大学物理:第7章-静电场-真空静电场小结
大学物理第7章静电场中的导体和电介质课后习题及答案
1第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1s 和2s 。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr =21s s。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为的导体球的电势为R R V 0211π4e p s =014e s R =半径为r 的导体球的电势为的导体球的电势为r r V 0222π4e p s =024e s r = 用细导线连接两球,有21V V =,所以,所以Rr=21s s 2. 证明:对于两个无限大的平行平面带电导体板来说,证明:对于两个无限大的平行平面带电导体板来说,(1)(1)(1)相向的两面上,电荷的面密度总是相向的两面上,电荷的面密度总是大小相等而符号相反;大小相等而符号相反;(2)(2)(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1s ,2s ,3s ,4s (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得内部的闭合圆柱面为高斯面,由高斯定理得S S d E SD +==×ò)(10320s s e故+2s 03=s上式说明相向两面上电荷面密度大小相等、符号相反。
上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即电平面产生的场强叠加而成的,即0222204030201=---e s e s e s e s又+2s 03=s 故 1s 4s =3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。
大学物理静电场总结六篇
大学物理静电场总结六篇高校物理静电场总结范文1宇宙是一个无限空间,含两种物质:①质物者:a、分子、粒子、结构、实体;b、元素:c、重量。
d、占空间位置,e、内含能、功、力三者,f、做行为动功,g、所见物质者物理学,和物质者化学;②场物者(非物质场、场力的现象即场书,场辐其周间,不重量,居空间,但不占空间位置,现象,不实体、不元素,只一具非物质场力,不含能,不做动功,静非物质特异无功,动静功是二者宇宙存在的重要区分,因而必两分门类科学,二者宇宙空间两对立具在,但二者没有任何相同之处,各具各特色,各内经而相异,书有:电力电路非物质书,无线电磁波电学非物质书,太阳光学非物质书,太阳光热学非物质书,地磁线场非物质书,加地表山、水、陆地、加太阳光、温度场等,等于先后共生态环境、造化了动植物栖息生命书,物质空气向地心非物质重力场重力经典力学书等。
)太空、星系向日心聚力场,地球万物向地心力场。
由于非物质充满于宇宙间,无形态,常态,如太阳光和热,太磁波可不算运动,可视为传播速度为零,电路所做静无功则神化(快,零速,即时性,无次数)。
宇宙不特别物质,不狭义物质和不反物质等不适说法,均宇非物质,非物质文化应改为不物质文化,以区分宇宙非物质科学。
世界到如今,非物质学为零,物质学三七开,七不地球经典,形而上学,等于不进展科学世界和教育欠科学,以及中国无一科学,只为引进狭义,又学而不思则罔。
创宇非新型:只有太阳光热非物质依旧,才能解释古今地球万物由来,古今太阳造地球万物,古今同由来。
说宇宙万物由来的切入点,是先宇宙非物质物来和怎么来的,不先问宇宙万物是怎么自然来的,自然界,这会至于不行之论,上帝和神造世界,分两步非物质科学化、物化、解释。
宇宙必定界不自然界说法。
①太空:初始,太古,太空,先是覆盖一个宇宙场,这个场是高光高热度气流岩浆体三构成,非物质场具特定内聚力,向心力,或者范围力,至后来分别成大块无机天体,这就是太阳,地球,月亮,星系等的由来,他们至今仍旧是由高光高温岩浆气流体构成,太阳星系非物质。
大学物理第七章静电场思维导图
绝缘体在静电场中表现特性
电荷保持
绝缘体不易导电,因此在静电场中,绝缘体上的电荷 难以移动或消失,能够长时间保持电荷。
极化现象
在静电场作用下,绝缘体中的正负电荷中心会发生相 对位移,形成电偶极子,从而产生极化现象。
介电常数
绝缘体的介电常数反映了其在静电场中的极化程度。 介电常数越大,绝缘体的极化能力越强。
导体和绝缘体之间相互作用
静电感应现象
当导体靠近绝缘体时,由于静电感应作用,导体会在靠近绝缘体的一侧感应出异号电荷,而绝缘体也会因为 极化作用在靠近导体的一侧出现束缚电荷。
电荷转移
在特定条件下,如导体与绝缘体接触或存在电位差时,可能会发生电荷转移现象。例如,在雷电天气中,云 层中的电荷可能会通过空气中的绝缘体(如水滴)转移到地面上的导体上。
电荷与电场关系
电荷
带正负电的粒子,是电场的源。
电场
电荷周围存在的一种特殊物质, 对放入其中的电荷有力的作用。
电荷与电场关系
电荷产生电场,电场对电荷有 力的作用。
电场强度与电势差
电场强度
描述电场的力的性质的物理量,表示电场的强弱和方向。
电势差
描述电场的能的性质的物理量,表示两点间电势的差值。
关系
电场强度与电势差密切相关,电场强度的方向是电势降低最快的 方向。
静电场中的导体和绝缘体
导体
内部存在自由电荷,能够导电的 物体。在静电场中,导体内部电 场为零,电荷分布在导体表面。
绝缘体
内部几乎没有自由电荷,不能导 电的物体。在静电场中,绝缘体 内部和表面都可能存在电荷。
静电感应
当导体靠近带电体时,由于静电 感应作用,导体内部电荷重新分 布,使得导体两端出现等量异号 电荷的现象。
大学物理电磁学总结
大学物理电磁学总结电磁学部分总结静电场部分第一部分:静电场的基本性质和规律电场是物质的一种存在形态,它同实物一样也具有能量、动量、质量等属性。
静电场的物质特性的外在表现是:(1)电场对位于其中的任何带电体都有电场力的作用(2)带电体在电场中运动, 电场力要作功——电场具有能量1、描述静电场性质的基本物理量是场强和电势,掌握定义及二者间的关系。
电场强度 E =q 0∞ W a 电势 U a ==E ⋅d rq 0a2、反映静电场基本性质的两条定理是高斯定理和环路定理Φe =E ⋅d S =ε0∑qL E ⋅d r =0要掌握各个定理的内容,所揭示的静电场的性质,明确定理中各个物理量的含义及影响各个量的因素。
重点是高斯定理的理解和应用。
3、应用(1)、电场强度的计算1q E =r 02a) 、由点电荷场强公式 4πεr 及场强叠加原理 E = ∑ E 计i 0算场强一、离散分布的点电荷系的场强1q i E =∑E i =∑r 2i 0i i 4πεr 0i二、连续分布带电体的场强 d q E =⎰d E =⎰r 204πε0r其中,重点掌握电荷呈线分布的带电体问题b) 、由静电场中的高斯定理计算场源分布具有高度对称性的带电体的场强分布一般诸如球对称分布、轴对称分布和面对称分布,步骤及例题详见课堂笔记。
还有可能结合电势的计算一起进行。
c) 、由场强和电势梯度之间的关系来计算场强(适用于电势容易计算或电势分布已知的情形),掌握作业及课堂练习的类型即可。
(2)、电通量的计算a) 、均匀电场中S 与电场强度方向垂直b) 、均匀电场,S 法线方向与电场强度方向成θ角E =-gradU =-∇U∂U ∂U ∂U =-(i +j +k )∂x ∂y ∂zc) 、由高斯定理求某些电通量(3)、电势的计算a) 、场强积分法(定义法)——计算U P =⎰E ⋅d rb) 、电势叠加法——q i ⎰电势叠加原理计算⎰∑U i =∑4πεr⎰0iU =⎰dq ⎰dU =⎰⎰⎰4πε0r ⎰第二部分:静电场中的导体和电介质一、导体的静电平衡状态和条件导体内部和表面都没有电荷作宏观定向运动的状态称为静电平衡状态。
大学物理授课教案 第七章 真空中的静电场
第三篇 电磁学第七章 真空中的静电场本章只讨论真空中的电场,下一章再讨论介质中静电场。
静电场:相对于观察者静止的电荷产生的电场。
§7-1 电荷 库仑定律一、电荷1、电荷 种类 正电荷 负电荷作用 同性相斥异性相吸(一般地说:使物体带电就是使它获得多余的电子或从它取出一些电子) 2、电荷守恒定律电荷从物体的一部分转移到另一部分,这称为电荷守恒定律。
它是物理学的基本定律之一。
3、电荷量子化在自然界中所观察到的电荷均为基本电荷e 的整数倍。
这也是自然界中的一条基本规律,表明电荷是量子化的。
直到现在还没有足够的实验来否定这个规律。
二、库仑定律点电荷:带电体本身线度比它到其他带电体间的距离小得多时,带电体的大小和形状可忽略不计,这个带电体称为点电荷。
(如同质点一样,是假想模型)库仑定律:真空中两点电荷之间的相互作用力大小与他们电量乘积成正比,与他们之间距离成反比,方向在他们连线上,同性相斥、异性相吸。
这叫做库仑定律。
它构成全部⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧静电学的基础。
数学表达式:2q 受1q 的作用力:2122112r q q k F = 0> 斥力(同号)0< 吸引(异号) 采用国际单位制,其中的比例常数229/109c m N k ⋅⨯=。
写成矢量形式:123122112122122112r r q q k r r r q q k F =⎪⎪⎭⎫ ⎝⎛= 令041πε=k ,22120/1085.8m N c ⋅⨯=-ε⇒ 123122101241r r q q Fπε= (7-1) 说明:①12F 是1q 对2q 是作用力,12r是由1q 指到2q 的矢量。
②2q 对1q 的作用力为:()1212120212132121021441F r r q q r r q q F -=-==πεπε ③库仑定律的形式与万有引力定律形式相似。
但前者包含吸力和斥力,后者只是引力,这是区别。
精选大学物理静电场知识总结
REPORTING
目录
• 静电场基本概念与性质 • 静电场中导体与电介质 • 静电场能量与储能元件 • 静电场在生活、生产中的应用 • 静电场相关实验设计与操作技巧 • 知识拓展:其他类型非均匀带电体研究
PART 01
静电场基本概念与性质
REPORTING
电荷与电场
静电场能量密度
描述单位体积内静电场所具有的能量 ,与电场强度的平方和电势有关。
静电场能量分布
在空间中,静电场的能量分布是不均 匀的,通常集中在电荷附近和电场强 度较大的区域。
储能元件:电容器和电感器
电容器
一种能够储存电能的元件,其储能原理是通过在两个极板间 储存电荷来储存能量。电容器的储能密度与其电容值和电压 的平方成正比。
静电复印、打印技术介绍
静电复印
通过充电、曝光、显影、转印、定影等步骤,在感光鼓上形成静电潜像,再利用墨粉进行显影,从而 将图像复制到纸张上的技术。具有速度快、分辨率高等优点。
静电打印
利用静电场控制墨滴的喷射,将图像直接打印到纸张上的技术。具有打印效果好、噪音低等优点。
生物医学领域中应用举例
静电纺丝
连续性方程
在静电场中,电荷守恒定律要求电荷 密度和电流密度满足连续性方程。对 于静态情况,连续性方程简化为电荷 密度的散度为零。
镜像法求解复杂问题
镜像法原理
镜像法是一种求解静电场问题的有效方法。其基本思想是 在适当位置引入虚拟的“镜像”电荷,使得原问题转化为 较简单的镜像电荷与原电荷共同作用的问题。
特殊形状非均匀带电 体的特点
特殊形状非均匀带电体通常具有 复杂的电荷分布和几何形状,使 得静电场问题的求解变得困难。
求解策略
大学物理第7章真空中的静电场答案解析
第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。
解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。
7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。
(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。
解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ方向沿ξ轴正向。
(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y习题7-1图0 dqξd ξ习题7-2 图a204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。
θθπελθd ydE E y y ⎰⎰==000cos 4 00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。
解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。
对称分析E y =0。
θπεθλsin 420RRd dE x =⎰⎰==πθπελ00sin 4RdE E x R02πελ= θθπελθd y dE E x x ⎰⎰-=-=0sin 4xdx习题7-2 图byx习题7-3图2022R q επ=,如图,方向沿x 轴正向。
真空中的静电场
13真空中的静电场真空中静电场的基本概念(1) 静电场的基本定律库仑定律:两点电荷在真空中的相互作用力电荷守恒定律:在一个与外界无电荷交换的系统内,任何过程中正负电荷的代数和永不改变.叠加原理:点电荷系在空间某点处产生的场强(或电势)等于各个点电荷单独存在时在该点产生的场强(或电势)之和.(2) 重要定理高斯定理:通过任一封闭面的电通量等于该封面所包围的电荷电量代数和的倍.1/ε,说明静电电场是有源场.环路定理:在静电场中,电场强度沿任一闭合路径的积分恒为0.,说明静电场是保守场,静电力是保守力.(3) 电场强度在电场中任一给定点处,检验电荷q0所受的电场力F与其电量q0的比值为给定的电场强度电场强度E是一矢量,其大小为,方向为电场中给定点处正检验电荷所受力的方向.(4) 电势①电势能静电场是保守场,引入电势能的概念.电荷q0在静电场a点的电势能.若带电体系分布在有限空间内,常取无限远处电势能为零,则上式表明,在静电场中,电荷q0在a点的电势能等于将电荷q0从a点移动到无穷远处电场力所作的功.②电势静电场中a点的电势静电场中a点的电势等于单位电量在该点所具有的电势能,即将单位电量从该点a移动到无穷远处电场力所作的功.电势的单位为伏(V).③电势差静电场中a,b 两点的电势差.静电场中a,b两点的电势差等于单位电量从a点移动到b点是电场力所作的功.解题指导(1)场强E、电势U 的计算场强和电势的计算可归纳为两大类题型:第一类,场具有球、柱、面对称性.先用高斯定理再用电势公式第二类,一般的场.原则:点电荷的场、叠加原理.点电荷的场场强电势点电荷系的场场强电势连续带电体的场场强将带电体分成无穷多个点电荷,取一点电荷,其场强为将d E分解到x方向和y方向再对场强在x方向的分量及y方向的分量积分电势取一点电荷,其电势为对所有点电荷产生的电势求和即求积分求解连续带电体的场强需用矢量积分(上面已介绍了基本方法),一般计算较为复杂.此问题也可简化:先计算带电体在空间的电势(电势计算积分为标量积分,比场强矢量积分简单),然后用求场强.(2) 运用F= q0E计算电场力时,应注意E是除q0以外的电荷产生的电场强度.(3) 对高斯定理中的每一个量,要有正确的理解.Φe只跟封闭面包围的电量有关,而E则是封闭面(也称高斯面)内、外所有电荷产生的总场强,跟高斯面内、外电荷有关.Φe>0,说明高斯面内净电荷(正、负电荷相加)大于零(也即正电荷比负电荷多),不能说高斯面内只有正电荷.(4)电场与电势的关系积分关系.微分关系.电场强度E大的地方,电势的高低要看积分的值大还是小,即单位电量从a→电势零点电场力作功大还是小来决定.从微分关系看,E l大,说明电势在l方向的方向导数大,即电势U随l的变化率大,即单位长度电势的变化大,反过来看电势高的地方也不能笼统地讲电场也强典型例题13-1 对于高斯定理举例说明下列说法是否正确:(1) 若高斯面内无电荷,则通过高斯面的电通量必为零;(2) 若高斯面内电荷的代数和不为零,则高斯面上的场强一定处处不为零;(3) 若高斯面上的场强处处为零,则高斯面内一定处处无电荷;(4) 若高斯面上的场强处处不为零,则高斯面内必有电荷.答(1) 正确.根据高斯定理因电荷都分布在高斯面外,任一电力线穿入高斯面后必要穿出高斯面,所以总电通量必为零.(2) 不正确.高斯面上的场强有些地方可以为零.例:有两正点电荷(+q,+q),高斯面通过两点电荷的中点O (如图13.3-1(a) ),O点处的场强 = 0.不正确.高斯面上的场强处处为零,说明表明高斯面内净电荷 = 0,可能存在正、负电荷相加为0的情况.例:两同心球壳分别带有等量异号电荷+Q、—Q(如图13.3-1(b)所示),两球壳外的电场处处为0,高斯球面在两球壳外,高斯面内有电荷+Q、—Q.(4) 不正确.例:高斯面外有一点电荷q,这时高斯面上场强处处不为零,而高斯面内无电荷.读者还可列举出一些例子来说明以上问题,这样有助于对以上问题更深入的理解.13-2 举例说明下列说法是否正确.(1) 场强大的地方,电势一定高;电势高的地方,场强一定大;(2) 带正电的物体电势一定是正的,电势等于零的物体一定不带电;(3) 场强大小相等的地方电势一定相等,等势面上场强的大小一定相等.答(1) 不正确.例如图13.3-2(a)中带等量异号电荷的平行板电容器,两平行板间的场强大小处处相等,但靠近正极的电势高,靠近负极的电势低.(2)不正确.例如两带电的同心球壳,如图13.3-2(b)所示.内球的电势只要足够大,可能为负值.后一问也不对,电势为零的物体可能带电,如图12.3-2(a)中负板接地电势为零,但带负电.(3)不正确.如图12.3-2(a)中平行板间场强大小处处相等,但电势可能不相同.后一问也不对,如图12.3-2(c)所示,两正、负点电荷,电量大小相等,它们的中垂面为等势面,但其上各点的场强大小不一定相等.13-3 半径为R的半圆形带电细棒,均匀分布有总电荷q ,求圆心O处的场强和电势.解题思路本题的电势分布不具有球、柱、面对称性,属求解一般场强和电势的问题.解这种类型题的原则是:点电荷的场和叠加原理.这里是一个连续带电的半圆环,用叠加原理时数学上用积分方法.这里我们将对求连续带电体的场强、电势的方法作一介绍.①将连续带电体分成无穷多小段,每一小段看成一点电荷;②任意取一小段dl(图12.3-3中所示),这一小段的电量为dq,dq在O点产生的电场强度d E的方向在图中标出,大小将d E分解到x,y方向;③对无穷多小段的点电荷在O点产生的场求和即求积分,很多情况根据带电体对称性(对x 轴,y轴对称情况),可直接看出一分量的场强为零.解如图13.3-3 所示取x,y坐标.将半圆环分成无穷多小段,取一小段d l,带电量,d q在O点的场强方向如图所示.从对称性分析(跟x轴对称的一小段)在y方向的场强相互抵消,只存在x方向的场强dq在圆心O的电势总电势注意:在解连续带电体电场问题中容易犯的错误是,写出任一点电荷在O点的场强d E后,不经分解就直接积分这里的积分是一个矢量积分,矢量积分的方法如下:即要分别求x,y,z轴的分量13-4 有一总电量为q,半径为R的均匀带电球面,求场强和电势的分布.解题思路这是一个电荷分布(或场)具有球对称性的问题,先用高斯定理求E的分布,再用求电势.具体计算时要看场强分布可分成几个区域,如本题可分成r < R及 r > R两个区域,对不同区域分别求解.解r> R,取半径为r的同心球面作高斯面(如图13.3-4(b)所示),根据高斯定理,r ≤R,〔取半径为r的同心球面作高斯面,根据高斯定理〕,以上〔〕中内容跟r > R时相同,也可省去,写“同理”即可.电势计算:r > R2,球外,离球心为r 的a 点的电势r≤R,球壳内,任取一点b,说明:(1) 上面介绍了对球对称情况求电场和电势的基本方法.对球对称问题可作如下变化:①两同心的均匀带电球壳(如图13.3-4′(a)所示),这时场分三个区域.r > R,可得2R< r < R2,1r ≤R,1对以上结果,读者可自己进行计算,并加以验证.②均匀带电球体(如图13.3-4′(b) )所示:r≤R,同理,r > R,电势:r > R,r ≤R,(此结果请读者一定要自己验证).③对不均匀的带电球体,,这时求高斯面所包围的电量要用积分方法.(2)电势的计算:r≤R,,这时积分路线是从b积到∞,在积分路线中E有几种不同的表式,积分就要分几个积分相加,这点特别要提醒读者注意.在本题中,r ≤R,E=0,有些人就误认为.这时从b到∞电场分积分要分两段进行13-5 一个内、外半径分别为a 和b的无限长圆柱体壳层,壳内电荷体密度为式中A为常数,r为壳内任一点到轴线的距离.轴线处有一电荷线密度为λ的无限长均匀带电直线.求A为何值时才能使壳内的场强大小恒定.解题思路本题电荷分布(或场)具有柱对称性,用高斯定理求解.解在壳内作半径r,高l的同轴柱封闭面作高斯面,根据高斯定理,,现在作的柱封闭面(高斯面)由1,2,3三个面组成,积分应分成三个面积分.包括两部分电荷:轴上的电荷lλ及包围的壳内电荷所以上式变为电场方向垂直轴线,一、二两个积分E·d S = 0.要求E 跟r无关,,.说明:⑴对柱对称分布的电荷(无限长均匀带电直线,无限长均匀带电柱面,柱体,无限长同轴均匀带电柱面……)取高斯面为同轴柱封闭面,积分要分3个面积分进行,其中跟轴垂直的两个面1,2的积分为零,只存在对侧面的积分.⑵电荷分布不均匀时,一般要用积分计算.⑶对柱对称问题一般求得场强的形式为:求场中某点的电势时,若取无穷远处电势为零,则会得出任一点的电势,这是不符合实际的.所以现在不能取无穷远处的电势为零.我们知道,电势零点的选取可随问题而定,这时我们选一点离轴线距离为的电势为零,a点的电势.13-6 两个无限长均匀带电共轴薄圆筒,内、外半径分别为.已知外筒和内筒间电势差,求一个电子在离轴线垂直距离r=2 cm处受的电场力.解题思路电子在电场中所受的电场力F=qE,求出E即可得F.对柱对称的电场用高斯定理可得,现已知电势差,可倒过来求得E,再代入F=qE求得电场力.解根据高斯定理,两无限长带电薄圆筒间的场强,两筒间的电势差,所以,.13-7 一无限大厚度为2d的均匀带电平板,单位体积中带电粒子数为n,每个粒子带电量q,求平板内外场强E及电势U的分布(设处电势为零.)解题思路对无限大均匀带电平板,电荷分布及电场有面对称性,取轴垂直于平板且底面平行于平板的柱封闭面为高斯面,利用高斯定理可求E的分布,再根据,求出电势.解电力线垂直于中心面指向外.,作长2l垂直中心面,底面积为S的柱面(图13.3-7中I高斯面)作高斯面根据高斯定理,高斯面有两个底面1,2和一个侧面3,,所以,,作高斯面Ⅱ,同理可得,电势:,,,,,.说明:⑴对面对称分布的电荷用高斯定理求解时,所取的高斯面应是中心面垂直且对称的封闭曲面.⑵对面对称的电场求电势时,也不能取无穷远处的电势为电势零点(若取无穷远处为电势零点,则场中各点的电势都为,失去实际意义),应先取定某点电势为零,再进行计算.13-8如图13.3-8所示,在A点处有点电荷,在B点处有电荷,O点为AB的中点,AB长为,P点与A点相距.求:⑴把电量的点电荷从无限远处移到P点,电场力作功多少?电势能增加多少?⑵将从P点移到O点,电场力作功多少?电势能增加多少?解题思路计算电场力的功及电势能的增量可用公式,将计算后代入即可,一般不要用功的定义计算,这样做会带来一些计算上的麻烦,而且花时间,也容易算错.解:⑴⑵. 13-9 均匀带电细圆环,半径为R,带电量为 q,求圆环轴线上离环心为x 处的任一点P的电势,利用电势梯度求该点的场强.解题思路本题电荷分布无球、柱、面对称性,为一般的场,而且为连续带电体,空间电场强度的计算比较复杂(需用对变量求积分及矢量积分的方法).可先求P点的电势,再用场强电势的微分关系求场强进行简化.解将带电圆环分成无穷多小段,取其中的任意的一小段,所带的电量为,在P点的电势整个圆环在P点产生的电势题解1. 一无限长带电直线,电荷线密度分别为和,求点处的场强E.解在正x轴上取一小段,离O点距离x,在P点的场强(方向如图中)在负x轴上跟O对称取一小段,在P点的场强(方向如图)从对称性分析,在y方向成对抵消,只存在x方向的分量2. 一半径为a的带电半圆弧,上半部均匀分布着电荷+q,下半部均匀分布着电荷—q(如图13.4-2所示)试求圆心O处的电场强度.解 +q上半部产生的场强:将上半部分成无穷多小段,取其中任一小段(所带电量),在O点的场强方向如图所示.—q下半部分产生的场强:以x轴为对称轴取跟d l对称的一小段(带电量)在O点的场强方向如图所示.从图中看出,根据对称性,在x方向的合场强相互抵消为0,只存在y方向的场强分量总场强3.一半径为a的半球壳,均匀地带有负电荷,电荷面密度为.求:球心O 处的电场强度和电势.解将半球面分成无限多个圆环,取一圆环如图13.4-3所示,半径为r,到球心距离为x,所带电量绝对值在O点产生的场强(利用圆环在轴线上场公式)带电半球壳在O点的总场强其中,电势计算:将半球壳分成无穷多小面元d s,所带电量,在O点的电势带电半球壳在O点的总电势.4、用细的塑料棒弯成半径为0.5 m的圆弧,两端空隙为2 cm,所带电量,且均匀分布在棒上.求圆心处的电场强度.解带电圆弧长所带电量q在带隙中补上长2cm,带电量的小条,则圆心O的场强式中分别为q和在O点产生的场强,所以可看成点电荷圆弧形带电塑料棒在O点的场强大小为,方向朝右.5、一无限长均匀带电的圆柱面,半径为R,沿轴线方向单位长电量为,求轴线上场强的大小.解:图13.4-5为圆柱面横截面图,对应的无限长直线单位长带的电量为它在轴线O产生的场强大小为因对称性,成对抵消.6、把某一电荷Q分成两个部分,使它们相隔一定距离.如果要使这两部分有最大的库仑斥力,求这两部分电荷应怎样分配?解设一部分的电量为q,另一部分的电量为(Q-q),则相互斥力为F最大,,7、电荷线密度为的无限长均匀带电直线与另一长度为l、电荷线密度为的均匀带电直线在同一平面内,二者互相垂直,求它们之间的相互作用力.解将AB分成无穷多小段,取一小段,所带电量.受无限长带电直线的作用力,方向朝右,各小段受无限长带电直线的作用力方向都朝右,所以AB受的总作用力8.两个均匀带电的同心球面,若维持外球面半径m以及内外两球面间的电势差U=100V不变,则内球面半径为多大时,才能使内球表面附近场强最小?其值为多大?解设内球带电量q ,两球面间的场强,两球的电势差,可得.代入E中,内球表面附近,最小,9.(1)地球表面附近的电场强度近似为,方向指向地球中心.试求地球带的总电量;(2)在离场面1400m处,电场强度降为,方向仍指向地球中心.试计算在1400m下大气层里的平均电荷密度.解 (1)沿地球表面作一封闭球面S ,设地球所带的总电量为Q,根据高斯定理,.由于地球表面附近电场强度数值相等,方向指向地球中心,于是上式左边,所以(2)在离地面h=1400m处包围地球作一封闭球面,设大气层里总电量为q,根据高斯定理,因大气层体积所以大气层中平均电荷密度.10.设气体放电形成的等离子体在圆柱内的电荷分布可用下式表示:.式中r是到轴线的距离,是轴线上的电荷密度,a是常数. 计算场强分布.解电荷分布有柱对称性,利用高斯定理,在等离子体的圆柱内,作长,半径为r的同轴柱面为高斯面,根据高斯定理,,.由于电场的对称性,方向垂直于圆柱面侧面,通过圆面两底的电通量为零,上式有,.11.一均匀的带电球体,电荷体密度为,球内有一不带电的球形空腔,偏心距为a,求腔内任一点P的电场强度.解将相同电荷体密度的带电物质填满空腔,它在P点的场强为.此时整个实心均匀带电球在P点的场强设为E,很显然空心球在P点的场强,根据高斯定理,同理,所以12. 如图放置的细棒,长为L,电荷线密度( k为常数),求: (1)P(0 ,y )处的电势;(2)用电势梯度求P点处的场强分量;(3)能否由(1)的结果用电势梯度求P点处的场强分量?为什么?解 (1)在细棒上x上处取电荷元,它在P点产生的电势,.(2) .(3)不能由(1)的结果用电势梯度求.因为U=U (0,y)中x =0为确定值,电势梯度必为0.应该先求出任一场点处的电势U (x,y),再由才可求得x=0处的场强分量.13.设电势沿x轴的变化曲线如图所示.试对于每个所示的区间(忽略区间端点的情况),确定电场强度的x分量,并作对x的关系图线.解在a~b区间,;在b~c区间,;在c~e区间,;在e~f区间,;在f~g区间,;在g~h区间,对x的关系线见图13.4(b)所示.。
大学应用物理第七章读书笔记
⼤学应⽤物理第七章读书笔记静电场本章研究的是电磁运动中最简单的情况—静电场,所采⽤的研究⽅法为:从库仑定律开始,建⽴静电场的概念,从置于电场中的电荷所受的⼒和⼒做功的情况,研究静电场的性质,引⼊电场强度和电势两个重要的物理量。
建⽴场强叠加原理、⾼斯定理、环路定理等。
⼀、概念静电场:任何电荷周围都存在着电场,相对观察者为静⽌的电荷所激发的电场。
电场的特点(1) 电荷之间的相互作⽤是通过电场来传递(2) 对位于其中的带电体有⼒的作⽤(3) 带电体在电场中运动,电场⼒要作功——电场是种物质,具有能量、质量和动量。
电场强度:放⼊电场中某点的电荷所受静电⼒F跟它的电荷量⽐值,叫做该点的电场强度。
定义式:E=F/q ,F为电场对试探电荷的作⽤⼒,q为放⼊电场中检验电荷(试探电荷)的电荷量。
电场强度的⽅向:规定为放在该点的正电荷受到的静电⼒⽅向。
与正电荷受⼒⽅向相同,与负电荷受⼒⽅向相反电场⼒:电荷之间的相互作⽤是通过电场发⽣的。
只要有电荷存在,电荷的周围就存在着电场,电场的基本性质是它对放⼊其中的电荷有⼒的作⽤,这种⼒就叫做电场⼒判断⽅向⽅法:正电荷沿电场线的切线⽅向,负电荷沿电场线的切线⽅向的反⽅向。
计算:电场⼒的计算公式是F=qE,其中q为点电荷的带电量,E为场强。
或由W=Fd,也可以根据电场⼒做功与在电场⼒⽅向上运动的距离来求。
电磁学中另⼀个重要公式W=qU(其中U为两点间电势差),可由此公式推导得出。
静电⼒作功的特点:单个点电荷产⽣的电场中任意带电体系产⽣的电场中电荷系q1、q2、…的电场中,移动q0,有结论:电场⼒作功只与始末位置有关,与路径⽆关,所以静电⼒是保守⼒,静电场是保守⼒场。
电通量:通过电场中任意给定⾯积的电场线的数⽬,叫做通过该⾯积的电场强度通量,简称电通量。
(它是研究电场性质的常⽤物理量)公式:电通量密度是通过垂直于电场⽅向的单位⾯积的电通量,它等于该处电场的⼤⼩E 。
电通量密度精确地描述了电⼒线的疏密。
大学物理12真空中的静电场
03
电势与电势差
电势的概念
总结词
电势是描述电场中某点电荷所具有的势能,其值与零电势点的选 择有关。
详细描述
电势是描述电场中某点电荷所具有的势能,通常用符号"φ"表示。它 是一个标量,其值与零电势点的选择有关。在静电场中,零电势点 是任意选择的,通常选择大地或无穷远处作为零电势点。
电势的计算方法
计算电场能量
利用高斯定理可以计算电场的能量密度和总能量。
静电场的散度与源电荷的关系
02
01
03
静电场的散度等于该点源电荷的密度。
数学表达式:divE = ρ/ε0
其中,divE是电场强度的散度,ρ是电荷的密度,ε0是 真空中的电容率。
05
静电场的环路定理与电场线的引入
静电场的环路定理
总结词
静电场的环路定理描述了电场与磁场之 间的关系,是电磁学中的基本定理之一 。
大学物理12真空中的静电场
目
CONTENCT
录
• 引言 • 电场与电场强度 • 电势与电势差 • 高斯定理与静电场的散度 • 静电场的环路定理与电场线的引入 • 静电场的边界条件与导体表面的电
场线分布 • 静电场的能量与力
01
引言
主题简介
静电场是静止电荷产生的电场,是电 磁学的重要概念之一。
在真空环境中,静电场不受其他电磁 场的影响,因此具有独特的性质和规 律。
指导电路设计
在电路设计中,通过合理 布置导线和元件的位置, 利用电场线的分布来优化 电路性能。
07
静电场的能量与力
静电场的能量分布
静电场的能量分布由电场强度和电势的乘积积分得 到,表示电场中各点的能量密度。
在真空中的静电场,能量分布与电荷分布有关,电 荷密度越大,能量密度越高。
(完整版)大学物理静电场知识点总结
大学物理静电场知识点总结1.电荷的基本特点:(1)分类:正电荷(同质子所带电荷),负电荷(同电子所带电荷)(2)量子化特征(3)是相对论性不变量(4)微观粒子所带电荷老是存在一种对称性2.电荷守恒定律:一个与外界没有电荷互换的孤立系统,不论发生什么变化,整个系统的电荷总量必然保持不变。
3.点电荷:点电荷是一个宏观范围的理想模型,在可忽视带电体自身的线度时才建立。
4.库仑定律:表示了两个电荷之间的静电互相作用,是电磁学的基本定律之一,是表示真空中两个静止的点电荷之间互相作用的规律r1 q1q2 rF1240 r123r 125.电场强度:是描绘电场状况的最基本的物理量之一,反应了电rr F场的基Eq0 6.电场强度的计算:(1)单个点电荷产生的电场强度,可直接利用库仑定律和电场强度的定义来求得(2)带电体产生的电场强度,能够依据电场的叠加原理来求解r1nq i r r1dq rE r i E r40 i 1 r i3r 340(3)拥有必定对称性的带电体所产生的电场强度,能够依据高斯定理来求解(4)依据电荷的散布求电势,而后经过电势与电场强度的关系求得电场强度7.电场线:是一些虚假线,引入其目的是为了直观形象地表示电场强度的散布(1)电场线是这样的线: a.曲线上每点的切线方向与该点的电场强度方向一致b.曲线散布的疏密对应着电场强度的强弱,即越密越强,越疏越弱。
(2)电场线的性质: a.起于正电荷(或无量远),止于负电荷(或无量远)。
b.不闭合,也不在没电荷的地方中止。
c.两条电场线在没有电荷的地方不会订交8.电通量:e s r r E dS(1)电通量是一个抽象的观点,假如把它与电场线联系起来,能够把曲面 S 的电通量理解为穿过曲面的电场线的条数。
(2)电通量是标量,有正负之分。
9.高斯定理:òs r r1E dS q i0( S里)r(1)定理中的E是由空间全部的电荷(包含高斯面内和面外的电荷)共同产生。
(完整版)大学物理静电场知识点总结
大学物理静电场知识点总结1. 电荷的基本特征:(1)分类:正电荷(同质子所带电荷),负电荷(同电子所带电荷)(2)量子化特性(3)是相对论性不变量(4)微观粒子所带电荷总是存在一种对称性2. 电荷守恒定律 :一个与外界没有电荷交换的孤立系统,无论发生什么变化,整个系统的电荷总量必定保持不变。
3.点电荷:点电荷是一个宏观范围的理想模型,在可忽略带电体自身的线度时才成立。
4.库仑定律: 表示了两个电荷之间的静电相互作用,是电磁学的基本定律之一,是表示真空中两个静止的点电荷之间相互作用的规律121212301214q q F r r πε=5. 电场强度 :是描述电场状况的最基本的物理量之一,反映了电场的基 0F E q =6. 电场强度的计算:(1)单个点电荷产生的电场强度,可直接利用库仑定律和电场强度的定义来求得(2)带电体产生的电场强度,可以根据电场的叠加原理来求解 πεπε===∑⎰ni i33i 1iq 11dqE r E r 44rr(3)具有一定对称性的带电体所产生的电场强度,可以根据高斯定理来求解(4)根据电荷的分布求电势,然后通过电势与电场强度的关系求得电场强度7.电场线: 是一些虚构线,引入其目的是为了直观形象地表示电场强度的分布(1)电场线是这样的线:a .曲线上每点的切线方向与该点的电场强度方向一致b .曲线分布的疏密对应着电场强度的强弱,即越密越强,越疏越弱。
(2)电场线的性质:a .起于正电荷(或无穷远),止于负电荷(或无穷远)。
b .不闭合,也不在没电荷的地方中断。
c .两条电场线在没有电荷的地方不会相交 8.电通量: φ=⋅⎰⎰e sE dS(1)电通量是一个抽象的概念,如果把它与电场线联系起来,可以把曲面S 的电通量理解为穿过曲面的电场线的条数。
(2)电通量是标量,有正负之分。
9. 高斯定理:ε⋅=∑⎰⎰sS 01E dS i (里)q(1)定理中的E 是由空间所有的电荷(包括高斯面内和面外的电荷)共同产生。
第7章 静电场
第七章 静电场 问题7-1 设电荷均匀分布在一空心均匀带电的球面上,若把另一点电荷放在球心上,这个电荷能处于平衡状态吗?如果把它放在偏离球心的位置上,又将如何呢?解 我们先考虑电荷均匀分布的带电球面在球内的电场强度E 的分布情况,由0q =E F 来判断某处点电荷是否能处于平衡状态。
对于球心O 处,由于球面电荷分布均匀,球面上各点的电荷在球心处的电场强度在各个方向上都是均衡的,又由于电场强度为矢量,所以其合矢量为零,偏离球心的任一点P 处的电场强度可以由高斯定律求得,根据球面电荷分布的对称性,我们选取过点P 、与带电球同心的球面为高斯面。
利用高斯定理有0Sd ⋅=⎰E S ,所以在点P 处的电场强度也为零。
由上分析可知,在均匀带电的球面内任一点(球心或者偏离球心)处放一点电荷,此电荷受到的合力都为零,都能处于平衡状态。
7-2 在电场中某一点的电场强度定义为0q =FE ,若该点没有试验电荷,那么该点的电场强度又如何?为什么?解 该点电场强度不会改变。
因为电场强度反映的是电场本身的性质,它是电场本身的属性,与试验电荷的存在与否无关。
7-3 我们分别介绍了静电场的库仑力的叠加原理和电场强度的叠加原理。
这两个叠加原理是彼此独立没有联系的吗?解 这两个叠加原理并非彼此独立,而是相互联系的。
这两个叠加原理都是矢量叠加原理,电场强度的叠加原理是由库仑力的叠加原理推导而来的。
7-4 电场线能相交吗?为什么?解 不能相交。
由电场线性质可知,电场中任一点的电场强度的方向与此处电场线切线方向。
若两条电场线相交,则相对于不同的电场线,相交处的电场强度有不同的方向,而电场中一点的电场强度只能有一个确定的方向,所以电场线不能相交。
7-5 如果穿过曲面的电场强度通量e 0Φ=,那么,能否说此曲面上每一点的电场强度E 也必为零呢?解 不能。
由e SΦd =⋅⎰E S 知,穿过曲面的电场强度通量不仅与电场强度的大小有关,而且还与所取的曲面有关。
大学物理静电场复习总结
UR 0
rR:
ln r 20 R
rR: 0
rR: 0
R
rrR:
R 2 20r
rˆ
rR:
r 20
rˆ
UR 0 rR:
R2 ln R 0
20 r
rR: (R2 r2)
40
静电场中的导体与电介质
基本概念和基本规律
1. 导体静E E 内 表 电平 0面 衡导 的条件体表 导导体体是表面 等面势 是体 等势面
一、基本概念和基本规律
1. 电容的定义: C Q U
2.
ห้องสมุดไป่ตู้
1
电容器的串联:C
1 Ci
并联:CCi
3. 电容器的能量:W1CU 2Q21QU 2 2C 2
4. 电场能量密度:w1E rD r1E2
2
2
任意电场的能量:
WV
1Er 2
r DdV
5. 求电容器电容的步骤: ur 假定极板带电Q 板间的 E
板间的 U
q 4 0 r
ln a 2 0 r q R2 x2
R
0
r [1 x20
x
]i
x2R2
(
20
R2x2x)
E
i
x 20
x
E
0
i
场源电荷(+)
E
U
R q
r
rR: rR:
q 4 0r
2
rˆ
qr 40 R3 rˆ
q
rR:
rR:84 q00Rr (3Rr22)
Rr rR: rˆ 2 0r
4. 高斯定理:
rr
e r SE r dS1
EdS
大学物理第章静电场中导体和电介质小结
1 Q2 Q2
4 0R1 2 8 0R1
本章小结
一、导体的静电感应
1、自由电子 2、静电平衡:导体上没有电荷作定向运动的状态 3、静电平衡条件: 4、导体表面的电荷分布
二、电介质的极化
1、极化电荷
2、介质内场强的变化: 3、极化强度矢量:
4、电位移矢量:
E E0 E P e0 E
0
E0
0
(1 x
l
1) x
A
B
两导线间的电势差:
U
l
a E
dx
la
(1 1 )dx ln l a
a
a 2 0 x l x
0 a
单位长度的电容:
C
Q0 U
U
0
ln l a
a
说明:任何导体之间,实际上都存在着电容,导线 之间,导线与电器元件之间,与金属外壳之间等, 称为“分布电容”,通常分布电容很小,可不计。 但对于高频电路就必须考虑分布电容的影响。
二、带电体系所储藏的静电能(电场能)
electrostatic energy of charged system
一带电系统,带电 qi 电势 Vi ,再从∞处将 qi
移到该系统,外力作功:
Ai Viqi Wi
分成 N 步,外力作的总功:(系统所储藏的静电能)
A Ai Viqi W
若带电体连续分布
例题3 有A、B、C是三块平行金属板,面积均为 200cm2, A、B相距4.0mm,A、C相距2.0mm,B、C两 板接地,设A板带电荷q=+3.0×10-7C,不计边缘效应, 求(1)B板和C板上的感应电荷。(2)A板的电势。
CA B
-q2 +q2 +q1 -q1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 场强积分法:当 E 易于由高斯定理求出
电势零点
a a
E dl
(1) 直接求:点电荷的场强矢量叠加。
E
dE
dq
4π0r 2 er
(2) 对称性条件下,通过高斯定理求。
E d(3)电势叠加,求电势梯度。
dq
4π 0r
E grad
B. 求电势
(1) 电势叠加法:当电荷分布已知时
点电荷系:
i
qi
4π 0ri
连续带电体:
dq
4.电场强度:电场中任一点的电场强度, 在数值和方向上等于静止于该点的单位
E
Fi F
正电荷所受的力。
q0
5. 电场叠加原理: E Ei
利用叠加法求电荷系的静电场
E
n i 1
qi
4 0ri2
eri
E
dE
dq
4 0r
2
er
6. 高斯定律
在真空中的静电场内,通过任意封闭曲面的
电通量等于该封闭曲面所包围的电荷的电量的代
真空中静电场小结
1. 电荷的基本性质: 两种电荷, 电荷守恒,代数相加 量子不连续性,相对论不变性。
2. 库仑定律: 两个静止的点电荷之间的作用力
F21
q1q2
4
r2
0 21
er 21
0
8.85
1012
C m2
2
N
真空介电常量
3.电力的叠加原理:两个点电荷之间的作用力
并不因第三个点电荷的存在而有所改变。 F
数和的1/ε0倍。
E dS
1
S
0
q内
内容 一个实验定律:库仑定律
F21
q1q2
4 0r221
er 21
两个基本方程:
高斯定理:
E dS
1
S
0
q内
静电场环路定理: E dl 0
L
分别对应两个物理量: E U
三个叠加原理:电力叠加,电场叠加,电势叠加
计算思路
A.求电场强度