西南大学2020年秋季线性代数 【0044】机考大作业参考答案

合集下载

0044]《线性代数》 20年西南大学考试题库答案

0044]《线性代数》  20年西南大学考试题库答案

西南大学网络与继续教育学院课程代码: 0044 学年学季:20192单项选择题1、. 2. 0. 1. -12、. 0,1,2,3. 1,2,3,4. 0,1,2. 1,2,33、下列各向量组线性相关的是( ).....4、.. ..5、....6、....7、. E. ...8、....9、下列矩阵为正交矩阵的是( ).....10、矩阵A 与B 相似, 则下列说法不正确的是( ). style="text-indent:32px">A 与B 有相同的特征值. ..A = B.. R(A) = R(B) 11、....12、....13、... .14、. F. A 的列向量组线性无关. 线性方程组的增广矩阵的任意四个列向量线性无关. 线性方程组的增广矩阵的列向量组线性无关 .线性方程组的增广矩阵的行向量组线性无关15、下列各向量组线性相关的是( ).....16、. .. .17、.负定的. ..正定的...半正定的... style="text-indent:14px;line-height:150%">不定的..18、.必有r个列向量线性无关.任意r个列向量都构成最大线性无关组.任何一个列向量都可以由其它r个列向量线性表出.任意r个列向量线性无关19、. 0. 1.. 0或1..20、.A....21、. 2 .4..122、. C. 必有一列向量可有其余列向量线性表示. 必有两列元素对应成比例. 任一列向量是其余列向量的线性组合 .必有一列元素全为023、.D. A 有n 个互异特征值.A 是实对称阵. A 有n 个线性无关的特征向量.A 的特征向量两两正交24、. B. A 的行向量组线性相关 . A 的行向量组线性无关. A 的列向量组线性无关.A 的列向量组线性无关25、在下列矩阵中,可逆的是( ).....判断题 26、.A.√. B.× 27、. A.√. B.× 28、. A.√. B.× 29、.A.√. B.× 30、. A.√. B.× 31、. A.√. B.× 32、. A.√. B.× 33、. A.√. B.× 34、. A.√. B.× 35、. A.√. B.× 36、. A.√. B.× 37、. A.√. B.× 38、. A.√. B.× 39、. A.√. B.× 40、设A、B为两个不可逆的同阶方阵,则|A|=|B| (). A.√. B.×41、转置运算不改变方阵的行列式、秩和特征值. ( ). A.√. B.×42、若A x =0只有零解,则A x =b(b≠0)有唯一解. ( ). A.√. B.×43、. A.√. B.×44、. A.√. B.×45、. A.√. B.×46、. A.√. B.×47、. A.√. B.×48、设A、B为n阶方阵,且AB=0,但 |A| 0,则B=0.( ). A.√. B.×49、. A.√. B.×50、. A.√. B.×主观题51、正确答案是:52、正确答案是:53、正确答案是:254、正确答案是:55、正确答案是:56、正确答案是:57、正确答案是:58、正确答案是:59、正确答案是:60、正确答案是:。

西南大学22春[0044]《线性代数》在线作业答案

西南大学22春[0044]《线性代数》在线作业答案

0044 20221单项选择题1、()1.2.3.4.2、()1.2.3.4.3、(1. 42. 13. 34. 24、()1.2.3.4.5、()1.A的列向量组线性无关2.A的列向量组线性相关3.A的行向量组线性无关4.A的行向量组线性相关6、()1.2.3.4.7、1.2,4,62.1, 2, 33.1/2, 1, 3/24.2, 1, 2/38、()1.必有一列元素全为02.必有两列元素对应成比例3.必有一列向量可有其余列向量线性表示4.任一列向量是其余列向量的线性组合9、()1.有无穷多个解2.以上选项都不对3.存在唯一解4.无解10、(1.2.3.4.11、在下列矩阵中,可逆的矩阵是()1.2.3.4.12、()1.2.3.4.13、下列关于未知量x,y,z的方程是线性方程的是()1.2.3.4.14、()1. A. 0,1,22.1,2,33.1,2,3,44.0,1,2,315、()1.2.3.4.16、()1.-22. 13. 24.-117、()1.162.483.-164.-4818、()1.-102.103. 54.-519、()1.2.3.4.20、()1.2.3.4.21、()1.162. 23.84. 422、设A为n阶方阵, 且秩R(A) = r< n, 那么A的列向量组的秩()1. F. 小于r2.等于n3.等于r4.大于r23、()1.2.3.4.24、()1.将B矩阵的第二行加到第一行2.将B矩阵的第二列加到第一列3.AB=BA4.r(AB)=225、以123456为标准排列,则排列253146的逆序数是()1. 42. 33. 54. 226、设A, B均为n阶方阵, E为n阶单位矩阵, 则有()1.2.3.4.27、()1. E.2.3.4.28、()1.存在非零解2.无解3.以上选项都不对4.只有零解29、设3阶矩阵A与B相似,且已知A的特征值为-1,1,-7. 则|B| =()1.122.1/123.1/74.730、设n阶方阵A秩为n,下式不正确的是()1.2.3.4.31、()1.-32.-23. 24. 332、()1.2.3.4.33、(1.2.3.4.34、()1.2.3.4.35、()1.无解2.以上选项都不对3.有无穷多个解4.存在唯一解36、()1.2.3.4.37、如果n阶矩阵A的一个特征值为3, 那么必有()1.2.3.4.38、()1.-22. 33. 24.039、()1. 32. 23. 14.040、()1.2.3.4.以上选项都不对41、()1.(1,1,0)2.(-3,0,2)3.(0,-1,0)4.(2,1,1)42、以123456为标准排列,则排列154236的逆序数是()1. 52. 33. 24. 443、()1.2.3.4.44、()1.2.3.4.45、()1. 42. 23. 34. 146、()1. 22. 13.0,14.1,247、()1. B.2.A3.4.48、()1.2.3.4.49、()1. 12. 33. 24. 450、()1. 32.3.4.判断题51、齐次线性方程组的基础解系是该方程组的所有解向量构成的向量组的极大无关组。

西南大学《线性代数》网上作业及参考答案

西南大学《线性代数》网上作业及参考答案

===================================================================================================1:[论述题]线性代数模拟试题三参考答案:线性代数模拟试题三参考答案 1:[论述题]线性代数模拟试题四参考答案:线性代数模拟试题四参考答案 1:[论述题]线性代数模拟试题五参考答案:线性代数模拟试题五参考答案 1:[论述题]线性代数模拟试题六 一、填空题(每小题3分,共15分) 1. 行列式332313322212312111b a b a b a b a b a b a b a b a b a = ( ). 2. 设A 是4×3矩阵,R (A ) = 2,若B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则R (AB ) = ( ).3. 设矩阵A = ⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax = 0有非零解,则数t = ( ).4. 已知向量,121,3012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k βαα与β的内积为2,则数k = ( ).5. 已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为( ).二、单项选择题(每小题3分,共15分) 1. 设A 为m ×n 矩阵,B 为n ×m 矩阵,m ≠n , 则下列矩阵中为n 阶矩阵的是( ). (A) B T A T (B) A T B T (C) ABA (D) BAB2. 向量组α1,α2,…,αS (s >2)线性无关的充分必要条件是( ). (A) α1,α2,…,αS 均不为零向量(B) α1,α2,…,αS 中任意两个向量不成比例 (C) α1,α2,…,αS 中任意s -1个向量线性无关(D) α1,α2,…,αS 中任意一个向量均不能由其余s -1个向量线性表示===================================================================================================3. 设3元线性方程组Ax = b ,A 的秩为2,η1,η2,η3为方程组的解,η1 + η2 = (2,0,4)T ,η1+ η3 =(1,-2,1)T ,则对任意常数k ,方程组Ax = b 的通解为( ).(A) (1,0,2)T + k (1,-2,1)T (B) (1,-2,1)T + k (2,0,4)T (C) (2,0,4)T + k (1,-2,1)T (D) (1,0,2)T + k (1,2,3)T 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛000000111(B) ⎪⎪⎪⎭⎫⎝⎛000110111(C) ⎪⎪⎪⎭⎫ ⎝⎛000222111(D) ⎪⎪⎪⎭⎫ ⎝⎛3332221115. 二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( ).(A) 1 (B) 2 (C) 3 (D) 4三、判断题(正确的打“√”,错误的打“×”,每小题3分,共15分)1. 设A 为n 阶方阵,n ≥2,则|-5A |= -5|A |. ( )2. 设行列式D =333231232221131211a a a a a a a a a = 3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为5. ( ) 3. 设A = ⎪⎪⎭⎫⎝⎛4321, 则|A *| = -2. ( )4. 设3阶方阵A 的特征值为1,-1,2,则E - A 为可逆矩阵. ( )5. 设λ = 2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于41. ( ) 四、(10分) 已知矩阵A = ⎪⎪⎪⎭⎫⎝⎛-210011101,B =⎪⎪⎪⎭⎫⎝⎛410011103, (1) 求A 的逆矩阵A -1. (2) 解矩阵方程AX = B .===================================================================================================五、(10分)设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=21302α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=147033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02114α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.六、(10分) 求线性方程组⎪⎩⎪⎨⎧=++=+++=+++322023143243214321x x x x x x x x x x x 的通解(要求用它的一个特解和导出组的基础解系表示)七、(15分) 用正交变换化二次型f (x 1, x 2, x 3)=2331214x x x x +-为标准形,并写出所用的正交变换.八、(10分) 设a ,b ,c 为任意实数,证明向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0112b α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=0013c α,线性无关.参考答案:线性代数模拟试题六参考答案 一、填空题1. 0.2. 23.2.4.32. 5. k > 2. 二、单项选择题1(B). 2(D). 3(D). 4(B). 5(C). 三、判断题1. (⨯). 2(⨯). 3(√). 4(⨯). 5(√).===================================================================================================四、Solution (1)由于⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-+-100210011110001101100210010011001101211r r⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----→+-++111100122010112001111100011110001101132332111r r r r r r ⎪⎪⎪⎭⎫ ⎝⎛-----→-11110012201011200121r ,因此,有⎪⎪⎪⎭⎫ ⎝⎛-----=-1111221121A .(2) 因为B AX =,所以⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----==-3222342254100111031111221121B A X .五、Solution 因为()⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=+-+400027120330130101424271210311301,,,4321214321r r r r αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔+--+-00001000011013011000000001101301100001100110130143324231141312r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛→+-0000100001100301131r r , 于是,421,,ααα是极大无关组且2133ααα+=.===================================================================================================六、Solution 将增广矩阵B 化为行最简形得⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛=+-322103221011111322100112311111213r r B⎪⎪⎪⎭⎫ ⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛----→++000003221021101000003221011111123211r r r r ⎪⎪⎪⎭⎫ ⎝⎛---→-00000322102110121r , 这时,可选43,x x 为自由未知量.令0,043==x x 得特解⎪⎪⎪⎪⎪⎭⎫⎝⎛-=0032*η.分别令⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10,0143x x 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1021,012121ξξ. 原线性方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00321021012121k k x ,其中21,k k 为任意常数.七、Solution 所给二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛--=102000201A ,)3)(1(122110200201||λλλλλλλλλλ-+=-----=-----=-E A ,===================================================================================================所以A 的特征值为-1,0,3.当1-=λ时,齐次线性方程组=+x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1011ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p . 当0=λ时,齐次线性方程组=-x E A )0(0的基础解系为⎪⎪⎪⎭⎫⎝⎛=0102ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0102p .当3=λ时,齐次线性方程组=-x E A )3(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1013ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210213p .取()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,在正交变换Py x =下得二次型的标准型为23213y y f +-=.===================================================================================================八、Proof 因为()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=+-+-001010100001011100001011111,,341311321c b a c b a c b ar r r r ααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔↔↔+-+-+-00010*********0000010001001010000100433241212324r r r r r r r cr r br r ar , 于是321,,ααα的秩为3,所以321,,ααα线性无关.1:[论述题]一、填空题(每小题3分,共15分)1. 设A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023, B =,010201⎢⎣⎡⎥⎦⎤则AB = ⎪⎪⎪⎭⎫⎝⎛. 2. 设A 为33⨯矩阵, 且方程组Ax = 0的基础解系含有两个解向量, 则R (A ) = ( ). 3. 已知A 有一个特征值-2, 则B = A 2+ 2E 必有一个特征值( ). 4. 若α=(1, -2, x )与),1,2(y =β正交, 则x y = ( ). 5. 矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是( ).二、单选题(每小题3分,共15分)1. 如果方程⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k = ( ).(A) -2 (B) -1===================================================================================================(C) 1 (D) 22. 设A 为n 阶可逆方阵,下式恒正确的是( ). (A) (2A )-1 = 2A -1 (B) (2A )T = 2A T (C) [(A -1)-1]T = [(A T )-1]T (D) [(A T )T ]-1 = [(A -1)-1]T3. 设β可由向量α1 = (1,0,0),α2 = (0,0,1)线性表示,则下列向量中β只能是( ). (A) (2,1,1) (B) (-3,0,2) (C) (1,1,0) (D) (0,-1,0)4. 向量组α1 ,α2 …,αs 的秩不为s (s 2≥)的充分必要条件是( ). (A) α1 ,α2 …,αs 全是非零向量 (B) α1 ,α2 …,αs 全是零向量(C) α1 ,α2 …,αs 中至少有一个向量可由其它向量线性表出 (D) α1 ,α2 …,αs 中至少有一个零向量 5. 与矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( ).(A) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001(B) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011(C) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001(D) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A 为三阶方阵且|A | = -2,则|3A T A | = -108. ( )2. 设A 为四阶矩阵,且|A | = 2,则|A *| = 23. ( ) 3. 设A 为m n ⨯矩阵,线性方程组Ax = 0仅有零解的充分必要条件是A 的行向量组线性无关. ( )4. 设A 与B 是两个相似的n 阶矩阵,则E B E A λλ-=-. ( )5. 设二次型,),(23222132,1x x x x x x f +-=则),(32,1x x x f 负定. ( )四、 (10分) 计算四阶行列式1002210002100021的值.===================================================================================================五、(10分) 设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011, B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A , B , X 满足E X B A B E =--T T 1)( . 求X , X .1-六、(10分) 求矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-311111002的特征值和特征向量.七、(15分) 用正交变换化二次型322322213214332),,(x x x x x x x x f +++=为标准型,并写出所作的变换.八、(10分) 设21,p p 是矩阵A 的不同特征值的特征向量. 证明21p p +不是A 的特征向量.参考答案: 一、填空题1.⎪⎪⎪⎭⎫ ⎝⎛241010623. 2. 1. 3. 6. 4. 0.5. 2322312121324x x x x x x x +-++. 二、单项选择题1(B). 2(B) . 3(B) . 4(C) . 5(A) . 三、判断题1.( ⨯). 2(√). 3(⨯). 4(√). (5) (⨯). 四、Solution 按第1列展开,得===================================================================================================210021002)1(2100210021)1(110022100021000211411++-⋅+-⋅= 158)1(21-=⋅-⋅+=.五、Solution 由于E X B A B E =--T T 1)(,即[]E X A B E B =--T1)(,进而()E X A B =-T ,所以()[]1T --=A B X .因为()⎪⎪⎪⎭⎫ ⎝⎛=-100020002TA B ,所以⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-100021000211000200021X . 六、Solution 因为λλλλλλλ----=----=-3111)2(31111102||E A321)2(3111)2(3212)2(12λλλλλλλ-=--=----=+c c , 所以A 的特征值为2.对于2=λ时,齐次线性方程组=-x E A )2(0与0321=+-x x x 同解,其基础解系为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121ξξ,于是,A 的对应于2的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101121k k ,其中21,k k 不全为0. 七、Solution 所给二次型的矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230002A .===================================================================================================因为λλλλλλλ---=---=-3223)2(32023002||E A )1)(5)(2(3121)5)(2(3525)2(121λλλλλλλλλλ---=---=----=+c c , 所以A 的特征值为1, 2, 5.当1=λ时,齐次线性方程组=-x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1101ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=212101p . 当2=λ时,齐次线性方程组=-x E A )2(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=0012ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0012p .当5=λ时,齐次线性方程组=-x E A )5(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1103ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212103p .===================================================================================================取()⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==2102121021010,,321p p p P ,在正交变换Py x =下得二次型的标准型为23222152y y y f ++=. 八、Proof 令21,p p 是A 的对应于不同特征值21,λλ的特征向量,即111p Ap λ=,222p Ap λ=.假设21p p +是A 的对应于λ的特征向量,即)()(2121p p p p A +=+λ. 由于22112121)(p p Ap Ap p p A λλ+=+=+,所以)(212211p p p p +=+λλλ,于是=-+-2211)()(p p λλλλ0. 根据性质4,知021=-=-λλλλ,进而21λλ=,矛盾.。

2020年08月04184线性代数真题及答案

2020年08月04184线性代数真题及答案

2020年8月《线性代数》真题说明:在本卷中,A T表示矩阵A的转置矩阵,A∗表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的秩.第一部分选择题一、单项选择题:本大题共5小题,每小题2分,共10分。

在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。

1.设α1,α2,β1,β2是三维列向量,且行列式|α1,α2,β1|=m,|α1,β2,α2|=n,则行列式|α1,α2,β1+β2|=()A.m−nB.n−mC.m+nD.mn【答案】A【解析】|α1,α2,β1+β2|=|α1α2β1|+|α1α2β2|=m+(−1)×n=m−n.2.设A为3阶矩阵,将A的第2列与第3列互换得到矩阵B,再将B的第1列的(−2)倍加到第3列得到单位矩阵E,则A−1=()。

A.(120 001 010)B.(1−20 001 010)C.(10−2 001 010)D.(102 001 010)【答案】C【解析】A(100001010)=BB(10−2010001)=EA(100001010)(10−2010001)=EA−1=(100001010)(10−2010001)=(10−2001010)3.设向量组a1,a2,a3线性无关,而向量组a2,a3,a4线性相关,则()A.a1必可由a2,a3,a4线性表出B.a2必可由a1,a3,a4线性表出C.a3必可由a1,a2,a4线性表出D.a4必可由a1,a2,a3线性表出【答案】D【解析】因为向量组a1,a2,a3线性无关,所以向量组a1,a2,a3中任意一个均不能由其他两个表示出来,所以就排除了A、B、C三个选项;又因为向量组a2,a3,a4线性相关,所以向量组a2,a3,a4中至少有一个可以由其他两个线性表示,所以D 是正确的。

参见教材P116。

4.若3阶可逆矩阵A的特征值分别是1,−1,2,则|A−1|()A.-2B.−12C.12D.2【答案】B【解析】因为|A|=1∗−1∗2=−2,所以|A−1|=1|A|=−12.参见教材P160。

西南【1100】线性代数(一)20年6月机考大作业参考答案

西南【1100】线性代数(一)20年6月机考大作业参考答案

西南【1100】线性代数(一)20年6月机考大作业参考答案西南大学网络与继续教育学院课程考试试题卷类别:网教专业:数学教育课程名称【编号】:线性代数(一)【1100】A卷大作业满分:100分要答案:wangjiaofudao一、单选题(每题4分,共32分)1、若,则必须满足()C、可为任意数D、均可为任意数2、下列选项中不是五阶行列式中的一项的是()3、设A,B,C均为n阶矩阵,若由能推出,则A应满足()4、设矩阵,仅有零解的充要条件是()A、A的列向量组线性无关B、A的列向量组线性相关C、A的行向量组线性无关D、A的行向量组线性相关5、下述结论中,不正确的是()A、若向量与正交,则对任意实数与也正交;B、若向量与向量都正交,则与的任一组线性组合也正交C、若向量与正交,则与中至少有一个是零向量D、若向量与任意同维向量正交,则是零向量6、设A为n阶实对称矩阵,则()A、A的n个特征向量两两正交B、A的n个特征向量组成单位正交向量组'C、A的重特征值,有D、A的重特征值,有7、三阶矩阵A的特征值为-2,1,3.则下列矩阵中非奇异矩阵是()8、设A,B为n阶矩阵,且A与B相似,则()B、A与B有相同的特征值和特征向量C、A与B都相似于一个对角矩阵D、对任意常数,相似二、判断题(每题4分,共28分)1、两个向量的内积一定大于零()2、余子式和对应的代数余子式一定不相等()。

3、任意两个矩阵都可以相加()。

4、初等矩阵的乘积是初等矩阵()。

5、单位矩阵是标准型是自己()。

6、等价的向量组里向量个数一定相同()。

7、线性方程组中方程的个数小于未知量的个数,则方程组一定有解()。

三、名词解释(每题5分,共10分)1、非奇异矩阵2、特征向量四、计算题(每题10分,共20分)1、解下列方程组求矩阵P使得P-1AP是对角阵,其中A=.五、证明题(10分)对任意n阶矩阵A,证明+是对称矩阵。

西南大学线性代数作业答案

西南大学线性代数作业答案

西南大学线性代数作业答案第一次行列式部分的填空题1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。

2.排列45312的逆序数为 5 。

3.行列式25112214---x中元素x 的代数余子式是 8 . 4.行列式10232543--中元素-2的代数余子式是—11 。

5.行列式25112214--x 中,x 的代数余子式是—5 。

6.计算00000d c ba = 0行列式部分计算题 1.计算三阶行列式381141102--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)×(—4)—0×1×3—2×(—1)×8=—42.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列. 解:i =8,j=5。

3.(7分)已知0010413≠x x x,求x 的值.解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2所以x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组=++=++=++000z y x z y x z y x λλ 有非零解,求λ。

解:()211110100011111111-=--==λλλλλD由D=0 得λ=15.用克莱姆法则求下列方程组:=+-=++=++10329253142z y x z y x z y x 解:因为331132104217117021042191170189042135113215421231312≠-=?-?=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算:811110212942311-=-=D 1081103229543112-==D1351013291531213=-=D因此,根据克拉默法则,方程组的唯一解是:x=27,y=36,z=—45第二次线性方程组部分填空题1.设齐次线性方程组A x =0的系数阵A 的秩为r ,当r= n 时,则A x =0 只有零解;当A x =0有无穷多解时,其基础解系含有解向量的个数为 n-r .2.设η1,η2为方程组A x =b 的两个解,则η1-η2或η2-η1 是其导出方程组的解。

《线性代数》[0044]2020 秋季 大作业答案

《线性代数》[0044]2020 秋季 大作业答案
西南大学培训与继续教育学院课程考试试题卷
学期:2020年秋季
课程名称【课程编号】: 线性代数 【0044】A卷
考试类别:大作业 满分:100分

1、什么是线性方程组的系数矩阵和增广矩阵?
2、写出下列线性方程组的系数矩阵和增广矩阵。
3、求解上述线性方程组
一、从下列两题中任选一题作答(30分)
1、(a)什么该方程有非零解的等价条件为|a-λe|=0
因此要求a的特征值,即求满足这个行列式的λ值即可;而特征向量就是该线性方程组的非零解。
(b)求解矩阵 的特征值和特征向量。
(b)设4阶方阵A、B、C满足方程 ,试求矩阵A,其中 , 。
(a)设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得: AB=BA=E ,则称方阵A可逆,并称方阵B是A的逆矩阵
(b)
二、从下列两题中任选一题作答(30分)
1、(a)阐述方阵的特征值和特征向量的定义。
对于方阵a,存在一个非零向量x和实数λ,使得ax=λx成立,则称λ为矩阵的特征值,x称为a相对于λ的特征向量。

【西南大学】《0004》大作业(参考答案)

【西南大学】《0004》大作业(参考答案)

= {1,2,3,4,5,6}上关系R 的关系图,试画出R 的传递闭包t (R )的关系图,并用集合表示.2西南大学网络与继续教育学院课程考试试题卷类别:网教专业:计算机教育 2019年12月课程名称【编号】:离散数学【0004】B 卷大作业满分:100分一、大作业题目134563.请给出谓词逻辑的研究对象,并将“任何整数的平方均非负”使用谓词符号化.答:研究对象:个体词,谓词,量词,命题符号化;,1.请给出集合A 到集合B 的映射f 的定义.设R 是实数集合,f :R ×R →R ×R ,f (x ,,y ) = (x +y ,x -y ).证明f 是双射.答:A,B 是两个集合,如果按照某种对应法则f,对于集合A 中的任何一个元素x,在集合B 中都有唯4.利用真值表求命题公式(p →(q →r ))↔(r →(q →p ))的主析取范式和主合取范式.5.求叶赋权分别为2, 3, 5, 7, 8的最优2叉树.一的元素y 和它对应,那么这样的对应叫做集合A 到集合B 的映射.记做f:A →B.并称y 是x 的象,x 是y 答:的原象.对任意的(x,y))∈R*R,f((x,y))=(x+y,x-y),二、大作业要求假设存在另一(x1,y1,)满足f((x1,y1))=(x1+y1,x1-y1)=(x+y,x-y),大作业共需要完成三道题:第1题必做,满分30分;即:x1+y1=x+y,x1-y1=x-y第2-3题选作一题,满分30分;第4-5题选作一题,满分40分.解这个关于x1,y1的线性方程组x1=x,y1=y 对任意的(x,y)∈R*R 存在(a,b)∈R*R,( a=(x+y)/2,b=(x-y)/2 )满足f((a,b))=(x,y),所以f 是满射所以f 是双射2.设R 是集合A 上的关系,请给出R 的传递闭包t (R )的定义.下图给出的是集合A所以f 是入射。

西南大学[0044]线性代数大作业答案春季

西南大学[0044]线性代数大作业答案春季

0044 20201单项选择题1、....2、矩阵A与B相似,则下列说法不正确的是().style="text-indent:32px">A与B有相同的特征值... A = B..R(A) = R(B)3、....4、....5、....6、.必有r个列向量线性无关.任意r个列向量都构成最大线性无关组.任何一个列向量都可以由其它r个列向量线性表出.任意r个列向量线性无关7、.0.1..0或1..8、.2.4..19、. C. 必有一列向量可有其余列向量线性表示.必有两列元素对应成比例.任一列向量是其余列向量的线性组合.必有一列元素全为010、. D. A有n个互异特征值.A是实对称阵.A有n个线性无关的特征向量.A的特征向量两两正交判断题11、. A.√. B.×12、. A.√. B.×13、. A.√. B.×14、. A.√. B.×15、. A.√. B.×16、. A.√. B.×17、. A.√. B.×18、. A.√. B.×19、. A.√. B.×20、设A、B为两个不可逆的同阶方阵,则|A|=|B| (). A.√. B.×21、转置运算不改变方阵的行列式、秩和特征值. ( ) . A.√. B.×22、. A.√. B.×23、. A.√. B.×24、. A.√. B.×主观题25、参考答案:26、参考答案:27、设三阶方阵A的三个特征值为1,2,3,则|A + E| = ( ).参考答案:2428、参考答案:29、参考答案:30、参考答案:31、参考答案:k>132、参考答案:333、参考答案:34、参考答案:35、参考答案:36、参考答案:237、参考答案:38、设线性方程组A x =0,A是4×5阶矩阵,如果R(A)=3,则其解空间的维数为( ).参考答案:239、参考答案:40、参考答案:41、参考答案:42、参考答案:43、参考答案:44、参考答案:45、参考答案:46、参考答案:47、参考答案:48、2.参考答案:49、参考答案:50、参考答案:51、参考答案:52、1.参考答案:53、参考答案:54、参考答案:55、参考答案:56、参考答案:57、参考答案:58、参考答案:59、参考答案:60、参考答案:。

西南大学线性代数[0044]20年6月程[大作业]《答案》非免费

西南大学线性代数[0044]20年6月程[大作业]《答案》非免费

西南大学网络与继续教育学院课程考试试题卷类别:网教2020年5月
课程名称[编号]:线性代数[0044]
A卷
大作业
满分:100分
要答案:2
必答题(40分)
什么是线性方程组
阐述矩阵乘法的运算过程。

并用矩阵乘积形式表示如下线性方程组。

用初等变换的方法求解上述线性方程组从下列两题中任选一题作答(30分)
(a)什么是方阵的逆矩阵
(b)阐述求逆矩阵的初等行变换方法
(0)求解如下矩阵方程:
(a)什么是向量组线性无关
(b)判断向量组口是否线性无关。

()分析式子D在几何上表达的含义。

(d)求解如下方程,并阐释D的意义
口从下列两题中任选一题作答(30分)
(a)求解行列式口
(b)求解矩阵D的特征值,并求0对应的特征向量
(a)阐述正交矩阵的定义。

(b)已知二二次型0变换为标准型时的正交变换矩阵为口,求该二次型的标准型。

西南大学网络与继续教育学院课程考试试题卷0044 【线性代数】

西南大学网络与继续教育学院课程考试试题卷0044 【线性代数】

由于 A 与 B 相似,于是
,由此可得出 x = 2,进而 A 的特征值为 0, 3, 2.

时,A 对应的特征向量为

. 而原线性方程组的特解可取为

时,A 对应的特征向量为


时,A 对应的特征向量为

因此,原线性方程组的通解为

,有
.
-2-
5、证明:设向量组
组 A 线性表示. 证明向量组
答: 证明:假设
线性无关.
二、大作业要求 大作业共需要完成三道题: 第 1-2 题选作一题,满分 30 分; 第 3-4 题选作一题,满分 30 分; 第 5 题必作,满分 40 分。
-3-
西南大学网络与继续教育学院课程考试试题卷
类别:网教
专业:计算机科学与技术
课程名称【编号】:0044 【线性代数】
大作业
2019 年 6 月 A卷
满分:100 分
1 1 1
2、 设 A 1 1
1

A* X

A1

2X
,其中
A* 是Βιβλιοθήκη A的伴随矩阵,求X
.
1 1 1
答:
因为
一、 大作业题目 1、 计算行列式
1 x 1 1 1 1 1 x 1 1 1 1 1 y 1 1 1 1 1 y
.
, 所以 A 可逆.
由于
, 根据
,有

答:
进而 由于
. 于是
,因而
.
, 所以
.
.
-1-
3、
求下列线性方程组
答:
x1 2x2 x3 3x4 x5 2 2x1 4x2 2x3 6x4 3x5 6 . x1 2x2 x3 x4 3x5 4

西南大学[0343]《线性代数》大作业答案

西南大学[0343]《线性代数》大作业答案

3.
A 中有 r 列线性无关;
4.
A 中线性无关的列向量最多有 r 个.
3、若齐次线性方程组
有非零解,则必须满足[ ]
1.
k=4
2.
k=-1
3.
k≠-1 且 k≠4
4.
k=-1 或 k=4
4、下列各矩阵中,初等矩阵是[ ]。
1.
2.
3.
4.
5、n 阶矩阵 A 与对角矩阵相似的充分必要条件是[ ]。
___ ___
40、行列式 参考答案:
-11
中元素-2 的代数余子式是_____
41、行列式 参考答案:
8
元素 x 的代数余子式是 .
42、行列式
=

参考答案:
0
43、 参考答案:

是 3 维向量组,则
线性 关。
44、矩阵 参考答案:
的伴随矩阵是

45、行列式 参考答案: 0
,则 =
46、设 A,B,C 均为 n 阶矩阵,若由
1.
A.√
2.
B.×
24、A是n阶正交矩阵,则
.
1.
A.√
2.
B.×
25、若 A,B 均为 n 阶可逆矩阵,则 AB 可逆。
1.
A.√
2.
B.×
主观题
26、设向量组
线性无关,则向量组
线性__________关。
参考答案: 无
27、已知 4 阶行列式中第 3 列元素依次为-1,2,0,1,它们的余子式依次分别为 5,3,-7,4,则 D=________ 参考答案:
1.
A.√
2.
B.×
20、齐次线性方程组有非零解的充要条件是其系数行列式等于零.。 ( )

西南大学网络与继续教育学院秋季线性代数考试答案

西南大学网络与继续教育学院秋季线性代数考试答案
x 2 x 3 1 x1 x 3 1 有无穷多解? 并求出其结构解. 2.当 a,b 为何值时,方程组 x 2 2 x 3 x ( a 2) x b 3 2 3 1Biblioteka 由此 B 的行最简形式矩阵为
令 X1 = 0, 的特解:
- 14λ + 40 = (λ -4) (λ -10)= 0 = 4 时,齐次线性方程组(A-4E)χ = ,k1 ≠ 0;
χ χ χ χ
=
的基础解系为
,于是对应
于λ = 4 的特征向量为 k1 当λ
= 10 时,齐次线性方程组(A-10E)χ = ,k2 ≠ 0;
=
的基础解系为

于是对应于λ = 4 的特征向量为 k2
二、大作业要求:
西南大学网络与继续教育学院课程考试试题卷
类别:网教 专业:计算机科学与技术 20XX 年 12 月 A卷 满分:100 分
大作业共需要完成三道题: 第 1-2 题选作一题,满分 30 分; 第 3-4 题选作一题,满分 30 分; 第 5 题必作,满分 40 分。
课程名称【编号】 :线性代数【0044】 大作业
由于
=8 ≠ 0 ,
所以 k1 = k2 = k3= 0, 因此向量组 β1,β2,β3 线性无关
3 -1 3. 已知 A = ,求其特征值与特征向量. 7 11
*
=
对应的齐次线性方程组的基础解系为ξ
=
, 所以原线性方程组的结构解为:
X=k
2 2 2 4.用正交变换化二次型 f (x1, x2, x3)= 2x1 3x2 3x3 2x2 x3 为标准型,并给出所用的正交变换.
一、 大作业题目:

线性代数习题参考答案

线性代数习题参考答案

线性代数习题参考答案(总96页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章行列式§1 行列式的概念1.填空(1) 排列6427531的逆序数为,该排列为排列。

(2) i = ,j = 时,排列1274i56j9为偶排列。

(3) n阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n元排列。

若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。

(4) 在6阶行列式中,含152332445166a a a a a a的项的符号为,含324314516625a a a a a a的项的符号为。

2.用行列式的定义计算下列行列式的值(1)112223323300 0aa aa a解:该行列式的3!项展开式中,有项不为零,它们分别为,所以行列式的值为。

(2)12,121,21,11, 12,100000nn nn n n n n n n n n nnaa aa a aa a a a------解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。

3.证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。

对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n2n 。

4.若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么 5.n 阶行列式中,若负项的个数为偶数,则n 至少为多少(提示:利用3题的结果) 6.利用对角线法则计算下列三阶行列式(1)21141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。

西南大学线性代数作业答案

西南大学线性代数作业答案

第一次行列式部分的填空题1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。

2.排列45312的逆序数为 5 。

3.行列式25112214---x中元素x 的代数余子式是 8 . 4.行列式10232543--中元素-2的代数余子式是 —11 。

5.行列式25112214--x 中,x 的代数余子式是 —5 。

6.计算00000d c ba = 0行列式部分计算题 1.计算三阶行列式381141102--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)×(—4)—0×1×3—2×(—1)×8=—42.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列. 解:i =8,j =5。

3.(7分)已知0010413≠x x x,求x 的值.解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2所以 x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000z y x z y x z y x λλ 有非零解,求λ。

解:()211110100011111111-=--==λλλλλD由D=0 得 λ=15.用克莱姆法则求下列方程组:⎪⎩⎪⎨⎧=+-=++=++10329253142z y x z y x z y x 解:因为331132104217117021042191170189042135113215421231312≠-=⨯-⨯=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算:811110212942311-=-=D 1081103229543112-==D1351013291531213=-=D因此,根据克拉默法则,方程组的唯一解是:x=27,y=36,z=—45第二次线性方程组部分填空题1.设齐次线性方程组A x =0的系数阵A 的秩为r ,当r= n 时,则A x =0 只有零解;当A x =0有无穷多解时,其基础解系含有解向量的个数为 n-r .2.设η1,η2为方程组A x =b 的两个解,则 η1-η2或η2-η1 是其导出方程组的解。

西南大学网上作业题及参考答案

西南大学网上作业题及参考答案

西南大学网上作业题及参考答案西南大学《社会科学研究方法》网上作业题及答案.doc 西南大学《色彩》网上作业题及答案.doc西南大学《人力资源开发与管理》网上作业题及答案.doc 西南大学《区域分析与规划》网上作业题及答案.doc西南大学《园艺植物研究法》网上作业题答案.doc西南大学《遗传学》网上作业题答案.doc西南大学《仪器分析》网上作业题答案.doc西南大学《消费者行为学》网上作业题答案.doc西南大学《西方经济学(下)》网上作业题答案.doc西南大学《文字设计》网上作业题答案.doc西南大学《外语教育技术》网上作业题答案.doc西南大学《外国音乐简史》网上作业题答案.doc西南大学《土地利用规划学》网上作业题答案.doc西南大学《土地规划学》网上作业题答案.doc西南大学《商务沟通》网上作业题答案.doc西南大学《论文写作》网上作业题答案.doc西南大学《旅游地理学》网上作业题答案.doc西南大学《合唱指挥常识》网上作业题答案.doc西南大学《歌剧艺术欣赏》网上作业题答案.doc西南大学《高效率教学》网上作业题答案.doc西南大学《儿童哲学》网上作业题答案.doc西南大学《动物生物学》网上作业题答案.doc西南大学《动物生物化学》网上作业题答案.doc西南大学《动物生理学》网上作业题答案.doc西南大学《邓小平教育思想》网上作业题答案.doc西南大学《财务会计》网上作业题答案.doc西南大学《中国教育哲学思想》网上作业题及答案.doc 西南大学《中国法制史》网上作业题答案.doc西南大学《中国法律思想史》网上作业题及答案.doc 西南大学《政治学与管理》网上作业题及答案.doc西南大学《政治学》网上作业题及答案.doc西南大学《证券学》网上作业题及答案.doc西南大学《影视摄影》网上作业题及答案.doc西南大学《英语阅读一》(高)网上作业题答案.doc西南大学《英语阅读四(高)》网上作业题及答案.doc 西南大学《英语阅读二》(高)网上作业题答案.doc西南大学《英语听说二》(专)网上作业题及答案.doc 西南大学《英语国家概况》网上作业题及答案.doc西南大学《房地产经营管理》网上作业题及答案.doc西南大学《房地产估价》网上作业题及答案.doc西南大学《电子政务》网上作业题及答案.doc西南大学《当代中国公共政策》网上作业题及答案.doc 西南大学《城市地理学》网上作业题及答案.doc西南大学《财务会计》网上作业题及答案.doc西南大学《办公自动化》网上作业题及答案.doc西南大学《班主任工作》网上作业题及答案.doc西南大学《课堂教学艺术》网上作业题及答案.doc西南大学《经济地理学》网上作业题及答案.doc西南大学《计算机图象处理基础》网上作业题及答案.doc 西南大学《计算机辅助设计》网上作业题及答案.doc西南大学《花卉栽培学概》网上作业题及答案.doc西南大学《果树栽培学概论》网上作业题及答案.doc西南大学《国际贸易》网上作业题及答案.doc西南大学《管理中的计算机应用》网上作业题及答案.doc 西南大学《管理学》网上作业题及答案.doc西南大学《古代文化》网上作业题及答案.doc西南大学《公务员制度》网上作业题及答案.doc西南大学《公文写作》网上作业题及答案.doc西南大学《工程地质》网上作业题及答案.doc西南大学《政治经济学》网上作业题及答案.doc西南大学《语文教学方法论》网上作业题及答案.doc西南大学《行政管理学》网上作业题及答案.doc西南大学《行政法与行政诉讼法》网上作业题及答案.doc 西南大学《小学数学教学方法》网上作业题及答案.doc 西南大学《系统工程》网上作业题及答案.doc西南大学《无土栽培》网上作业题及答案.doc西南大学《土地管理学基础》网上作业题及答案.doc西南大学《蔬菜栽培学概论》网上作业题及答案.doc西南大学《社会学》网上作业题及答案.doc西南大学《素描》网上作业题及答案.doc西南大学《思想政治教育学》网上作业题及答案.doc西南大学《数学分析选讲》网上作业题答案.doc西南大学《世界旅游市场》网上作业题及答案.doc西南大学《审计学》网上作业题及答案.doc西南大学《社会学概论》网上作业题答案.doc西南大学《社会心理学》网上作业题答案.doc西南大学《社会调查与研究方法》网上作业题答案.doc 西南大学《社会保障》网上作业题及答案.doc西南大学《商品流通企业会计》网上作业题及答案.doc 西南大学《商法学》[下]网上作业题及答案.doc西南大学《人力资源管理》网上作业题及答案.doc 西南大学《人口地理学》网上作业题及答案.doc西南大学《人格心理学》网上作业题及答案.doc西南大学《企业管理》网上作业题及答案.doc西南大学《普通心理学》网上作业题答案.doc西南大学《普通物理选讲一》网上作业题及答案.doc 西南大学《民间文学》网上作业题答案.doc西南大学《民法总论》网上作业题答案.doc西南大学《民法分论》网上作业题及答案.doc西南大学《艺术概论》网上作业题及答案.doc西南大学《形式逻辑》网上作业题及答案.doc西南大学《行政法学》网上作业题及答案.doc西南大学《刑法总论》网上作业题答案.doc西南大学《刑法分论》网上作业题及答案.doc西南大学《新税制》网上作业题及答案.doc西南大学《心理学》网上作业题及答案.doc西南大学《心理测量学》网上作业题及答案.doc西南大学《宪法学》网上作业题答案.doc西南大学《线性代数》网上作业题答案.doc西南大学《现代化学教学论》网上作业题答案.doc 西南大学《现代汉语下》网上作业题及答案.doc西南大学《现代汉语上》网上作业题答案.doc西南大学《现代汉语词汇》网上作业题答案.doc西南大学《西方哲学史》网上作业题及答案.doc西南大学《西方经济学》网上作业题及答案.doc西南大学《文字学》网上作业题及答案.doc西南大学《外国文学下》网上作业题及答案.doc西南大学《外国文学上》网上作业题及答案.doc西南大学《土地管理》网上作业题及答案.doc西南大学《统计学原理》网上作业题答案.doc西南大学《体育新闻》网上作业题及答案.doc西南大学《综合英语一》网上作业题答案.doc西南大学《综合英语四》网上作业题及答案.doc西南大学《综合英语七》网上作业题及答案.doc西南大学《综合英语二》网上作业题及答案.doc西南大学《专业英语》网上作业题答案.doc西南大学《中级无机化学》网上作业题答案.doc西南大学《中国新诗与中外文化》网上作业题答案.doc 西南大学《古代散文》网上作业题及答案.doc西南大学《公司法学》网上作业题答案.doc西南大学《公共事业管理导论》网上作业题答案.doc 西南大学《工程地质学》网上作业题及答案.doc西南大学《高等有机化学》网上作业题及答案.doc西南大学《分子生物学》网上作业题及答案.doc西南大学《房地产法》网上作业题及答案.doc西南大学《法理学》网上作业题答案.doc西南大学《电算化会计》网上作业题及答案.doc西南大学《道德》网上作业题及答案.doc西南大学《单片机及应用》网上作业题及答案.doc西南大学《大学英语二》网上作业题答案.doc西南大学《成本会计》网上作业题及答案.doc西南大学《财政学》网上作业题及答案.doc西南大学《财务会计学》网上作业题答案.doc西南大学《材料化学》网上作业题及答案.doc西南大学《标准日本语四》网上作业题及答案.doc西南大学《旅游政策与法规》网上作业题答案.doc西南大学《旅游英语上》网上作业题及答案.doc西南大学《旅游心理学》网上作业题答案.doc西南大学《旅游企业投资与管理》网上作业题及答案.doc 西南大学《旅游美学》网上作业题及答案.doc西南大学《旅游景区开发与管理》网上作业题及答案.doc 西南大学《旅游经济学》网上作业题及答案.doc西南大学《领导科学》网上作业题及答案.doc西南大学《课程论》网上作业题及答案.doc西南大学《经济法》网上作业题及答案.doc西南大学《金融理论与实务》网上作业题及答案.doc 西南大学《教育学》网上作业题及答案.doc西南大学《教育心理学》网上作业题答案.doc西南大学《教育统计学》网上作业题及答案.doc西南大学《教育生理学》网上作业题及答案.doc西南大学《教育社会学》网上作业题及答案.doc西南大学《教育科研方法》网上作业题及答案.doc西南大学《教育经济学》网上作业题及答案.doc西南大学《教育法学》网上作业题及答案.doc西南大学《教学论》网上作业题及答案.doc西南大学《计算机应用》网上作业题及答案.doc西南大学《计算机导论》网上作业题答案.doc西南大学《基础语法下》网上作业题及答案.doc西南大学《婚姻法》网上作业题及答案.doc西南大学《环境学概论》网上作业题及答案.doc西南大学《环境伦理学》网上作业题及答案.doc西南大学《化学实验教学研究》网上作业题及答案.doc 西南大学《合同法》网上作业题及答案.doc西南大学《美学原理》网上作业题及答案.doc西南大学《体育文献检索》网上作业题及答案.doc西南大学《体育社会学》网上作业题及答案.doc西南大学《体育公共关系》网上作业题及答案.doc西南大学《唐宋词研究》网上作业题答案.doc西南大学《微积分初步》网上作业题及答案.doc西南大学《网页设计》网上作业题及答案.doc西南大学《土木工程材料》网上作业题及答案.doc西南大学《土地资源学》网上作业题及答案.doc西南大学《土地制度与政策》网上作业题及答案.doc西南大学《土地管理学》网上作业题及答案.doc西南大学《土地法学》网上作业题及答案.doc西南大学《田间试验设计》网上作业题及答案.doc西南大学《天然药物化学》网上作业题及答案.doc西南大学《体育教育学(方法论)》网上作业题及答案.doc 西南大学《水力学》网上作业题及答案.doc西南大学《数学活动》网上作业题及答案.doc西南大学《蔬菜栽培学》网上作业题及答案.doc西南大学《市场营销》网上作业题及答案.doc西南大学《社会心理学》网上作业题及答案.doc西南大学《色彩构成》网上作业题及答案.doc西南大学《企业战略管理》网上作业题及答案.doc西南大学《普通测量学》网上作业题及答案.doc西南大学《盆景制作》网上作业题及答案.doc西南大学《民族民间音乐》网上作业题及答案.doc西南大学《面向对象程序设计》网上作业题及答案.doc西南大学《乐理》网上作业题及答案.doc西南大学《中学数学课堂教学设计》网上作业题及答案.doc 西南大学《中国音乐史》网上作业题及答案.doc西南大学《中国古代文学二》网上作业题及答案.doc西南大学《政府经济学》网上作业题及答案.doc西南大学《园艺产品营销学》网上作业题及答案.doc西南大学《园艺产品采后处理与商品化》网上作业题及答案.doc 西南大学《园林制图》网上作业题及答案.doc西南大学《园林艺术设计》网上作业题及答案.doc西南大学《园林苗圃学》网上作业题及答案.doc西南大学《园林建筑》网上作业题及答案.doc西南大学《园林工程概预算》网上作业题及答案.doc西南大学《园林工程初步》网上作业题及答案.doc西南大学《英语语法》网上作业题及答案.doc西南大学《英语写作》网上作业题及答案.doc西南大学《音乐》网上作业题及答案.doc西南大学《药物化学》网上作业题及答案.doc西南大学《遥感概论》网上作业题及答案.doc西南大学《学校心理学》网上作业题及答案.doc西南大学《学习心理学》网上作业题及答案.doc西南大学《信息安全》网上作业题及答案.doc西南大学《心理学教学法(方法论)》网上作业题及答案.doc西南大学《小学数学教育学》网上作业题及答案.doc西南大学《小学数学教学案例分析》网上作业题及答案.doc 西南大学《西方文学与文化》网上作业题及答案.doc西南大学《国际私法》网上作业题及答案.doc西南大学《国际经济法》网上作业题及答案.doc西南大学《管理学原理》网上作业题及答案.doc西南大学《管理思想史》网上作业题及答案.doc西南大学《学校管理学》网上作业题及答案.doc西南大学《学校德育》网上作业题及答案.doc西南大学《学前心理学》网上作业题及答案.doc西南大学《学前教育学》网上作业题及答案.doc西南大学《新文学思潮与流派》网上作业题答案.doc西南大学《线性代数》网上作业题及答案.doc西南大学《西方经济学(上)》网上作业题及答案.doc西南大学《物业管理》网上作业题及答案.doc西南大学《土地评价与管理》网上作业题答案.doc西南大学《非营利组织会计》网上作业题及答案.doc西南大学《房屋建筑学2》网上作业题及答案.doc西南大学《房屋建筑学1》网上作业题及答案.doc西南大学《法律逻辑》网上作业题及答案.doc西南大学《发展心理学》网上作业题及答案.doc西南大学《地理信息系统原理》网上作业题及答案.doc西南大学《当代西方经济思潮》网上作业题及答案.doc西南大学《大气》网上作业题及答案.doc西南大学《存在主义疗法》网上作业题及答案.doc西南大学《城市园林绿地规划》网上作业题及答案.doc西南大学《测量学》网上作业题及答案.doc西南大学《奥林匹克学》网上作业题及答案.doc西南大学《C语言》网上作业题及答案.doc西南大学《钢筋混凝土结构与砌体结构》网上作业题及答案.doc 西南大学《课堂教学技术(教学论)》网上作业题及答案.doc 西南大学《酒店房务管理》网上作业题及答案.doc西南大学《金融学》网上作业题及答案.doc西南大学《解剖》网上作业题及答案.doc西南大学《结构力学》网上作业题及答案.doc西南大学《教育心理学》网上作业题及答案.doc西南大学《建筑制图2》网上作业题及答案.doc西南大学《建筑制图1》网上作业题及答案.doc西南大学《建筑力学》网上作业题及答案.doc西南大学《建筑工程招投标与合同管理》网上作业题及答案.doc 西南大学《建筑给水排水工程》网上作业题及答案.doc西南大学《建筑CAD》网上作业题及答案.doc西南大学《计算机制图基础(CAD)》网上作业题及答案.doc西南大学《基础工程》网上作业题及答案.doc西南大学《化工制图》网上作业题及答案.doc西南大学《化工技术经济学》网上作业题及答案.doc西南大学《花卉学》网上作业题及答案.doc西南大学《果树栽培学》网上作业题及答案.doc西南大学《果树盆景盆栽技术》网上作业题及答案.doc 西南大学《国际投资》网上作业题及答案.doc西南大学《国际金融》网上作业题及答案.doc西南大学《管理哲学》网上作业题及答案.doc西南大学《公共关系》网上作业题及答案.doc西南大学《工程建设监理》网上作业题及答案.doc西南大学《歌词创作与鉴赏》网上作业题及答案.doc西南大学《文献检索与应用》网上作业题及答案.doc西南大学《杜甫研究》网上作业题及答案.doc西南大学《第四纪地质学》网上作业题及答案.doc西南大学《地理信息系统》网上作业题答案.doc西南大学《导游业务》网上作业题及答案.doc西南大学《当代世界政治与经济》网上作业题及答案.doc 西南大学《操作系统》网上作业题及答案.doc西南大学《标准日本语三》网上作业题及答案.doc西南大学《标准日本语二》网上作业题及答案.doc西南大学《比较文学》网上作业题答案.doc西南大学《体育产业学导论》网上作业题及答案.doc 西南大学《税收学》网上作业题及答案.doc西南大学《生物化学》网上作业题及答案.doc西南大学《区域经济学》网上作业题及答案.doc西南大学《欧洲文化入门》网上作业题及答案.doc西南大学《面向对象技术》网上作业题答案.doc西南大学《美国文学史及选读》网上作业题及答案.doc 西南大学《马克思主义哲学》网上作业题及答案.doc 西南大学《旅游商品学》网上作业题及答案.doc西南大学《旅行社经营管理》网上作业题及答案.doc 西南大学《科学教育》网上作业题及答案.doc西南大学《经济数学(下)》网上作业题及答案.doc西南大学《经济数学(上)》网上作业题及答案.doc西南大学《教育案例研究》网上作业题答案.doc西南大学《建筑工程制图》网上作业题及答案.doc西南大学《会计学基础》网上作业题答案.doc西南大学《会计核算》网上作业题及答案.doc西南大学《会计电算化》网上作业题及答案.doc西南大学《化工基础》网上作业题及答案.doc西南大学《古代汉语下》网上作业题及答案.doc西南大学《高数选讲》网上作业题及答案.doc西南大学《概率统计》网上作业题答案.doc西南大学《分析化学(定量)》网上作业题答案.doc西南大学《房屋建筑学》网上作业题及答案.doc西南大学《多媒体技术》网上作业题及答案.doc西南大学《综合自然地理学》网上作业题及答案.doc 西南大学《综合英语八》网上作业题及答案.doc西南大学《资产管理》网上作业题及答案.doc西南大学《中学英语教学法》网上作业题及答案.doc 西南大学《中华人民共和国史》网上作业题及答案.doc 西南大学《植物生物学》网上作业题及答案.doc西南大学《语言学导论》网上作业题及答案.doc西南大学《英语阅读二》网上作业题及答案.doc西南大学《英语文体学引论》网上作业题答案.doc西南大学《英语听力一》(高)网上作业题及答案.doc西南大学《英语听力三》(高)网上作业题及答案.doc西南大学《英语词汇学》网上作业题及答案.doc西南大学《英国文学史及选读》网上作业题及答案.doc 西南大学《汇编语言》网上作业题及答案.doc西南大学《环境化学》网上作业题答案.doc西南大学《数学教育学》网上作业题及答案.doc西南大学《营销学》网上作业题及答案.doc西南大学《音乐审美常识》网上作业题及答案.doc西南大学《学校体育学》网上作业题及答案.doc西南大学《行政论理学》网上作业题及答案.doc西南大学《行政管理案例分析》网上作业题及答案.doc 西南大学《刑事诉讼法》网上作业题及答案.doc西南大学《心理诊断学》网上作业题及答案.doc西南大学《项目投资与分析》网上作业题及答案.doc 西南大学《现代教育技术》网上作业题及答案.doc西南大学《现代教学技术》网上作业题及答案.doc西南大学《现代广告学》网上作业题及答案.doc西南大学《系统论》网上作业题及答案.doc西南大学《物流管理》网上作业题及答案.doc西南大学《物理教育学》(方法论)网上作业题答案.doc 西南大学《物理化学》网上作业题答案.doc西南大学《网络原理》网上作业题及答案.doc西南大学《外国民商法》网上作业题及答案.doc西南大学《土木工程施工技术》网上作业题及答案.doc 西南大学《土木工程概预算》网上作业题及答案.doc 西南大学《土力学》网上作业题及答案.doc西南大学《土地经济学》网上作业题及答案.doc西南大学《投资经济学》网上作业题及答案.doc西南大学《统计物理基础》网上作业题及答案.doc西南大学《天文概论》网上作业题及答案.doc西南大学《体育经济学》网上作业题及答案.doc西南大学《体育概论》网上作业题及答案.doc西南大学《特稀蔬菜概论》网上作业题及答案.doc西南大学《数字电路》网上作业题及答案.doc西南大学《数学物理方法》网上作业题答案.doc西南大学《园艺作物无公害生产》网上作业题及答案.doc西南大学《园艺植物育种理论及实践》网上作业题及答案.doc 西南大学《园艺植物生物技术》网上作业题及答案.doc西南大学《园艺植物化学调控》网上作业题及答案.doc西南大学《园林植物造景设计》网上作业题及答案.doc西南大学《园林植物配置》网上作业题及答案.doc西南大学《园林建筑设计与构造》网上作业题及答案.doc西南大学《园林工程》网上作业题及答案.doc西南大学《语言学概论》网上作业题答案.doc西南大学《思想政治教育教学方法论》网上作业题及答案.doc 西南大学《税务会计》网上作业题及答案.doc西南大学《数学建模》网上作业题及答案.doc西南大学《食用菌栽培学》网上作业题及答案.doc西南大学《化学与社会》网上作业题答案.doc西南大学《古代汉语上》网上作业题答案.doc西南大学《公关语言》网上作业题及答案.doc西南大学《公共关系学》网上作业题及答案.doc西南大学《工程概预算》网上作业题及答案.doc西南大学《歌剧艺术欣赏》网上作业题及答案.doc西南大学《高级财务会计》网上作业题及答案.doc西南大学《钢琴教学法》网上作业题及答案.doc西南大学《钢筋混凝土结构基本原理》网上作业题及答案.doc 西南大学《钢结构设计》网上作业题及答案.doc西南大学《钢结构基本原理》网上作业题及答案.doc西南大学《儿童心理障碍》网上作业题及答案.doc西南大学《电子商务概论》网上作业题及答案.doc西南大学《地理科学》网上作业题及答案.doc西南大学《地籍管理》网上作业题及答案.doc西南大学《邓小平理论》网上作业题及答案.doc西南大学《城市园林绿地规划设计》网上作业题及答案.doc 西南大学《草坪学》网上作业题及答案.doc西南大学《变态心理学》网上作业题及答案.doc西南大学《花卉栽培》网上作业题及答案.doc西南大学《国际法》网上作业题及答案.doc西南大学《观光农场经营管理》网上作业题及答案.doc西南大学《市场营销学》网上作业题及答案.doc西南大学《世界政治制度史》网上作业题及答案.doc西南大学《实验心理学》网上作业题答案.doc西南大学《生物学》网上作业题及答案.doc西南大学《生物工程》网上作业题及答案.doc西南大学《生态学》网上作业题及答案.doc西南大学《人力资源开发与管理》网上作业题答案.doc西南大学《企业管理学》网上作业题及答案.doc西南大学《普通物理选讲二》网上作业题及答案.doc西南大学《盆景装饰》网上作业题及答案.doc西南大学《暖通空调》网上作业题及答案.doc西南大学《毛泽东思想概论》网上作业题及答案.doc西南大学《马克思主义哲学》网上作业题答案.doc西南大学《旅游规划与开发》网上作业题及答案.doc西南大学《鲁迅研究》网上作业题及答案.doc西南大学《领导心理学》网上作业题答案.doc西南大学《理论力学》网上作业题答案.doc西南大学《乐理常识》网上作业题及答案.doc西南大学《跨文化交际》网上作业题及答案.doc西南大学《教育统计与测评》网上作业题及答案.doc西南大学《建设法规》网上作业题及答案.doc西南大学《基础教育阶段英语课程》网上作业题及答案.doc 西南大学《基础会计学》网上作业题及答案.doc。

西南大学2020年秋季经济数学上 【0177】机考大作业参考答案

西南大学2020年秋季经济数学上 【0177】机考大作业参考答案
(2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0;
(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么
x→∞时lim f(x)/F(x)=lim f'(x)/F'(x)。
如果函数f(x)满足:
在闭区间[a,b]上连续;
在开区间(a,b)内可导;
在区间端点处的函数值相等,即f(a)=f(b),
那么在(a,b)内至少有一点ξ(a<ξ<b),使得f'(ξ)=0.
如果函数f(x)及F(x)满足
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导;
(3)对任一x∈(a,b),F'(x)≠0
西南大学培训与继续教育学院课程考试试题卷
学期:2020年秋季
课程名称【编号】:经济数学上 【0177】 A卷
考试类别:大作业 满分:100分
一、填空题每小题5分,共20分
1、设 ,则 =0。
2、若 ,则 -6。
3、已知 是函数 的极值点,则 -8。
4、求由曲线 在 上所围曲边梯形的面积 4。
二、计算题每小题15分,共60分
设(1)当x→a时,函数f(x)及F(x)都趋于零;
(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;
(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么
x→a时lim f(x)/F(x)=lim f'(x)/F'(x)。
又设
(1)当x→∞时,函数f(x)及F(x)都趋于∞;
1、讨论函数 的连续性。

西南大学《线性代数》网上作业及参考答案

西南大学《线性代数》网上作业及参考答案

===================================================================================================1:[论述题]线性代数模拟试题三参考答案:线性代数模拟试题三参考答案 1:[论述题]线性代数模拟试题四参考答案:线性代数模拟试题四参考答案 1:[论述题]线性代数模拟试题五参考答案:线性代数模拟试题五参考答案 1:[论述题]线性代数模拟试题六 一、填空题(每小题3分,共15分) 1. 行列式332313322212312111b a b a b a b a b a b a b a b a b a = ( ). 2. 设A 是4×3矩阵,R (A ) = 2,若B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则R (AB ) = ( ).3. 设矩阵A = ⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax = 0有非零解,则数t = ( ).4. 已知向量,121,3012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k βαα与β的内积为2,则数k = ( ).5. 已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为( ).二、单项选择题(每小题3分,共15分) 1. 设A 为m ×n 矩阵,B 为n ×m 矩阵,m ≠n , 则下列矩阵中为n 阶矩阵的是( ). (A) B T A T (B) A T B T (C) ABA (D) BAB2. 向量组α1,α2,…,αS (s >2)线性无关的充分必要条件是( ). (A) α1,α2,…,αS 均不为零向量(B) α1,α2,…,αS 中任意两个向量不成比例 (C) α1,α2,…,αS 中任意s -1个向量线性无关(D) α1,α2,…,αS 中任意一个向量均不能由其余s -1个向量线性表示===================================================================================================3. 设3元线性方程组Ax = b ,A 的秩为2,η1,η2,η3为方程组的解,η1 + η2 = (2,0,4)T ,η1+ η3 =(1,-2,1)T ,则对任意常数k ,方程组Ax = b 的通解为( ).(A) (1,0,2)T + k (1,-2,1)T (B) (1,-2,1)T + k (2,0,4)T (C) (2,0,4)T + k (1,-2,1)T (D) (1,0,2)T + k (1,2,3)T 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛000000111(B) ⎪⎪⎪⎭⎫⎝⎛000110111(C) ⎪⎪⎪⎭⎫ ⎝⎛000222111(D) ⎪⎪⎪⎭⎫ ⎝⎛3332221115. 二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( ).(A) 1 (B) 2 (C) 3 (D) 4三、判断题(正确的打“√”,错误的打“×”,每小题3分,共15分)1. 设A 为n 阶方阵,n ≥2,则|-5A |= -5|A |. ( )2. 设行列式D =333231232221131211a a a a a a a a a = 3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为5. ( ) 3. 设A = ⎪⎪⎭⎫⎝⎛4321, 则|A *| = -2. ( )4. 设3阶方阵A 的特征值为1,-1,2,则E - A 为可逆矩阵. ( )5. 设λ = 2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于41. ( ) 四、(10分) 已知矩阵A = ⎪⎪⎪⎭⎫⎝⎛-210011101,B =⎪⎪⎪⎭⎫⎝⎛410011103, (1) 求A 的逆矩阵A -1. (2) 解矩阵方程AX = B .===================================================================================================五、(10分)设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=21302α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=147033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02114α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.六、(10分) 求线性方程组⎪⎩⎪⎨⎧=++=+++=+++322023143243214321x x x x x x x x x x x 的通解(要求用它的一个特解和导出组的基础解系表示)七、(15分) 用正交变换化二次型f (x 1, x 2, x 3)=2331214x x x x +-为标准形,并写出所用的正交变换.八、(10分) 设a ,b ,c 为任意实数,证明向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0112b α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=0013c α,线性无关.参考答案:线性代数模拟试题六参考答案 一、填空题1. 0.2. 23.2.4.32. 5. k > 2. 二、单项选择题1(B). 2(D). 3(D). 4(B). 5(C). 三、判断题1. (⨯). 2(⨯). 3(√). 4(⨯). 5(√).===================================================================================================四、Solution (1)由于⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-+-100210011110001101100210010011001101211r r⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----→+-++111100122010112001111100011110001101132332111r r r r r r ⎪⎪⎪⎭⎫ ⎝⎛-----→-11110012201011200121r ,因此,有⎪⎪⎪⎭⎫ ⎝⎛-----=-1111221121A .(2) 因为B AX =,所以⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----==-3222342254100111031111221121B A X .五、Solution 因为()⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=+-+400027120330130101424271210311301,,,4321214321r r r r αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔+--+-00001000011013011000000001101301100001100110130143324231141312r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛→+-0000100001100301131r r , 于是,421,,ααα是极大无关组且2133ααα+=.===================================================================================================六、Solution 将增广矩阵B 化为行最简形得⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛=+-322103221011111322100112311111213r r B⎪⎪⎪⎭⎫ ⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛----→++000003221021101000003221011111123211r r r r ⎪⎪⎪⎭⎫ ⎝⎛---→-00000322102110121r , 这时,可选43,x x 为自由未知量.令0,043==x x 得特解⎪⎪⎪⎪⎪⎭⎫⎝⎛-=0032*η.分别令⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10,0143x x 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1021,012121ξξ. 原线性方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00321021012121k k x ,其中21,k k 为任意常数.七、Solution 所给二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛--=102000201A ,)3)(1(122110200201||λλλλλλλλλλ-+=-----=-----=-E A ,===================================================================================================所以A 的特征值为-1,0,3.当1-=λ时,齐次线性方程组=+x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1011ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p . 当0=λ时,齐次线性方程组=-x E A )0(0的基础解系为⎪⎪⎪⎭⎫⎝⎛=0102ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0102p .当3=λ时,齐次线性方程组=-x E A )3(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1013ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210213p .取()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,在正交变换Py x =下得二次型的标准型为23213y y f +-=.===================================================================================================八、Proof 因为()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=+-+-001010100001011100001011111,,341311321c b a c b a c b ar r r r ααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔↔↔+-+-+-00010*********0000010001001010000100433241212324r r r r r r r cr r br r ar , 于是321,,ααα的秩为3,所以321,,ααα线性无关.1:[论述题]一、填空题(每小题3分,共15分)1. 设A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023, B =,010201⎢⎣⎡⎥⎦⎤则AB = ⎪⎪⎪⎭⎫⎝⎛. 2. 设A 为33⨯矩阵, 且方程组Ax = 0的基础解系含有两个解向量, 则R (A ) = ( ). 3. 已知A 有一个特征值-2, 则B = A 2+ 2E 必有一个特征值( ). 4. 若α=(1, -2, x )与),1,2(y =β正交, 则x y = ( ). 5. 矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是( ).二、单选题(每小题3分,共15分)1. 如果方程⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k = ( ).(A) -2 (B) -1===================================================================================================(C) 1 (D) 22. 设A 为n 阶可逆方阵,下式恒正确的是( ). (A) (2A )-1 = 2A -1 (B) (2A )T = 2A T (C) [(A -1)-1]T = [(A T )-1]T (D) [(A T )T ]-1 = [(A -1)-1]T3. 设β可由向量α1 = (1,0,0),α2 = (0,0,1)线性表示,则下列向量中β只能是( ). (A) (2,1,1) (B) (-3,0,2) (C) (1,1,0) (D) (0,-1,0)4. 向量组α1 ,α2 …,αs 的秩不为s (s 2≥)的充分必要条件是( ). (A) α1 ,α2 …,αs 全是非零向量 (B) α1 ,α2 …,αs 全是零向量(C) α1 ,α2 …,αs 中至少有一个向量可由其它向量线性表出 (D) α1 ,α2 …,αs 中至少有一个零向量 5. 与矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( ).(A) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001(B) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011(C) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001(D) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A 为三阶方阵且|A | = -2,则|3A T A | = -108. ( )2. 设A 为四阶矩阵,且|A | = 2,则|A *| = 23. ( ) 3. 设A 为m n ⨯矩阵,线性方程组Ax = 0仅有零解的充分必要条件是A 的行向量组线性无关. ( )4. 设A 与B 是两个相似的n 阶矩阵,则E B E A λλ-=-. ( )5. 设二次型,),(23222132,1x x x x x x f +-=则),(32,1x x x f 负定. ( )四、 (10分) 计算四阶行列式1002210002100021的值.===================================================================================================五、(10分) 设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011, B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A , B , X 满足E X B A B E =--T T 1)( . 求X , X .1-六、(10分) 求矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-311111002的特征值和特征向量.七、(15分) 用正交变换化二次型322322213214332),,(x x x x x x x x f +++=为标准型,并写出所作的变换.八、(10分) 设21,p p 是矩阵A 的不同特征值的特征向量. 证明21p p +不是A 的特征向量.参考答案: 一、填空题1.⎪⎪⎪⎭⎫ ⎝⎛241010623. 2. 1. 3. 6. 4. 0.5. 2322312121324x x x x x x x +-++. 二、单项选择题1(B). 2(B) . 3(B) . 4(C) . 5(A) . 三、判断题1.( ⨯). 2(√). 3(⨯). 4(√). (5) (⨯). 四、Solution 按第1列展开,得===================================================================================================210021002)1(2100210021)1(110022100021000211411++-⋅+-⋅= 158)1(21-=⋅-⋅+=.五、Solution 由于E X B A B E =--T T 1)(,即[]E X A B E B =--T1)(,进而()E X A B =-T ,所以()[]1T --=A B X .因为()⎪⎪⎪⎭⎫ ⎝⎛=-100020002TA B ,所以⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-100021000211000200021X . 六、Solution 因为λλλλλλλ----=----=-3111)2(31111102||E A321)2(3111)2(3212)2(12λλλλλλλ-=--=----=+c c , 所以A 的特征值为2.对于2=λ时,齐次线性方程组=-x E A )2(0与0321=+-x x x 同解,其基础解系为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121ξξ,于是,A 的对应于2的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101121k k ,其中21,k k 不全为0. 七、Solution 所给二次型的矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230002A .===================================================================================================因为λλλλλλλ---=---=-3223)2(32023002||E A )1)(5)(2(3121)5)(2(3525)2(121λλλλλλλλλλ---=---=----=+c c , 所以A 的特征值为1, 2, 5.当1=λ时,齐次线性方程组=-x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1101ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=212101p . 当2=λ时,齐次线性方程组=-x E A )2(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=0012ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0012p .当5=λ时,齐次线性方程组=-x E A )5(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1103ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212103p .===================================================================================================取()⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==2102121021010,,321p p p P ,在正交变换Py x =下得二次型的标准型为23222152y y y f ++=. 八、Proof 令21,p p 是A 的对应于不同特征值21,λλ的特征向量,即111p Ap λ=,222p Ap λ=.假设21p p +是A 的对应于λ的特征向量,即)()(2121p p p p A +=+λ. 由于22112121)(p p Ap Ap p p A λλ+=+=+,所以)(212211p p p p +=+λλλ,于是=-+-2211)()(p p λλλλ0. 根据性质4,知021=-=-λλλλ,进而21λλ=,矛盾.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、必答题
什么是线性方程组的系数矩阵和增广矩阵?
答:系数矩阵:方程组左边各方程的系数作为矩阵就是此方程的系数矩阵。

増广矩阵:将非齐次方程右边作为列向量加在系数矩阵后就是增广矩阵其次方程有非零解的条件是系数矩阵的秩小于N 就是说未知数的个数大于方程的个数。

1、写出下列线性方程组的系数矩阵和增广矩阵。

1231231232322
21x x x x x x x x x ++=⎧⎪++=⎨⎪+-=⎩
2、求解上述线性方程组
二、从下列两题中任选一题作答
1、(a)什么是逆矩阵?
(b)设4阶方阵A 、B 、C 满足方程11(2)T E C B A C ---=,试求矩阵A ,其
中1232012300120001B --⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭,1201012000120001C ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭。

(a )设A 是一个n 阶矩阵,若存在另一个n 阶矩阵B ,使
得: AB=BA=E ,则称方阵A 可逆,并称方阵B 是A 的逆矩阵
(b )
2、(a)什么是向量组的极大线性无关组?
(b)判断
向量组()()()123=1320=70143=2101T T T ααα-、、、
()()45=5162=2-141T T
αα、是否线性无关。

(c) 求出一个向量组的一个极大线性无关组,并将其余向量用该极大线性无关组线性表示。

三、从下列两题中任选一题作答
1、(a )阐述方阵的特征值和特征向量的定义。

对于方阵a,存在一个非零向量x 和实数λ,使得ax=λx 成立,则称λ为矩阵的特征值,x 称为a 相对于λ的特征向量。

延伸:
由ax-λx=0得(a-λe)x=0.
该方程有非零解的等价条件为|a-λe|=0
因此要求a 的特征值,即求满足这个行列式的λ值即可;而特征向量就是该线性方程组的非零解。

(b)求解矩阵3-1711⎛⎫ ⎪⎝⎭
的特征值和特征向量。

3、已知二次型
222(,,)2332f x y z x y z yz =+++。

(a)写出二次型对应的实对称阵。

(b)
验证10000⎛⎫ ⎪ ⎪ ⎝
为正交矩阵。

(c)用上述正交矩阵将二次型变换为二次型的标准型。

相关文档
最新文档