质 3.2 磁学性质 3.3 电学性质 3.4 热学性质 3.5 光学性能 3.6 在生物医0 引言
纵观人类发展历史,人们生活的进步主要是因为生产工具的发展, 而生产工具的进步又是因为人们所掌握材料的多寡以及对材料的 应用能力所决定。从远古的石器,到青铜时代,再到铁器时代, 最后到如今的纳米材料,从粗俗笨拙到精致美观,从宏观到微观, 我们接触的材料在进步,应用材料的能力在提升,我们的生活也 得到了不断改善。而且,纳米材料的发现及应用更是在人类历史 上的一个里程碑。近年来,在国内外纳米材料的发展都比较迅猛。 纳米材料在日常生活中发挥着必不可少的作用,扮演者不可或缺 的角色。它在生物医学、催化、精细化工、国防科技等方面都发 挥重要作用。我相信,纳米材料对人类生活会越来越重要,虽然 它还不是很成熟,但随着技术不断发展,应用不断扩大,它的发 展前景会非常可观。
《材料科学与工程导论》课程教学大纲
本科生课程大纲课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修一、课程介绍1.课程描述:材料科学与工程导论是为一年级新生开设的材料学专业入门课程,是材料化学专业和高分子材料与工程专业的学科基础必修课程。
介绍材料科学与工程的知识结构、应用领域和发展前景;初步了解、掌握材料科学与工程领域所涉及的基本理论、基本概念等常识性内容,为今后学习奠定基础;了解专业特点、教学特点、学习规律;了解材料科学与工程领域的最新发展动态和趋势。
2.设计思路:以材料科学与工程的知识结构、应用领域、发展前景为主线,通过授课、参观、讲座、讨论等多种形式,让学生对材料科学与工程领域有个初步的了解。
3.课程与其他课程的关系本课程是材料化学专业和高分子材料与工程专业一年级新生的必修课,是学习其他专业课的先修课程。
二、课程目标本课程的目标是让学生了解材料材料科学与工程的知识结构、应用领域和发展前- 1 -景,初步了解、掌握材料科学与工程领域所涉及的基本理论、基本概念等常识性内容,并能够应用于后续专业课程的学习。
三、学习要求材料科学与工程导论课程要求学生(或小组)及时关注网络教学(包括移动客户端)的阅读资料、思考讨论题等,按照要求在课前完成相关的资料检索汇总及思考;在课堂上认真听讲,积极参与课堂讨论;课后积极参与小组活动并完成作业。
四、教学内容五、参考教材与主要参考书[1] 杨瑞成等. 材料科学与工程导论. 科学出版社. 2012.8[2] 陈克正等. 材料科学与工程导论. 化学工业出版社. 2011[3] 王高潮,材料科学与工程导论. 机械工业出版社. 2006六、成绩评定(一)考核方式 A.闭卷考试:A.闭卷考试 B.开卷考试 C.论文 D.考查 E.其他(二)成绩综合评分体系:- 2 -七、学术诚信学习成果不能造假,如考试作弊、盗取他人学习成果、一份报告用于不同的课程等,均属造假行为。
他人的想法、说法和意见如不注明出处按盗用论处。
材料科学与工程导论
无机非金属材料的磁学性能
磁性无机材料一般是含铁及其它元素的复合氧化物,通常称为铁氧体 亚铁磁性
高分子材料的磁学性能 1、大多数体系为抗磁性材料 2、顺磁性仅存在于两类有机物 含有过渡金属 含有属于定域态或较少离域的未成对电子 (不饱和键、自由基等)
材料科学与工程的内涵
组成要素: 成分 结构 合成加工 使用效能
是各学科综合发展的必然结果
固体物理、无机有机化学、物理化学
物质结构 和性质
冶金学、金属学陶瓷学、高分子学
材料的制备 结构与性能
金属材料、高分子材料与陶瓷材料之间的共性规律
材 料 科 学
材料性质:是功能特性和效用的描述符,是材料 对电.磁.光.热.机械载荷的反应。
韧性表征和意义
断裂韧性:抵抗裂纹失稳扩展而断裂的能力。 断裂:裂纹产生,扩展超过临界尺寸,失稳快速扩展断裂。
KI 应力场强因子 KIC 临界应力场强因子 裂纹扩展的临界状态对应的场强因子,代表材料的断裂韧性。
KI 应力场强因子 外加应力
决定电导率的基本参数 parameters 载流子类型 charge carrier—— 电子、空穴、正离子、负离子 载流子数 charge carrier density----n, 个/m3 载流子迁移率 electron mobility
导电聚合物的应用
理想情况下,导电聚合物具有金属导电性,且重量轻、易加工、材料来源广等特点 。 用作电极、电磁波屏蔽、抗静电材料等 半导体器件和发光器件方面得应用 聚合物电池、电致变色显示器、 电化学传感器、场效应管、 聚合物发光二极管(LED)
本文档后面有精心整理的常用PPT编辑图标,以提高工作效率
材料科学与工程导论 第1章 材料与社会(1)
• 第二篇 传统材料
–第四章 金属材料 –第五章 无机非金属材料 –第六章 高分子材料 –第七章 复合材料
10
–第十二章 纳米材料
–第十三章 智能材料 • 第四篇 材料专业的设置 –第十四章 材料类专业设置
主要参考书目
许并社. 材料概论[M]. 北京: 机械工业出版社, 2012 (¥29.0元). 施惠生. 材料概论[M]. 上海: 同济大学出版社, 2009 (¥26.0元). 杜双明, 王晓刚. 材料科学与工程概论[M]. 西安: 西安电子科技大学出版 社, 2011 (¥30.0元). 郑子樵, 封孝信,方鹏飞. 新材料概论[M]. 长沙: 中南大学出版社, 2009 (¥38.0元). 徐晓虹, 等. 材料概论[M]. 北京: 高等教育出版社, 2006 (¥28.4元). 顾家琳, 等. 材料科学与工程概论[M]. 北京: 清华大学出版社, 2005 (¥32.0元). 杜彦良, 张光磊. 现代材料概论[M]. 重庆: 重庆大学出版社, 2009 (¥45.0 元). 许并社. 材料科学概论[M]. 北京: 北京工业大学出版社, 2002 (¥19.0元) .
总之,"导论"的作用已由概要介绍一篇文章或一
本书,发展到用一本书来介绍一门学科专业了。
9
本课程的主要内容
• 第一篇 概论
–第一章 材料与社会 –第二章 材料科学与工程 纲要 –第三章 材料工艺
• 第三篇 新材料
–第八章 高性能结构材料 –第九章 新能源材料 –第十章 信息功能材料 –第十一章 生物医用材料什么是“ Nhomakorabea能材料” ?
以特殊的电学性能或各种电效应作为主要性能指标的一 类材料。
1.1.2 材料的分类
材料科学与工程学导论 (6)
专注今天,好好努力,剩下的交给时 间。20.12.2720.12.2703:0303:03:4903:03:49Dec-20
牢记安全之责,善谋安全之策,力务 安全之 实。2020年12月27日 星期日3时3分49秒Sunday, December 27, 2020
聚乙烯生产线
聚氯乙烯(PVC)
聚苯乙烯(PS)
PS保温板
PS光纤
氟塑料
是各种含氟塑料的总称。
聚四氟乙烯(PTFE)。1950年首先由杜邦公 司投产。有“塑料王”之称。
是高结晶度聚合物,无熔融态,分解温度400 ℃ ,可 在260 ℃以下长期下使用,耐低温达-200 ℃ ,力学 性能优异。光滑不粘,摩擦系数极小,具有自润滑性。 耐化学腐蚀性极强,耐强酸、强碱、有机溶剂,能耐 王水及沸腾的氢氟酸。具有塑料中最好的电绝缘性能。
表 三大高分子材料的比较
纤维
塑料
橡胶
分子量 加工方法
一般 1~7 万 熔融纺丝
一般 6~30 万 一般 15~30 万
挤出、注塑、 硫化交联
吹塑成型等
机械性能
高强度
介于两者之
(>35000N/cm2)
间
高模量
(>35000N/cm2)低
伸长率(<5~50%)
初始模量 很低,高弹
性形变 (500-100
聚氯乙烯(PVC)保鲜膜存在的问题
聚合物盘基片
性能要求
高的透光率、光学纯度、尺寸稳定性和热变 形温度,较好的机械性能和加工性能、低的 双折射和成本等。
主要材料:
聚碳酸酯、聚甲基丙烯酸甲酯(PMMA)、 改性双酚A环氧树脂、非晶态聚烯烃等
功能高分子材料
医用高分子 导电高聚物 液晶高分子 智能聚合物 高吸水性树脂等等
材料科学与工程专业导论心得体会
材料科学与工程专业导论心得体会作为一名热爱学习和追求知识的大学生,我对【材料科学与工程】专业导论课程充满了期待。
在这门课程中,我对材料科学的基本概念、研究方法、应用领域以及未来发展方向有了更深入的了解。
以下是我在这门课程中获得的一些心得体会。
1. 材料科学的重要性与广泛应用材料是现代社会的基石,几乎涉及到我们生活中的方方面面。
从日常用品到高科技产业,材料的选择、性能和处理都对产品的品质和功能有着决定性影响。
在课程中,我了解到材料科学与工程的研究与应用涉及金属、陶瓷、高分子、半导体等各种材料类别,且在电子、航空航天、医疗、能源等领域都有广泛的应用。
对于我作为材料科学与工程专业的学生而言,我深感责任重大,将来的学习和研究将直接关系到社会进步与人民生活的改善。
2. 材料科学研究的方法与技术课程中,老师向我们介绍了一系列材料科学研究的方法与技术,包括材料成分分析、结构表征、性能测试等。
在实验室实践中,我有幸接触到了一些常用的材料分析仪器,例如扫描电子显微镜(SEM)、X射线衍射(XRD)和热分析仪器等。
通过这些实验操作,我深刻认识到科学研究的细致与耐心。
只有通过精确的实验与数据分析,我们才能真正了解材料的性质和行为规律,进而实现对材料的优化和改进。
3. 了解材料性能与结构之间的关系在课程中,我了解到材料的性能与其微观结构之间存在着密切的关联。
不同材料的微观结构决定了它们的性能表现,而我们通过调控材料的结构,可以实现对其性能的改善。
例如,通过合理的热处理,我们可以使金属材料获得更好的机械性能;通过控制高分子材料的聚合方式,可以改善其耐热性和耐腐蚀性。
这种深入了解材料结构与性能之间关系的能力,对于我们未来从事材料工程研究与应用工作非常重要。
4. 环保与可持续发展的挑战随着社会的发展和科技的进步,材料科学与工程也面临着更大的挑战。
其中之一便是环保与可持续发展。
我们必须面对资源日益稀缺的现实,通过循环利用、绿色合成等手段,开发环保型材料和工艺,以减少对自然环境的影响。
材料科学与工程导论课后习题答案
第一章材料与人类1.为什么说材料的发展是人类文明的里程碑?材料是一切文明和科学的基础,材料无处不在,无处不有,它使人类及其赖以生存的社会、环境存在着紧密而有机的联系。
纵观人类利用材料的历史,可以清楚地看到,每一种重要材料的发现和利用,都会把人类支配和改造自然的能力提高到一个新的水平,给社会生产和人类生活带来巨大的变化。
2.什么是材料的单向循环?什么是材料的双向循环?两者的差别是什么?物质单向运动模式:“资源开采-生产加工-消费使用-废物丢弃”双向循环模式:以仿效自然生态过程物质循环的模式,建立起废物能在不同生产过程中循环,多产品共生的工业模式,即所谓的双向循环模式(或理论意义上的闭合循环模式)。
差别:单向循环必然带来地球有限资源的紧缺和破坏,同时带来能源浪费,造成人类生存环境的污染。
无害循环:流程性材料生产中,如果一个过程的输出变为另一个过程的输入,即一个过程的废物变成另一个过程的原料,并且经过研究真正达到多种过程相互依存、相互利用的闭合的产业“网”、“链”,达到了清洁生产。
3.什么是生态环境材料?生态环境材料是指同时具有优良的使用性能和最佳环境协调性能的一大类材料。
这类材料对资源和能源消耗少,对生态和环境污染小,再生利用率高或可降解化和可循环利用,而且要求在制造、使用、废弃直到再生利用的整个寿命周期中,都必须具有与环境的协调共存性。
因此,所谓环境材料,实质是赋予传统结构材料、功能材料以特别优异的环境协调性的材料,它是材料工作者在环境意识指导下,或开发新型材料,或改进、改造传统材料,任何一种材料只要经过改造达到节约资源并与环境协调共存的要求,它就应被视为环境材料。
4.为什么说材料科学和材料工程是密不可分的系统工程?材料科学与工程的材料科学部分主要研究材料的结构与性能之间所存在的关系,即集中了解材料的本质,提出有关的理论和描述,说明材料结构是如何与其成分、性能以及行为相联系的。
而另一方面,与此相对应,材料工程部分是在上述结构-性能关系的基础上,设计材料的组织结构并在工程上得以实施与保证,产生预定的种种性能,即涉及到对基础科学和经验知识的综合、运用,以便发展、制备、改善和使用材料,满足具体要求。
材料科学与工程导论
材料科学与工程导论1. 引言材料科学与工程是研究材料的组成、结构、性能和制备工艺的学科。
它涉及到许多领域,如化学、物理、生物学和工程学等。
材料科学与工程的开展对现代社会的各个方面都具有重要的意义,包括能源、环境、医疗、电子等。
2. 材料的分类根据材料的性质和组成,可以将材料分为金属、陶瓷、聚合物和复合材料四大类。
金属材料具有良好的导电性和导热性,常见的金属材料有铁、铜、铝等。
陶瓷材料具有高的硬度和抗腐蚀能力,常见的陶瓷材料有瓷器、玻璃等。
聚合物材料具有良好的可塑性和绝缘性能,常见的聚合物材料有塑料、橡胶等。
复合材料是由两种或更多种材料组合而成,具有综合性能优于单一材料。
3. 材料的性能材料的性能是指材料在特定条件下所表现出的特性。
常见的材料性能包括力学性能、热性能、电性能、磁性能等。
力学性能包括强度、韧性、硬度等。
热性能包括热导率、热膨胀系数等。
电性能包括导电性、介电常数等。
磁性能包括磁导率、磁饱和磁感应强度等。
4. 材料的制备工艺材料的制备工艺是指将原始材料经过一系列加工和处理步骤转变为所需的最终产品的过程。
常见的材料制备工艺包括熔炼、成型、烧结、合成等。
熔炼是将固态材料加热至熔点并冷却固化的过程。
成型是将熔融或可塑性材料加工成所需形状的过程。
烧结是将粉末材料在高温条件下进行烧结以获得致密结构的过程。
合成是在化学反响条件下将原始物质转化为目标材料的过程。
5. 材料科学的应用材料科学的应用非常广泛,几乎涉及到所有的工业和技术领域。
在能源领域,材料科学的应用可以提高电池的储能密度和光伏电池的效率。
在汽车领域,材料科学的应用可以降低汽车的重量和提高汽车的平安性能。
在医疗领域,材料科学的应用可以改善医疗器械的生物相容性和可植入性。
在电子领域,材料科学的应用可以制备出更小、更快、更节能的电子设备。
6. 材料科学的开展趋势随着科学技术的不断开展,材料科学也在不断进步。
未来的材料科学开展将更加注重材料的可持续开展和综合性能的提升。
材料科学与工程学导论—第二章—材料“四要素”是材料研究与应用的共性基础
4)材料成分结构数据库
Fe-C phase diagram
5)材料成分结构与其它要素的关系
是材料性能的原因
是合成加工的结果
5)材料成分结构与其它要素的关系
结构是材料性能的原因
1)按统计学原理计算单位面积上的位错缺陷数目,由于截面 减小而不能满足大样本空间时,这个数值不再恒定; 2)晶体结构越来越接近无缺陷理想晶体,强度值也就越接近 于理论强度值。
熔盐电冶金
湿法冶金
......
铁的生产过程
炼铁高炉
铝的生产过程
3 材料的制备与加工
熔炼与凝固 目的: 1. 金属的精练提纯
材料制备
2. 材料的“合金化”
3. 晶体的生长 内容:
1. 平衡凝固
2. 快速凝固
4. 区域熔炼
5. 玻璃的熔炼
3. 定向凝固
6. 熔融法提拉单晶
快速凝固
单晶Si的提拉
a—起弧; b—穿井; c—主熔化; d—熔末升温; e—精炼期
材料科学与工程导论
Engineering Science
第二章
材料“四要素”是材料研究 与 应用的共性基础
本章主要内容: 什么是材料的“四要素”? 材料研究手段和方法
材料“四要素” 的典型案例分析
讨论环节
§2.1 什么是材料的“四要素”
使用性能
制备/加工
性质
成分/结构
材料科学与工程“四要素”
1 材料的性质
材料性质:是功能特性和效用的描述符,是材料对 电、磁、光、热、机械载荷的反应。
材料性质描述 力学性质
物理性质
电学性质 磁学性质 光学性质 热学性质
化学性质
强 硬 刚 塑 韧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合材料的基本理论
复合原理
1。纤维增强复合材料的复合原理
外载荷与纤维方向垂直
σc= σf = σm。 εc = εfVf+εmVm。 1/Ec = Vf/Ef+Vm/Em。
材料科学与工程学导论
复合材料的基本理论
复合原理
2。颗粒增强复合材料的复合原理 ρc = ρpVp+ρmVm。
复合材料的基本理论
复合原理
1。纤维增强复合材料的复合原理
外载荷与纤维方向一致
Fc=σcAc = σfAf +σmAm。
σc = σfVf+σmVm。
Ec = EfVf+EmVm。
条件是复合材料中基体是连续的、均匀的,纤维的性质和 直径都是均匀的,且平行连续排列,同时纤维与基体间的 结合为理想结合,在界面上不产生滑移。
材料科学与工程学导论
复合材料的基本理论
颗粒增强复合材料的机理:
弥散分布在金属或合金中基体中的硬颗粒可以有效地阻止 位错运动,产生显著的强化作用。这种复合强化机制类似 与合金的析出强化机理,基体乃是承受载荷的主体。 不同的是,这些细小弥散的硬颗粒并非借助于相变产生的 硬颗粒,他们在温度升高时仍保持其原有尺寸,因而,增 强效果可在高温下持续较长时间,使复合材料的抗蠕变性 能明显优于金属或合金基体。
复合材料的基本理论
增强机理
颗粒增强
颗粒增强复合材料是指由高强度、高弹性模量的脆性颗粒 作增强体与韧性基体或脆性基体经一定工艺复合而成的多 相材料。 颗粒增强复合材料的种类: 纳米微细硬颗粒弥散增强,微米颗粒增强。
材料科学与工程学导论
复合材料的基本理论
弥散强化复合材料中弥散颗粒种类 金属氧化物 碳化物 硼化物
4。由被动复合向主动复合材料发展
所谓被动就是指在外界作用下材料只能被动承受某种 作用或作出某种反应。主动材料就是指具备能自诊断、 自适应和自修补作用材料。
5。由常规设计向仿生设计方向发展
仿生设计就是利用某种生物体的特征,设计材料。 仿生设计可以参照生物体的功能机制设计出新的 功能材料。
材料科学与工程学导论
材料科学与工程学导论
复合材料的基本理论
增韧机理
纤维增韧 由于定向、取向或无序排布的纤维加入,使得 复合材料的韧性得到显著提高。
材料科学与工程学导论
复合材料的基本理论
单向排布长纤维增韧机理
单向排布长纤维增韧陶瓷基复合材料具有各向
异性,沿纤维长度方向的纵向性能大大高于横
向性能。若材料中产生的裂纹平面垂直于纤维
第六章:复合材料
材料科学与工程学导论
本章主要内容
复合材料概述 复合材料的基本理论 金属基复合材料 陶瓷基复合材料
材料科学与工程学导论
什么是复合材料?
复合材料是由两种或两种以上物理、化学、 力学性能不同的物质,经人工组合而成的多 相固体材料。
材料科学与工程学导论
复合材料的种类
结构复合材料
金属基复合材料 陶瓷基复合材料 树脂基复合材料
材料科学与工程学导论
复合材料的基本理论
增强纤维起到强化基体作用必要条件:
1。增强纤维的强度和弹性模量应比基体材料的高。 2。基体与纤维之间要有一定的粘结力,并具有一定的强度。 3。纤维应有一定的含量、尺寸和分布。
4。纤维与基体之间的线膨胀系数相匹配。
5。纤维与基体之间有良好的相容性。
材料科学与工程学导论
材料科学与工程学导论
复合材料的发展趋势
1。由宏观复合向微观复合发展
微纤增强复合材料、纳米复合材料、分子复合材料
2。向多元混杂复合和超混杂复合发展
例如两种纤维的复合应用,两种基体的复合应用等
3。由结构复合为主向结构复合与功能 复合并重的方向发展
功能复合材料的开发与应用等
材料科学与工程学导论
复合材料的发展趋势
时,当裂纹扩展遇到纤维时,裂纹运动受阻,
欲使裂纹继续运动,必须提高外加应力。应力
继续增大,纤维与基体解离,纤维从基体中拔
出、断裂或转向,从而使复合材料的韧性得到
提高。
材料科学与工程学导论
复合材料的基本理论
多维多向排布长纤维增韧
克服了单向长纤维只在一个方向上性能得到提 高的弱点。多向长纤维可实现陶瓷等脆性材料 在二维、三维方向上的性能提高。这种多维多 向的排列方式有:1。将纤维编织成纤维布; 2。纤维分层单向排布,层间纤维成一定角度。 多维长纤维增韧的机理与单向一样,主要是通 过纤维的断裂、拔出或转向提高韧性。
良好的高温性能
增强纤维的熔点都很高,并且在高温下仍具有较
高的强度
材料科学与工程学导论
纤维增强复合材料的纤维种类
纤维增强复合材料中主要的新型纤维与晶须有:
碳纤维、硼纤维、芳纶纤维、碳化硅纤维、氧化铝 纤维以及碳化硅晶须、氧化铝晶须等。
这些纤维与晶须的主要特点是:
密度低、强度高、弹性模量高、线膨胀系数小等 特点。
材料科学与工程学导论
复合材料的基本理论
纤维增强复合材料的机理:
1。微细的增强纤维因直径较小,产生裂纹的几率降低。
2。纤维在基体中,彼此隔离,纤维表面受到基体的保, 护,不易受到损伤,不易在承载中产生裂纹,增大承载力。
3。纤维在基体中,即使有些裂纹会断裂,但基体能阻止 裂纹扩展。
4。由于基体对纤维的粘结作用以及基体与纤维之间的摩擦 力,使得材料的强度大大提高。
复合材料
功能复合材料
水泥基复合材料 导电导磁复合材料 阻尼吸声复合材料 屏蔽功能复合材料 摩擦磨损复合材料
材料科学与工程学导论
复合材料的性能特点
比强度和比弹性模量高
抗疲劳与断裂安全性能好
大量的增强纤维对裂纹的扩展起到阻碍作用
良好的减震性能
纤维增强复合材料具有较高的自震频率,不易产 生共振现象,具有一定的减震作用
材料科学与工程学导论
复合材料的基本理论
短纤维增韧机理
短纤维增韧复合材料的制备工艺比长纤维的简 便。通常是将长纤维剪断,再与基体粉体材料 混合、热压制得。在热压时,短纤维沿压力方 向择优取向,产生性能上的各向异性。当短纤 维的质量分数适当时,复合材料的断裂功显著 提高,从而使断裂韧性得到提高。
上限值 Ec = EpVp+EmVm。 下限值 Ec = EpEm/(EpVm+EmVp)。
材料科学与工程学导论
复合材料的基本理论
增强机理
纤维增强
纤维增强复合材料是指由高强度、高弹性模量的脆性纤维 作增强体与韧性基体或脆性基体经一定工艺复合而成的多 相材料。 设计纤维增强金属基复合材料的目标: 提高基体在室温下和高温下的强度和弹性模量。