LM317稳压及电阻分压计算器

合集下载

5v衰减成3.3v电路

5v衰减成3.3v电路

5v衰减成3.3v电路
将5V电压衰减为3.3V的电路可以通过使用电阻和稳压器来实现。

一种常见的方法是使用电阻分压电路,该电路通过串联两个电
阻将输入电压分压到所需的输出电压。

另一种方法是使用稳压器,
例如LM317稳压器,它可以将输入电压稳定在3.3V输出。

此外,还
可以考虑使用升压-降压转换器或者DC-DC变换器来实现电压的转换。

这些方法可以根据具体的应用需求和电路复杂度来选择合适的方案。

需要注意的是,无论采用哪种方法,都需要根据具体的电路设计和
负载要求来选择合适的元件和参数,以确保输出电压稳定和符合要求。

同时,还需要考虑电路的效率、稳定性和成本等因素,综合考
虑选择最合适的方案。

希望这些信息能够帮助你理解如何将5V电压
衰减为3.3V的电路。

三端可调节输出正电压稳压器LM317T资料

三端可调节输出正电压稳压器LM317T资料

三端可调节输出正电压稳压器LM317是可调节3 端正电压稳压器,在输出电压范围为1.2 伏到37 伏时能够提供超过1.5 安的电流。

此稳压器非常易于使用,只需要两个外部电阻来设置输出电压。

此外还使用内部限流、热关断和安全工作区补偿之基本能防止烧断保险丝。

LM317服务于多种应用场合,包括局部稳压、卡上稳压。

该器件还可以用来制伏一种可编程的输出稳压器,或者,通过在调整点和输出之间接一个固定电阻,LM317可用作一种精密稳流器。

* 输出电流超过1.5A *输出在1.2~37V 之间可调节*内部热过载保护*不随温度变化的内部短路电流限制*输出晶体管安全工作区补偿*对高压应用孚空工作*避免置备多种固定电压使W317 稳压器从零伏起调电路、LM317T应用电路一例(转载)lm317LM317 作为输出电压可变的集成三端稳压块,是一种使用方便、应用广泛的集成稳压块。

317 系列稳压块的型号很多:例如LM317HVH 、W317L 等。

电子爱好者经常用317 稳压块制作输出电压可变的稳压电源。

稳压电源的输出电压可用下式计算,Vo=1.25 (1 +R2/R1 )。

仅仅从公式本身看,R1、R2 的电阻值可以随意设定。

然而作为稳压电源的输出电压计算公式,R1 和R2 的阻值是不能随意设定的。

首先317 稳压块的输出电压变化范围是Vo =1.25V —37V (高输出电压的317 稳压块如LM317HVA 、LM317 HVK 等,其输出电压变化范围是Vo =1.25V —45V ),所以R2/R1 的比值范围只能是0 —28.6 。

其次是317 稳压块都有一个最小稳定工作电流,有的资料称为最小输出电流,也有的资料称为最小泄放电流。

最小稳定工作电流的值一般为1.5mA 。

由于317 稳压块的生产厂家不同、型号不同,其最小稳定工作电流也不相同,但一般不大于5mA 。

当317 稳压块的输出电流小于其最小稳定工作电流时,317 稳压块就不能正常工作。

lm317参数及中文使用手册

lm317参数及中文使用手册

LM317参数与中文使用手册2007-10-31 09:37 来源: 作者:网友评论 0 条浏览次数 1505该芯片是集成的稳压芯片,用于正电压调压器,其额定电压的选择只需要一个电阻性的分压器,简单易用。

主要特性如下:∙输出电压范围:1.2到37V∙输出电流可超过1.5A∙0.1%的输入和负载调节率∙用于高电压的浮动运行∙全系列保护:限流、热断开和SOA控制。

其封装形式如下:绝对最大额定值引脚图(顶视)注:输入至少要比输出高2V,否则不能调压。

输入电要最高不能超过40V吧。

输出电流最好不超过1A。

输入12V的话,输出最高就是10V左右。

由于它内部还是线性稳压,因此功耗比较大。

当输入输入电压差比较大且输出电流也比较大时,注意317的功耗不要过大。

一般加散热片后功耗也不超过20W。

因此压差大时建议分档调压。

应用电路下面是赠送的两篇散文欣赏,可以仔细阅读,不需要的朋友可以下载后编辑删除!!谢谢!!脚下的时光不知走过多少地方,不知看过多少风景,不知听说过多少轶事;题记:蒲公英我走过很多地方,但是同样的,我也有更多的地方没去过!我渴望走遍地球上每一寸土地,我期许世界上每一个地方的人都善良!然而,现实的世界告诉我;理想的丰满一定要遇到拥有相同理想的另一半!我喜欢珠海,一个美丽的花园城市;我喜欢那里的天气,没有北方的寒冷;四季如春的温度感觉非常惬意,不用担心换季带来的差异!走在市区的街道上,绿化的花草树木被园丁修剪的井然有序;形态各异的花卉搭配得格外美观!尤其是除过草之后的绿地,泥土的芬芳与绿草的清新扑鼻而来,有一种身处大草原的感觉,使人心旷神怡!我时常一个人发呆,散步;看着过往的人群,车水马龙的街道;也时常去繁华的街巷,拥挤的商业中心;感觉这才是生活,正因为世界有了这么多事物的陪伴,才使我有了对美好生活的向往与喜悦!珠海的夜,很美;到处灯红酒绿,一派歌舞升平的祥和;每当夜幕降临,才是广东因有的生活的开始!溜冰场,酒吧,迪厅,大排档等等等等;我很庆幸在这里认识了很多人,他们教会了我很多,也帮助了我很多;我们都是来自五湖四海,为了同一个目标而聚集在一起的年轻人;我们时常出去聚会,嗨皮;但等到散场后,又回到了应有的孤寂!白天,可以去渔女,公园,九州城,免税店等等都是不错的地方!人常说,一个时代会有一个时代的代表;而我在这个曾经为之奋斗的地方,也时常会想起曾经相识的人,走过的地方,看过的风景;有时候,听着当时的流行歌曲,也会感伤;也会自嘲一笑;还有那公车到站的粤语提醒,还有那想见却永远没见的人;一篇篇,一幕幕久久回荡在脑海;早晨的肠粉,中午的餐饭,下午的炒粉,晚上的烧烤;好像味道还回味在口中一样!人,只有在对自己真诚的人的眼里,才会感觉到亲切;而我,也着实喜欢这座城市带给我家一样的温暖感觉!在这短暂而悠长的时光里,我成长了很多,也磨砺了很多;正是因为思想的成熟,阅历的增长,我选择了离开;去寻找属于自己的新的天地,新的开始,新的征程!其实,无论走过多少地方;都不重要!重要的是你从中得到什么!知识!阅历!思想!······每个人,在人生的道路上;难免遇到挫折困苦,也难免会因为一些因素而错失机缘!也不可能因为一时的过失而自暴自弃颓废一生!人,应该用豁达的心态来迎接下一秒的新鲜时光;而不是沉溺在上一秒的懊恼当中!每个人的路,都在自己的脚下;只有自己醒悟才能把未来的路走好,反之只会让错误延续到未来,从而影响以后的健康生活!即便曾经的时光再美好,那也只是人生道路上的一段插曲;没必要去纠结当时的愕然,愚昧!就像我,从来不对上一秒的事情产生情绪一样!一切都是恬淡的样子,顺其自然比什么都好!对于未来,只要真诚的去善待身边的所有;我相信,未来的时光,也该是你想象的模样!蒲公英2015.12.13家乡的茶籽林家乡高才坂,一年四季茶籽林郁郁葱葱,枝繁叶茂。

多功能电子元器件计算软件(含密闭式与开口式音箱容积计算)

多功能电子元器件计算软件(含密闭式与开口式音箱容积计算)

1.方程式支持一元二次,一元一次,二元一次方程求值.支持正负数,小数系数输入,分数系数请先自行转换.2.RC常数RC时间常数是电路里经常用到的.该功能可以计算RC电路上,电容C到某个电压时候的充放电时间;也可以计算经过t时刻,电容C两端的电压值.3.电阻串并联并联公式R=R1//R2.输入R1和R2,点击<计算>,得到R,R将显示在原先R1中.若需要继续并联,在R2中继续输入,再点击<计算>.例如需要计算100R//50R//10R,先在R1,R2中分别输入100和50,点击<计算>,再在R2中输入10,再点击<计算>即可.4.反向串并联支持标准E24,E96和非标准的电阻值反向串/并联计算.在R0中填入目标值,勾选<计算结果使用标准阻值>,填写误差范围(20%内),并选择E24或者E96,点击<反向并联计算>或者<反向串联计算>即可求得计算结果.如果勾选<已知阻值R1>填写相应阻值,再进行计算,则可以计算出非标准阻值R2',此方法计算结果精度最高(不勾选<计算结果使用标准阻值>);若同时选择<已知阻值R1>和<计算结果使用标准阻值>,计算得到的R2是最接近R2'的标准阻值.由于E24和E96的电阻范围有些不同,如果计算得不到结果,请更改<标准阻值>选项或者加大误差范围重新计算.5.色环电阻识别支持市面常见4,5环电阻.选择相应颜色,点击<计算>,所得阻值即可显示.若需要从已知阻值反向查找对应色环颜色,请勾选<反查>(只支持5环电阻),输入正确数值,点击<计算>,即可查看对应色环(因一种阻值可能对应多种色环表示,因此该功能计算所得色环仅供参考).6.变压器计算来自AV-RGB网友发布的多种变压器计算方法,支持EI型,C型,环型变压器的估算.特此鸣谢!7.LM317稳压支持LM317,LM337,LM350等常见三端稳压参考阻值和输出电压计算.具体请参考相关文档说明.若需要计算R2,点选<算R2>,输入R1和Vout,点击<计算>;若需要求输出电压,点选<算Vout>,输入R1和R2,再<计算>.三端稳压器件一般输入电压是36V以内,输入输出压差大于3V为宜,低压差的器件请参考相应文档.当LM317作为恒流源时,可以输出最大1.5A电流,勾选<恒流源>,填入目标电流,即可求出相应阻值.8.TL431参考TL431精密参考电压常用电路阻值和输出电压计算.方法类似LM317,但需要填写输入电压Vin.若需要求Irb 时,请勾选<算Irb>,并输入Rb.其他信息请参考页面提示和其他相关文档.9.RC无源滤波RC无源滤波电路的简单计算.可以从R,C算F;也可以R,F算C;F,C算R.RC无源滤波的计算方法对高低通都适用,只是电路形式不同.如果需要二阶电路,可以在示意图的基础上再往后加一个类似电路即可.10.有源二阶滤波这是常用的2阶滤波电路,支持高低通,巴特沃斯和贝塞尔算法.可以从R,C求F(勾选<反算F>);也可以从F,R(或C)求C(或R).选择相应的功能,并正确填写相关参数(均需要大于0),点击<计算>即可.11.差分二阶LPF这个电路常用于差分输出的DAC的LPF电路(默认使用最佳Q值计算).使用方法请参考第6点.12.多层电感此功能用于空心多层电感的估算(如音箱分频器的空心电感).只需输入所要的电感量和直流电阻(直流电阻一般可取电感所接负载的0.1-0.2左右),然后点击<计算>即可.计算所得参数可以作为绕制电感的依据.据资料说明,此方法绕制所得线圈电感量和目标电感量误差在5%内.13.环型变压器该功能可求出已知铁芯功率,初、次级匝数比,初级线径等.你只需要量出该铁芯内外直径,和高度,以及厂方给出的磁通密度(一般为14000-16000左右);无断带焊点的铁心叠片系数一般取0.96,差些的可以降低该值;电流密度如果是长时间工作的一般取2-2.5,间歇工作的可取3-3.5;铁芯系列可选填.然后点击<计算>即可.计算所得线径未包含漆皮.次级匝数比已经包含电压调整率,次级匝数=次级匝数比x次级电压.注意,次级总功率不得大于额定功率.14.EI变压器如果要设计一款小于1000W的EI变压器,可以利用已知的次级交流电压和电流参数进行计算.其中初级补偿系数和次级补偿系数通常取1-1.3之间,取值越大,变压器余量越大;P修正系数通常根据硅钢片的质量进行设定,质量好的可取得小些.电流密度通常取2-3.5之间,连续工作时间越长,取值越小;硅钢片舌宽根据所选硅钢片规格填入,通常取硅钢片叠厚=1.5X硅钢片舌宽,尽量使计算结果的硅钢片叠厚接近硅钢片舌宽(改变硅钢片舌宽参数,并重新计算即可),这样设计的变压器效果最佳.磁通密度也是根据所选硅钢片填写,通常D310型12000-14000Gs;D41,D42型10000-12000Gs;D43型11000-12000Gs;D21,D22型5000-7000Gs.此计算方法参考1976年6月上海人民出版社《怎样绕变压器》.15.密闭音箱该功能可以根据低音喇叭单元的常用参数,计算出适合的密闭箱体体积,和示例箱体外尺寸(如果板厚=0,则计算箱体内容积).其中,箱体共振频率是你希望音箱所能发出的最低频率,可以根据需求自己填入合适的值,以得到最佳箱体尺寸(计算结果使得箱体Q值=0.7为宜).计算所得示例箱体尺寸若不合要求,可更改比例选项重新计算.计算结果仅供参考.具体成箱还需自行测试调整.16.倒相音箱该功能可以根据低音喇叭单元的常用参数,计算出适合的倒相箱体体积,和示例箱体外尺寸(如果板厚=0,则计算箱体内容积),和倒相孔长度以及其他一些参数.其中,倒相孔宽是倒相孔直径.倒相孔面积一般不小于单元有效振动面积的10%.如果勾选<最平响应>则按照最平响应进行箱体计算.计算所得示例箱体尺寸若不合要求,可更改比例选项重新计算.倒相箱体调试比较繁琐,计算结果仅供参考,具体成箱还需自行测试调整.17.二分频采用巴特沃斯分频网络设计算法,特点为瞬态响应好,频率特性曲线平坦.分频点阻抗为实测的高,低音喇叭在分频点处的实际阻抗,而非喇叭单元的额定阻抗.当需要在分频器添加补偿网络时,由于补偿网络的加入会使综合特性参数发生改变,故此请先行设计好补偿网络,再进行分频网络设计.即输入的分频点阻抗是加有补偿网络后实测分频点处的阻抗.其中-12dB-3 是按照-3dB降落交叉点来计算,可能会在分频点处隆起一个小峰. -12dB-6 是按照-6dB降落交叉点计算,会得到比较平坦曲线.18.三分频功能同二分频.分频点阻抗为实测的高,中,低音喇叭在分频点处的实际阻抗,而非喇叭单元的额定阻抗.当需要在分频器添加补偿网络时,由于补偿网络的加入会使综合特性参数发生改变,故此请先行设计好补偿网络,再进行分频网络设计.即输入的分频点阻抗是加有补偿网络后实测分频点处的阻抗.19.分频网络的阻抗补偿和音量衰减阻抗补偿功能主要针对阻抗曲线上高频段的阻抗补偿.因为喇叭音圈的电感随频率上升而增加,所以高频段阻抗随频率升高而增大.因此,可以在喇叭单元两端并联一个由电容C和电阻R组成的串联谐振回路对这个区域的阻抗进行补偿修正.该计算功能需要用到喇叭单元的阻抗曲线.请按照单元阻抗曲线上的阻抗点填入相对对应的频率才能正确计算.衰减网络通常用于高音单元,因为高音单元灵敏度通常比低音高,所以需要进行一定量的衰减.衰减音量通常取高音单元灵敏度-低音单元灵敏度,得出计算结果后,根据实际听感再进行细微调整.电压与分贝换算,在输入框中输入已知数值,并将鼠标焦点移到其他地方(也就是在其他输入框上单击鼠标左键),即可计算出电压和分贝之间关系.20.载流计算可以计算PCB走线的载流,也可以计算铜线、铝线的最大载流.计算PCB时,需要选择布线层在表面(外层)还是内层,外层允许载流约为内层2倍.如果线长度为0,则无法计算导线电阻和导线上的压降.单位换算功能,只需在某个输入框中输入已知数值,并将鼠标焦点移到其他地方(也就是在其他输入框单击鼠标左键),即可计算相应其他单位数值.21.整流滤波计算常用单相半波、全波、桥式整流电路在整流以及电容滤波后的空载和负载电压,估算滤波电容容量和耐压值,整流二极管的平均电流以及最大反向电压.若已知负载的电流,勾选<负载电流>并填写相应值即可.22.级进电位器用波段开关制作音量电位器的试算.有两种模式可选-Ladder Type和Serial Type.其中Ladder Type的优点是声音路径只经过两颗电阻,减少杂音;但缺点为输入阻抗有些许波动且成本较高.Serial Type优点是输入阻抗稳定且成本较低;缺点是声音路径经过较多电阻,杂音较高.通常计算使用默认的参数即可.若衰减量比较大,应增加阻值,以取得比较正确计算结果.级数一般用23,且注意大于2,小于100.点击<示意图>可以查看图示,并可参考详细制作的相关网页.。

三端稳压电路图集

三端稳压电路图集

三端稳压电路图集(六祖故乡人汇编2013年9月8日)LM317可调稳压电源电路图:LM317是可调稳压电源中觉的一种稳压器件,使用也非常方便。

LM317 是美国国家半导体公司的三端可调正稳压器集成电路。

很早以前我国和世界各大集成电路生产商就有同类产品可供选用,是使用极为广泛的一类串连集成稳压器。

LM317 的输出电压范围是1.25V —37V(本套件设计输出电压范围是 1.25V—12V),负载电流最大为 1.5A。

它的使用非常简单,仅需两个外接电阻来设置输出电压。

此外它的线性率和负载率也比标准的固定稳压器好。

LM317 内置有过载保护、安全区保护等多种保护电路。

为保证稳压器的输出性能,R应小于240欧姆。

改变RP阻值稳压电压值。

D5,D6用于保护LM317。

输出电压计算公式:Uo=(1+RP/R)*1.25下面是LM317可调稳压电源电路图的元器件清单:下面是LM317可调稳压电源电路图:三端集成稳压可调电源电路设计:如图所示,此电路的核心器件是W7805。

W7805将调整器,取样放大器等环节集于一体,内部包含限流电路、过热保护电路、可以防止过载。

具有较高的稳定度和可靠性。

W7805属串联型集成稳压器。

其输出电压是固定不变的,这种固定电压输出,极大的限制了它的应用范围。

如果将W7805的公共端即3脚与地断开,通过一只电位器接到-5V左右的电源上,就可以在改变电位器阻值的同时,使集成稳压器的取样电压及输出电压都随之改变。

图中RP1就是为此而设计的。

只要负电压的大小取得合适便能使输出电压从0V起连续可调,输出电压的最大值由W7805的输入电压决定,本稳压器0V-12V可调。

VD3整流,C2滤波,VD4稳压后提供5V负电压。

元件选择:变压器应选用5V A,输出为双14V;二极管VD1-VD4选用1N4001;VDW 选用稳压值为5-6V的2CW型稳压管;RP1用普通电位器;RP2为微调电阻。

IC用7805;其它元件参数图中已注明,无特殊要求。

LM317中文资料(含实例)

LM317中文资料(含实例)

LM317中文资料|引脚图|应用电路LM317 是美国国家半导体公司的三端可调正稳压器集成电路.LM317 的输出电压范围是1.2V至37V,负载电流最大为1。

5A.它的使用非常简单,仅需两个外接电阻来设置输出电压。

此外它的线性调整率和负载调整率也比标准的固定稳压器好。

LM317 内置有过载保护、安全区保护等多种保护电路。

通常LM317 不需要外接电容,除非输入滤波电容到LM317 输入端的连线超过 6 英寸(约15 厘米).使用输出电容能改变瞬态响应.调整端使用滤波电容能得到比标准三端稳压器高的多的纹波抑制比。

LM317能够有许多特殊的用法。

比如把调整端悬浮到一个较高的电压上,可以用来调节高达数百伏的电压,只要输入输出压差不超过LM317的极限就行.当然还要避免输出端短路。

还可以把调整端接到一个可编程电压上,实现可编程的电源输出。

特性简介可调整输出电压低到1。

2V.保证1。

5A 输出电流。

典型线性调整率0.01%。

典型负载调整率0.1%.80dB 纹波抑制比.输出短路保护。

过流、过热保护。

调整管安全工作区保护.标准三端晶体管封装。

电压范围LM317 1。

25V 至37V 连续可调。

LM317工作原理:输入最大电压为30多伏,输出电压1.5——-—32V..。

电流1。

5A。

.。

不过在用的时候要注意功耗问题。

.。

注意散热问题。

LM317有三个引脚。

一个输入一个输出一个电压调节。

输入引脚输入正电压,输出引脚接负载, 电压调节引脚一个引脚接电阻(200左右)在输出引脚,另一个接可调电阻(几K)接于地.输入和输出引脚对地要接滤波电容.LM317内部原理图:LM317应用电路图:1.标准应用电路图2。

带可调限流和输出电压的标准应用电路图3。

5。

0V电子关断稳压器应用电路图4.电流稳压器应用电路图5.可调节电流限流器的应用电路图6. 软启动应用电路图。

LM317中文资料(含实例)

LM317中文资料(含实例)

LM317中文资料|引脚图|应用电路LM317 是美国国家半导体公司的三端可调正稳压器集成电路。

LM317 的输出电压范围是1.2V至37V,负载电流最大为1.5A。

它的使用非常简单,仅需两个外接电阻来设置输出电压。

此外它的线性调整率和负载调整率也比标准的固定稳压器好。

LM317 内置有过载保护、安全区保护等多种保护电路。

通常LM317 不需要外接电容,除非输入滤波电容到LM317 输入端的连线超过 6 英寸(约15 厘米)。

使用输出电容能改变瞬态响应。

调整端使用滤波电容能得到比标准三端稳压器高的多的纹波抑制比。

LM317能够有许多特殊的用法。

比如把调整端悬浮到一个较高的电压上,可以用来调节高达数百伏的电压,只要输入输出压差不超过LM317的极限就行。

当然还要避免输出端短路。

还可以把调整端接到一个可编程电压上,实现可编程的电源输出。

特性简介可调整输出电压低到1.2V。

保证1.5A 输出电流。

典型线性调整率0.01%。

典型负载调整率0.1%。

80dB 纹波抑制比。

输出短路保护。

过流、过热保护。

调整管安全工作区保护。

标准三端晶体管封装。

电压范围LM317 1.25V 至37V 连续可调。

LM317工作原理:输入最大电压为30多伏,输出电压1.5----32V...电流1.5A...不过在用的时候要注意功耗问题...注意散热问题。

LM317有三个引脚.一个输入一个输出一个电压调节。

输入引脚输入正电压,输出引脚接负载, 电压调节引脚一个引脚接电阻(200左右)在输出引脚,另一个接可调电阻(几K)接于地.输入和输出引脚对地要接滤波电容.LM317内部原理图:LM317应用电路图:1.标准应用电路图2.带可调限流和输出电压的标准应用电路图3. 5.0V电子关断稳压器应用电路图4.电流稳压器应用电路图5.可调节电流限流器的应用电路图6. 软启动应用电路图。

一个简单电路就能制作出毫欧表

一个简单电路就能制作出毫欧表

一个简单电路就能制作出毫欧表该方法使用电压基准IC作为受控恒流源的输入级。

于是我快速翻了下我的旧元件箱,发现了一些LM317可调稳压器,这类IC可以在其VOUT和VADJ端子之间提供1.25V电压,用这个恒定电压就可以解决恒流问题。

另一个需要解决的问题是恒流源的输出电压范围。

我调试的那个电路采用3.3V供电,因此必须将这个电压限制为3.3V。

LM317配置为一个恒流源,如果其输出电阻太高,那么它提供的输出电压就与输入电压相等。

因为我想使用工作台电源或9V电池,这个电压会烧掉板上的任何3.3V逻辑。

理想情况下,我希望将电压限制为1.5V。

因此,我想到了图1中的配置。

图1:使用稳压器IC和一些电阻器制作自己的毫欧表。

IC1用于控制NPN达林顿晶体管Q1的基极,它可以对所选电阻两端的电压进行稳压,从而形成一个恒流源。

这个电流源会根据电路中所选发射极电阻,而提供10mA或100mA电流。

使用S1的目的是延长电池寿命。

可以在测试点A和B之间加一个电阻性负载,然后使用DVM(数字电压表)测量电阻两端的电压,以此校准电流源。

我使用5Ω和10Ω电阻,将一个S2位置设置为10mA,将另一个设置为100mA。

要测量小电阻,可以将测试点A和B连接到该电阻的两端。

将DVM设置在毫伏范围。

DVM所读到的电压与待测电阻成比例。

如果你按照建议来校准电路的话,则100mA范围的读数为10Ω/V,10mA范围的读数为100Ω/V。

要跟踪PCB短路的情况,可以将这个装置的测试点A和B连接到可疑短路信号的两端。

将一个DVM探针连接到测试点A,然后使用另一个来检测电路。

如果一根走线上的电压恒定,那么就表明其上没有电流流过,也即短路不是由这根走线所引起。

在低读数走线上寻找高读数,在高读数走线上寻找低读数,就可以找出短路源头。

设计制作一款超低噪音超低纹波HIFI电源

设计制作一款超低噪音超低纹波HIFI电源

设计制作一款超低噪音超低纹波HIFI电源在集成电路流行前,人们用分离元件制作稳压电源。

后来,三端稳压IC开始流行,这些IC使用简便,体积小,性能不俗,价廉物美。

如果你不在乎价格,市场上有很多改进型的集成稳压可以买到。

所以现在的DIYER很少有人愿意回到用分离元件自己制作稳压电源。

但是,集成三端稳压也有一些致命的缺点:1、输入输出电压或电压差有限制;比如78系列最高输入电压是35V,317系列输入输出压差必须保持在35V以内。

2、大电流输出能力有限;受制于产品封装以及内部调整管的性能,大部分三端稳压芯片仅可提供1A 的输出电流能力,好点的也最多达到3A。

3、纹波抑制能力有限;受制于内部集成的741一辈爷爷级运放的增益带宽积和转换速率指标,大部分三端稳压的纹波抑制能力相当有限。

尤其是在较高的频率下,仅是低频的1/10能力都没有。

上述缺点严重限制了传统三端稳压芯片在音频电路尤其是在需要高电压,大电流的情况比如功放等上面的应用。

那么,我们DIY是否有能力做到性能超越三端稳压,成本不高,适用范围广的分立元件稳压电路呢?其实,拥有一个好的运放,一些常规电阻电容,一个好的参考电压源以及一些常规的晶体管,只要我们不追求体积,DIYer完全可以做出超越三端稳压IC的线性稳压电源!要实现超越,我们必须先研究清楚常规三端稳压电路的工作机理,并回顾和总结前人所设计制作的优秀之作,并吸取其精华,利用日新月异的新器件,新思路,来设计并制作适合业余DIY的分立模拟稳压电源。

一、线性稳压电源如何工作?这个是个标准的线性稳压器的简化方块图:线性稳压器简化图上图为串联型线性稳压电源,因为调整三极管是串联在输入和输出中间的。

通过控制调整三极管的基极电压的方法来控制三极管输出脚的电压。

连接误差放大器的一个输入脚的是参考电压VREF。

连接误差放大器另一个输入脚的是一个电压分压器的中点电压。

任何运放都会通过调节输出电压的方式来使两个输入端保持平衡。

lm317可调稳压电源计算公式

lm317可调稳压电源计算公式

lm317可调稳压电源计算公式lm317可调稳压电源是一种常见的电子电路,用于提供稳定的直流电压输出。

lm317芯片是一种三引脚可调稳压器,具有调节范围广、输出稳定性好等特点,被广泛应用于各种电子设备中。

要计算lm317可调稳压电源的输出电压,需要了解lm317芯片的工作原理和相关的计算公式。

lm317芯片是一种线性稳压器,通过调节其引脚之间的电阻比例,可以实现不同的输出电压。

lm317芯片的三个引脚分别是输入引脚(Vin)、输出引脚(Vout)和调节引脚(ADJ)。

其中输入引脚接收来自电源的输入电压,输出引脚提供稳定的输出电压,调节引脚用于调节输出电压。

lm317芯片的输出电压计算公式如下:Vout = Vref * (1 + R2/R1) + Iadj * R2其中,Vout为输出电压,Vref为参考电压,R1和R2为外部电阻,Iadj为调节引脚的电流。

lm317芯片的参考电压Vref约为1.25V,是芯片内部的固定值。

通过调节R1和R2的比例,可以实现不同的输出电压。

当R2为0时,输出电压为Vref;当R1为0时,输出电压为0。

lm317芯片的调节引脚电流Iadj较小,一般在50μA左右。

在计算输出电压时,可以忽略Iadj的影响,因为其电流非常小。

为了计算lm317可调稳压电源的输出电压,首先需要确定所需的输出电压范围。

然后选择合适的R1和R2的值,使得根据上述公式计算得到的输出电压在所需范围内。

例如,如果需要得到一个输出电压范围为3V至12V的可调稳压电源,可以先选择R1的值为240欧姆。

然后通过调节R2的值,计算得到不同的输出电压。

假设当R2为1.2千欧姆时,根据公式计算得到的输出电压为:Vout = 1.25 * (1 + 1200/240) ≈ 7.5V当R2为2.2千欧姆时,根据公式计算得到的输出电压为:Vout = 1.25 * (1 + 2200/240) ≈ 13V通过不断调节R2的值,可以得到所需的输出电压范围内的任意电压。

lm317中文资料及应用

lm317中文资料及应用

LM317中文资料LM117/LM317 是美国国家半导体公司的三端可调正稳压器集成电路。

LM117/LM317 的输出电压范围是1.2V至37V,负载电流最大为1.5A。

它的使用非常简单,仅需两个外接电阻来设置输出电压。

此外它的线性调整率和负载调整率也比标准的固定稳压器好。

LM117/LM317 内置有过载保护、安全区保护等多种保护电路。

通常 LM117/LM317 不需要外接电容,除非输入滤波电容到LM117/LM317 输入端的连线超过 6 英寸(约 15 厘米)。

使用输出电容能改变瞬态响应。

调整端使用滤波电容能得到比标准三端稳压器高的多的纹波抑制比。

LM117/LM317能够有许多特殊的用法。

比如把调整端悬浮到一个较高的电压上,可以用来调节高达数百伏的电压,只要输入输出压差不超过LM117/LM317的极限就行。

当然还要避免输出端短路。

还可以把调整端接到一个可编程电压上,实现可编程的电源输出。

特性简介可调整输出电压低到1.2V。

保证1.5A 输出电流。

典型线性调整率0.01%。

典型负载调整率0.1%。

80dB 纹波抑制比。

输出短路保护。

过流、过热保护。

调整管安全工作区保护。

标准三端晶体管封装。

电压范围LM117/LM317 1.25V 至 37V 连续可调。

其封装形式如下:绝对最大额定值符号参数值单位VI-O 输入-输出电压差40 VIO 输出电流内部限制Top 工作结温LM117 -55到150 ℃LM217 -25到150LM317 0到125Ptot 功耗内部限制Tstg 储存温度-65到150 ℃LM317工作原理:LM317的输入最同电压为30多伏,输出电压1.5----32V...电流1.5A...不过在用的时候要注意功耗问题...注意散热问题。

LM317有三个引脚.一个输入一个输出一个电压调节。

输入引脚输入正电压,输出引脚接负载, 电压调节引脚一个引脚接电阻(200左右)在输出引脚,另一个接可调电阻(几K)接于地.输入和输出引脚对地要接滤波电容.LM317内部原理图:LM317应用电路图:1.LM317标准应用电路图2.LM317带可调限流和输出电压的标准应用电路图3. LM317的5.0V电子关断稳压器应用电路图4.LM317电流稳压器应用电路图5.LM317可调节电流限流器的应用电路图6. LM317软启动应用电路图图1 基本的LM317稳压电源电路正电压输出型图2 基本的LM337稳压电源电路负电压输出型图3 完整的LM317稳压电源电路正电压输出型LM317输出电流为1.5A,输出电压可在1.25-37V之间连续调节,其输出电压由两只外接电阻R1、 RP1决定,输出端和调整端之间的电压差为1.25V,这个电压将产生几毫安的电流,经R1、RP1到地,在RP1上分得的电压加到调整端,通过改变 RP1就能改变输出电压。

设计制作一款超低噪音超低纹波HIFI电源

设计制作一款超低噪音超低纹波HIFI电源

设计制作一款超低噪音超低纹波HIFI电源在集成电路流行前,人们用分离元件制作稳压电源。

后来,三端稳压IC开始流行,这些IC使用简便,体积小,性能不俗,价廉物美。

如果你不在乎价格,市场上有很多改进型的集成稳压可以买到。

所以现在的DIYER很少有人愿意回到用分离元件自己制作稳压电源。

但是,集成三端稳压也有一些致命的缺点:1、输入输出电压或电压差有限制;比如78系列最高输入电压是35V,317系列输入输出压差必须保持在35V以内。

2、大电流输出能力有限;受制于产品封装以及内部调整管的性能,大部分三端稳压芯片仅可提供1A 的输出电流能力,好点的也最多达到3A。

3、纹波抑制能力有限;受制于内部集成的741一辈爷爷级运放的增益带宽积和转换速率指标,大部分三端稳压的纹波抑制能力相当有限。

尤其是在较高的频率下,仅是低频的1/10能力都没有。

上述缺点严重限制了传统三端稳压芯片在音频电路尤其是在需要高电压,大电流的情况比如功放等上面的应用。

那么,我们DIY是否有能力做到性能超越三端稳压,成本不高,适用范围广的分立元件稳压电路呢?其实,拥有一个好的运放,一些常规电阻电容,一个好的参考电压源以及一些常规的晶体管,只要我们不追求体积,DIYer完全可以做出超越三端稳压IC的线性稳压电源!要实现超越,我们必须先研究清楚常规三端稳压电路的工作机理,并回顾和总结前人所设计制作的优秀之作,并吸取其精华,利用日新月异的新器件,新思路,来设计并制作适合业余DIY的分立模拟稳压电源。

一、线性稳压电源如何工作?这个是个标准的线性稳压器的简化方块图:线性稳压器简化图上图为串联型线性稳压电源,因为调整三极管是串联在输入和输出中间的。

通过控制调整三极管的基极电压的方法来控制三极管输出脚的电压。

连接误差放大器的一个输入脚的是参考电压VREF。

连接误差放大器另一个输入脚的是一个电压分压器的中点电压。

任何运放都会通过调节输出电压的方式来使两个输入端保持平衡。

LM317稳压及电阻分压计算器

LM317稳压及电阻分压计算器

LM317稳压及电阻分压计算器LM317是一种广泛使用的线性稳压器,用于稳定电路中的电压。

它具有非常高的稳压精度和可靠性,常用于电子设备的电源电路中。

在使用LM317进行稳压时,有时需要通过添加电阻来进行分压,以获得所需要的输出电压。

以下是关于LM317稳压及电阻分压计算器的详细解释。

------IN Vin ---,, OUT VoutLM ,------+---- Ad+,------+,-R1 Adj --,------+-GND在LM317芯片内部,有一个可调的基准电压源,一般为1.25V。

通过调整R1和ADJ两个引脚之间的电压分压比例,可以使输出电压达到所需要的数值。

具体分压计算方法如下:首先,根据所需要的输出电压和参考电压(1.25V),可以得到稳压电阻的计算公式:R2 = (Vout - 1.25) / Iadj其中,R2为输出端电阻,Vout为所需的输出电压,Iadj为芯片对应的基准电流(一般为50μA)。

接下来,需要确定R1的值。

根据实际电路需求,一般选择一个合适的R1值来满足所需要的分压比例。

可以通过以下公式计算所需的R1值:Vadj = 1.25(1+R2/R1)其中,Vadj为ADJ与输出端之间的电压。

为了简化计算,可以取Vadj为1.25V。

通过将上述两个公式相互结合,可以得到完整的稳压及电阻分压计算器公式:R2 = (Vout - 1.25) / IadjR1 = R2(Vout/Vadj - 1)根据上述公式,可以根据所需的输出电压和参考电压计算出相应的R1和R2值。

这样就可以通过选择合适的电阻值来实现所需的稳压和分压功能。

需要注意的是,LM317的最小工作电流为10mA。

因此,在选择电阻值时,需要确保电路中的负载电流大于等于10mA,以保证LM317能够正常工作。

综上所述,LM317稳压及电阻分压计算器可以帮助工程师和设计人员快速计算出所需的电阻数值,以实现稳压和分压功能。

LM317可调稳压器介绍及应用(详解)分析

LM317可调稳压器介绍及应用(详解)分析

LM317可调稳压器介绍及应用(详解)LM317 是美国国家半导体公司的三端可调正稳压器集成电路。

LM317 的输出电压范围是1.2V至37V,负载电流最大为1.5A。

它的使用非常简单,仅需两个外接电阻来设置输出电压。

此外它的线性调整率和负载调整率也比标准的固定稳压器好。

LM317 内置有过载保护、安全区保护等多种保护电路。

通常 LM317 不需要外接电容,除非输入滤波电容到 LM317 输入端的连线超过 6 英寸(约 15 厘米)。

使用输出电容能改变瞬态响应。

调整端使用滤波电容能得到比标准三端稳压器高的多的纹波抑制比。

LM317能够有许多特殊的用法。

比如把调整端悬浮到一个较高的电压上,可以用来调节高达数百伏的电压,只要输入输出压差不超过LM317的极限就行。

当然还要避免输出端短路。

还可以把调整端接到一个可编程电压上,实现可编程的电源输出。

特性简介可调整输出电压低到1.2V。

保证1.5A 输出电流。

典型线性调整率0.01%。

典型负载调整率0.1%。

80dB 纹波抑制比。

输出短路保护。

过流、过热保护。

调整管安全工作区保护。

多数工程师都知道:他们可以使用某种廉价的三端子可调稳压器,比如Fairchild Semiconductor 公司的LM317,把它作为仅提供某个必要电压值(如36V或3V)的可调稳压器。

但是,如果不采用其它方法,那么该值无法低于1.25V。

这些器件的内部参考电压为1.25V,并且如果不使用电位偏置,那么它们的输出电压也无法低于该值。

解决这个问题的一个办法是使用基于两只二极管的参考电压源(参考文献2)。

该方法适合于1.2V~15V,或电压更高的稳压器,但它不适合于超低压固定稳压器或可调稳压器。

它采用的两只1N4001二极管不提供必要的1.2V电位偏置,并且具有额外的约为2.5 mV/K的温度不稳定性(参考文献3)。

因此,输出电压的额外温度漂移约为100 mV;如果把温度调至20℃(典型室内情况),则它大于1.5V输出电压的6%,等于1V输出电压的10%。

5v12v直流稳压电源设计参数计算

5v12v直流稳压电源设计参数计算

5v12v直流稳压电源设计参数计算1变压电路功率电源变压器的作用是将来自电网的220V 交流电压u 1变换为整流电路所需要的交流电压u 2。

电源变压器的效率为:12P P =η 其中:2P 是变压器副边的功率,1P 是变压器原边的功率。

一般小型变压器的效率如表1所示:表1 小型变压器的效率因此,当算出了副边功率2P 后,就可以根据上表算出原边1P 。

电源变压器电压变换公式为:2121N N U U = 其中:N 1为原边线圈扎数,N 2为副边线圈扎数。

由于LM317L 的输入电压与输出电压差的最小值()V U U o I 3min =-,输入电压与输出电压差的最大值()V U U o I 40max =-,故LM317L 的输入电压范围为:max min min max )()(o I o I o I o U U U U U U U -+≤≤-+ 即 V V U V V I 405.2325+≤≤+ V U V I 5.4228≤≤ V U U in 5.251.1281.1Im 2==≥取U 2=26 变压器副边电流I 2>I omax = 1A,取I 2 =1.1A 因此,变压器副边输出功率:W I U P 6.28222=⨯≥ 由于变压器7.0=η所以变压器原边输出功率W P P 1.4021=≥η,为留有余地选用功率为50W 的变压器。

2.电容滤波电路在稳压电源电路设计中一般用四个二极管组成桥式整流电路来完成整流功能,整流电路的作用是将交流电压u 2变换成脉动的直流电压u 3。

滤波电路一般由电容组成,其作用是把脉动直流电压u 3中的大部分纹波加以滤除,以得到较平滑的直流电压U I 。

U I 与交流电压u 2的有效值U 2的关系为:2)2.1~1.1(U U I =在整流电路中:22U U RM = 流过每只二极管的平均电流为:RU I I R D 245.02==其中:R 为整流滤波电路的负载电阻,它为电容C 提供放电通路,放电时间常数RC 应满足:2)5~3(TRC >其中:T = 20ms 是50Hz 交流电压的周期 由于V U U RM 365.25222=⨯=>,Iomax = 1A,IN4001的反向击穿电压V U RM 50≥,额定工作电流max 01I A I D ==,故整流二极管选用IN4001. 根据mV U V U V U p p I 20,5.25,2500=∆==-和公式 可求的V S U U U U vI p op I 8.6103255.2502.030=⨯⨯⨯=∆=∆--所以滤波电容uF F U T I U t I C II c 147000147.08.62150112m ax 0==⨯⨯=∆⋅=∆= 电容的耐压要大于VU U RM 365.25222=⨯=>,故滤波电容C1取容量为2000uF1.3.3整流二极管及滤波电容的选择整流二极管选1N4001,其极限参数为v U RM 50≥,而v U 26.5622=,因为I IoO V U U U U S ∆∆=,而3102,5,40,24--⨯==∆==V p op i O S mv U v U v U所以vS U U U U VO i p op i 2.4=∆=∆-滤波电容为F U IU t I C io i C μ4765max =∆=∆=,电容C 的耐压应大于v U 26.5622=.所以我们选用4700F μ的电容4 元件参数的计算4.1稳压器的参数计算电源变压器将来自电网的220V交流电压U1变换为整流电路所需要的交流电压U2。

用LM317T制作可调稳压电源

用LM317T制作可调稳压电源

用LM317T制作可调稳压电源,常因电位器接触不良使输出电压升高而烧毁负载。

如果增加一只三极管(如下图所示),在正常情况下,T1的基极电位为0,T1截止,对电路无影响;而当W1接触不良时,T1的基极电位上升,当升至0.7V时,T1导通,将LM317T的调整端电压降低,输出电压也降低,从而对负载起到保护作用。

如去掉三极管、断开W1中心点连线,3.8V小电珠立刻烧毁,测输出电压高达21V。

而加有T1时,小电珠亮度减小,此时LM317T输出电压仅为2V,从而有效的保护了负载。

此电路可以应用于单键开、关电源,有很宽的电压范围(4.5V~40V,最大19A的电流),R5为可选,当输入电压小于20V时可短接;输入电压大于20V时建议接上,R5的取值应满足与R1的分压使MOS管V1的GS电压大于-2 0V小于-5V(在V2导通时),尽量使V1的GS电压在-10V~-20V之间以使V1输出大电流。

按钮按下前,V2的GS电压(即C1电压)为零,V2截止,V1的GS电压为0,V1截止无输出;当按下S1,C1充电,V2 GS电压上升至约3V时V2导通并迅速饱和,V1 GS电压小于-4V,V1饱和导通,Vout有输出,发光管亮(此时应放开按钮)C1通过R2、R3继续充电,V1、V2状态被锁定;当再次按下按钮时,由于V2处于饱和导通状态,漏极电压约为0V,C1通过R 3放电,放至约3V时,V2截止,V1栅源电压大于-4V,V1截止,Vout无输出,发光管灭(放开按钮),C1通过R2、R3及外电路继续放电,V1、V2维持截止状态。

注:S1使Vout打开或关闭后应放开按钮,不然会形成开关振荡。

本文介绍的几种市电指示灯,具有简单易做、用电安全、耗电甚微等特点图1所示电路中只有两个元件,R选用1/6W~1/8W碳膜电阻或金属膜电阻,阻值在100~300K之间。

Ne为氖泡,也选用普通日光灯启辉器中的氖泡,若想选用体积小且在60V左右即能启辉的氖泡,其型号为NNH-616型,电阻R选用270K的1/6W金属膜电阻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档