一元二次方程复习提纲

合集下载

一元二次方程专题复习

一元二次方程专题复习

一元二次方程专题复习(一)直接开平方法→配方法要点一、一元二次方程的解法---配方法1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.类型一、用配方法解一元二次方程1.用配方法解方程x 2-7x-1=0.【答案与解析】将方程变形为x 2-7x =1,两边加一次项的系数的一半的平方,得x 2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为x =+或x =-.【总结升华】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行: (1)把形如ax 2+bx+c =0(a ≠0)的方程中二次项的系数化为1; (2)把常数项移到方程的右边;2222()a ab b a b ±+=±(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n ≥0)的方程; (4)用直接开平方的方法解此题.举一反三:【变式】用配方法解方程.(1)x 2-4x-2=0; (2)x 2+6x+8=0.要点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,一定要学好.类型二、配方法在代数中的应用2.若代数式,,则的值( )A .一定是负数B .一定是正数C .一定不是负数D .一定不是正数【答案】B ;【解析】(作差法).故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.221078Ma b a =+-+2251N a b a =+++M N -22221078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>3.用配方法说明:代数式x2+8x+17的值总大于0.【答案与解析】x2+8x+17= x2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴(x+4)2+1>0,故无论x取何实数,代数式 x2+8x+17的值总大于0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值得符号.举一反三:【变式】求代数式 x2+8x+17的最小值4.(2014春•滦平县期末)已知x2+y2﹣4x+6y+13=0,求(x+y)2013的值.【思路点拨】采用配方法求出x、y的值,代入计算即可得到答案.【答案与解析】解:x2+y2﹣4x+6y+13=0,x2﹣4x+4+y2﹣+6y+9=0,(x﹣2)2+(y+3)2=0∴x﹣2=0,y+3=0,解得,x=2,y=﹣3,(x+y)2013=﹣1.【总结升华】本题考查的是配方法的应用和非负数的性质的应用,掌握配方法的步骤和几个非负数的和为0,每个非负数都为0是解题的关键.1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式 一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程,用配方法将其变形为:①当时,右端是正数.因此,方程有两个不相等的实根:② 当时,右端是零.因此,方程有两个相等的实根: ③ 当时,右端是负数.因此,方程没有实根.20 (0)ax bx c a ++=≠2224()24b b ac x a a -+=240b ac ∆=->1,22b x a-±=240b ac ∆=-=1,22b x a=-240b ac ∆=-<5. 用公式法解下列方程.(1); (2).【总结升华】 用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算的值;(3)若是非负数,用公式法求解.举一反三:【变式】用公式法解方程6.用公式法解下列方程:(1); (2) .【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在的前提下,代入求根公式可求出方程的根.23310x x --=2241x x =-24b ac -24b ac -2341x x =+2100x -+=(1)(1)x x +-=240b ac -≥举一反三:【变式】(2014秋•泽州县校级期中)用公式法解方程:5x 2﹣4x ﹣12=0.【巩固练习】 一、选择题1.已知关于x 的一元二次方程,用配方法解此方程,配方后的方程是( )A .B .C .D . 2.用配方法解下列方程时,配方有错误的是( )A .化为B .化为C .化为D .化为3.(2015春•张家港市校级期中)若M=2x 2﹣12x+15,N=x 2﹣8x+11,则M 与N 的大小关系为( ) A .M ≥N B . M >N C . M ≤N D . M <N 4.不论x 、y 为何实数,代数式的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定二、填空题 7.(1)x 2-x+ =( )2; (2)x 2+px+ =( )2. 220x x m --=2(1)1x m -=+2(1)1x m +=+22(1)1x m -=+22(1)1x m +=+22990x x --=2(1)100x -=22740t t --=2781416t ⎛⎫-= ⎪⎝⎭2890x x ++=2(4)25x +=23420x x --=221039x ⎛⎫-= ⎪⎝⎭22247x y x y ++-+438.已知,则的值为 . 9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为____ ___,∴所以方程的根为_________. 11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.(2015春•重庆校级期中)a 2+b 2﹣4a+2b+5=0,则b a 的值为 .三、解答题 13. 用配方法解方程.(1) 3x 2-4x-2=0; (2)x 2-4x+6=0.14. 用公式法解下列方程:(2) .15.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.16.已知在⊿ABC 中,三边长a 、b 、c ,满足等式a 2-16b 2-c 2+6ab+10bc=0,求证:a+c=2b223730216b a a b -+-+=a -2(1)210x ax --=;22222(1)()ab x a x b x a b +=+>一元二次方程专题复习(二)温故知新:1.直接开平方法2.配方法3.公式法一、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

一元二次方程全章复习讲义

一元二次方程全章复习讲义

一元二次方程 内容简介:1. 了解一元二次方程的定义及一元二次方程的一般形式:20(0)ax bx c a ++=≠.2. 掌握一元二次方程的四种解法,并能灵活运用.3. 掌握一元二次方程根的判别式,并能运用它解相应问题.4. 掌握一元二次方程根与系数的关系,会用它们解决有关问题.5. 会解一元二次方程应用题. 知识点一:一元二次方程的定义及一般形式【知识要点】一元二次方程的一般形式:20(0)ax bx c a ++=≠例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2、方程()0132=+++mx xm m 是关于x 的一元二次方程,则m 的值为 。

针对练习:1、方程782=x 的一次项系数是 ,常数项是 。

2、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

知识点二:一元二次方程的解【知识要点】1、 当已知一元二次方程的一个根时,要熟练地将这个根代入原方程,并灵活运用得到的等式。

2、 在20(0)ax bx c a ++=≠中,x 取特殊值时,a 、b 、c 之间满足的关系式。

例1、已知322-+y y 的值为2,则1242++y y 的值为 。

例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

例3、一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。

例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m x x 的两个根,则m 的值为 。

针对练习:1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。

一元二次方程复习提纲

一元二次方程复习提纲

一元二次方程复习一、知识系统:概念——解法——实际应用——根的判别式、根系关系——二次函数1、概念:)0(02≠=++a c bx ax 叫一元二次方程。

理解:⎩⎨⎧≠=02a x 的最高次数 21) 2) 配方法:02=++c bx ax (适用所有方程,但方程易化成022=++C kx x 的形式)|3) 公式法:02=++c bx ax 有根的前提△≥0,a ac b b x 2422,1-±-= 4) 因式分解法:能用公式法(完全平方公式、平方差公式)、十字相乘法对左边c bx ax ++2分解成:()()21x x x x a --3、实际应用(与二次函数最值联系):面积、增长率、销售等%4、根的判别式、根系关系:)0(02≠=++a c bx ax¥根系关系:ab a b b a b a b x x -=∆--∆+-=∆--+∆+-=+22221,()a c aac b b a b a b a b x x =--=∆--=∆--⋅∆+-=⋅22222221444)()(22 5、二次函数c bx ax y ++=2,令y=0变为一元二次方程02=++c bx ax ,抛物线与x 轴的两交点横坐标21,x x 则为方程02=++c bx ax 的两根。

二、例题:1、若032)1(12=+--+x x m m是关于x 的一元二次方程,求这个方程的根。

%2、用适当方法解下列方程:①61232=+x x ②x x 210)5(32-=- ③0222=--x x\3、已知关于x 的方程:0362=++x x ,不解方程求下列式子的值:①21x x + ②21x x ⋅ ③2221x x + ④1221x x x x + ⑤3231x x + ⑥222316122x x x ++-$ 4、已知关于x 的方程:04)2(22=---m x m x ,①求证:无论m 取什么实数,方程总有两个不同的实数根。

《一元二次方程》复习提纲

《一元二次方程》复习提纲

《一元二次方程》复习提纲一,知识结构梳理(1)含有 个未知数。

(2)未知数的最高次数是 1、概念 (3)是 方程。

(4)一元二次方程的一般形式是 。

(1) 法,适用于能化为)(()2≥=+n n m x 的一元二次方程。

(2) 法,即把方程变形为ab=0的形式,2、解法 (a ,b 为两个因式), 则a=0或 (3) 法 (4) 法,其中求根公式是 (5) 法 当 时,方程有两个不相等的实数根。

(6) 当 时,方程有两个相等的实数根。

当 时,方程有没有的实数根。

可用于解某些求值题 (1) 一元二次方程的应用 (2) (3) 可用于解决实际问题的步骤 (4) (5) (6)二,知识点归类(一)建立一元二次方程模型 1, 一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。

注意:一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。

例 下列关于x 的方程,哪些是一元二次方程?⑴3522=+x ;⑵062=-x x ;(3)5=+x x ;(4)02=-x ;(5)12)3(22+=-x x x答案:(2),(4)2, 一元二次方程的一般形式一元二次方程的一般形式为02=++c bx ax (a ,b ,c 是已知数,0≠a )。

其中a ,b ,c 分别一元二次方程叫做二次项系数、一次项系数、常数项。

注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。

(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

(3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。

例:(2012广安中考试题第8题,3分)已知关于x 的一元二次方程(a-1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是( )A .a>2B .a<2C .a<2且a≠1D .a<-2 思路导引:一元二次方程有两个不相等的实数根,由于二次项系数是字母的代数式形式,注意两点,一是二次项系数不等于0,二是根的判别式大于0 解析:△=4-4(a -1)×1=8-4a >0,所以a <2,结果选 C 。

一元二次方程复习提纲

一元二次方程复习提纲

一元二次方程复习提纲考点一:概念(1)定义:含有 个未知数,并且未知数的最高次数是 的 方程叫做一元二次方程。

(2)一般形式:ax 2+bx+c=0(a ≠0),其中二次项系数是 ,一次项系数是 ,常数项是 。

(3)判断一元二次方程的依据:①只含有一个未知数。

② 是整式方程。

③ 二次项系数不为“0”。

④ 未知数最高次数是“2”。

典型例题:1、下列是关于x 的一元二次方程的是( )2、方程2269x x -=的二次项系数、一次项系数、常数项分别为( ).A 、629,,B 、269-,,C 、269--,,D 、 269-,, 3若方程2210mx x -+=是关于x 的一元二次方程,则m .4、当m 时,方程mx 2-3x =2x 2-mx +2 是一元二次方程考点二:一元二次方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值典型例题:关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为( ).(A) 1 (B) 1- (C) 1或1- (D)21. 考点三:一元二次方程的解法1、直接开平方法适用方程特征:()()02≥=+n n m x 的解是m n x -±= 典型例题:(1) x 2 = 5 (2)(y+2)2=3 (3)2(3a-1)2-1=022221 320 B 2x +y-1=0 C x 00 D x xA x -+==、、、、适用方程特征:方程左边可以化为两个因式的乘积,右边是0,即形如 (x+a)(x+b)=0的方程都可以用因式分解法。

用因式分解法解一元二次方程的一般步骤:(1)将方程的右边化为0;(2)将方程左边分解成两个一次因式的乘积。

(3)令每个因式分别为0,得两个一元一次方程。

(4)解这两个一元一次方程,它们的解就是原方程的解。

典型例题:解方程(1)3x 2 = 2x (2) 0)1(3)1(2=-+-x x x(3) 22)12()3(+=-x x (4)y 2 =3y +43、配方法即通过配方将方程化为(x+a )2=b(b ≥0)的形式,再用直接开平方法求解。

一元二次方程提纲

一元二次方程提纲

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0)。

注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

考点2:一元二次方程的解法 1.直接开平方法:对形如(x+a)2=b(b≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。

X+a=b 1x=-a+b 2x=-a-b 2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2=b的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,则原方程无解. 3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是a acbbx242(b2-4ac≥0)。

步骤:①把方程转化为一般形式;②确定a,b,c的值;③求出b2-4ac的值,当b2-4ac≥0时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。

步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。

5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c的值;②若b2 -4ac<0,则方程无解.⑶利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4)2 =3(x+4)中,不能随便约去x +4。

《一元二次方程》复习经典讲义--绝对经典实用

《一元二次方程》复习经典讲义--绝对经典实用

《一元二次方程》复习经典讲义基础知识1、一元二次方程方程中只含有一个未知数,而且未知数的最高次数是2的方程,一般地,这样的方程都整理成为形如脳」「冰4;"『:寫占门的一般形式,我们把这样的方程叫一元二次方程。

其中'分别叫做一元二次方程的二次项、一次项和常数项,a b分别是二次项和一次项的系数。

如|满足一般形式「丁:、1,工宀L分别是二次项、一次项和常数项,2,—4分别是二次项和一次项系数。

注:如果方程中含有字母系数在讨论是否是一元二次方程时,则需要讨论字母的取值范围。

2.—元二次方程求根方法(1)直接开平方法形如•的方程都可以用开平方的方法写成' ,求出它的解,这种解法称为直接开平方法。

(2)配方法通过配方将原方程转化为V;工己丿的方程,再用直接开平方法求解。

配方:组成完全平方式的变形过程叫做配方。

配方应注意:当二次项系数为1时,原式两边要加上一次项系数一半的平方,若二次项系数不为1,只需方程两边同时除以二次项系数,使之成为1。

(3)公式法求根公式:方程小* X 「的求根公式_b 丄v b2-4ac2ti步骤:1)把方程整理为一般形式::匚『“甩.m」:,确定a b、c。

2)计算式子卜In的值。

3)当八心心-时,把a、b和卜L LI的值代入求根公式计算,就可以求出方程的解。

(4)因式分解法把一元二次方程整理为一般形式后,方程一边为零,另一边是关于未知数的二次三项式,如果这个二次三项式可以作因式分解,就可以把这样的一元二次方程转化为两个一元一次方程来求解,这种解方程的方法叫因式分解法。

3、一兀二次方程根的判别式的定义运用配方法解一元二次方程过程中得到显然只有当护仏“时,才能直接开平方得:也就是说,一元二次方程卅r吐m沁珥只有当系数'耳、满足条件託=眇一盘供訣氐时才有实数根.这里「n 叫做一元二次方程根的判别式.4、判别式与根的关系在实数范围内,一元二次方程'的根由其系数「、耳、确定,它的根的情况(是否有实数根)由二•,确定.设一元二次方程为' 7 ' 11■ 「,其根的判别式为:则hbph' ■4tjcr①1■- ' =■方程门厂山应二::緘町有两个不相等的实数根■br V ——丫——…_ _②方程' f'有两个相等的实数根•一.③.匸方程农用沁没有实数根.若I,4,匸为有理数,且二为完全平方式,则方程的解为有理根;若△为完全平方式,同时血是%的整数倍,则方程的根为整数根.说明:⑴用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有两个不相等的实数根时,:;有两个相等的实数根时,人-J;没有实数根时,「1⑵在解一元二次方程时,一般情况下,首先要运用根的判别式—氐判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根)•当亠忙仝:时,方程有两个相等的实数根(二重根),不能说方程只有一个根.①当时二抛物线开口向上二顶点为其最低点;②当…「时=抛物线开口向下二顶点为其最高点.5、一元二次方程的根的判别式的应用一元二次方程的根的判别式在以下方面有着广泛的应用:⑴运用判别式,判定方程实数根的个数;⑵利用判别式建立等式、不等式,求方程中参数值或取值范围;⑶通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.6韦达定理b如果能畋;:;的两根是;:,贝U " -丿.(隐含的条件:•「「)特别地,当一元二次方程的二次项系数为1时,设',’‘是方程"'的两个根,贝U '-7、韦达定理的逆定理以两个数,”为根的一元二次方程(二次项系数为1 )是F -(x t ^x2)x^x l x2 -0一般地,如果有两个数’,•满足<,「,那么',•'必定是加亠脉V.U =比爭為的两个根.8、韦达定理与根的符号关系在£已护仏心1J的条件下,我们有如下结论:-<0 丄邸⑴当・时,方程的两根必一正一负•若- ,则此方程的正根不小于负-*<0根的绝对值;若「,则此方程的正根小于负根的绝对值.->0 --> o⑵当J 时,方程的两根同正或同负.若」,则此方程的两根均为正--<0根;若「,则此方程的两根均为负根.更一般的结论是:若,'■是煜。

一元二次方程复习1

一元二次方程复习1

一元二次方程知识点总结考点一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

考点二、一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式5、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a ,二根之积=c/a 也可以表示为x1+x2=-b/a,x1x2=c/a 。

一元二次方程知识点归纳和重难点精析

一元二次方程知识点归纳和重难点精析

一元二次方程知识点归纳和重难点精析一、知识点归纳1.一元二次方程的基本概念一元二次方程是指只含有一个未知数,且未知数的最高次数为2的整式方程。

其一般形式为ax²+bx+c=0(a≠0)。

2.一元二次方程的解法公式一元二次方程的解法公式为x=[-b ±sqrt(b²-4ac)] / (2a)。

其中,sqrt表示求平方根,x为未知数,a、b、c为方程的系数。

二、重难点精析九年级数学一元二次方程的重难点1.高次项:一元二次方程中,二次项的系数a不能为0.且最高次数为2.这是在解一元二次方程时需要特别注意的难点。

2.整体化简:在求解一元二次方程时,需要将方程进行整体化简,从而得到未知数的值。

这需要学生具备一定的化简和运算能力。

针对重难点的解决方法及相关思考题1.高次项注意事项:在一元二次方程中,要确保二次项的系数不为0.且最高次数不超过2.如有其他高次项,可将其合并或转化为二次项。

2.整体化简技巧:为了更好地求解一元二次方程,学生需要掌握整体化简的方法。

可以通过移项、合并同类项等方式,将方程化简为更易于求解的形式。

思考题:求解一元二次方程x²-6x+9=0时,有哪些方法可以解题?哪种方法更适合处理此类方程?三、扩展知识一元二次方程的历史背景及应用领域一元二次方程作为九年级数学的重要知识点,在实际生活和后续学习中有着广泛的应用。

例如,在解决实际问题时,一元二次方程可用于解决诸如最大化、最小化、平均值等优化问题。

此外,在物理、化学、生物等科学领域中,一元二次方程也常常用于描述现象和解决问题。

相关知识点补充在求解一元二次方程的过程中,可能会涉及到其他数学知识点,如三角函数、平移和缩放等。

这些知识点对于理解一元二次方程的解法和实际应用都有一定的帮助。

例如,三角函数可以用于求解一元二次方程的近似解;平移和缩放可以用于将复杂的一元二次方程转化为简单的形式,从而更容易求解。

因此,学生在学习的过程中需要注意知识点的联系与运用。

一元二次方程专题复习资料

一元二次方程专题复习资料

一元二次方程专题复习 知识盘点1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的 方程叫做一元二次方程。

通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。

2. 一元二次方程的解法:(1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平方,而另一边是一个 时,可以根据 的意义,通过开平方法求出这个方程的解。

(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为 ,即方程两边同时除以二次项系数;②移项,使方程左边为 项和 项,右边为 项;③配方,即方程两边都加上 的平方;④化原方程为2()x m n +=的形式,如果n 是非负数,即0n ≥,就可以用 法求出方程的解。

如果n <0,则原方程 。

(3)公式法: 方程20(0)ax bx c a ++=≠,当24b ac -_______ 0时,x = ________(4)因式分解法:用因式分解法解一元二次方程的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个 的乘积;③令每个因式都等于 ,得到两个 方程;④解这两个方程,它们的解就是原方程的解。

3.一元二次方程的根的判别式 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 的实数根,即-----=-----=2,1x x(2)ac b 42-=0⇔一元二次方程有两个 的实数根,即-----==21x x ,(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根。

4. 一元二次方程根与系数的关系如果一元二次方程20ax bx c ++=(0)a ≠的两根为12,x x ,则12x x += ,12x x =提示:在应用一元二次方程根与系数的关系时,一定要保证元二次方程有实数根。

5. 列一元二次方程解应用题列一元二次方程解应用题的步骤和列一元一次方程解应用题的步骤一样,即审、找、设、列、解、答六步。

九年级一元二次方程专题复习.doc

九年级一元二次方程专题复习.doc

一元二次方程专题复习【知识回顾】1.灵活运用四种解法解一元二次方程:一元二次方程的-•般形式:做2+bx + c = 0(dH0)四种解法:直接开平方法,配方法,公式法,因式分解法,公式法:(戸一4必$0)注意:(1) 一定要注意QHO,填空题和选择题中很多情况下是在此处设陷进;(2)掌握一元二次方程求根公式的推导;(3)主要数学方法有:配方法,换元法,“消元”与“降次” •2.根的判别式及应用(A = &2-4ac):(1)一元二次方程ax2 +加+ c = 0(a工0)根的情况:①当A>0时,方程有两个不相等的实数根;②当△ = ()时,方程有两个相等的实数根;③当时,方程无实数根.(2)判定一元二次方程根的情况;(3)确定字母的值或取值范围。

3.根与系数的关系(韦达定理)的应用:b c韦达定理:如一元二次方程ax1 +Z?x + c = 0(«^0)的两根为,则西+无=——,占•匕=— a ~ a适用题型:(1)已知一根求另一•根及未知系数;(2)求与方程的根有关的代数式的值;(3)己知两根求作方程;(4)已知两数的和与积,求这两个数;(5)确定根的符号:(西,召是方程两根);(6)题冃给出两根Z间的关系,如两根互为相反数、互为倒数、两根的平方和或平方差是多少、两根是/?/△的两直角边求斜边等悄况.注意:(1 ) %]2 + =(X] + 兀2)~ — 2兀]• X,(2) (x, -x2)2 = (Xj +x2)2 -4^ -x2;x} -x2 =+x2)2 -4x, -x 2A>0(3)①方程有两正根,贝iJ<X]+兀2>0;-x2 > 0A>0②方程有两负根,贝IJ西+兀;x l-x2>0[A>0③方程冇一正一负两根,贝叽“[x A -x2 < 0[A>0④方程一根人于1,另一根小于1,贝几仃 .、八[(x, — l)(x2 -l)<0(4)应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时, 一•般把所求作得方程的二次项系数设为1,即以西,吃为根的一元二次方程为X2-U.十兀2)兀+西*2 =0 ;求字母系数的值时,需使二次项系数QH0,同时满足△》();求代数式的值,常用整体思想,把所求代数式变形成为含有两根Z和坷+乞,两根Z积旺的代数式的形式,整体代入。

一元二次方程复习要点

一元二次方程复习要点

一元二次方程的复习一、1、一元二次方程的要点:①它的左右两边都是整式,②只含一个未知数,且未知数的最高次数是2。

2、能使一元二次方程两边相等的未知数的值叫一元二次方程的解(或根)。

一元二次方程的一般形式,一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现,但二次项必须存在,而且左边通常按未知数的次数从高到低排列,特别注意的是“=”的右边必须整理成0。

要很熟练地说出随便一个一元二次方程中二次项、一次项、常数项:二次项系数、一次项系数.例题讲解:1、把方程x x 2)1(32=-化成一般形式是______________2、当m_________时,关于x 的方程(m-1)x m 2+1+2mx+3=0是一元二次方程。

二、一元二次方程的解法:(一)”夹逼法”的思想,列表,观察。

此类题主要在填空或选择题中,方程的解或根在代数式的值的正与负之间。

一般地,对于形如 或 的方程,根据平方根的定义,可解.这种解一元二次方程的方法叫做开平方.切记,开平后有正负两种情况。

例题讲解:(1)方程x 2=49的根是____; (2)9x 2-16=0的根是____;配方的步骤:(1)先把二次项系数化为1;(2)先把方程常数项移到方程的右边,即移项.(3)方程的两边同加一次项系数的一半的平方,左边配成完全平方式;(4)若方程右边为非负数时,就可以用开平方法解出方程的根;(5)若配方后,方程右边为负数,那么原方程无解。

即:化、移、配、开、解例题:1、03522=-+x x (用配方法解)2、例题讲如果x2+2(m -2)x+9是完全平方式,那么m 的值等于( )A.5B.5或-1C.-1D.-5或-13、2x 2-9x+8=04、用配方法证明:5x 2-6x ﹢11的值恒大于0..(四1)把方程化成一般形式,并写出a ,b ,c 的值.(2)求出的值.(3)代入求根公式 : (4)写出方程的解例题讲解:1. 2325x x =+ (用公式法解)2.x 2+4x+4=0)0(02≠=++a c bx ax 的根为.2421a ac b b x -+-=,.2422a ac b b x ---=∴,2221a b a b x x -=-=+.4)4(22221a c a ac b b x x =--= 综上所述得,设)0(02≠=++a c bx ax 的两根为1x 、2x ,则有,21a b x x -=+ .21a c x x ==b 2-4a c >0时,方程有两个不相等的实数根;当△=b 2-4a c=0时,方程有两个相等的实数根;当△=b 2-4a c <0时,方程没有实数根请利用以上结论解决下列问题:1、(1)若02=++c bx x 的两根为1和3,求b 和c 的值。

一元二次方程知识点框架

一元二次方程知识点框架

一元二次方程知识点框架
一元二次方程知识点框架如下:
一、定义:一元二次方程是只含有一个未知数,且未知数的最高次数为2的方程。

二、一般形式:ax^2 + bx + c = 0,其中a ≠0。

三、解法:
1. 直接开平方法:对于形如x^2 = b(b≥0)的方程,可以直接开平方求得解。

2. 因式分解法:通过因式分解将方程化为两个一次因式的乘积等于0,然后分别令每个因式等于0,解出x的值。

3. 公式法:使用求根公式ax^2 + bx + c = 0的解为x = [-b ±sqrt(b^2 - 4ac)] / (2a)。

当判别式Δ=b^2 - 4ac≥0时,方程有两个实根;当Δ<0时,方程无实根。

4. 配方法:先将方程化为一般形式,然后配方得到(x + p)^2 = q的形式,再根据q的正负性求得方程的解。

四、根的判别式:判别式Δ=b^2 - 4ac。

当Δ>0时,方程有两个不相等的实根;当Δ=0时,方程有两个相等的实根;当Δ<0时,方程无实根。

五、根与系数的关系:若方程的两个实根为x1和x2,则x1 + x2 = -b/a,x1 * x2 = c/a。

六、应用:一元二次方程在实际问题中有着广泛的应用,如几何、三角、代数等问题中都需要用到一元二次方程的知识点。

一元二次方程总复习资料

一元二次方程总复习资料

第3章 一元二次方程总复习资料主备人:张静 审核人:一、知识扫描1.只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.因此,由一元二次方程的定义可知,即一元二次方程必须满足满足以下三个条件:①方程的两边都是关于未知数的整式;②只含有一个未知数;③未知数的最高次数是2。

这样的方程才是一元二次方程,不满足其中任何一个条件的方程都不是一元二次方程。

例如:535,53,02,3422222+===-+-x x x x x x x 都是一元二次方程。

而03132=-+x x不是一元二次方程,原因是x1是分式。

2.任何关于x 的一元二次方程的都可整理成)0(02≠=++a c bx ax 的形式.这种形式叫做一元二次方程的一般形式,它的特征是方程左边是一个关于未知数的二次三项式,方程右边是零,其中2ax 叫二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

注意b 、c 可以是任何实数,但a 绝对不能为零,否则,就不是一元二次方程了。

化一元二次方程为一般形式的手段是去分母、去括号、移项、合并同类项,整理后的方程最好按降幂排列,二次项系数化为正数。

注意任何一个一元二次方程不可缺少二次项,担可缺少一次项和常数项,即b 、c 均可以为零。

如方程013x 023x 02222=-=-=、、x x 都是一元二次方程。

3.一元二次方程的解. 使一元二次方程左、右两边相等的未知数的值,叫一元二次方程的解,又叫一元二次方程的根。

如x=1时,022=-+x x成立,故x=1叫022=-+x x的解。

4.一元二次方程的解法解一元二次方程的基本思想是通过降次转化为一元一次方程,本节共介绍了四种解法。

(1)直接开平方法:方程)0(2≥=a a x的解为a x ±=,这种解一元二次方程的方法叫直接开平方法。

它是利用了平方根的定义直接开平方,只要形式能化成()a =2的一元二次方程都可以采用直接开平方法来解。

一元二次方程复习提纲

一元二次方程复习提纲

一元二次方程复习提纲数学是初中学习中的一个重要科目,是三大主科之一,但是有很多同学的数学成绩并不理想,以下是小编给大家整理的一元二次方程复习提纲,希望对大家有所帮助,欢迎阅读!一元二次方程复习提纲一、目标与要求1.了解一元二次方程及有关概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,应用一元二次方程概念解决一些简单题目。

2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程,掌握依据实际问题建立一元二次方程的数学模型的方法,应用熟练掌握以上知识解决问题。

二、重点1.一元二次方程及其它有关的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题。

2.判定一个数是否是方程的根;3.用配方法、公式法、因式分解法降次──解一元二次方程。

4.运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次──转化的数学思想。

5.利用实际问题建立一元二次方程的数学模型,并解决这个问题.三、难点1.一元二次方程配方法解题。

2.通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念。

3.用公式法解一元二次方程时的讨论。

4.通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程。

5.建立一元二次方程实际问题的数学模型,方程解与实际问题解的区别。

6.由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根。

7.知识框架四、知识点、概念总结1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程。

2.一元二次方程有四个特点:(1)含有一个未知数;(2)且未知数次数次数是2;(3)是整式方程。

要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。

如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。

(4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)3. 一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,•都能化成如下形式ax2+bx+c=0(a≠0)。

一元二次方程总复习知识点梳理(学生)

一元二次方程总复习知识点梳理(学生)

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)。

注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

考点2:一元二次方程的解法1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。

X+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b ≤0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0)。

步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。

步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。

5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2 =3(x +4)中,不能随便约去x +4。

完整版一元二次方程知识点总结和例题复习

完整版一元二次方程知识点总结和例题复习

知识框架 知识点总结:一兀二次方程4. 一元二次方程的解法(1) 直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如 (X 可知,X a 是b 的平方根,当 b<0时,方程没有实数根。

(2) 配方法 配方法是一种重要的数学方法,2a) b 的一元二次方程。

根据平方根的定义b 0 时,X a4b , X a J b ,当它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式2 2 2a 2ab b (a b),把公式中的a 看做未知数x ,并用x X 2 2bx b 2(x b)2。

配方法解一元二次方程的一般步骤: 现将已知方程化为一般形式;代替,则有 化二次项系知识点、概念总结 1. 一元二次方程:方程两边都是整式,只含有一个未知数(一元) ,并且未知 数的最高次数是 2 (二次)的方程,叫做一元二次方程。

2. 一元二次方程有四个特点:(1) 含有一个未知数; (2) 且未知数次数最高次数是 2; (3) 是整式方程。

要判断一个方程是否为一元二次方程,先看它是否为整 式方程,若是,再对它进行整理。

如果能整理为 ax 2+bx+c=0(a 丰0)的形 式,则这个方程就为一元二次方程。

(4 )将方程化为一般形式: 3. 一元二次方程的一般形式 过整理,?都能化成如下形式 一个一元二次方程经过整理化成 是二次项系数;bx 是一次项, 2ax +bx+c=0时,应满足( :一般地,任何一个关于 X 2ax +bx+c=0 (aM 0)。

2ax +bx+c=0 (a 丰 0)后,b 是一次项系数;a 丰0) 的一元二次方程,经其中ax 2是二次项,c 是常数项。

数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边 配成一个完全平方式;变形为 (X+P) 2=q 的形式,如果q > 0,方程的根是x=-p ±V q ;如果qv 0,方程无实根.(3) 公式法 公式法是用求根公式解一元二次方程的解的方法, 方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程复习提纲考点一:概念(1)定义:含有 个未知数,并且未知数的最高次数是 的 方程叫做一元二次方程。

(2)一般形式:ax 2+bx+c=0(a ≠0),其中二次项系数是 ,一次项系数是 ,常数项是 。

(3)判断一元二次方程的依据:①只含有一个未知数。

② 是整式方程。

③ 二次项系数不为“0”。

④ 未知数最高次数是“2”。

典型例题:1、下列是关于x 的一元二次方程的是( )2、方程2269x x -=的二次项系数、一次项系数、常数项分别为( ).A 、629,,B 、269-,,C 、269--,,D 、 269-,,3若方程2210mx x -+=是关于x 的一元二次方程,则m .4、当m 时,方程mx 2-3x =2x 2-mx +2 是一元二次方程考点二:一元二次方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值典型例题:关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为( ).(A) 1 (B) 1- (C) 1或1- (D)21. 考点三:一元二次方程的解法1、直接开平方法适用方程特征:()()02≥=+n n m x 的解是m n x -±= 典型例题:(1) x 2 = 5 (2)(y+2)2=3 (3)2(3a-1)2-1=022221 320 B 2x +y-1=0 C x 00 D x xA x -+=+=、、、、适用方程特征:方程左边可以化为两个因式的乘积,右边是0,即形如 (x+a)(x+b)=0的方程都可以用因式分解法。

用因式分解法解一元二次方程的一般步骤:(1)将方程的右边化为0;(2)将方程左边分解成两个一次因式的乘积。

(3)令每个因式分别为0,得两个一元一次方程。

(4)解这两个一元一次方程,它们的解就是原方程的解。

典型例题:解方程(1)3x 2 = 2x (2) 0)1(3)1(2=-+-x x x(3) 22)12()3(+=-x x (4)y 2 =3y +43、配方法即通过配方将方程化为(x+a )2=b(b ≥0)的形式,再用直接开平方法求解。

用配方法解二次项系数为1的一元二次方程的步骤:(1) 在方程的左边加上一次项系数的一半的平方,再减去这个数;(2) 把原方程变为()n m x =+2的形式。

(3) 若0≥n ,用直接开平方法求出x 的值,若n ﹤0,原方程无解。

用配方法解二次项系数不是1的一元二次方程当一元二次方程的形式为()1,002≠≠=++a a c bx ax 时,用配方法解一元二次方程的步骤:(1)先把二次项的系数化为1:方程的左、右两边同时除以二项的系数;(2) 移项:在方程的左边加上一次项系数的一半的平方,再减去这个数,把原方程化为()n m x =+2的形式; (3)若0≥n ,用直接开平方法或因式分解法解变形后的方程。

典型例题:用配方法解方程(1)x 2 -4x -3=0 (2) 2322=-x x一元二次方程()002≠=++a c bx ax 的求根公式是:a ac b b x 242-±-= 用求根公式法解一元二次方程的步骤是:(1)把方程化为()002≠=++a c bx ax 的形式,确定的值c b a .,(注意符号);(2)求出ac b 42-的值;(3)若042≥-ac b ,则.,b a 把及ac b 42-的值代人求根公式a ac b b x 242-±-=,求出21,x x 。

典型例题:用求根公式解方程(1)x 2+3x +1=0 (2)(x+3)(2x-1)=1注意:一元二次方程解法的选择,应遵循先特殊,再一般,即先考虑能否用直接开平方法或因式分解法,不能用这两种特殊方法时,再选用公式法,没有特殊要求,一般不采用配方法,因为配方法解题比较麻烦。

用适当的方法解方程:(1) 5x 2-45=0 (2) x 2 -10x +24=0(3) (x+3)(x-1)=x+3 (4) (x-2)(3x-5)=1一元二次方程()002≠=++a c bx ax 根的判别式 △=ac b 42-运用根的判别式,不解方程,就可以判定一元二次方程的根的情况:(1) △=ac b 42-﹥0⇒方程有两个不相等的实数根;(2) △=ac b 42-=0⇒方程有两个相等的实数根;(3) △=ac b 42-﹤0⇒方程没有实数根;典型例题;(1)方程2x 2-3x+2=0的根的情况是 。

(2)、已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是( )A . 1 B.﹣1 C.D ﹣考点五:根与系数的关系若21,x x 是一元二次方程()002≠=++a c bx ax 的两个根,则有a b x x -=+21, ab x x =21 特别地,二次项系数为1的一元二次方程x 2+px+q=0的两根为21x x 、,则=+21x x ,=21x x典型例题:(1)已知21x x 、是方程0232=+-x x 的两根,则=+21x x ,=21x x(2)关于x 的方程x 2- ax - 3=0的一个根为3,求方程的另一个根和a 的值。

列一元二次方程解应用题的一般步骤(1) 审题,(2)设未知数,(3)列方程,(4)解方程,(5)检验,(6)作答。

关键点:找出题中的等量关系。

1、 用一元二次方程解与平均增长率(或降低率)有关得到问题增长率问题与降低率问题的数量关系及表示法:(1)若基数为a ,平均增长率为x ,则一次增长后的值为()x a +1,两次增长后的值为()21x a +;(2)若基数为a ,降低率x 为,则一次降低后的值为()x a -1,两次降低后的值为()21x a -。

典型例题:(1)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( )A .100(1)121x +=B . 100(1)121x -=C . 2100(1)121x +=D . 2100(1)121x -=(2)甲、乙、丙三家超市为了促销一种定价均为m 元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是哪一家?.(3)某家庭前年人均收入为3000元,到今年人均收入为4320元,如果每年人均收入增长率相同(也叫平均增长率),求:这个增长率?(4)某品牌服装每件进价为300元,卖出价按成本价增加50%,后因款式老化,商店决定打折,但销路仍不畅,因此再打同样的折扣出售,卖出后每件还每赚64.5元,问这两次商品所打折扣是几折?2、用一元二次方程解与市场经济有关的问题与市场经济有关的问题:如:营销问题、水电问题、水利问题等。

与利润相关的常用关系式有:(1)每件利润=销售价-成本价;(2)利润率=(销售价—进货价)÷进货价×100%;(3)销售额=售价×销售量典型例题:(1)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?3、用一元二次方程解与面积的问题典型例题:(1)某校在一处一面靠食堂外墙的空地上,用材料围城一个停放自行车的日子形车棚(如图所示),共消耗材料60m,围成的车棚面积共计为300m2,求AB 的长_(2)一块长和宽分别为40厘米和250厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体纸盒,使它的底面积为450平方厘米.那么纸盒的高是多少?(3)学校课外生物小组的试验园地是长18米、宽12米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为196平方米,求小道的宽.(第3题)一元二次方程单元测试一、填空题1、若方程01682=-x ,则它的解是 .2、若方程2210mx x -+=是关于x 的一元二次方程,则m .3、利用完全平方公式填空:22______)(_____8-=+-x x x4、设一元二次方程2730x x -+=的两个实数根分别为1x 和2x ,则12x x += ,x 1、·x 2 .5、当x=________时,代数式3x 2-6x 的值等于12.6、已知m 是方程x 2-x-2=0的一个根,则代数式m 2-m 的值是________.7、请写出一个含有根 -1 的用一元二次方程二、选择题1、一元二次方程3x 2=5x 的二次项系数和一次项系数分别是( ).A .3,5B .3,-5C .3,0D .5,02、方程0)1(=+x x 的根为( )A .0B .-1C .0 ,-1D . 0 ,13、用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 4、若a+b+c=0,则关于x 的一元二次方程ax 2+bx+c=0(a ≠0)有一根是( ).A .1B .-1C .0D .无法判断5、某商店将一批夏装降价处理,经过两次降价后,由每件100元降至81元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程( ).A .100(1-x )2=81B .81(1+x )2=100C .100(1+x )=81×2D .2×100(1-x )=8三、解方程1、2x (x-1)=x-12、x(x+2)=33、072)3(22=--x4、02232=+-x x四、如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米,求草坪的宽度?五、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元。

为了扩大销售,增加赢利,尽快减少库存,商场决定采取社党降价措施。

经调查发现,如果每件衬衫煤降价1元,商场平均每天可多售出2件。

求(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案。

相关文档
最新文档