叶绿素荧光分析技术在植物生物学研究中的应用
叶绿素荧光成像技术的原理与应用

叶绿素荧光成像技术的原理与应用一、引言叶绿素是植物中最重要的光合色素,是植物进行光合作用的基础。
溶剂化的叶绿素主要吸收蓝色和红色光,在500~600和650~700nm波长范围内,具有两个吸收峰。
叶绿素荧光成像技术是基于叶绿素发出的荧光信号来进行影像测量的一种实时、无创的模拟测量方法。
本文将介绍叶绿素荧光成像技术的原理、实验流程及其应用。
二、原理叶绿素荧光成像技术是基于叶绿素荧光的成像,叶绿素荧光受光强度和环境因素的影响而变化,可以反映植物的生长状态、光合作用效率和叶片生理变化等信息。
叶绿素荧光成像系统具有高时间分辨率、高空间分辨率的特点,可以获取全景、彩色、实时和定量信息。
叶绿素荧光成像技术主要是利用荧光成像仪和其他仪器支持,通过蓝/绿或红/绿激发光、荧光图像采集和分析等步骤,可以获得叶绿素的分布信息。
三、实验叶绿素荧光成像技术的实验主要分为两个步骤:激发和成像。
首先是激发,将叶片放入光合器中,用荧光成像仪对植物叶片进行光激发,根据荧光成像仪的激光幅度,可以调整植物叶片的荧光强度。
之后,进行成像,将植物叶片放到荧光成像仪中进行拍摄,获取叶绿素的发光信号。
最后,通过荧光照片的处理,可以计算叶片荧光强度和叶绿素荧光参数,如最大光化学利用率、植物光合作用效率等。
四、应用叶绿素荧光成像技术的应用非常广泛,主要涉及到生物学、生态学、农业、气象学,特别适用于植物生长状态监测、植物抗性研究、光合作用效率评估等。
一些具体的应用领域可以如下简要介绍:1.光合作用研究叶绿素荧光成像技术可用于研究植物的光合作用效率、光能利用和光保护机制。
典型的光合作用实验是通过比较光照和黑暗条件下植物的荧光变化来确定植物的光合反应和光保护机制。
2.气候变化影响研究在气候变化方面,叶绿素荧光成像技术可用于研究气候变化导致的植物响应和适应。
通过对多个季节的荧光成像分析可以确定气候变化对地上层和植物生长的影响。
3.生态环境研究叶绿素荧光成像技术可用于研究萎缩地区的植被恢复和生态系统的响应。
叶绿素荧光成像技术在植物生长中的应用

叶绿素荧光成像技术在植物生长中的应用叶绿素荧光成像技术,是一种非侵入式的植物生长观测方法。
它可以在不对植物造成任何伤害的情况下,实时地观测植物的光合作用和植物生长状态。
叶绿素荧光成像技术的应用范围十分广泛,包括植物生长研究、环境监测、农业生产等方面。
叶绿素荧光成像技术的基本原理是,利用叶绿素分子在光合作用中产生的荧光信号,来反映叶片的光合效率。
这种荧光信号可以通过特殊的摄像设备,即叶绿素荧光成像仪来采集。
通过对采集到的荧光图像进行处理,可以得到植物的光合作用效率、光能利用率等多项指标,从而揭示植物生长状态和环境条件对植物生长的影响。
在植物生长方面,叶绿素荧光成像技术的应用主要集中在三个方面:一、对不同生长环境下的植物进行光合作用效率观测。
利用叶绿素荧光成像仪可以在植物生长中实时地观测其光合作用的运作情况。
通过在不同环境和条件下对植物进行观测,可以更加准确地了解植物生长的条件和需求,为生产和研究提供参考。
二、对不同植物的生长状态进行监测。
叶绿素荧光成像技术还可以用于对不同植物的生长状态进行监测,从而判断不同的生长阶段、生长速度等。
这对于农业生产和植物育种方面都具有很大的意义,可以指导地面管理、育种选材等方面的工作。
三、对不同生物模型进行生长动态分析。
除了对植物进行观测之外,叶绿素荧光成像技术还可以用于对其他生物模型的生长状态进行监测。
例如,可以将该技术应用于对微生物、食品发酵过程等生物模型进行生长动态分析,从而更好地了解生物系统的生成规律和规律变化,为相关研究提供参考。
总之,叶绿素荧光成像技术的应用具有非常广泛、多样化的特点。
通过该技术可以实时地观测不同生境下植物的生长状态,从而更好地了解植物的光合作用效率、生长阶段等内容。
这对于农业生产、生物育种和环境监测都具有很大的实用价值。
因此,该技术的发展和应用前景十分广阔。
叶绿素荧光分析技术在植物生物学研究中的应用

叶绿素荧光分析技术在植物生物学研究中的应用叶绿素荧光分析技术(Chlorophyll Fluorescence Analysis, CFA)是一种广泛应用于植物生物学研究的非侵入性、快速、准确的技术手段。
通过测量光合作用中叶绿素荧光的特性,可以获得植物生理和生化过程的相关信息,包括光合效率、光抑制程度、损失机制等。
叶绿素荧光分析技术已经在植物生物学研究的各个领域得到了广泛的应用。
首先,叶绿素荧光分析技术可以用于研究植物的光合作用效率。
光合作用是植物生长和发育的关键过程,而叶绿素荧光是光合作用活性的直接反映。
通过测量叶绿素荧光参数,如最大光化学效率(Fv/Fm)、有效光量子产生率(Yield)、电子传递速率(ETR)等,可以评估植物的光合作用效率,并揭示光合作用过程中的限制因素和调节机制。
其次,叶绿素荧光分析技术可用于研究植物的抗逆性。
植物在生长过程中会面临各种逆境胁迫,如高温、干旱、盐碱等。
这些逆境胁迫会影响植物的生理和生化过程,进而降低植物生长和产量。
叶绿素荧光分析技术可以通过测量不同荧光参数的变化,如非光化学淬灭(NPQ)、非光化学猝灭(qN)等,评估植物对逆境胁迫的响应和适应能力,有助于筛选和培育抗逆性较高的植物品种。
第三,叶绿素荧光分析技术还可以用于研究植物的生长发育和叶片退化过程。
植物的生长和发育是一个复杂的过程,受光照、温度、水分等环境因素的影响。
叶绿素荧光分析技术可以通过测量荧光参数的变化,如初级光化学光谱(O-J-I-P曲线)、最大劲度光化学效率(Vj)、ABS/RC等,评估植物的生长发育状态和叶片衰老程度,为优化植物的生长环境和调控光合作用提供依据。
最后,叶绿素荧光分析技术还可以应用于环境污染监测和生态系统研究。
环境污染物对植物生长和光合作用活性的影响是导致生态系统退化的重要因素之一、叶绿素荧光分析技术可以通过测量不同荧光参数的变化,如荧光上升动力学曲线(Fs)和最大荧光高度(Fm’)、电子传递速率(ETR)等,评估植物对环境污染的响应程度和生态系统的健康状况。
叶绿素荧光成像技术在植物生物学中的应用

叶绿素荧光成像技术在植物生物学中的应用植物是地球生态系统中最重要的生物类群之一,其生长和代谢对人类的食品、医药和环境保护具有极其重要的意义。
而叶绿素作为植物中的重要色素,则是植物正常生长和光合作用的关键。
因此,如何准确地掌握植物中叶绿素的分布和代谢过程,对于我们深入了解植物生物学的本质有着重要的作用。
而叶绿素荧光成像技术,则为我们提供了一种非常实用的手段。
首先,为了更好地理解叶绿素荧光成像技术的应用,不得不先简要了解一下叶绿素荧光成像技术的基本原理和技术流程。
叶绿素荧光成像技术基于植物叶片中的叶绿素荧光信号,通过专业相机等设备将荧光信号转换为图像。
而在荧光成像技术中,荧光成像指探测叶绿素在光照下出现的荧光信号,在探测的过程中可以得到信号强度和时间。
这些荧光信号可以通过荧光成像仪等设备进行检测和记录,并转化为图像,从而形成可视化的数据信息。
其次,叶绿素荧光成像技术在植物生物学中的应用也是十分广泛的。
例如,通过叶绿素荧光成像技术可以非常精确地测量植物中的叶绿素含量和PSII (Photosystem II;光合作用中的光反应系统第二个过程)功能状态,进而研究叶绿素的分布和代谢过程。
同时,通过检测叶绿素荧光信号的变化可以分析植物生长和发育的过程,例如其可以监测光合作用中的电子转移过程,同时也可以用来研究植物在环境变化下的应激反应情况。
此外,叶绿素荧光成像技术还可用于植物农艺性状的研究,例如套袋处理对苗圃欧洲红松幼苗光合作用和光渗透性的影响。
其还可以用于研究植物叶片形态学和光合作用对植物生长与发育的调节作用等。
利用荧光成像技术,可以更精准地实现对植物生命活动的分析和监测。
综上所述,叶绿素荧光成像技术在植物生物学领域中有着十分广泛和深入的应用。
它不仅可以帮助我们更好地了解植物生长和代谢的本质,还可以为植物农艺性状的变异性研究提供有力的支持。
未来,相信随着技术的进一步发展,叶绿素荧光成像技术在植物生物学中的应用也将更加广泛和深入。
叶绿素荧光技术在植物生理研究中的应用

叶绿素荧光技术在植物生理研究中的应用植物作为生态学中不可或缺的一个重要组成部分,一直以来受到人们的广泛关注。
植物受到周围环境的影响,不仅在形态上发生变化,同时也会产生一定的生理反应。
为了更好地研究植物的生理反应以适应不同的生态环境,叶绿素荧光技术得到了广泛的应用。
下面就叶绿素荧光技术在植物生理研究中的应用进行探讨。
一、叶绿素荧光技术的研究思路叶绿素荧光技术是一种基于叶绿素发射荧光的非损伤性测定方法。
通过这一技术,我们可以对植物光合作用中产生的荧光进行检测并加以分析。
研究人员通常选择不同的叶片部位来进行叶绿素荧光测定,并针对不同的荧光参数进行分析。
这种技术可以帮助我们在生理水平上分析植物的生长,代谢和光合效率等参数,以了解植物在不同环境下的适应能力。
二、叶绿素荧光技术在植物胁迫反应研究中的应用由于环境的不断变化,植物面临着各种胁迫,如氧气、盐度、干旱和温度等。
这些胁迫因素会对植物的代谢和生长产生负面影响。
通过叶绿素荧光技术,可以对植物在不同的胁迫条件下的生理反应进行评估。
在研究中,通过对荧光糖基化,激发叶子的荧光信号,并测量荧光反应中的氮气气体的发射强度,可以分析植物对于各种胁迫的生理反应。
叶绿素荧光技术所提供的这些数据将有助于调节植物环境,提升植物的适应能力。
三、叶绿素荧光技术在植物营养研究中的应用植物的生长和健康状态的一个重要因素是正确的营养摄入。
基于叶绿素荧光技术的研究可以帮助我们了解植物营养状况,以及如何对不同的营养缺乏情况进行调整。
通过对荧光强度和荧光时程等参数的分析,可以准确地评估植物的营养状况。
叶绿素荧光技术可以用于优化植物的钾、磷、氮等营养成分的吸收效率,并帮助我们了解不同的营养需求和生理反应。
四、叶绿素荧光技术在植物基因通路研究中的应用叶绿素荧光技术也可以应用于研究植物的基因调控机制。
通过检测叶绿素荧光参数的变化,可以了解不同基因通路激活或抑制情况。
研究人员可以探索基因调控机制的影响,评估其可能的生理影响并优化植物生长状态。
叶绿素荧光分析技术在植物生物学研究中的应用

一切影响CO2同化的外接界因 素如低温、高温、水分亏缺、 矿质元素亏缺等都会减少对光 能的利用,、导致过剩光能增 加,进而加重光破坏。
光破坏防御机制
热耗散
激发能
光化学反应 形成同化力 荧光
CO2固定 光呼吸 Mehler 反应 N代谢
活性氧 高能电子
光破坏
热耗散过程虽然能耗散过剩光能,保护 植物不被强光破坏,但却不可避免地降低 了光化学效率,按传统的观点凡是导致光 化学效率降低的过程都称为光抑制。 由此可见,光破坏的防御机制也是光抑 制的一种形式,实际上在自然条件下,大多 数的光抑制都是由光破坏防御机制造成的。 那么如何区分光破坏与热耗散?
●
荧光淬灭参数:
qP =(Fm’ -Fs)/(Fm’-Fo’) : photochemical quenching 光化学淬灭系数,它反 映了PSⅡ反应中心的开放程度。 1- qP 用来表示PSⅡ反应中心的关闭程度。 NPQ = (Fm-F’m)/F’m =Fm/Fm’-1 :非光化学淬灭 non-photochemical quenching NPQ反映了热耗散的程度
叶绿素荧光分析技术在植物 生物学研究中的应用 高辉远
山东农业大学生命科学学院
农业生产中的一且措施都是围绕改 善光合性能进行的。 所以光合作用的研究几乎涉及到植 物生物学的各个领域。 而叶绿素荧光的检测和分析在光合 作用研究中所起的作用越来越突出。
叶绿素荧光现象
Kautsky 等(1931)发现,将暗适应的绿色植物 突然暴露在可见光下后,植物绿色组织发出一种暗 红色,强度不断变化的荧光, 称为Kautsky效应。
Handy PEA
PEA
常用荧光参数及其意义
Fo: 初始荧光,是PSⅡ反应中心处于完全开放状态时
叶绿素荧光成像方法在植物生理生态中的应用与优势

叶绿素荧光成像方法在植物生理生态中的应用与优势植物是地球上最主要的生物之一,对于维持生态平衡和气候调节起着至关重要的作用。
了解植物的生理生态过程对于提高农作物产量、改善环境状况以及保护生态系统至关重要。
随着科技的不断发展,叶绿素荧光成像方法成为了研究植物生理生态的有力工具。
本文将探讨叶绿素荧光成像方法在植物生理生态中的应用与优势。
首先,叶绿素荧光成像方法能够提供植物光合效率的直观评估。
光合作用是植物生长发育的关键过程,同时也是植物对环境变化响应的重要途径。
通过测量叶绿素荧光,我们能够了解到植物在不同环境条件下的光合效率。
光合效率的高低与植物的生长和发育直接相关,因此对于农作物的生产以及植物适应环境变化的研究具有重要意义。
其次,叶绿素荧光成像方法能够实时监测植物的应激响应。
植物在遭受外界环境压力时,会产生一系列适应性反应以保护自身。
叶绿素荧光成像方法能够帮助我们监测植物的应激响应,例如盐碱胁迫、干旱、寒冷等。
通过叶绿素荧光成像,我们可以及时察觉植物对环境变化的响应,并进一步研究其调节机制,为植物应激耐性的改良提供理论依据。
叶绿素荧光成像方法还可以用于评估植物的营养状况和化学元素含量。
植物的健康状况直接影响到其生长和产量。
通过测量叶绿素荧光,我们能够了解到植物的营养状况,例如叶绿素含量、叶片结构以及氮、磷、钾等元素的吸收和利用。
这种非破坏性、快速、直观的评估方法可以帮助农民和研究人员更好地管理植物的生长环境,提高农作物产量和质量。
另外,叶绿素荧光成像方法还可以用于研究植物的光合适应性。
植物生长在不同的光环境下会表现出不同的光合适应性。
通过测量叶绿素荧光的参数,我们可以了解到植物在不同光强和光质条件下的光合适应策略。
这对于我们了解植物的光合机制以及培育适应不同光环境植物具有重要意义。
此外,叶绿素荧光成像方法还可以用于植物生理学的教学和科普。
植物的生理生态过程对于普通民众而言并不易理解,而叶绿素荧光成像方法可以将抽象的概念可视化,使得生理生态知识更易于被理解和接受。
叶绿素荧光诊断技术在农业中的应用研究

叶绿素荧光诊断技术在农业中的应用研究植物叶片上的叶绿素是光合作用的重要组成部分,也是反映植物健康状态的关键指标。
叶绿素荧光是植物叶片对光的吸收和反射的表现,通过测量叶绿素荧光信号可以了解植物光合作用的效率和受到各种环境因素的影响程度。
因此,利用叶绿素荧光诊断技术在农业中预测、监测和评估农作物的生长状况,已成为研究热点,为实现精准农业提供了科学依据。
叶绿素荧光的物理原理光合作用是植物生长和发展的基础,而叶绿素荧光则是光合作用的反映。
在植物光合作用过程中,光能被叶绿素吸收并转化为电子能,经过一系列光合作用反应后,最终转化为光合产物。
在这个过程中,如果光合作用的效率下降,一部分光合色素会受到过高的光能量、缺氧、离子毒素等环境因素的损害,这些叶绿素没能转化成光合产物,就会发出荧光信号。
所以,叶绿素荧光信号能够显示出这些叶绿素的光合活性是否受到环境的影响,评价植物的生长状态和健康程度。
叶绿素荧光的测定方法目前,叶绿素荧光的测定方法主要有两种:单点测定法和成像测定法。
单点测定法即为非成像测定法,该方法适用于小样本的测量。
其工作原理与普通光度计相似,将不同波长的激发光源照射到植物叶片上,通过特定建模来计算出叶绿素的荧光值。
成像测定法为非接触式测定法,能够在较大范围内快速准确测定植物荧光空间分布情况,同时具备高时空分辨率和高灵敏度的优势。
成像测定法是一种快速的、可靠的技术,在农业实践中广泛应用于叶面肥料使用量、农药施用量和田间作物生长状态的非破坏性宽区域实时监测和反馈控制。
叶绿素荧光在农业中的应用叶绿素荧光诊断技术在农业生产中的应用主要表现在以下几个方面:1.作物诊断通过叶绿素荧光诊断技术,可以快速、准确地识别农作物中的营养缺乏、病虫害和干旱等环境压力情况,及时调整农作物的管理措施,从而提高农作物的质量和产量。
2.作物应答函数在植物生理学研究中,叶绿素荧光已成为建立作物应答函数的最佳测量参数之一。
通过建立植物叶片的应答函数,可以预测作物对气候变化、土壤和环境质量的应答,为农业生产提供科学支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=Fm’-Fs
Fs
Fs为照光条件下产生 的稳态叶绿素荧光, 因为照光下,部分反 应中心关闭,所以荧 光发射较高。
t
Fo
M -脉冲调制光 S- 饱和脉冲光
叶绿素荧光诱导动力学曲线
Fm’: 光适应下最大荧光(在作用光下用饱和脉冲光测定)。 Fo’: 光适应下最小荧光(在作用光下用脉冲调整光测定)。 Fs : 为照光条件下产生的稳态叶绿素荧光。
Handy PEA
PEA
常用荧光参数及其意义
Fo: 初始荧光,是PSⅡ反应中心处于完全开放状态时
(经过 充分暗适应以后)的初始荧光产量。
当反应中心失活或者遭到破坏时,Fo上 升。因此,可以用Fo变化来反映PSII反应 中心的失活状态
Fm :最大荧光,是PSⅡ反应中心完全关闭时
(强光照射后)的荧光产量。
用连线激发式荧光仪测定的荧光诱导曲线
Relative fluorescence intensity 1 .2 1 .0 .8 .6 .4 .2 0 .0 100 101 102
b' c'
O
K
J
c a ( a ')
I
P
b
103
104
105
106
107
T im e ( μ s )
连续激发式荧光仪有:Handy PEA, PEA,Pocket PEA, PEA Senior, M-PEA 等
.3
(C)
.2 0 50 100 150 200 250 NaCl (mmol/L)
.9 (A) .8 .7 qP .6 (C)
.7 .6 .5 ΦP39;/Fm' .6 .5 .4 .3 .2 27 30 33 36 39 42 45 48 27 30 33 36 39 42 45 48 Tem perature ( o C) (B) (D)
注意: quench 是淬灭,不是猝灭
反映PSII光化学效率的荧光参数:
Fv/Fm:暗适应下PSⅡ反应中心完全开放时的最大 光化学效率,反映PSⅡ反应中心最大光能 转换效率。
Fv’/Fm’:光适应下PSⅡ最大光化学效率,它反映有 热耗散存在时PSⅡ反应中心完全开放时的 光化学效率,也称为最大天线转换效率。
叶绿素荧光分析技术在植物 生物学研究中的应用 高辉远
山东农业大学生命科学学院
农业生产中的一且措施都是围绕改 善光合性能进行的。 所以光合作用的研究几乎涉及到植 物生物学的各个领域。 而叶绿素荧光的检测和分析在光合 作用研究中所起的作用越来越突出。
叶绿素荧光现象
Kautsky 等(1931)发现,将暗适应的绿色植物 突然暴露在可见光下后,植物绿色组织发出一种暗 红色,强度不断变化的荧光, 称为Kautsky效应。
作用(自然光) 作用(自然光)
检 测 测 器 器 及 及 放 放 大 大 (5) 器 器 ; ; 检
脉冲光
脉冲荧光 脉冲荧光 滤光片 7) 滤光片
8 植物叶片 植物叶片 脉冲调整式荧光仪能排除自然光中的红光信号和自然光诱导的荧 光信号,只监测脉冲光调制光诱导的荧光信号的变化。这样便可以直 接在特定的光照条件下测定叶绿素荧光。
●
荧光淬灭参数:
qP =(Fm’ -Fs)/(Fm’-Fo’) : photochemical quenching 光化学淬灭系数,它反 映了PSⅡ反应中心的开放程度。 1- qP 用来表示PSⅡ反应中心的关闭程度。 NPQ = (Fm-F’m)/F’m =Fm/Fm’-1 :非光化学淬灭 non-photochemical quenching NPQ反映了热耗散的程度
CK - Mn
PSII
1.0 .8 .6 .4 .2 0.0 0 2 4 6 8 10 12 Time (h)
Fv/Fm
说明什么问题?
●,21 % O2 ○,2 % O2 光呼吸 Mehler反应
强光下氧浓度对植物叶片PSII光抑制及其恢复的影响
0.8 0.6
ΦPSII
CK - Mn
200 150 ETR 100 50 0
暗 反 应
光活化过程
光合电子传递链
PSII氧化还原 快速叶绿素荧光
PSI氧化还原
卡尔文循环
将时间标尺放大后的叶绿素荧光动力学曲线
叶绿素荧光诱导动力学曲线的意义
从O点到P点的荧光上升过程称为快速叶绿素 荧光诱导动力学曲线,主要反映了PSⅡ的原初光 化学反应及光合机构电子传递状态等过程的变化。 从P点到T点的下降阶段主要反映了PSI的还 原和光合碳代谢的变化,随着光合碳代谢速率的 上升,荧光强度逐渐下降。
如何区分光破坏与热耗散 ?
叶绿素荧光是研究光能分配的探针 热耗散
激发能
光化学反应 形成同化力
荧光
CO2固定 光呼吸 Mehler 反应 N代谢
NPQ 增加、Fm下降是热耗散增加的标志; Fo升高是作用中心破坏的标志 (解释)
叶绿素荧光分析应用实例
不同温度 下、强光 对玉米叶 片最大光 化学效率 的影响
.2 .1 4.0 3.5 3.0 2.5 2.0 1.5 1.0 .5 0.0 NPQ
○,对照;
●,200 mmol/L NaCl
不同温度处理对照叶片和盐胁迫叶片光化学猝灭系数(qP)、 PSII光能捕获效率(Fv’/Fm’)、PSII量子效率(ФPSII,)、非光 化学猝灭(NPQ,D)的影响。示NaCl处理增加叶片的抗高温能力
ФPSⅡ=(Fm’-Fs)/Fm’ : PSⅡ实际光化学效率,它反
映在照光下PSⅡ反应中心部分关闭的情况下的 实际光化学效率。
ETR = 0.5 ×光能吸收系数× ФPSⅡ ×PFD PSII电子传递速率
荧光参数是研究植物光化学效率、 光抑制与光破坏防御的有效的工具
该技术被广泛的使用在植物生态、植物抗 逆性、筛选高光效或抗逆品种、转基因植物 的功能分析、光抑制和光破坏的防御机制等 方面的研究。
荧光随时间变化的曲线称为 叶绿素荧光诱导动力学曲线
5000 Fluorescence intensity 4000 3000 2000 T 1000 0 0 100 200 300 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 Time (s) Time (s) O O T P A P B 4000 3000 2000 1000 0 103 Fluorescence intensity 5000
光抑制: photoihibition 光氧化: photooxidation 光失活: photoinactivation 光破坏: photodamage 光破坏: solarigation 光漂白: photobleaching
光抑制的基本特征
AQY及Fv/Fm下降. 说明叶片吸收的光能不能有效地转化为化学能。 光抑制的机理: 1. 光破坏;2 光破坏防御机制 PSII是光抑制损伤的主要场所,破坏也可能发生在反应中 心也可能发生在与次级电子受体结合的蛋白上。发生光破坏 后的结果:电子传递受阻,光合效率下降。 产生光破坏的原因: 过剩光能产生的高能电子无法利用, 产生如 chl*, 单线态氧、超氧阴离子等氧化性很强的分子破 坏光合机构。
光破坏的概念 • 当过剩的光能不能及时有效地排散 时,对光合机构造成不可逆的伤害, 如对光合色素造成光漂白、光合作用 中心D1蛋白的降解及光合机构的光氧 化等。
光破坏现象
3P
680 + O2
P680 + 1O2
氧化性极强的1O2首先攻击反应中心色素P680,使PSⅡ反应中 心失去电荷分离能力,最终引起D1蛋白降解.PSⅡ受体侧电子传 递受阻时易产生此种破坏。
.9 .8 .7 qP .6 .5 .8 .7 Fv'/Fm' .6 .5 .4 .5 ΦPSII .4
NaCl胁迫对杂交酸模叶片光化 学淬灭系数(qP)、PSII反应 中心光能捕获效率(Fv’/Fm’)、 和PSII量子效率(ФPSII)的影响
(A)
(B)
A:光化学猝灭系数(qP) B:光能捕获效率(Fv’/Fm’) C:PSII量子效率(ФPSII)
一切影响CO2同化的外接界因 素如低温、高温、水分亏缺、 矿质元素亏缺等都会减少对光 能的利用,、导致过剩光能增 加,进而加重光破坏。
光破坏防御机制
热耗散
激发能
光化学反应 形成同化力 荧光
CO2固定 光呼吸 Mehler 反应 N代谢
活性氧 高能电子
光破坏
热耗散过程虽然能耗散过剩光能,保护 植物不被强光破坏,但却不可避免地降低 了光化学效率,按传统的观点凡是导致光 化学效率降低的过程都称为光抑制。 由此可见,光破坏的防御机制也是光抑 制的一种形式,实际上在自然条件下,大多 数的光抑制都是由光破坏防御机制造成的。 那么如何区分光破坏与热耗散?
Fd- + O2
Fd +
O2·-
O2。-启动类囊体膜的脂质过氧化,破坏光合色素、类囊体系 统以及膜结合酶使电子传递效率下降,严重时使电子传递系统 失活。CO2供应不足时易产生这种破坏。
P680+ + β-Car
P680 + β-Car+
PSⅡ供体侧 H2O的光解受阻时易产生此种破坏。P680+还能氧 化D1蛋白肽链中酪氨酸残基和叶绿素等色素。
透射光下
反射光下
685
在生理温度下,叶绿素荧光的波长 峰值大约为685nm的红光,并且一致延 伸到800nm的远红光处
当叶绿素分子吸收光能后,叶绿素分子中的电子被激发,激发态电子的 寿命非常短,当带电子从激发态回到到基态的去激过程中,一小部分激发 能(3-9%)以红色的荧光形式耗散。 活体叶片为什么看不到荧光现象?光反应、热耗散和荧光竞争激发能。