阴离子乳化剂的使用方法
乳化沥青乳液电荷类型
乳化沥青乳液电荷类型乳化沥青乳液电荷类型的探讨一、引言乳化沥青乳液作为一种在道路施工中常用的材料,其性能与电荷类型有关。
电荷类型是指乳化沥青乳液中带电粒子的电荷性质,可以影响乳液的稳定性和施工效果。
本文将从深度和广度两个方面,探讨乳化沥青乳液的电荷类型以及对其性能的影响。
二、电荷类型的分类乳化沥青乳液中的电荷类型主要分为阳离子型和阴离子型两种。
阳离子型乳液中带正电荷的微粒吸附在乳化剂的阴离子表面上,而阴离子型乳液中带负电荷的微粒则吸附在乳化剂的阳离子表面上。
三、电荷类型的影响因素1. 乳化剂的选择乳化剂的选择对乳化沥青乳液的电荷类型具有重要影响。
根据不同乳化剂的性质和结构,可以选择合适的乳化剂来控制乳液中电荷类型的形成。
2. 水相性质水相中的酸碱性和离子浓度也会影响乳化沥青乳液的电荷类型。
pH值的变化可以改变水相中的离子浓度,从而影响电荷的分布。
3. 温度温度是乳化沥青乳液电荷类型的另一个重要影响因素。
随着温度的升高,电荷的形成和分布情况会发生变化。
四、电荷类型对乳化沥青乳液的性能影响1. 稳定性电荷类型对乳化沥青乳液的稳定性有直接影响。
阳离子型乳液中的正电荷可以使微粒之间产生排斥作用,增加乳液的稳定性;而阴离子型乳液中的负电荷则会使微粒之间带有吸引作用,降低乳液的稳定性。
2. 施工性能电荷类型对乳化沥青乳液的施工性能也有影响。
阳离子型乳液具有较高的黏度,适合用于较厚道路面层的施工;而阴离子型乳液则具有较低的黏度,适合用于较薄道路面层的施工。
五、个人观点和理解在我看来,乳化沥青乳液电荷类型的选择应根据具体道路施工需求来进行合理调整。
在一些特殊场合下,如低温施工或高温施工,可以选择合适的电荷类型来提高乳液的适应性和稳定性。
我认为乳化剂的选择在决定电荷类型上起着关键作用,应根据具体需求选择合适的乳化剂。
六、总结本文从深度和广度两个方面探讨了乳化沥青乳液电荷类型的相关内容。
电荷类型是乳化沥青乳液稳定性和施工性能的重要影响因素,通过合理选择乳化剂和控制水相性质,可以调整电荷类型以提高乳液的适应性。
道路沥青用乳化剂
道路沥青用乳化剂乳化剂是乳化沥青生产的关键原材料。
乳化剂一般占乳液总量的0.3﹪~2.0﹪.虽然乳化剂量并不多,但它所起的作用却是十分重要的。
众所周知,沥青与水是互不相溶的两种物质,是不能形成相对稳定的平衡体系的。
如果没有乳化剂就不能生产乳化沥青产品来。
根据乳化剂溶解于水中乳化剂分子亲水基是否带有电荷,把乳化剂分为离子型和非离子型。
离子型乳化剂由于在水中电离后亲水基所带电荷的不同,又分为阳离子型和阴离子型。
此外还有两性离子型。
这里仅对常用乳化剂做概括介绍。
阳离子乳化剂阳离子乳化剂根据破乳速度的快慢分为快裂、中裂、慢裂三种。
慢裂乳化剂根据混合料凝结时间的长短分为慢凝和快凝两种。
用中裂和快裂乳化剂生产的乳化沥青主要用于喷洒,铺筑表面处治路面和贯入式路面,其中以中裂型使用较多,快裂型使用很少,快裂型特别适合较低温度条件下喷洒使用。
用慢裂乳化剂生产的乳化沥青主要用于稀浆封层,其中慢裂快凝型适合用于高等级公路的养护,慢裂慢凝型适合用于普通道路的养护。
1.快裂乳化剂N—十六到十八烷基丙稀二胺是常用的快裂乳化剂,外观为白色固体。
也称为N—十六到十八烷基丙撑二胺,或N—十六到十八烷基丙二胺。
2、中裂乳化剂中裂乳化剂在国内有很多家生产,外观为黄色半固态,其中使用最多最普遍的是十八烷基双(氮)季铵盐,简称18331,标准名称为;N—(3—十八胺基—2—羟基)—丙基—三甲基氯化铵。
这种乳化剂合成生产工艺技术成熟,质量稳定,乳化能力强,乳液稳定性好。
中裂乳化剂还有烷基季铵盐类好烷基双(氮)季铵盐类。
烷基季铵盐类主要有;十六烷基三甲基溴化胺(1631),十八烷基三级基氯化胺(1831 OT,),十六到十九烷基三甲基氯化铵(NOT 1831).3.慢裂乳化剂我国最先使用的慢裂乳化剂是木素胺类,也被称之为木质素胺或木质胺。
这类乳化剂的最大特点是价格低。
用木素胺生产的乳化沥青用于稀浆封层是能达到拌合摊铺所需时间的要求。
但他的缺点是凝结成型时间长,一般要一到几小时以上时间,属于慢裂慢凝型。
(整理)铜拉丝油的制造检验及使用维护
铜拉丝润滑剂的制造检验及使用维护笔者在铜拉丝润滑剂生产企业工作多年,先后从事生产技术和售后服务工作,今将有关铜润滑剂的他人经验和自己的体会小结一下,供润滑剂生产企业以及线缆和漆包线行业的人士参考,纰漏之处,欢迎指正。
为叙述方便,下文中将铜拉丝润滑剂简称为拉丝油。
一、乳化剂按照乳化剂在水中的电离情况,乳化剂分为四类:阴离子乳化剂、非离子乳化、阳离子乳化剂、两性乳化剂。
每种离子表面活性剂都有其特性,所以只要知道表面活性剂的类型就可以推测其应用范围。
从实际应用的情况看,作为清洗、乳化使用的多数是阴离子和非离子型的乳化剂,目前在拉丝润滑剂中使用的乳化清洗剂也是如此。
1.阴离子乳化剂阴离子表面活性剂按亲水基可分为四类,这四类又按照憎水基不同可分为数类。
作为乳化剂的阴离子羧酸皂有油酸、硬脂酸、松香酸、蓖麻油皂等,它们的抗硬水能力都较差,水溶液呈碱性,有一定的PH缓冲性能,是早期的拉丝油的主要乳化剂和辅助润滑剂。
肥皂是最早也是最常用的阴离子表面活性剂,一般由动植物油与氢氧化钠皂化而得,也可以由油酸硬脂酸中和制得。
另一类阴离子乳化剂是硫酸酯盐类,此类乳化剂一般比羧酸皂易溶于水,并且水溶液呈中性,抗硬水能力也较强。
有脂肪醇硫酸盐类和硫酸化植物油类等。
蓖麻油的硫酸化产物的钠盐被称为太古油、土耳其红油,是早期乳化型拉丝油的主要乳化剂和润滑剂成分。
阴离子乳化剂的另一类是磺酸盐类,其中最知名的是十二烷基苯磺酸钠,是合成洗衣粉的主要成分。
重烷基苯磺酸盐和石油磺酸盐是很好的乳化剂和防锈剂,是乳化型与半合成型拉丝油的辅助乳化清洗剂。
磷酸酯盐抗静电性能较好主要用在化纤油剂中。
2.非离子乳化剂此类乳化剂主要有聚乙二醇型和多元醇型两类,近年随着石化工业的发展,所用主要原料环氧乙烷成本不断降低,在乳化清洗中已普遍使用。
该类活性剂的典型代表有脂肪醇聚氧乙烯醚(俗称平平加)、壬基酚聚氧乙烯醚(俗称OP、NP)、环氧乙烷与环氧丙烷的聚合物(聚醚)、失水山梨醇脂肪酸酯(司本)、脂肪酸二乙醇酰胺(尼那尔)等。
乳化剂类型_阴离子_阳离子_非离子_解释说明以及概述
乳化剂类型阴离子阳离子非离子解释说明以及概述1. 引言1.1 概述乳化剂是一种常用的化学物质,广泛应用于许多行业领域。
它能够在两种互不溶的液体中形成稳定的混合溶液,被广泛用于制备乳液、胶体以及调味品等产品。
乳化剂可以分为三类:阴离子乳化剂、阳离子乳化剂和非离子乳化剂。
本文将详细介绍这三种类型的乳化剂,并比较它们在不同应用领域中的优缺点。
1.2 文章结构本文共分为五个主要部分。
引言部分已经对文章进行了简要介绍,并概述了各个章节的内容安排。
接下来,我们将依次介绍阴离子乳化剂、阳离子乳化剂和非离子乳化剂,在每个章节中包括定义和特点、应用领域以及各自的优缺点。
最后,我们将总结各种乳化剂的特点与应用领域,并展望未来研究方向。
1.3 目的本文旨在全面地介绍和解释阴离子、阳离子和非离子乳化剂的类型,并比较它们在不同应用领域中的优缺点。
通过本文的阅读,读者将对这三种乳化剂有更深入的了解,从而能够在实际应用中选择合适的乳化剂,并为未来研究提供一定的参考。
2. 阴离子乳化剂:2.1 定义和特点:阴离子乳化剂是一种具有负电荷的表面活性剂,也被称为阴离子表面活性剂。
其分子结构中含有一个或多个亲水基团以及一个亲油基团,通常是通过在亲油基团上引入带有负电荷的官能团实现。
阴离子乳化剂在水中形成胶束,其中亲水基团向外与水分子形成氢键,并使胶束呈负电荷。
2.2 应用领域:阴离子乳化剂广泛应用于许多工业领域。
在日常生活中,在洗涤产品中使用的肥皂和洗发水常使用阴离子乳化剂作为表面活性剂。
此外,咸菜、果酱等食品加工中也会采用阴离子乳化剂来改善稠度和口感。
在制药工业方面,阴离子乳化剂可用于药物输送系统的制备以及改善溶解性。
其他应用领域还包括纺织、油漆、农业等。
2.3 优缺点:阴离子乳化剂具有以下优点:- 能够稳定乳液,使油水相分散均匀。
- 具有良好的减压降黏、增稠和润滑性能。
- 在酸性条件下仍然具有较好的稳定性。
然而,阴离子乳化剂也存在一些缺点:- 不耐酸,在酸性环境中易失去乳化活性。
乳化剂应用方案
乳化剂应用方案简介乳化剂是一种化学品,能使两种不相容的物质在加入乳化剂后形成均匀混合物。
广泛应用于食品、化妆品、制药和农业等领域中。
在工业领域中,乳化剂是一种常见的辅助剂,它们可以增加反应介质的有效接触面积,减小反应物粒子的粒径,促进反应的进行,从而提高产品的性能。
乳化剂种类根据乳化剂的不同特性,可以将其分为多种类型。
常见的乳化剂种类有以下几种:•阴离子型乳化剂:常见的代表性乳化剂种类为磺酸盐、烷基苯磺酸盐和脂肪酸盐等。
它们通常具有优良的表面活性和乳化性能,适用于制备稳定的水包油乳液和油包水乳液。
•阳离子型乳化剂:常见的代表性乳化剂种类为十六酸铵、十六烷基三甲基氯化铵和十六烷基三甲基溴化铵等。
它们通常具有强烈的表面活性和乳化性能,适用于制备稳定的油包水乳液。
•不离子型乳化剂:常见的代表性乳化剂种类为聚氧乙烯硬脂醇醚、乙氧基化脂肪醇和乙氧基化酚类等。
它们通常具有优良的表面活性和乳化性能,适用于制备稳定的水包油乳液和油包水乳液。
乳化剂应用方案在工业生产中,乳化剂的种类和应用量都需要根据实际情况进行选取。
以下是几个乳化剂应用方案的例子:1. 制备水包油乳液•乳化剂选择:阴离子型乳化剂。
•应用量:一般为油相质量的2%-5%。
•操作步骤:–将所需的油相和水相分别测量好。
–将阴离子型乳化剂加入水相中,并充分搅拌,直至溶解。
–将油相缓慢加入水相中,不断搅拌。
–继续搅拌至制备出稳定的水包油乳液。
2. 制备油包水乳液•乳化剂选择:阴离子型乳化剂。
•应用量:一般为水相质量的2%-5%。
•操作步骤:–将所需的油相和水相分别测量好。
–将阴离子型乳化剂加入油相中,并充分搅拌,直至溶解。
–将水相缓慢加入油相中,不断搅拌。
–继续搅拌至制备出稳定的油包水乳液。
3. 增加反应物的接触面积•乳化剂选择:不离子型乳化剂。
•应用量:根据实际反应物粒径和反应条件进行调整。
•操作步骤:–将所需的物质和不离子型乳化剂按照一定比例混合。
–将混合物慢慢加入反应介质中,并充分搅拌。
pam分子量阴离子_阳离子_解释说明以及概述
pam分子量阴离子阳离子解释说明以及概述1. 引言1.1 概述在当今社会,高分子聚合物材料扮演着重要的角色,广泛应用于各个领域。
其中,聚丙烯酰胺(Polyacrylamide,简称PAM)是一种非常重要的高分子聚合物之一。
PAM具有很强的水溶性和多样化的结构特点,在环境治理、医药卫生、水处理、土壤改良等方面发挥着重要作用。
本文主要关注PAM分子量及其对应的阴离子和阳离子衍生物。
PAM分子量是衡量PAM性质和应用范围的一个关键参数,而阴离子PAM和阳离子PAM则是根据其对应化学结构来分类的两大主要类型。
1.2 文章结构本文共包含五个部分。
除了引言部分外,还包括:- 第二部分将详细介绍PAM分子量的定义和解释,并探讨其形成机制以及应用领域;- 第三部分将详细描述阴离子PAM的结构特点、反应性质以及实际应用案例;- 第四部分则将专注于阳离子PAM,包括其结构特点、反应性质以及实际应用案例;- 最后一部分将提供总结和归纳,并探讨未来的研究方向和PAM对社会的意义和价值。
1.3 目的本文旨在对PAM分子量、阴离子PAM和阳离子PAM进行全面深入的说明和概述,以帮助读者更好地理解这些相关概念。
同时,通过介绍实际应用案例,展示它们在不同领域中的重要作用。
最后,本文还将探讨未来的研究方向,为相关学者提供参考和借鉴。
2. PAM分子量2.1 定义和解释PAM,全称为聚丙烯酰胺(Polyacrylamide),是一种重要的高分子化合物。
它由丙烯酰胺单体聚合而成,具有线性的多聚物结构。
PAM的分子量是指其聚合度或分子中丙烯酰胺单体数量的总和。
通常用重量均值或数均值来表示。
2.2 形成机制PAM的形成是通过将丙烯酰胺单体与引发剂在适当条件下进行自由基聚合反应来实现的。
在这个过程中,引发剂会引发单体分子间的共轭加成反应,使得大量单体相互连接起来形成线性结构。
2.3 应用领域PAM由于其特殊的化学性质和结构特点,在各个领域都有广泛应用。
金属加工液乳化剂配方说明
Nonionic 非离子型
MARLOX® RT 42 W/O Emulsifier油包水型 HLB~5
MARLOX® RT 64
O/W Emulsifier水包油型
HLB~8.5
MARLOX® RT 42 – W/O Emulsifier with Defoaming Property具有消泡性能的W/O乳化剂
80
60
40
20
0
mixing ratio Oil+Emulifier (4:1) in water 油+乳化剂 (4:1) 占水体系比重 [%] [%]
Oxidation and temperature stability
氧化性及高温稳定性
advantage for slow oxidation at ambient temperatures
Emulsion Stability and Foaming
乳液稳定性和泡沫性
shaken, immediatly 振摇后立即观察
MARLOX® RT 64 Oleyl FA + 5EO
MARLOX® RT 64 Oleyl FA + 5EO
shaken, 3 min 3分钟后观察
emulsion: oil / emulsifier 4:1 20%ig in VE water
Water 水 Oil (mineral oil, ester oil, natural fats and oils)
油(矿物油、合成酯油、天然油脂)
Emulsifier (anionic or nonionic surfactant)
乳化剂(阴离子或非离子型表面活性剂)
Corrosion Preventing Agent (ammonium compounds (i.a. based on fatty acids), sulfonate, benzotriazole, phosphates)
药剂学第2章 第7节乳剂
◆ 增加体内及经皮吸收,
◆ 使药物缓释、控释或具有靶向性。
◆ 提供高能量的静脉注射脂肪乳,副 作用小而药效长的环胞菌素静注脂 肪乳均属亚微乳。
(3). 纳米乳(nanoemulsion)
当乳滴粒子小于0.1 m时,乳剂处于胶体分
散范围,这时光线通过乳剂时不产生折射而 是透过乳剂,肉眼可见乳剂为透明液体,这 种乳剂称为纳米乳或微乳(microemulsion) 或胶团乳(micellar emulsion),纳米乳粒径 在0.01~0.10 m范围。
该种乳剂中的液滴具有很大的分散度,其总
表面积大,表面自由能很高,属于热力学不 稳定体系。
微乳
微乳近年来受到国内外学者的广泛关注,
它主要用作药物的胶体性载体,可增大难 溶于水药物的溶解性,提高易水解药物的 稳定性,也可作为缓释给药系统或靶向给 药系统。 如环磷酰胺作成O/W型微乳可提高其抗癌活 性。 德国上市的环孢菌素微乳浓液胶囊剂,其 生物利用度较口服溶液剂高,使肾移植的 排斥作用发生率降低,目前国内已有类似 产品。
⑴ 阴离子型乳化剂
如硬脂酸钠、硬脂酸钾、油酸钠、油
酸钾、硬脂酸钙(W/O)、十二烷基 硫酸钠、十六烷基硫酸化蓖麻油等, 常作为外用乳剂的乳化剂。
⑵ 非离子型乳化剂
在药剂学中较为常用, 脂肪酸山梨坦(即span类,如20,40,60,80 等,W/O型) 聚山梨酯(即tween类,如20,40,60,80等, O/W型)、 聚氧乙烯脂肪酸酯类(商品名称为Myrj, 如Myrj 45,49,52等,O/W型)、 聚氧乙烯脂肪醇醚类(商品名称为Brij,如Brij 30,35,O/W型)、 聚氧乙烯聚氧丙烯共聚物类(商品名Poloxamer, Pluronic)、
聚异丁烯乳液的乳化技术原理-概述说明以及解释
聚异丁烯乳液的乳化技术原理-概述说明以及解释1.引言概述部分的内容可以包括对聚异丁烯乳液乳化技术的基本介绍和背景,以便读者能够对接下来的内容有一个整体的了解。
以下是概述部分的一种可能的内容:1.1 概述聚异丁烯乳液是一种重要的胶粘剂和涂料成分,具有广泛的应用领域。
乳化技术是制备聚异丁烯乳液的关键过程,通过将聚异丁烯溶解在水相中形成稳定的乳液态,实现其在水基胶粘剂和涂料中的应用。
乳化技术是将两种本来不相溶的液体通过添加表面活性剂和机械剪切等方法,使其混合形成乳状分散体系的过程。
乳化技术在聚异丁烯乳液制备中起着关键作用,能够将聚异丁烯完全分散在水中,并且保持其稳定性和均匀性,从而实现良好的应用性能。
本文将对聚异丁烯乳液的乳化技术原理进行深入探讨。
首先介绍乳化技术的定义和背景,阐明其在聚异丁烯乳液制备中的重要性。
然后,将重点介绍聚异丁烯乳液的应用领域,展示其在胶粘剂和涂料等领域的广泛运用。
最后,将详细介绍聚异丁烯乳液的制备原理,包括表面活性剂的选择、乳液稳定性的控制等方面内容。
通过本文的阐述,读者将能够深入了解聚异丁烯乳液的乳化技术原理,从而更好地理解乳化技术在聚异丁烯乳液制备中的应用和影响,为进一步研究和应用提供参考。
接下来,本文将按照以下结构进行详细的阐述。
文章结构部分的内容应包括对整篇文章的组织结构进行介绍,包括各个章节的标题和内容概述,让读者能够清晰地了解整篇文章的逻辑结构和内容安排。
以下是文章1.2文章结构部分的内容建议:1.2 文章结构本文分为引言、正文和结论三个主要部分,共涵盖了聚异丁烯乳液的乳化技术原理的相关内容。
引言部分(Chapter 1)主要介绍了本文的概述、文章结构和目的。
首先,简要概述了聚异丁烯乳液的乳化技术原理的重要性。
其次,介绍了本文的章节结构和每个章节的基本内容。
最后,明确本文的目的,即通过对聚异丁烯乳液的乳化技术原理的深入研究,探讨其在聚异丁烯乳液制备中的应用和发展前景。
乳化剂的性能和作用机理及其在化妆品配方当中的应用
乳化剂的性能和作用机理及其在化妆品配方当中的应用一、本文概述乳化剂是一种重要的表面活性剂,其独特的性能和作用机理使其在化妆品配方中占据重要地位。
乳化剂的主要作用是通过降低界面张力,使互不相溶的油水两相形成稳定的乳状液。
本文旨在深入探讨乳化剂的性能和作用机理,并详细分析其在化妆品配方中的应用,以期为化妆品的研发和生产提供有益的参考。
本文将介绍乳化剂的基本概念和分类,包括其化学结构和性质,以及不同类型乳化剂的特点。
接着,我们将详细阐述乳化剂的作用机理,包括其在油水界面上的吸附行为、降低界面张力的机制,以及形成乳状液的过程和稳定性原理。
随后,本文将重点分析乳化剂在化妆品配方中的应用。
我们将讨论乳化剂在不同类型化妆品(如乳液、膏霜、洗发水等)中的作用和选择原则,并探讨乳化剂与其他原料的相互作用和配伍性。
我们还将关注乳化剂对化妆品稳定性和安全性的影响,以及其在化妆品中的用量和使用方法。
本文将总结乳化剂在化妆品配方中的重要性,并展望其未来的发展趋势。
通过深入了解乳化剂的性能和作用机理,以及其在化妆品配方中的应用,我们可以为化妆品的研发和生产提供更加科学、合理和高效的解决方案。
二、乳化剂的性能乳化剂是一类具有特殊性质的表面活性剂,其分子结构通常包含亲水基团和亲油基团两部分。
这种两亲性结构使得乳化剂在油水界面上具有高度的活性,能够有效降低油水界面的张力,从而实现油水混合体系的稳定化。
乳化剂的主要性能表现在以下几个方面:界面活性:乳化剂能够在油水界面形成稳定的膜层,有效降低界面张力,这是乳化剂实现乳化作用的基础。
界面活性越高,乳化效果越好。
乳化能力:乳化剂能够将油相和水相混合形成稳定的乳状液,防止油水分离。
乳化剂的乳化能力与其分子结构、浓度、温度等因素密切相关。
稳定性:乳化剂形成的乳状液具有一定的稳定性,能够在一定时间内保持油水混合体系的稳定。
稳定性好的乳化剂能够有效延长产品的保质期。
安全性:乳化剂在化妆品中的使用需要符合相关法规标准,保证其对人体皮肤的安全性。
阴离子表面活性剂简介
部分阴离子表面活性剂简介阴离子表面活性剂的历史最久。
l8世纪兴起的制皂业所生产的肥皂即为阴离子表面活性剂,肥皂属高级脂肪酸盐。
此外,有代表性的阴离子表面活性剂还有磺酸盐、硫酸酯盐、脂肪酰-肽缩合物等。
阴离子表面活性剂在低温下较难溶解,随温度升高溶解度加大,溶解度达到极限时会析出表面活性剂的水合物。
但是,水溶液加热至一定温度时,表面活性剂分子发生缔合,溶解度会急剧增大。
阴离子表面活性剂亲水基团的种类有限,而疏水基团可以由多种结构构成,故种类很多。
阴离子表面活性剂一般具有良好的渗透、润湿、乳化、分散、增溶、起泡、抗静电和润滑等性能,用作洗涤剂有良好的去污能力。
1 高级脂肪酸盐肥皂即属高级脂肪酸盐,其化学式为RCOOM。
这里R为烃基,可以是饱和的,也可以是不饱和的,其碳数在5~22之间。
M为金属原子,一般为钠,也可以是钾或铵。
肥皂为典型的阴离子表面活性剂,它是以油脂与碱的水溶液加热起皂化反应制得的。
此外,也可先将油脂水解,分离出脂肪酸,然后再用碱中和制取。
所使用的油脂,可以是动物油脂如牛油,也可以是植物油脂如椰子油、棕榈油、米糠油、大豆油、花生油、硬化油等。
皂化所使用的碱可以是氢氧化钠、氢氧化钾或氨水。
用氢氧化钠皂化油脂得到的肥皂称为钠皂,而用氢氧化钾或氨水皂化油脂得到的肥皂分别叫做钾皂和铵皂。
洗涤用肥皂一般为钠皂,化妆用肥皂为钾皂和铵皂,钠皂质地较钾皂硬,铵皂最软。
此外肥皂的性质还与脂肪酸部分的烃基组成有关,脂肪酸的碳链越长,饱和度越大,凝固点越高,用其制成的肥皂越硬。
例如用硬脂酸、月桂酸和油酸制成的三种肥皂中,硬脂酸皂最硬,月桂酸皂次之,油酸皂最软。
硬脂酸钠为具有脂肪气味的白色粉末,疏水性强,难溶于冷水,易溶于热水和热乙醇中,在低温下去污力差,主要用作化妆品乳化剂。
硬脂酸的钾盐和铵盐也用于此目的。
油酸钠由于分子中有双键,所以分子的极性大,亲水性好,易溶于水,去污力也较好。
月桂酸钾是淡黄色浆状物,易溶于水,起泡力大,主要用于液体皂和香波生产,也常用作乳化剂。
药剂学-液体制剂第六章- 乳剂
2. 天然乳化剂
天然乳化剂亲水性强,在水中粘度大,对乳化液有较强的 稳定作用,宜新鲜配制使用或加入防腐剂。 (1)阿拉伯胶(acacia gum) : 为阿拉伯酸的钙、镁、钾等盐的混合物,适用于乳化植物油、 挥发油形成O/W型乳剂,作为内服乳剂的乳化剂,常用浓度为 5%~15%。 在pH4~10范围内乳液较稳定,单用时易分层,常与西黄蓍胶、 果胶、琼脂等合用。该胶含有氧化酶,易使其酸败,故用前 应在80℃加热30min以破坏之。
具有较强的乳化能力,并能在乳滴周围形成牢固的乳化膜; 有一定的生理适应能力:无毒,无刺激性,可以口服、外用或注射给药; 受各种因素的影响小:酸、碱、辅助乳化剂等; 稳定性好。
上述条件可作为选择或评价乳化剂的标准。
(二)乳化剂的种类
1. 表面活性剂类乳化剂
2. 天然高分子乳化剂
⑤复乳可作为药物超剂量或误服引起中毒的解毒系统。
根据乳滴大小分类
普通乳(emulsion):1~100m,乳白色不透明液体。 亚纳米乳(subnanoemulsion):又称亚微乳,0.1~1.0m,常 作为胃肠外给药的载体,静脉注射乳剂应为亚微乳,如环孢 菌素静脉注射脂肪乳。 纳米乳(nanoemulsion):又称微乳,10~100nm。
①单分子乳化膜
表面活性剂类乳化剂被吸附于乳滴表面,有规律地 定向排列,形成单分子乳化膜,明显降低了表面张 力,防止液滴合并,增加了乳剂的稳定性。 离子型表面活性剂作乳化剂所形成的单分子乳化膜 是离子化的,由于同种电荷相互排斥使乳剂更加稳 定。 非离子型表面活性剂作乳化剂所形成的单分子乳化 膜,由于从溶液中吸附离子,也可以带电使乳剂更 加稳定。
复乳的特点
乳化沥青基础知识及生产技术解析
基础知识一、沥青乳化剂分类1、按电荷分:①阳离子乳化剂②阴离子乳化剂③非离子型乳化剂2、按破乳速度分:①快裂型②中裂型③慢裂型(慢凝、快凝)我公司生产的802(中裂型、不需调酸); 803(慢裂慢凝型、需调酸) ; 801(慢裂快凝型、需调酸)二、乳化沥青1、乳化沥青的组成:①沥青②乳化剂③水(井水,自来水)④盐酸(需要时)⑤稳定剂(需要时)2、乳化沥青制备:是将沥青热融后,通过乳化剂(水溶液)和机械的作用,使沥青以细小的颗粒分散在一定量的水中而形成的沥青乳液。
乳化剂水溶液也称为皂液生产时皂液温度60-70℃,沥青温度130-140℃,皂液温度和沥青温度之和不能大于200℃.3、改性乳化沥青:①加胶乳(SBR)分內掺和外掺:生产乳化沥青时胶乳加在皂液里或直接进入胶体磨的为内掺;加在乳化沥青里搅拌的为外掺。
②直接用SBS改性沥青乳化成乳化沥青。
《乳化沥青生产工艺》生产乳化沥青的方法有很多种,其中机械分散法具有效率高,速度快,产量大,调节控制容易等优点,因而在乳化沥青生产中广为采用。
所谓机械分散法,是依靠机械的强力搅拌作用力,把沥青液相剪切形成微小的颗粒,悬浮在乳化剂水溶液中,成为水包油状的沥青乳液。
一般习惯上把用来完成沥青乳化所需的全部装置称为乳化沥青生产设备,把沥青液相粉碎的机器称之为乳化机。
沥青乳化不仅需要专用的生产设备,而且要在一定的生产工艺流程和技术条件下才能完成。
通常把沥青,乳化机,水从初始进入生产设备到乳液成品输出的这一全过程及每一生产过程中的技术要求称之为乳化工艺。
乳化沥青生产工艺主要包括生产配方,温度控制,油水比例控制等内容。
一般应根据乳液技术要求,乳化剂性能,沥青性能,水质,设备性能,生产规模,施工要求等技术条件,首先通过室内试验,初步确定乳化工艺,然后在生产设备上试生产。
检验和修正室内试验所确定的工艺,补充试验室无法确定的其它工艺问题,最后得到正式用于生产的乳化沥青生产工艺。
乳化沥青生产过程一般分为沥青配置,乳化剂水溶液配置,沥青乳化和乳液储存四个主要工序。
乳化沥青
(一)乳化沥青的组成材料乳化沥青是将粘稠沥青加热至热熔状态,经机械的强力搅拌作用,使沥青以细微液滴(粒径2-5甲)状态分布在含有乳化剂的水溶液中,成为水包油(O/W)状的沥青乳液。
1.沥青沥青是乳化沥青中的基本成分,在乳化沥青中占55%-70%。
沥青的选择,应根据乳化沥青在路面工程中的用途而定。
一般来说,几乎各种标号的沥青都可以乳化,相同油源和工艺的沥青,针入度较大者易于形成乳液。
道路工程中用于配制乳化沥青的沥青针入度范围多在100-200之间。
沥青的原油基属、化学组成和结构对乳化沥青的制作和形成后的性质有重要的影响,含蜡量较高的沥青较难乳化,且乳化后储存稳定性欠佳。
2.水水是沥青分散的介质,其硬度和离子性对乳化沥青的形成和稳定性有较大的影响。
一般要求水不应太硬。
水中存在钙、镁等离子时,对于生产阳离子乳化沥青有利,但不利于生产阴离子乳化沥青;而碳酸离子和碳酸氢离子对两种乳化沥青的作用刚好相反。
水中的粒状物质通常带有负电荷,由于对阳离子乳化剂的吸附,对生产阳离子乳化沥青不利。
因此,应根据乳化沥青的离子类型、选择符合水质要求的水源。
3.乳化剂乳化剂在乳化沥青中所占的比例较低(一般为干分之几),但对乳化沥青的生产、贮存及施工起着关键性的作用。
4.稳定剂为了改善沥青乳液的均匀性、减缓沥青微粒之间的凝聚速度、提高乳液的稳定性、增强与石料的粘附能力,常在乳液中加入——定的稳定剂。
掺加稳定剂还可能降低乳化剂的使用剂量。
稳定剂分为无机和有机两类。
1)无机稳定剂常用的稳定效果最明显的无机盐类物质为氯化铵、氯化钙和氯化镁等。
如氯化钙可以降低季铵盐阳离子乳化剂的用量。
对于胺型阳离子乳化剂,由于不能直接溶解于水,需要用盐酸将水的PN值调节至2左右,或用醋酸调节至4左右方能使用。
但如果酸过量,则乳化性和稳定性将受到影响。
2)有机稳定剂常用的有聚乙烯醇,它与阳离子乳化剂复合使用对含蜡量高的沥青的乳化及储存稳定性起良好的作用。
阴离子表面活性剂LAS简介
LAS:英文缩写,代表意思广泛,组织、化工品、专业名称等等的缩写,凡关键词首字母的排列顺序为L、A、S皆可用此。
1、直链烷基苯磺酸钠化学物:直链烷基苯磺酸钠(Linear Alkylbenzene Sulfonates),属于烷基苯磺酸盐物质的理化常数国标编号----CAS号中文名称阴离子洗涤剂(LAS) ,直链烷基苯磺酸钠盐英文名称Linear Alklybezene Sulfonates别名阴离子表面活性剂分子式C18H29SO3X;CH3(CH2)9CH(CH3)C6H4SO3X 外观与性状分子量344.4(平均) 蒸汽压熔点溶解性密度稳定性危险标记:低毒物质,泡沫多、刺激性大,有一定致畸性。
主要用途:用作洗涤剂,已逐步被淘汰,包括某直销产品的洗洁精在美国和韩国已经因LAS 被淘汰。
用途:通常作为家庭合成洗涤剂、洗涤餐具和蔬菜用的厨房洗涤剂(目前被部分国家淘汰使用);除用作厨房洗涤剂之外, 还用作家庭用清洁剂、去污粉等的配制成分, 以及在洗衣店用的洗涤剂、纤维工业用的煮炼助剂、洗涤剂、染色剂、金属电镀过程用的金属脱脂剂、造纸工业用的树脂分散剂、毛毡洗涤剂、脱墨剂, 在制造树脂乳胶液聚合过程中用的乳化剂、在农药工业乳剂用的乳化剂、颗粒剂和可湿性粉剂用的分散剂、皮革工业用的渗透脱脂剂、肥料工业用的防结块剂、水泥工业用的加气剂等许多方面, 作为配合成分或单独使用;近年来, 在石油开采中3次回收用胶束溶液驱油法等新技术方面也有所应用.。
毒害:LAS对动植物有毒害。
直链烷基苯磺酸盐(LAS)和非离子表面活性剂(NIS)是产量和消耗量都相当大的两类表面活性剂.文章从生物降解性、毒性及在环境和生物体内的累积性3个方面分析了它们的环境安全性,认为表面活性剂对环境会产生不同程度的影响.LAS对动植物有毒害,在环境中和生物体内有累积(尽管易降解)。
物理指标:耐硬水性和钙皂分散能力差、耐强碱性差。
LAS的水溶液随着水硬度的增加而变得混浊,直至不透明;LAS相对AES和醇醚羧酸AEC及其盐AEC—Na的钙皂分散能力差。
高分子乳液聚合的讲义课件.ppt
非离子型表面活性剂的亲水基主要是聚氧乙烯基。升高温 度会破坏聚氧乙烯基同水的结合,而使溶解度下降,甚至析 出。所以加热时可以观察到溶液发生混浊现象。
发生混浊的最低温度称为浊点
聚氧乙烯的分子数越多,亲水性越强,浊点就越高。反 之,亲油性越强,浊点越低。
Gemini表面活性剂定义、结构特 征
双子表面活性剂(Gemini surfactant), 又称孪连表面活性剂、 双生表面活性剂、 偶联表面活性剂,
+
__ + _+
+
带负电的乳胶粒双电层示意图
2、乳液聚合的基本原理
(3)空间位阻的保护作用
乳化剂使液滴或乳胶粒周围形 成有一定厚度和强度的水合层,起 空间位阻的保护作用 。这种空间位
阻的保护作用阻碍了液滴或乳胶粒之 间的聚集而使乳状液稳定
乳胶粒
具有空间位阻作用的水合层示意图
2、乳液聚合的基本原理
乳液聚合机理
分散阶段(聚合前段)
增容胶束
M
M M
胶束
M
M
M
M ~1μm
单体液滴
分散阶段乳液状态示意图
乳液聚合机理
乳胶粒生成阶段(聚合Ⅰ段)(单体转化率达到10~20%)
M M
M
M/P
M
R*
~1μm
乳胶粒生成阶段乳液状态示意图
乳胶粒
乳液聚合机理
乳胶粒长大阶段(聚合Ⅱ段)(单体转化率达到20~60%)
(4)长期存放
2、乳液聚合的基本原理
乳液聚合机理及动力学
1、乳液聚合机理
乳液聚过程合体系的相转变:
液-液体系→液-固体系
根据间隙乳液聚合的动力学特征,可以把整个乳液聚合过程分为四 个阶段:
17种常用表面活性剂特性及使用方法简介
17种常用表面活性剂特性及使用方法简介月桂基磺化琥珀酸单酯二钠(DLS)一、英文名: Disodium Monolauryl Sulfosuccinate二、化学名:月桂基磺化琥珀酸单酯二钠三、化学结构式: ROCO-CH2-CH(SO3Na)-COONa四、产品特性1. 常温下为白色细腻膏体,加热后(>70℃)为透明液体;2. 泡沫细密丰富;无滑腻感,非常容易冲洗;3. 去污力强,脱脂力低,属常见的温和性表面活性剂;4. 能与其它表面活性剂配伍,并降低其刺激性;5. 耐硬水,生物降解性好,性能价格比高。
五、技术指标:1.外观(25℃):纯白色细腻膏状体2.含量(%):48.0—50.03.Na2SO3(%):≤0.504.PH值(1%水溶液):5.5—7.0六、用途与用量:1.用途:配制温和高粘度高度清洁的洗手膏(液)、泡沫洁面膏、泡沫洁面乳、泡沫剃须膏,也可配制爽洁无滑腻的泡沫沐浴露、珠光香波等。
2.推荐用量:10—60%。
脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠MES一、英文名:Disodium Laureth(3) Sulfosuccinate二、化学名:脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠三、化学结构式:RO(CH2CH2O)3COCH2CH(SO3Na)COONa四、产品特性:2.刺激性低,且能显著降低其他表面活性剂的刺激性;3.泡沫丰富细密稳定;性能价格比高;4.有优良的钙皂分散和抗硬水性能;5.复配性能好,能与多种表面活性剂和植物提取液(如皂角、首乌)复配,形成十分稳定的体系,创制天然用品;6.脱脂力低,去污力适中,极易冲洗且无滑腻感。
五、技术指标:1.外观(25℃):无色至浅黄色透明粘稠液体2.活性物(%): 30.0±2.03.PH值(1%): 5.5—6.53.色泽(APHA):≤504.Na2SO3 (%):≤0.35.泡沫(mm):≥150六、用途与用量:1、用途:制造洗发香波、泡沫浴、沐浴露、洗手液、外科手术清洗及其它化妆品、洗涤日化产品等,还可作为乳化剂、分散剂、润湿剂、发泡剂等。
阴离子乳化剂
阴离子乳化剂阴离子乳化剂(AnionicSurfactants,AS)是一类广泛使用的极性表面活性剂,可以广泛应用于物理和有机化学领域。
本文通过阐述其物理和有机化学特性,以及在日常生活中的重要作用来探讨阴离子乳化剂的重要性。
阴离子乳化剂特性及用途阴离子乳化剂的特性具有很高的稳定性,它的稳定性在酸性溶液中尤为明显。
它的抗蚀性和抗碱性能很强,且有很强的结合力,能够把有机物的重金属的析出,用来稀释或者调节溶液的粘度,使液体间的交叉相溶更好。
此外,阴离子乳化剂在某些环境和场合中也可以把有机物形成介质,从而形成溶解状态,从而改善溶剂的性能和有效性。
在医学领域,阴离子乳化剂可用于制备给药剂和消毒剂;它同样可以应用于护肤、洗涤和清洁方面,在某些地方也可以用作计划生育的药物,用于调节妇女的生育能力。
此外,阴离子乳化剂也广泛应用于染料和油漆工业中,用于制备工程润滑油和燃料添加剂,可以加强润滑性能,提高抗氧化能力及耐磨性。
阴离子乳化剂在日常生活中的重要作用阴离子乳化剂可以渗透到毛孔,可以提供协同效应,把皮肤上的污垢、汗液和老废物物质全部在肌肤表面的一层微层,从而达到清洁的效果,并且能缓解一定程度的皮肤毛细孔炎症。
阴离子乳化剂还可以增加洗涤剂的稳定性,降低表面张力,提高洗衣的洁净度,降低其对环境的不良影响。
在洗涤过程中,由于阴离子乳化剂具有抗碱性和良好的洗涤性,可以把洗洁精和水、油之间的润湿性作用提高,使洁净度更高,洗衣更彻底,从而降低染布工序的渗透率,减少丝染剂中染料的浪费。
从上述可以看出,阴离子乳化剂具有高稳定性、抗蚀性和抗碱性等特性,可广泛应用于制备给药剂、消毒剂、护肤品、洗涤剂等,在日常生活中发挥着重要作用。
然而,在使用阴离子乳化剂的同时,也需要注意,有些阴离子乳化剂具有致癌潜能,在使用、储存等方面均应注意安全措施,以免造成不必要的损害。
综上所述,在物理和有机化学领域中,阴离子乳化剂具有重要的作用,在日常生活中的影响也广泛,因此,要深入了解其特性,正确运用,以免损害人体健康和环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阴离子乳化剂的使用方法
阴离子乳化剂是一种常用的表面活性剂,广泛应用于化妆品、洗涤剂、农药等领域。
下面是阴离子乳化剂的使用方法:
1.选择适当的乳化剂:根据具体应用需求和所要乳化的物质特性,选择合适的阴离子乳化剂。
常见的阴离子乳化剂包括硫酸盐、磺酸盐、羧酸盐等。
2.配制乳化液:将所选的阴离子乳化剂溶解在适量的溶剂中(如水、有机溶剂),并搅拌均匀。
注意按照乳化剂的使用说明或建议的浓度进行配制。
3.添加需要乳化的物质:将需要乳化的物质逐渐加入到乳化液中,并进行充分的搅拌混合。
可以根据具体情况调整搅拌速度和时间,以确保物质完全乳化。
4.调节pH值:阴离子乳化剂对pH值敏感,因此在乳化过程中需要注意控制pH值。
根据具体要求,可通过添加酸或碱来调节pH值,以使乳化效果更好。
5.调整稠度和粒径:根据需要,可以通过调整乳化剂的浓度、搅拌速度和时间等参数,来控制乳化液的稠度和乳液中的颗粒粒径大小。
6.保存和使用:将乳化后的物质存放在适当的容器中,并注意防止其暴露于极端温度、湿度和光照条件下。
在使用时,根据具体需求进行相应的操作(如喷雾、涂抹等)。
请注意,在使用阴离子乳化剂时,应遵循安全操作规程,并按照乳化剂的具体说明书和相关法规要求进行操作。
1。