五年级数学上册(人教版)配套教学学案:6.11教材分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全新修订版教学设计
(学案)
五年级数学上册
老师的必备资料
家长的帮教助手
学生的课堂再现
人教版
第六单元多边形的面积
一、教学内容
1.平行四边形的面积。
2.三角形的面积。
3.梯形的面积。
4.组合图形的面积。
5.估计不规则图形的面积。
和原实验教材相比,变化主要是增加方格纸上不规则图形的面积估算。
二、教学目标
1.让学生通过动手操作、实验观察等方法,探索并掌握平行四边形、三角形和梯形的面积公式。
2.让学生会用面积公式计算平行四边形、三角形和梯形的面积,并能解决生活中一些简单的实
际问题。
3.让学生认识简单的组合图形,会把组合图形分解成已学过的平面图形并计算出它的面积。
4. 让学生会用方格纸估计不规则图形的面积。
三、编排特点
1.加强知识之间的联系,促进知识的迁移和学习能力的提高。
教材以图形内在联系为线索,以未知向已知转化为基本方法开展学习。安排顺序:
2.体现动手操作、合作学习的学习方式,让学生经历自主探索的过程。
各类图形面积公式的推导均采用让学生动手实验,先将图形转化为已经学过的图形,再通过合作
学习探索转化后的图形与原来图形的联系,发现新图形的面积计算公式这样一个过程。同时按照学习
的先后顺序,探索的要求逐步提高。
教材在编排平行四边形的面积公式推导过程中,增加了一个小组讨论活动:观察原来的平行四边形和转化后的长方形,你能发现它们之间有哪些等量关系?这是推导面积公式的关键,也是学生学习的难点。教材这里适时给出了相应的引导,帮助学生思考。在三角形和梯形的面积公式推导过程中,
分别增加了转化过程的示意图,帮助学生更好地探究和推导面积公式。
3.在解决实际问题中,渗透估测意识、策略。
教材新增来一个解决问题的例题,教学估算不规则图形的面积。
在生活实际中,经常会接触到不规则图形,它们的面积无法直接用面积公式计算。那么如何估测它们的面积呢?教材安排了借助方格纸估计不规则图形(树叶)面积的内容,培养学生估测的意识和
解决实际问题的能力。
四、具体编排
(一)主题图
设计了一幅街区图。由小精灵提出观察的要求:“你发现了哪些图形?你会计算它们的面积吗?”
引入面积计算的教学。
(二)平行四边形的面积
教材分以下三个步骤安排。
(1)从主题图中的两个花坛(一个长方形,一个平行四边形)引出如何计算平行四边形面积的问
题。
(2)先用数方格的方法试一试。在方格纸上呈现一个平行四边形和一个长方形让学生数,说明
不满1格的按半格计算。完成填表后,发现等底等高的长方形和平行四边形的面积相等,为转化作准
备。
(3)探究平行四边形面积计算公式。突出转化思想,用割补的方法把一个平行四边形转化为一
个长方形,教材用直观图展示了这一过程,通过观察两个图形之间的联系,引导学生推导出平行四边
形面积的计算公式。最后结合平行四边形的图示,用字母表示面积计算公式。
例1是平行四边形面积公式的应用,教学中注意培养良好的书写习惯。
(三)三角形的面积
1. 继续用转化的方法探究。有了推导平行四边形面积公式的经验,这里放手让学生自己去探究。继续渗透转化思想,帮助学生理解把未知转化为已知,就能解决问题的思路。也就是把三角形转化为
已经知道面积计算公式的图形。转化的方法可以割补,也可以拼摆。教材通过拼摆两个同样的三角形
转化为平行四边形的方法,这种方法推导过程简单,学生比较容易理解和掌握,便于推导公式。
2. 推导过程学生独立完成。转化以后,放手让学生自己观察,写出三角形的面积计算公式,特别要强调除以2的理解。最后用字母表示出面积计算公式。
3.例2同样是三角形面积公式的应用。
(四)梯形的面积
1.转化的方式有多种:一种是分割的方法,把梯形剪成两个三角形,或将梯形剪成了一个平行
四边形和一个三角形;一种是拼摆的方法,用两个一样的梯形拼成一个平行四边形。这些转化方法都
是可以的,但其中用两个一样的梯形拼成一个平行四边形的方法,比较容易推导和理解,另外两种因
为涉及代数式的运算,学生的推导有困难。因此教学时可以以拼摆方法为研究重点,让学生叙述推导
的过程,得出梯形面积计算公式。其他方法可视学生接受能力,进行介绍。
2.例3是梯形面积公式的应用。
3.“你知道吗?”介绍古代割补的转化方法,教学中可以适当拓展,丰富学生转化的方法。
(五)组合图形的面积
教材提供了几个生活中的具体物品,使学生认识组合图形是由几个简单图形组合而成的。然后要
求学生找一找生活中的组合图形。例4教学组合图形面积的计算,由于一个组合图形可以有不同的分
解方法,也就有不同的面积计算方法,教材展示了两种方法。当然,学生可能还会有其他不同的方法,通过交流要让学生体会怎样分解能使计算更简便。
(六)估计不规则图形的面积
例5编排了不规则图形面积的估计。编排意图主要是:
1.培养估算意识。
教材安排了借助方格纸估计不规则图形(树叶)的面积,这是估算思想在图形与几何中的应用。
2.培养估算策略。
不规则图形不像规则图形,可以找到面积计算公式,我们只能估算出它的面积。而估算策略最重要的是要根据要估计的事物找到一个适合的测量标准,然后利用这个测量标准去估计。比如,前面我
们学习的长度的估计,估计学校到家的路程,可以借助步长、单位时间走的距离或者自己熟悉的一个
长度等,来进行估计。这里不规则图形的面积估算,同样也要找到一个度量的标准,根据树叶的大小,我们选择了每个小方格面积为1cm2的方格纸,当然学生也可以利用其他熟悉的测量标准来估计,比
如用一个已知面积的图形(物品)来估计。
教学中,可以直接出示树叶,让学生思考怎样来估计它的面积,通过交流体会选择测量标准的重要性。
3.体会估算方法多样。