二元函数连续性的概念有界闭域上连续函数的性质

合集下载

二元函数连续性

二元函数连续性

lim
P→ P0
f (P) =
f ( P0 )
( P 0 ∈定义区域)
例4 求极限
lim (1+ x + y) ⋅ ex2 + y2
( x, y)→(0,0)
解:函数f (x, y) = (1+ x + y) ⋅ ex2 + y2是二元初等函数, 定义域是R2 ,并且它在点(0,0)(∈ R2 )处连续,
=.
x→0 y→0
xy + 1 + 1
2
三、在有界闭区域上连续函数的性质
性质1 (有界性与最大值最小值定理)
如果函数f在有界闭区域D上连续,则f在 D上有界,且能取得最大值和最小值。
说明:性质1是说,若f(P)在有界闭区域D 上连续,则必定存在大于0的常数M,使得 对一切属于D的点P,有
f (P) ≤ M ,且存在P1、P2 ∈ D,使得 f (P1) = max{ f (P) P ∈ D}, f (P2 ) = min{ f (P) P ∈ D}.
它是由常数及具有不同自变量的一元基本初等函数
经过有限次四则运算和复合运算得到的。
如 = f ( x, y)
lnsin( xy) +
x x2
− +
y y2
等等
3、一切多元初等函数在其定义区域内是连续的.
定义区域:是指包含在定义域内的区域或闭区 域.
注:在多元初等函数定义区域内的连续点处求 极限可用“代入法”。
2、连续性定义的另一种形式
设f (x, y)在P0 (x0 , y0)的全增量 ∆z = f (x0 + ∆x, y0 + ∆y) − f (x0 , y0),则

高等数学第16章第3节二元函数的连续性

高等数学第16章第3节二元函数的连续性

§ 3 二元函数的连续性一 二元函数的连续性定义 设f 为定义在点集2R D ⊂上的二元函数.()。

的孤立点的聚点,或者是它或者是D D D P ∈0对于任给的正数ε,总存在相应的正数δ,只要(),;D P U P δ0∈,就有 ()()ε<-0P f P f ,()1则称f 关于集合D 在点0P 连续。

在不至于误解的情况下,也称f 在点0P 连续。

若f 在D 上任何点都关于集合D 连续,则称f 为D 上的连续函数。

由上述定义知道:若0P 是D 的孤立点,则0P 必定是f 关于D 的连续点;若0P 是D 的聚点,则f 关于D 在连续等价于()().lim 00P f P f DP P P =∈→()2如果0P 是D 的聚点,而()2式不成立()应情形相同其含义与一元函数的对,则称0P 是f 的不连续点或称间断点。

特别当()2式左边极限存在但不等于)(0P f 时,0P 是f 的可去间断点.如上节例1、2给出的函数在原点连续;例4给出的函数在原点不连续,又若把例3的函数改为{}⎪⎪⎩⎪⎪⎨⎧=+≠=∈+=),0,0(),(,1,0,|),(),(,),(222y x m m x m x y y x y x y x xyy x f其中m 为固定实数,亦即函数f 只定义在直线mx y =上,这时由于(),0,01),(lim 2),(),(00f m my x f mx y y x y x =+==→ 因此f 在原点沿着直线mx y =是连续的。

设()000,y x P 、()00,,,y y y x x x D y x P -=∆-=∆∈则称()()()0000,,,y x f y x f y x f z -=∆=∆ ()()0000,,y x f y y x x f -∆+∆+=为函数f 在点0P 的全增量。

和一元函数一样,可用增量形式来描述连续性,即当0l i m ),()0,0(),(=∆∈→∆∆z Dy x y x时,f 在点0P 连续。

3 二元函数的连续性

3 二元函数的连续性
z
数,即
1, 当 (x, y) D时, f (x, y) = 无定义, 当(x, y) D时.
lim f ( x , y ) 1 f ( x0 , y0 )
x
1 o
可知, (x0, y0) D
x x0 y y0
但曲面 z = f (x, y)不是通常意义下的连续曲面.
xy 1 1 . 例 6 求 lim x 0 xy y 0
xy 1 1 xy 1 1 解 lim lim x 0 xy ( x 0 xy xy 1 1) y 0 y 0
1 1 . lim x 0 xy 1 1 2 y 0
例 7 设 D x , y x , y Q R 2 . z f x , y 定义 在 D 上, 且在 D 上恒等于 1, 在别的点上无定义的函
在(0,0)处的连续性.
解 取 x cos ,
y sin
f ( x , y ) f (0,0)
(sin3 cos3 ) 2
0, , 当 0 2

x2 y2 时
f ( x , y ) f (0,0) 0 连续.
由定义知:
则 P 0 是 f 关于 D 的连续点. 若 P 0 是 D 的孤立点,
若 P 0 是 D 的聚点,则 f 关于 D 在 P 0 连续等价于
lim f P f P 0 .
若 lim f P f P 0 , 则 P 0 是 f 的不连续点.
§3 二元函数的连续性
一、二元函数的连续性概念 二、有界闭域上连续函数的性质
一、二元函数的连续性概念
1、连续的定义

二元函数的连续性

二元函数的连续性

f
(Qn )
0
由于D为有界闭域,因此存在收敛子列 Pnk
Pn
,并设lim k
Pnk
P0 D
再在Qn 中取出与 Pnk 下标相同的子列 Qnk ,
则因
0 (Pnk , Qnk )
1 nk
0, k
得到
而有lim k
Qnk
lim
k
Pnk
P0,最后,由f在P0连续,
lim
证明 由f在点Q0连续可知:任给正数 ,存在相应正数 , 使得当u u0 , v v0 时,有 f (u,v) f (u0 ,v0 ) 又由、在点P0连续可知:对上述正数,总存在正数,使得当x x0 ,
y y0 时,都有 u u0 (x, y) (x0 , y0 ) v v0 (x, y) (x0 , y0 )
从而P0 D 由于f在D上连续,当然在点 P0也连续,因此有
lim
k
f (Pnk )
f (P0 )
这与不等式 (3)相矛盾,所以 f是D上的有界函数。
下面证明f在D上能取到最大、最小值 。设 m inf f (D), M sup f (D)
可证必有一点 Q D,使f (Q) M。否则对任意 P D,都有M f (P) 0
例如 函数
f
(
x,
y)
xy , x2 y2
m, 1 m2
(x, y) (x, y) | y mx, x 0
(x, y) (0,0)
其中m为固定实数,即函数 f只定义在直线 y mx上。
由于
lim f (x, y) m f (0,0)
( x, y)(0,0)
1 m2
ymx
因此f在原点沿着直线 y mx是连续的。

二元函数连续性

二元函数连续性

性质2 (介值定理) 有界闭区域D上的多元连续函数一定能取得 介于最大值和最小值之间的任何值。
说明:性质2告诉我们, 设f在有界闭区域D上连续,记m, M为f在D上的 最小值和最大值,则对于任意满足不等式
m C M
的实数C,必存在点P0 D, 使得 f (P0) C.
1、连续性的定义(两种形式)。 2、多元初等函数的连续性。 3、有界闭区域上多元连续函数 的性质。
解:取 y kx
lim xy x0 x2 y2
y0
lim
x0
x
2
y kx
kx2 k2x2
k 1 k2
其值随k的不同而变化,故极限不存在.
所以函数在(0,0)处不连续.
2、连续性定义的另一种形式
设f (x, y)在P0(x0 , y0 )的全增量 z f (x0 x, y0 y) f (x0 , y0 ),则
1、 若 f ( P ) 在 D 上 任 何 点 都 连 续 , 则称f (P)是D上的连续函数。 2、二元函数连续性概念,可类似地
推广到n元函数f (P)上去。 3、二元函数函数f (x, y)在点P0连续 必须满足三个条件:1)在P0点有定义; 2)在P0点极限存在;3)极限值和函数 值相等。
f (x, y)在P0(x0 , y0)连续
lim z 0
(x,y )(0,0)
即,二元函数在某点连续的充要条件是它 在该点的全增量极限为零。
3. 二元连续函数的几何意义
二元函数f (x, y)在区域D上连续,表示它的图形是 区域D上一片无“洞”,无“裂缝”的连续曲面。
二、多元连续函数的运算性质
公共数学教研室 戴明清
一、二元函数的连续性概念
1、连续的定义

连续的定义

连续的定义
16.3-7 首页 上页 下页 返回 结束 铃
Mathematical Analysis
绵阳师范学院
练习
0 讨论函数 f ( x, y ) y
解:因为
( x , y )( x0 , y0 ) x有理数集
x 为有理数 的连续性. x 为无理数
lim
f ( x, y) 0而
( x , y )( x0 , y0 ) x无理数集
y=x2
f=0 f=0 k y=kx
当 k 0时,取 | k | , | x | 时
| f ( x , kx ) f (0,0) | 0
因此函数 f ( x , y )在点( 0 , 0 ) 沿任何方向都连续.
但函数 f ( x , y )在点 ( 0 , 0 ) 极限不存在,所以不连续.
绵阳师范学院
特别 lim f P 存在但不等于 f P 0 时, P 0 是 f 的
PP 0 P D
可去间断点. 注意 二元函数可能在某些点处间断,也可能在 曲线上的所有点处均间断. xy , x 0, y 0, 2 2 例如, f ( x , y ) x y (0, 0) 是间断点. 0, x 0, y 0.
16.3-12 首页 上页 下页 返回 结束 铃
Mathematical Analysis
绵阳师范学院
4. 连续函数的局部性质
若 f x , y 在某点连续,则可证明它在这一点
近旁具有局部有界性、局部保号性.
两个连续函数的和、差、积、商(若分母不
为0)仍是连续函数. 复合函数的连续 返回 结束 铃
Mathematical Analysis
绵阳师范学院

二元函数的连续性

二元函数的连续性

§ 3 二元函数的连续性一、 二元函数的连续性概念由一元函数连续概念引入 .1. )(P f 关于集合D 在0P 连续的定义定义 P100设),()(y x f P f =是定义在2R D ⊂上的二元函数,D P ∈0,0P 为D 的一个聚点,或者是孤立点. 若,);(),(,0,00D P U y x P δδε∈∀>∃>∀有ε<-)()(0P f P f ,则称)(P f 关于集合D 在0P 连续,简称)(P f 在0P 连续.D P ∈0,0P 为D 的一个聚点,)(P f 在0P 连续)()(lim 00P f P f P P =⇔→ 函数),(y x f 有定义的孤立点必为连续点 .“D P U y x P );(),(0δ∈∀”用方邻域叙述用圆邻域叙述函数的增量: 全增量、 偏增量 .用增量的语言叙述)(P f 在0P 连续. (用增量定义连续性) .2. )(P f 在集合D 连续.如果f 在集合D 内每一点连续,则称f 在D 连续,或称f 是D 上的连续函数. 函数在区域上的连续性 .3. )(P f 在0P 不连续.间断点例 (P101)⎪⎪⎩⎪⎪⎨⎧=++≠++=. 0 , 1, 0 , ),(2222222y x m m y x y x xy y x f证明函数),(y x f 在点) 0 , 0 (沿方向mx y =连续 .例 (P95例4 )⎩⎨⎧+∞<<∞-<<=. , 0, ,0 , 1),(2其他x x y y x f 证明函数),(y x f 在点) 0 , 0 (沿任何方向都连续 , 但点) 0 , 0 (并不连续.补例 求函数)(22y x tg z +=的不连续点。

(讨论函数的连续性)4. 二元连续和单元连续定义 ( 单元连续 )二元连续与单元连续的关系 (P101) 例 (P101)⎩⎨⎧=≠=. 0 , 0, 0 , 1),(xy xy y x f 函数),(y x f 在原点处不连续 但在原点处f 对x 和对y 分别都连续.5. 二元连续函数的性质局部保号性 若f 在点a 连续,并且0)(>a f ,则存在a 的领域)(a O δ,当)(a O x δ∈时有0)(>x f . 局部有界性运算性质 两个连续函数的和、差、积、商(若分母不为0)都是连续函数. 定理16.7(复合函数连续性)P102设D 是2R 中的开集,D y x ∈),(00。

二元函数的极限与连续性

二元函数的极限与连续性

f
( x,
y)


0,
其余部分.
如图 16-15 所示, 当 (x, y) 沿任何直线趋于原点时, 相应的 f ( x, y) 都趋于 0, 但这并不表明此函数在
( x, y) (0, 0) 时的极限为 0. 因为当 (x, y) 沿抛物线
y kx2(0 k 1) 趋于点 O 时, f ( x, y)将趋于1. 所
以极限 lim f ( x, y) 不存在. ( x, y) (0,0)
例5 讨论 f ( x, y) x y 在 ( x, y) (0, 0) 时不 x y
存在极限. 解 利用定理 5 的推论 2, 需要找出两条路径, 沿 着此二路径而使 ( x, y) (0, 0) 时, 得到两个相异 的极限.
定理 5 lim f (P) A 的充要条件是:对于 D 的 P P0 PD
任一子集 E,只要 P0 仍是 E 的聚点,就有 lim f (P) A .
P P0 PE
推论1

E1 D, P0
是 E1 的聚点, 使
lim
P P0
f (P)
PE1
不存在, 则 lim f (P) 也不存在. P P0 P D
时,由于
f (x,
y)
m f (x, mx) 1 m2
,
因此有
m
( x,
lim
y) (0, 0)
f
( x,
y)

lim
x0
f
( x,
mx)

1ቤተ መጻሕፍቲ ባይዱ
m2
.
y mx
这说明动点沿不同斜率 m 的直线趋于原点时, 对应

数学分析16.3二元函数的连续性

数学分析16.3二元函数的连续性

第十六章 多元函数的极限与连续3二元函数的连续性一、二元函数的连续性概念定义1:设f 为定义在点集D ⊂R 2上的二元函数,P 0∈D(聚点或孤立点).对于任给正数ε,总存在相应的正数δ,只要P ∈U ⁰(P 0;δ)∩D ,就有 |f(P)-f(P 0)|<ε,则称f 关于集合D 在点P 0连续. 在不致误解的情况下,也称f 在点P 0连续.若f 在D 上任何点都关于集合D 连续,则称f 为D 上的连续函数.注:若P 0是D 的孤立点,则必为f 关于D 的连续点;若P 0是D 的聚点,则f 关于D 在P 0连续等价于DP P P 0lim ∈→f(P)=f(P 0), 若DP P P 0lim ∈→f(P)≠f(P 0),则聚点P 0是f 的不连续点(或称间断点). 若DP P P 0lim ∈→f(P)=A ≠f(P 0),则P 0是f 的可去间断点.如:函数f(x,y)= x 2+xy+y 2和f(x,y)=⎪⎩⎪⎨⎧=≠+-)0,0()y ,x (0)0,0()y ,x (y x y x xy 2222,, 在原点连续;函数f(x,y)=⎩⎨⎧+∞<<-∞<<其余部分,,0x ,x y 012在原点不连续;函数f(x,y)=⎪⎪⎩⎪⎪⎨⎧=+≠=∈+)0,0()y x,(m 1m }0 x mx,y |)y x,{()y x,(y x xy 222,,,m 为固定实数,即f 只定义在直线y=mx 上,∵mx y )0,0()y ,x (lim =→f(x,y)=2m1m +=f(0,0), ∴f 在原点沿着直线y=mx 连续.例1:讨论函数f(x,y)=⎪⎩⎪⎨⎧=≠+)0,0()y ,x (0)0,0()y ,x (y x x 22α,,, (α>0)在点(0,0)的连续性. 解:对函数自变量作极坐标变换得x=rcos φ, y=rsin φ,则(x,y)→(0,0)等价于对任何φ都有r →0.当(x,y)≠(0,0)时,22αy x x +=2ααr φcos r →⎪⎩⎪⎨⎧<<∞=>2α02α,2α0,,不存在,(r →0); ∴当α>2时,f 在点(0,0)连续;当0<α≤2时,f 在点(0,0)间断.定义2:设P 0(x 0,y 0), P(x,y)∈D, △x=x-x 0, △y=y-y 0, 则称△z=△f(x 0,y 0)=f(x,y)-f(x 0,y 0)=f(x 0+△x,y 0+△y)-f(x 0,y 0)为函数f 在点P 0的全增量. 当D )y ,x ()y ,x ()y ,x (00lim ∈→∆∆△z=0时,f 在点P 0连续.若在全增量中取△x=0或△y=0,则相应的函数增量称为偏增量,记作: △f(x 0,y 0)=(x 0+△x,y 0)-f(x 0,y 0),△f(x 0,y 0)=(x 0,y 0+△y)-f(x 0,y 0).注:一般函数的全增量并不等于相应的两个偏增量之和.0x lim →∆△f(x 0,y 0)=0表示固定y=y 0时,f(x,y 0)作为x 的一元函数在x 0连续.同理,0y lim →∆△f(x 0,y 0)=0表示f(x 0,y)在y 0连续. 但二元函数对单个自变量都连续并不能保证该函数的连续性.例:f(x,y)=⎩⎨⎧=≠0xy 00xy 1,, 在原点处不连续,但f(0,y)=f(x,0)=0,即 在原点处f 对x 和对y 都连续.定理16.7:(复合函数的连续性)设函数u=φ(x,y)和v=ψ(x,y)在xy 平面上点P 0(x 0,y 0)的某邻域内有定义,并在点P 0连续;函数f(u,v)在uv 平面上点Q 0(u 0,v 0)的某邻域内有定义,并在点Q 0连续,其中u 0=φ(x 0,y 0), v 0=ψ(x 0,y 0),则复合函数g(x,y)=f[φ(x,y),ψ(x,y)]在点P 0也连续. 证:由f 在点Q 0连续知,∀ε>0,∃η>0,使得当|u-u 0|<η, |v-v 0|<η时, 有|f(u,v)-f(u 0,v 0)|<ε. 又由φ,ψ在点P 0连续知,对上述正数η,∃δ>0, 使得当|x-x 0|<δ, |y-y 0|<δ时,都有|u-u 0|=|φ(x,y)-φ(x 0,y 0)|<η, |v-v 0|=|ψ(x,y)-ψ(x 0,y 0)|<η,即当|x-x 0|<δ, |y-y 0|<δ时,就有 |g(x,y)-g(x 0,y 0)|=|f(u,v)-f(u 0,v 0)|<ε,∴复合函数f[φ(x,y),ψ(x,y)]在点P 0也连续.二 、有界闭域上连续函数的性质定理16.8:(有界性与最大、最小值定理)若函数f 在有界闭域D ⊂R 2上连续,则f 在D 上有界,且能取得最大值与最小值.证:若f 在D 上无界,则对每个正整数n ,必存在点P n ∈D ,使得 |f(P n )|>n, n=1,2,…. 于是得到一个有界点列{P n }⊂D ,且总能使 {P n }中有无穷多个不同的点,由定理16.3知,{P n }存在收敛子列{P k n },记∞→k lim P k n =P 0,∵D 是闭域,∴P 0∈D ,又f 在D 上连续, ∴∞→k lim f(P k n )=f(P 0),与|f(P n )|>n, n=1,2,…矛盾,∴f 在D 上有界. 设m=inff(D),M=supf(D). 若对任意P ∈D, 有M-f(P)>0,记F(P)=f(P)-M 1 , 则函数F(P)连续,恒有F(P)>0,F 在D 上有界, 由设f 不能在D 上达到上确界M ,∴存在收敛点列{P n }⊂D ,使得∞→n lim f(P n )=M ,于是有∞→n lim F(P n )=+∞,与F 在D 上有界矛盾, ∴f 在D 上有最大值M ;同理可证,f 在D 上有最小值m.定理16.9:(一致连续性定理)若函数f 在有界闭域D ⊂R 2上连续,则f 在D 上一致连续,即对任给的ε>0,总存在只依赖于ε的正数δ, 使得对一切点P ,Q ∈D ,只要ρ(P ,Q)<δ,就有|f(P)-f(Q)|<ε.证:若f 在D 上连续而不一致连续,则存在某ε0>0,对任意小的δ>0, 如取δ=n 1, n=1,2,…,总有相应的P n ,Q n ∈D ,虽然ρ(P n ,Q n )<n1,但是 |f(P n )-f(Q n )|≥ε0. ∵D 为有界闭域,∴存在收敛子列{P k n }⊂{P n }, 记∞→k lim P k n =P 0∈D ,并在{Q n }中取出与P k n 下标相同的子列{Q k n },则 ∵0≤ρ(P k n ,Q k n )<kn 1→0, k →∞,∴∞→k lim Q k n =∞→k lim P k n =P 0,又 由f 在P 0连续,∴∞→k lim |f(P k n )-f(Q k n )|=|f(P 0)-f(P 0)|=0,与|f(P k n )-f(Q kn )|≥ε0>0矛盾!∴f 在D 上一致连续.定理16.10:(介值性定理)设函数f 在区域D ⊂R 2上连续,若P 1,P 2为D 中任意两点,f(P 1)<f(P 2),则对任何满足不等式f(P 1)<μ<f(P 2)的实数μ,必存在点P 0∈D ,使得f(P 0)=μ.证:记F(P)=f(P)-μ, P ∈D ,则F(P)在D 上连续,且F(P 1)<0<F(P 2). 不妨设P 1,P 2为D 的内点,∵D 为区域,∴D 中有限折线可联结P 1,P 2, 若某一联结点P 0’, 有F(P 0’)=0,则f(P 0’)=μ,得证;否则, 必存在某联结线段Q 1Q 2两端的函数值异号,设Q 1Q 2所在直线方程为: ⎩⎨⎧+=+=)y -t(y y y )x -t(x x x 121121, 0≤t ≤1,其中Q 1(x 1,y 1)和Q 2(x 2,y 2)为线段两端点; 则在此线段上,F 表示为关于t 的复合函数:G(t)=F(x 1+t(x 2-x 1),y 1+t(y 2-y 1)), 0≤t ≤1,在[0,1]一元连续,且 F(Q 1)=G(0)<0<G(1)=F(Q 2). 由一元函数根的存在定理知,在(0,1)内存在一点t 0, 使得G(t 0)=0. 记x 0=x 1+t 0(x 2-x 1), y 0=y 1+t 0(y 2-y 1), 则有P 0(x 0,y 0)∈D ,使得F(P 0)=G(t 0)=0,即f(P 0)=μ.注:定理16.8与定理16.9的有界闭域D 可改变有界闭集;为了保证连通性,定理16.10只适合区域,且由介值性定理可知,区f 在区域D 上连续,则f(D)必定是一个区间(有限或无限).习题1、讨论下列函数的连续性:(1)f(x,y)=tan(x 2+y 2);(2)f(x,y)=[x+y];(3)f(x,y)=⎪⎩⎪⎨⎧=≠0y 00y y x y sin ,,; (4)f(x,y)=⎪⎩⎪⎨⎧=+≠++0y x 00y x y x xy sin 222222,,;(5)f(x,y)=⎩⎨⎧为有理数为无理数x y x 0,,;(6)f(x,y)=⎩⎨⎧=+≠++0y x 00y x )y x ln(y 2222222,,;(7)f(x,y)=x siny sin 1;(8)f(x,y)=y x-e . 解:(1)记D={(x,y)|0≤x 2+y 2<2π∪{(x,y)|21-2k π<x 2+y 2<212k +π, k ∈N}}, 当(x 0,y 0)∈D 时,由tanu 在u 0=x 02+y 02连续知,)y ,x ()y ,x (00lim →tan(x 2+y 2)=0u u lim →tanu= tanu 0=tan(x 02+y 02), ∴f(x,y)在(x 0,y 0)连续,即f(x,y)在D 上连续,又f 在R 2-D 上无定义,∴f 在R 2-D 上处处间断.(2)记D={(x,y)|k<x+y<k+1,k ∈Z},且P 0(x 0,y 0)∈D ,则存在k ∈Z,使 k<x 0+y 0<k+1,于是当δ>0充分小时,对任意的(x,y)∈U(P 0;δ),就有 k<x+y<k+1,从而f(x,y)≡k ≡f(x 0,y 0),∴)y ,x ()y ,x (00lim →f(x,y)=f(x 0,y 0),∴f 在D 上连续,在R 2-D(即x+y=k)处处不连续.(3)∵yxy sin ≤|x|,∴)0,0()y ,x (lim →f(x,y)=0=f(0,0),∴f(x,y)在点(0,0)连续. 又当y ≠0时,f(x,y)是初等函数且在{(x,y)|y ≠0}有定义,∴f(x,y)在D={(x,y)|y ≠0}∪{(0,0)}上连续. 又在任一点(x 0,0)≠(0,0)处, ∵f(x 0,0)=0而)0,x ()y ,x (0lim →f(x,y)≠0,∴f 在(x 0,0)间断,即f 仅在D 上连续.(4)当x 2+y 2≠0时,22y x xysin +≤|x|,∴)0,0()y ,x (lim →f(x,y)=0=f(0,0), ∴f(x,y)在点(0,0)连续. 又f(x,y)在R 2-(0,0)上有定义且为初等函数, ∴f(x,y)在R 2上连续.(5)设(x 0,y 0)∈R 2,则当x 0为有理数时,|f(x,y)-f(x 0,y 0)|=|f(x,y)-y 0|=⎩⎨⎧为有理数为无理数x |y -y |x |y |00,,;当x 0为无理数时,|f(x,y)-f(x 0,y 0)|=|f(x,y)|=⎩⎨⎧为有理数为无理数x |y |x 0,,; ∴当且仅当y 0=0时,)y ,x ()y ,x (00lim →f(x,y)=f(x 0,y 0),即f 仅在D={(x,y)|y=0}上连续.(6)在x 2+y 2≠0的点处,f 是初等函数且有定义,又|y 2ln(x 2+y 2)|≤|(x 2+y 2)ln(x 2+y 2)|→0, (x,y)→(0,0),即)0,0()y ,x (lim →f(x,y)=0=f(0,0),∴f(x,y)在R 2上连续. (7)直线x=m π及y=n π, (m,n=0,±1,±2,…)上的点均为f 的不连续点. 而在D={(x,y)x ≠n π或y ≠n π, n ∈N}上f 有定义且为初等函数, ∴f 仅在D 上连续,即除直线x=m π及y=n π以外的点,f 都连续.(8)∵u=-yx 在其定义域D={y|y ≠0}上连续,又f=e u 关于u 连续, 由复合函数的连续性知f 在其定义域D 上连续.2、叙述并证明二元连续函数的局部保号性.解:局部保号性:若函数f(x,y)在点P 0(x 0,y 0)连续,且f(x 0,y 0)≠0, 则函数f(x,y)在点P 0的某一邻域U(P 0;δ)内与f(x 0,y 0)同号,并存在某正数r(|f(x 0,y 0)|>r),使得对任意(x,y)∈U(P 0;δ),有|f(x,y)|≥r>0.证明如下: 设f(x 0,y 0)>0,则存在r ,使f(x 0,y 0)>r>0,取ε=f(x 0,y 0)-r>0, 由f 在 (x 0,y 0)连续知,∃δ>0,使得当(x,y)∈U(P 0;δ)时,有|f(x,y)-f(x 0,y 0)|<ε=f(x 0,y 0)-r ,即当(x,y)∈U(P 0;δ)时,f(x,y)≥f(x 0,y 0)-ε=r>0. 当f(x 0,y 0)<0时,任取0<r<-f(x 0,y 0),由上可知存在U(P 0;δ),使得 在其上-f(x,y)≥r>0,即f(x,y)≤-r<0.∴f 在U(P 0;δ)上与f(x 0,y 0)同号,且|f(x,y)|≥r>0.3、设f(x,y)=()⎪⎩⎪⎨⎧=+≠++0y x 00y x y x x 2222p 22,,, p>0,讨论它在点(0,0)处的连续性. 解:当x 2+y 2≠0时,()p 22y x |x |+≤|x 1-2p |→⎪⎪⎪⎩⎪⎪⎪⎨⎧>∞=<<21p ,21p ,121p 00,, (x,y)→(0,0); ∴当0<p<21时,)0,0()y ,x (lim →f(x,y)=0=f(0,0),f 在(0,0)连续; 当p ≥21时,f 在(0,0)不连续.4、设f(x,y)定义在闭矩形域S=[a,b]×[c,d]上. 若f 对y 在[c,d]上处处连续,对x 在[a,b]上(且关于y)为一致连续,证明f 在S 上处处连续. 证:设(x 0,y 0)∈S ,对固定的x 0, f 为y 的连续函数,即∀ε>0,∃δ1>0, 当|y-y 0|<δ1,且(x 0,y)∈S 时,有|f(x 0,y)-f(x 0,y 0)|<2ε,又由f 对x 关于y 为一致连续,∴对上述的ε>0,∃δ2>0,对满足 |y-y 0|<δ2的任何y ,只要|x-x 0|<δ2,且(x,y)∈S ,便有|f(x,y)-f(x 0,y)|<2ε, 取δ=min{δ1,δ2},则只要|x-x 0|<δ, |y-y 0|<δ,且(x,y)∈S ,总有 |f(x,y)-f(x 0,y 0)|≤|f(x,y)-f(x 0,y)|+|f(x 0,y)-f(x 0,y 0)|<ε. ∴f 在S 上连续.5、证明:若D ⊂R 2是有界闭域,f 为D 上的连续函数,且f 不是常数函数,则f(D)不仅有界,而且是闭区间.证:若f 在D 上恒为常数,则f(D)为单点集,从而有界.若f在D上不恒为常数,由定理16.8知:f在D上有界且能取得最大值、最小值,分别设为M,m,则m<M且m≤f(P)≤M,(P∈D),即f(D)⊂[m,M]. 下证f(D)⊃[m,M].任给μ∈[m,M],由介值定理知,必存在P0∈D使f(P0)=μ,∴μ∈f(D),∴f(D)⊃[m,M],∴f(D)=[m,M]为闭区间.6、设f(x,y)在[a,b]×[c,d]上连续,又有函数列{φk(x)}在[a,b]上一致收敛,且c≤φk(x)≤d, x∈[a,b], k=1,2,…. 试证{F k(x)}={f(x,φk(x))}在[a,b]上也一致收敛.证:∵f(x,y)在D=[a,b]×[c,d]上连续,∴对任意(x0,y0)∈D, ∀ε>0,∃δ>0,使得当|x-x0|<δ,|y-y0|<δ,且(x,y)∈D时,有|f(x,y)-f(x0,y0)|<ε.∵{φk(x)}在[a,b]上一致收敛,∴对上述δ,∃N, 使得当n,m>N时,对一切x∈[a,b],有|φn(x)-φm(x)|<δ.由c≤φk(x)≤d, x∈[a,b], k=1,2,…知,φn(x),φm(x)∈[c,d].又f(x,y)在(x,φm(x))∈D连续,对(x,φn(x))∈D及上述ε, δ, N,有x∈[a,b],|x-x|=0<δ, |φn(x)-φm(x)|<δ,∴|f(x,φn(x))-f(x,φm(x))|=|F n(x)-F m(x)|<ε.∴{F k(x)}={f(x,φk(x))}在[a,b]上也一致收敛.7、设f(x,y)在区域G⊂R2上对x连续,对y满足利普希茨条件:|f(x,y’)-f(x,y”)|≤L|y’-y”|, 其中(x,y’),(x,y”)∈G,L为常数. 试证明:f在G上处处连续.证:∵f(x,y)在区域G⊂R2上对x连续,∴任取P0(x0,y0)∈G,固定y0,∀ε>0,∃δ1>0,使得对(x,y 0)∈G ,当|x-x 0|<δ1时,有|f(x,y 0)-f(x 0,y 0)|<2ε; 又f 对y 满足利普希茨条件,对上述ε,取δ2=L 2ε,则当|y-y 0|<δ2时, 有|f(x,y)-f(x,y 0)|≤L|y-y 0|<L δ2=2ε;取δ=min{δ1,δ2},当|x-x 0|<δ,|y-y 0|<δ,|f(x,y)-f(x 0,y 0)|≤|f(x,y)-f(x,y 0)|+|f(x,y 0)-f(x 0,y 0)|<2ε+2ε= ε.∴f 在P 0(x 0,y 0)连续,由P 0的任意性知,f 在G 上处处连续.8、若一元函数φ(x)在[a,b]上连续,令f(x,y)=φ(x), (x,y)∈D=[a,b]×(-∞,+∞).试讨论f 在D 上是否连续,是否一致连续?解:(1)任取(x 0,y 0)∈D ,∵φ(x)在[a,b]上连续,从而φ(x)对x 0连续, ∀ε>0,∃δ>0,使当x ∈[a,b]且|x-x 0|<δ时,有|φ(x)-φ(x 0)|<ε, ∴当|x-x 0|<δ, |y-y 0|<δ且(x,y)∈D 时,|f(x,y)-f(x 0,y 0)|=|φ(x)-φ(x 0)|<ε, 即f(x,y)在(x 0,y 0)连续,从而在D 上连续.(2)∵φ(x)在[a,b]上连续,从而一致连续. ∀ε>0,∃δ>0,使当x ’,x ”∈[a,b]且|x ’-x ”|<δ时,|φ(x ’)-φ(x ”)|<ε,从而当(x ’,y ’),(x ”,y ”)∈D 且|x ’-x ”|<δ, |y ’-y ”|<δ时,有x ’,x ”∈[a,b]且|x ’-x ”|<δ,从而 |f(x ’,y ’)-f(x ”,y ”)|=|φ(x ’)-φ(x ”)|<ε,∴f 在D 上一致连续.9、设f(x,y)=x y 11-, (x,y)∈D=[0,1)×[0,1), 证明:f 在D 上连续,但不一致连续.证:∵f 是在D 上有定义的初等函数,∵f 是在D 上连续.取ε0=21,无论正数δ取得多么小,当P 1=(1n n +,1n n +),P 2=(n 1-n ,n1-n )取到某个n 时, 总能使|P 1-P 2|<δ, 且P 1,P 2∈D , 但|f(P 1)-f(P 2)|=221)(n n 11+-- 22n 1)-(n 11-=1n 2)1n (2++-1n 2n 2-=22n 1-4n 1-2>21=ε0, ∴f 在D 上不一致连续.10、设f 在R 2上分别对每一个自变量x 和y 连续,并且每当固定x 时,f 对y 是单调的,证明:f 在R 2上二元连续.证:∵f 在R 2上分别对每一个自变量x 和y 连续,∴任取(x 0,y 0)∈R 2,由f(x,y)关于y 连续知,f(x 0,y)在y 0连续,即 ∀ε>0,∃δ1>0,使当|△y |<δ1时,有|f(x 0,y 0+△y)-f(x 0,y 0)|<2ε; 对于点(x 0, y 0±δ1),由f(x,y)关于x 连续知,f(x,y 0±δ1)在x 0连续,即 对上述ε,∃δ2>0,当|△x|<δ2时,有|f(x, y 0±δ1)-f(x 0, y 0±δ1)|<2ε, 取δ=min{δ1,δ2},则当|△x|<δ, |△y|<δ时,由f(x,y)关于y 单调知, |f(x 0+△x,y 0+△y)-f(x 0,y 0)|≤max{|f(x 0+△x, y 0±δ1)-f(x 0, y 0)|}.又 |f(x 0+△x, y 0±δ1)-f(x 0, y 0)|≤|f(x 0+△x, y 0±δ1)-f(x 0, y 0±δ1)|+|f(x 0, y 0±δ1)-f(x 0, y 0)|<2ε+2ε=ε. ∴当|△x|<δ, |△y|<δ时,就有|f(x 0+△x,y 0+△y)-f(x 0,y 0)|<ε. ∴f 在点(x 0,y 0)处连续,由点(x 0,y 0)的任意性可知,f 在R 2上二元连续.。

二元函数的极限与连续5页word文档

二元函数的极限与连续5页word文档

§2.3 二元函数的极限与连续定义设二元函数在点的某邻域内有意义, 若存在常数A,,当(即)时,都有则称A是函数当点趋于点时的极限,记作或或或。

必须注意这个极限值与点趋于点的方式无关,即不论P 以什么方向和路径(也可是跳跃式地,忽上忽下地)趋向。

只要P与充分接近, 就能使与A 接近到预先任意指定的程度。

注意:点P趋于点点方式可有无穷多种,比一元函数仅有左,右两个单侧极限要复杂的多(图8-7)。

图8-7同样我们可用归结原则,若发现点P按两个特殊的路径趋于点时,极限存在,但不相等, 则可以判定在该点极限不存在。

这是判断多元函数极限不存在的重要方法之一。

一元函数极限中除了单调有界定理外,其余的有关性质和结论, 在二元函数极限理论中都适用,在这里就不一一赘述了。

例如若有, 其中求多元函数的极限, 一般都是转化为一元函数的极限来求, 或利用夹逼定理来计算。

例4 求。

解由于而,根据夹逼定理知 ,所以例5求(a≠0)。

解。

例6求。

解由于且,所以根据夹逼定理知. 例7 研究函数在点处极限是否存在。

解当x2+y2≠0时,我们研究函数,沿x→0,y=kx→0这一方式趋于(0,0)的极限,有,。

很显然,对于不同的k值,可得到不同的极限值,所以极限不存在,但。

注意:的区别, 前面两个求极限方式的本质是两次求一元函数的极限, 我们称为累次极限, 而最后一个是求二元函数的极限,我们称为求二重极限。

例8 设函数。

它关于原点的两个累次极限都不存在,因为对任何,当时,的第二项不存在极限;同理对任何时,的第一项也不存在极限,但是, 由于, 因此由例7知, 两次累次极限存在, 但二重极限不存在。

由例8可知,二重极限存在,但二个累次极限不存在。

我们有下面的结果:定理1若累次极限和二重极限都存在,则三者相等(证明略)。

推论若存在但不相等,则二重极限不存在。

定义设在点的某邻域内有意义,且,则称函数在点处连续,记上式称为函数(值)的全增量。

教学课题§3.二元函数的连续性,有界闭域上连续函数的性质解读

教学课题§3.二元函数的连续性,有界闭域上连续函数的性质解读

教学课题: § 3.二元函数的连续性,有界闭域上连续函数的性质。

教学目的:掌握二元函数连续的定义及其性质,有界闭域上连续函数的性质及其证明方法。

教材重点:本节重点是二元函数连续的定义及有界闭域上连续函数的性质,难点是二元函数连续性的讨论。

教学过程:一.二元函数连续的概念1. 定义:设f 在D 2R ⊂上有定义,0p ∈D (聚点或孤立点)。

若0,0>∃>∀δε, 当D p U p ),(0δ∈时,有 ε<-)()(0p f p f ,称f 关于D 在0p 连续。

在不致误解的情况下,也称f 在0p 连续。

若f 在D 上每一点都f 关于D 连续,称f 为D 上的连续函数。

说明:(1)。

若0p 为D 的孤立点,f 关于D 在0p 连续。

(2)。

若0p 为D 的聚点,f 关于D 在0p 连续)()(lim 0)(0p f p f D p p p =⇔∈→。

(3)。

若0p 为D 的聚点,f 在0p 不连续,称0p 为f 的间断点。

特别,当f 在0p 的极限存在但不等于在0p 的函数值时,称0p 为f 的可去间断点。

例1. 设 ⎪⎩⎪⎨⎧=+≠++=.0,0,0,)(),(2222222y x y x y x y y x f p其中p >0 。

p 取何值时,f 在(0,0)连续?例2.设 ⎩⎨⎧=+≠++=0,0,0,)ln(),(2222222y x y x y x y y x f 讨论f 在(0,0)的连续性。

设 ),(),(.),(,),(0000000y x f y x f z y y y x x x D y x p y x p -=∆-=∆-=∆∈,,记 =),(),(0000y x f y y x x f -∆+∆+,称z ∆为f 在0p 的全增量。

也可应用全增量描述函数的连续性,即:f 在0p 连续 0lim )0,0(),(=∆⇔→∆∆z y x 。

记 ),(),(,),(),(00000000y x f y y x f z y x f y x x f z y x -∆+=∆-∆+=∆,分别称为f在0p 关于x ,y 的偏增量。

数学分析二元函数的连续性

数学分析二元函数的连续性

lim f(x ,y ) f(0 ,0 ),
(x ,y ) (0 ,0 )
故函数在(0,0)处连续.
例4 讨论函数
f(x,y)x2xyy2, x2y20
0,
x2y20
在(0,0)的连续性.
解 取 ykx
lim
x0
x
2
xy
y2
y0
lxim0 x2
kx2 k2 x2
ykx
1
k k
2
其值随k的不同而变化, 极限不存在.
这里条件 "D 是一区域" 是必要的. 若D不是 区域, z = f (X)可能不是通常意义下的连续曲面.
例. 设 D = {(x, y) | x, y 均为有理数} R2. z =f (x, y)
是定义在 D 上的, 在 D 上恒等于1, 在别的点上
无定义的函数, 即
如图 z
1
f (x, y) =
易知, 例2中 f (x, y)在(0, 0)间断(极限不存在), 例 1 中 ,f(x ,y ) xsyi1 n在x 直 y 0 上 线
x y 每一点都间断.

1. 二元函数 f (X)在 X0 连续必须满足三个条件. 在 X0 有定义, 在 X0 的极限存在, 两者相等, 定义可推广到三元以上函数中去.
续。又设 x x(t), y y(t) , x 和 y 的值域在 D 内,并且
当 t t0 时 x(t0 ) x0 , y(t0 ) y0 ,而 x, y 却在 t0 连续。则复合
函数在 t0 连续。
例1
求极限
lim
x1
x y xy
.
y
y2
o
x

数学分析16.3二元函数的连续性

数学分析16.3二元函数的连续性

第十六章 多元函数的极限与连续3二元函数的连续性一、二元函数的连续性概念定义1:设f 为定义在点集D ⊂R 2上的二元函数,P 0∈D(聚点或孤立点).对于任给正数ε,总存在相应的正数δ,只要P ∈U ⁰(P 0;δ)∩D ,就有 |f(P)-f(P 0)|<ε,则称f 关于集合D 在点P 0连续. 在不致误解的情况下,也称f 在点P 0连续.若f 在D 上任何点都关于集合D 连续,则称f 为D 上的连续函数.注:若P 0是D 的孤立点,则必为f 关于D 的连续点;若P 0是D 的聚点,则f 关于D 在P 0连续等价于DP P P 0lim ∈→f(P)=f(P 0), 若DP P P 0lim ∈→f(P)≠f(P 0),则聚点P 0是f 的不连续点(或称间断点). 若DP P P 0lim ∈→f(P)=A ≠f(P 0),则P 0是f 的可去间断点.如:函数f(x,y)= x 2+xy+y 2和f(x,y)=⎪⎩⎪⎨⎧=≠+-)0,0()y ,x (0)0,0()y ,x (y x y x xy 2222,, 在原点连续;函数f(x,y)=⎩⎨⎧+∞<<-∞<<其余部分,,0x ,x y 012在原点不连续;函数f(x,y)=⎪⎪⎩⎪⎪⎨⎧=+≠=∈+)0,0()y x,(m 1m }0 x mx,y |)y x,{()y x,(y x xy 222,,,m 为固定实数,即f 只定义在直线y=mx 上,∵mx y )0,0()y ,x (lim =→f(x,y)=2m1m +=f(0,0), ∴f 在原点沿着直线y=mx 连续.例1:讨论函数f(x,y)=⎪⎩⎪⎨⎧=≠+)0,0()y ,x (0)0,0()y ,x (y x x 22α,,, (α>0)在点(0,0)的连续性. 解:对函数自变量作极坐标变换得x=rcos φ, y=rsin φ,则(x,y)→(0,0)等价于对任何φ都有r →0.当(x,y)≠(0,0)时,22αy x x +=2ααr φcos r →⎪⎩⎪⎨⎧<<∞=>2α02α,2α0,,不存在,(r →0); ∴当α>2时,f 在点(0,0)连续;当0<α≤2时,f 在点(0,0)间断.定义2:设P 0(x 0,y 0), P(x,y)∈D, △x=x-x 0, △y=y-y 0, 则称△z=△f(x 0,y 0)=f(x,y)-f(x 0,y 0)=f(x 0+△x,y 0+△y)-f(x 0,y 0)为函数f 在点P 0的全增量. 当D )y ,x ()y ,x ()y ,x (00lim ∈→∆∆△z=0时,f 在点P 0连续.若在全增量中取△x=0或△y=0,则相应的函数增量称为偏增量,记作: △f(x 0,y 0)=(x 0+△x,y 0)-f(x 0,y 0),△f(x 0,y 0)=(x 0,y 0+△y)-f(x 0,y 0).注:一般函数的全增量并不等于相应的两个偏增量之和.0x lim →∆△f(x 0,y 0)=0表示固定y=y 0时,f(x,y 0)作为x 的一元函数在x 0连续.同理,0y lim →∆△f(x 0,y 0)=0表示f(x 0,y)在y 0连续. 但二元函数对单个自变量都连续并不能保证该函数的连续性.例:f(x,y)=⎩⎨⎧=≠0xy 00xy 1,, 在原点处不连续,但f(0,y)=f(x,0)=0,即 在原点处f 对x 和对y 都连续.定理16.7:(复合函数的连续性)设函数u=φ(x,y)和v=ψ(x,y)在xy 平面上点P 0(x 0,y 0)的某邻域内有定义,并在点P 0连续;函数f(u,v)在uv 平面上点Q 0(u 0,v 0)的某邻域内有定义,并在点Q 0连续,其中u 0=φ(x 0,y 0), v 0=ψ(x 0,y 0),则复合函数g(x,y)=f[φ(x,y),ψ(x,y)]在点P 0也连续. 证:由f 在点Q 0连续知,∀ε>0,∃η>0,使得当|u-u 0|<η, |v-v 0|<η时, 有|f(u,v)-f(u 0,v 0)|<ε. 又由φ,ψ在点P 0连续知,对上述正数η,∃δ>0, 使得当|x-x 0|<δ, |y-y 0|<δ时,都有|u-u 0|=|φ(x,y)-φ(x 0,y 0)|<η, |v-v 0|=|ψ(x,y)-ψ(x 0,y 0)|<η,即当|x-x 0|<δ, |y-y 0|<δ时,就有 |g(x,y)-g(x 0,y 0)|=|f(u,v)-f(u 0,v 0)|<ε,∴复合函数f[φ(x,y),ψ(x,y)]在点P 0也连续.二 、有界闭域上连续函数的性质定理16.8:(有界性与最大、最小值定理)若函数f 在有界闭域D ⊂R 2上连续,则f 在D 上有界,且能取得最大值与最小值.证:若f 在D 上无界,则对每个正整数n ,必存在点P n ∈D ,使得 |f(P n )|>n, n=1,2,…. 于是得到一个有界点列{P n }⊂D ,且总能使 {P n }中有无穷多个不同的点,由定理16.3知,{P n }存在收敛子列{P k n },记∞→k lim P k n =P 0,∵D 是闭域,∴P 0∈D ,又f 在D 上连续, ∴∞→k lim f(P k n )=f(P 0),与|f(P n )|>n, n=1,2,…矛盾,∴f 在D 上有界. 设m=inff(D),M=supf(D). 若对任意P ∈D, 有M-f(P)>0,记F(P)=f(P)-M 1 , 则函数F(P)连续,恒有F(P)>0,F 在D 上有界, 由设f 不能在D 上达到上确界M ,∴存在收敛点列{P n }⊂D ,使得∞→n lim f(P n )=M ,于是有∞→n lim F(P n )=+∞,与F 在D 上有界矛盾, ∴f 在D 上有最大值M ;同理可证,f 在D 上有最小值m.定理16.9:(一致连续性定理)若函数f 在有界闭域D ⊂R 2上连续,则f 在D 上一致连续,即对任给的ε>0,总存在只依赖于ε的正数δ, 使得对一切点P ,Q ∈D ,只要ρ(P ,Q)<δ,就有|f(P)-f(Q)|<ε.证:若f 在D 上连续而不一致连续,则存在某ε0>0,对任意小的δ>0, 如取δ=n 1, n=1,2,…,总有相应的P n ,Q n ∈D ,虽然ρ(P n ,Q n )<n1,但是 |f(P n )-f(Q n )|≥ε0. ∵D 为有界闭域,∴存在收敛子列{P k n }⊂{P n }, 记∞→k lim P k n =P 0∈D ,并在{Q n }中取出与P k n 下标相同的子列{Q k n },则 ∵0≤ρ(P k n ,Q k n )<kn 1→0, k →∞,∴∞→k lim Q k n =∞→k lim P k n =P 0,又 由f 在P 0连续,∴∞→k lim |f(P k n )-f(Q k n )|=|f(P 0)-f(P 0)|=0,与|f(P k n )-f(Q kn )|≥ε0>0矛盾!∴f 在D 上一致连续.定理16.10:(介值性定理)设函数f 在区域D ⊂R 2上连续,若P 1,P 2为D 中任意两点,f(P 1)<f(P 2),则对任何满足不等式f(P 1)<μ<f(P 2)的实数μ,必存在点P 0∈D ,使得f(P 0)=μ.证:记F(P)=f(P)-μ, P ∈D ,则F(P)在D 上连续,且F(P 1)<0<F(P 2). 不妨设P 1,P 2为D 的内点,∵D 为区域,∴D 中有限折线可联结P 1,P 2, 若某一联结点P 0’, 有F(P 0’)=0,则f(P 0’)=μ,得证;否则, 必存在某联结线段Q 1Q 2两端的函数值异号,设Q 1Q 2所在直线方程为: ⎩⎨⎧+=+=)y -t(y y y )x -t(x x x 121121, 0≤t ≤1,其中Q 1(x 1,y 1)和Q 2(x 2,y 2)为线段两端点; 则在此线段上,F 表示为关于t 的复合函数:G(t)=F(x 1+t(x 2-x 1),y 1+t(y 2-y 1)), 0≤t ≤1,在[0,1]一元连续,且 F(Q 1)=G(0)<0<G(1)=F(Q 2). 由一元函数根的存在定理知,在(0,1)内存在一点t 0, 使得G(t 0)=0. 记x 0=x 1+t 0(x 2-x 1), y 0=y 1+t 0(y 2-y 1), 则有P 0(x 0,y 0)∈D ,使得F(P 0)=G(t 0)=0,即f(P 0)=μ.注:定理16.8与定理16.9的有界闭域D 可改变有界闭集;为了保证连通性,定理16.10只适合区域,且由介值性定理可知,区f 在区域D 上连续,则f(D)必定是一个区间(有限或无限).习题1、讨论下列函数的连续性:(1)f(x,y)=tan(x 2+y 2);(2)f(x,y)=[x+y];(3)f(x,y)=⎪⎩⎪⎨⎧=≠0y 00y y x y sin ,,; (4)f(x,y)=⎪⎩⎪⎨⎧=+≠++0y x 00y x y x xy sin 222222,,;(5)f(x,y)=⎩⎨⎧为有理数为无理数x y x 0,,;(6)f(x,y)=⎩⎨⎧=+≠++0y x 00y x )y x ln(y 2222222,,;(7)f(x,y)=x siny sin 1;(8)f(x,y)=y x-e . 解:(1)记D={(x,y)|0≤x 2+y 2<2π∪{(x,y)|21-2k π<x 2+y 2<212k +π, k ∈N}}, 当(x 0,y 0)∈D 时,由tanu 在u 0=x 02+y 02连续知,)y ,x ()y ,x (00lim →tan(x 2+y 2)=0u u lim →tanu= tanu 0=tan(x 02+y 02), ∴f(x,y)在(x 0,y 0)连续,即f(x,y)在D 上连续,又f 在R 2-D 上无定义,∴f 在R 2-D 上处处间断.(2)记D={(x,y)|k<x+y<k+1,k ∈Z},且P 0(x 0,y 0)∈D ,则存在k ∈Z,使 k<x 0+y 0<k+1,于是当δ>0充分小时,对任意的(x,y)∈U(P 0;δ),就有 k<x+y<k+1,从而f(x,y)≡k ≡f(x 0,y 0),∴)y ,x ()y ,x (00lim →f(x,y)=f(x 0,y 0),∴f 在D 上连续,在R 2-D(即x+y=k)处处不连续.(3)∵yxy sin ≤|x|,∴)0,0()y ,x (lim →f(x,y)=0=f(0,0),∴f(x,y)在点(0,0)连续. 又当y ≠0时,f(x,y)是初等函数且在{(x,y)|y ≠0}有定义,∴f(x,y)在D={(x,y)|y ≠0}∪{(0,0)}上连续. 又在任一点(x 0,0)≠(0,0)处, ∵f(x 0,0)=0而)0,x ()y ,x (0lim →f(x,y)≠0,∴f 在(x 0,0)间断,即f 仅在D 上连续.(4)当x 2+y 2≠0时,22y x xysin +≤|x|,∴)0,0()y ,x (lim →f(x,y)=0=f(0,0), ∴f(x,y)在点(0,0)连续. 又f(x,y)在R 2-(0,0)上有定义且为初等函数, ∴f(x,y)在R 2上连续.(5)设(x 0,y 0)∈R 2,则当x 0为有理数时,|f(x,y)-f(x 0,y 0)|=|f(x,y)-y 0|=⎩⎨⎧为有理数为无理数x |y -y |x |y |00,,;当x 0为无理数时,|f(x,y)-f(x 0,y 0)|=|f(x,y)|=⎩⎨⎧为有理数为无理数x |y |x 0,,; ∴当且仅当y 0=0时,)y ,x ()y ,x (00lim →f(x,y)=f(x 0,y 0),即f 仅在D={(x,y)|y=0}上连续.(6)在x 2+y 2≠0的点处,f 是初等函数且有定义,又|y 2ln(x 2+y 2)|≤|(x 2+y 2)ln(x 2+y 2)|→0, (x,y)→(0,0),即)0,0()y ,x (lim →f(x,y)=0=f(0,0),∴f(x,y)在R 2上连续. (7)直线x=m π及y=n π, (m,n=0,±1,±2,…)上的点均为f 的不连续点. 而在D={(x,y)x ≠n π或y ≠n π, n ∈N}上f 有定义且为初等函数, ∴f 仅在D 上连续,即除直线x=m π及y=n π以外的点,f 都连续.(8)∵u=-yx 在其定义域D={y|y ≠0}上连续,又f=e u 关于u 连续, 由复合函数的连续性知f 在其定义域D 上连续.2、叙述并证明二元连续函数的局部保号性.解:局部保号性:若函数f(x,y)在点P 0(x 0,y 0)连续,且f(x 0,y 0)≠0, 则函数f(x,y)在点P 0的某一邻域U(P 0;δ)内与f(x 0,y 0)同号,并存在某正数r(|f(x 0,y 0)|>r),使得对任意(x,y)∈U(P 0;δ),有|f(x,y)|≥r>0.证明如下: 设f(x 0,y 0)>0,则存在r ,使f(x 0,y 0)>r>0,取ε=f(x 0,y 0)-r>0, 由f 在 (x 0,y 0)连续知,∃δ>0,使得当(x,y)∈U(P 0;δ)时,有|f(x,y)-f(x 0,y 0)|<ε=f(x 0,y 0)-r ,即当(x,y)∈U(P 0;δ)时,f(x,y)≥f(x 0,y 0)-ε=r>0. 当f(x 0,y 0)<0时,任取0<r<-f(x 0,y 0),由上可知存在U(P 0;δ),使得 在其上-f(x,y)≥r>0,即f(x,y)≤-r<0.∴f 在U(P 0;δ)上与f(x 0,y 0)同号,且|f(x,y)|≥r>0.3、设f(x,y)=()⎪⎩⎪⎨⎧=+≠++0y x 00y x y x x 2222p 22,,, p>0,讨论它在点(0,0)处的连续性. 解:当x 2+y 2≠0时,()p 22y x |x |+≤|x 1-2p |→⎪⎪⎪⎩⎪⎪⎪⎨⎧>∞=<<21p ,21p ,121p 00,, (x,y)→(0,0); ∴当0<p<21时,)0,0()y ,x (lim →f(x,y)=0=f(0,0),f 在(0,0)连续; 当p ≥21时,f 在(0,0)不连续.4、设f(x,y)定义在闭矩形域S=[a,b]×[c,d]上. 若f 对y 在[c,d]上处处连续,对x 在[a,b]上(且关于y)为一致连续,证明f 在S 上处处连续. 证:设(x 0,y 0)∈S ,对固定的x 0, f 为y 的连续函数,即∀ε>0,∃δ1>0, 当|y-y 0|<δ1,且(x 0,y)∈S 时,有|f(x 0,y)-f(x 0,y 0)|<2ε,又由f 对x 关于y 为一致连续,∴对上述的ε>0,∃δ2>0,对满足 |y-y 0|<δ2的任何y ,只要|x-x 0|<δ2,且(x,y)∈S ,便有|f(x,y)-f(x 0,y)|<2ε, 取δ=min{δ1,δ2},则只要|x-x 0|<δ, |y-y 0|<δ,且(x,y)∈S ,总有 |f(x,y)-f(x 0,y 0)|≤|f(x,y)-f(x 0,y)|+|f(x 0,y)-f(x 0,y 0)|<ε. ∴f 在S 上连续.5、证明:若D ⊂R 2是有界闭域,f 为D 上的连续函数,且f 不是常数函数,则f(D)不仅有界,而且是闭区间.证:若f 在D 上恒为常数,则f(D)为单点集,从而有界.若f在D上不恒为常数,由定理16.8知:f在D上有界且能取得最大值、最小值,分别设为M,m,则m<M且m≤f(P)≤M,(P∈D),即f(D)⊂[m,M]. 下证f(D)⊃[m,M].任给μ∈[m,M],由介值定理知,必存在P0∈D使f(P0)=μ,∴μ∈f(D),∴f(D)⊃[m,M],∴f(D)=[m,M]为闭区间.6、设f(x,y)在[a,b]×[c,d]上连续,又有函数列{φk(x)}在[a,b]上一致收敛,且c≤φk(x)≤d, x∈[a,b], k=1,2,…. 试证{F k(x)}={f(x,φk(x))}在[a,b]上也一致收敛.证:∵f(x,y)在D=[a,b]×[c,d]上连续,∴对任意(x0,y0)∈D, ∀ε>0,∃δ>0,使得当|x-x0|<δ,|y-y0|<δ,且(x,y)∈D时,有|f(x,y)-f(x0,y0)|<ε.∵{φk(x)}在[a,b]上一致收敛,∴对上述δ,∃N, 使得当n,m>N时,对一切x∈[a,b],有|φn(x)-φm(x)|<δ.由c≤φk(x)≤d, x∈[a,b], k=1,2,…知,φn(x),φm(x)∈[c,d].又f(x,y)在(x,φm(x))∈D连续,对(x,φn(x))∈D及上述ε, δ, N,有x∈[a,b],|x-x|=0<δ, |φn(x)-φm(x)|<δ,∴|f(x,φn(x))-f(x,φm(x))|=|F n(x)-F m(x)|<ε.∴{F k(x)}={f(x,φk(x))}在[a,b]上也一致收敛.7、设f(x,y)在区域G⊂R2上对x连续,对y满足利普希茨条件:|f(x,y’)-f(x,y”)|≤L|y’-y”|, 其中(x,y’),(x,y”)∈G,L为常数. 试证明:f在G上处处连续.证:∵f(x,y)在区域G⊂R2上对x连续,∴任取P0(x0,y0)∈G,固定y0,∀ε>0,∃δ1>0,使得对(x,y 0)∈G ,当|x-x 0|<δ1时,有|f(x,y 0)-f(x 0,y 0)|<2ε; 又f 对y 满足利普希茨条件,对上述ε,取δ2=L 2ε,则当|y-y 0|<δ2时, 有|f(x,y)-f(x,y 0)|≤L|y-y 0|<L δ2=2ε;取δ=min{δ1,δ2},当|x-x 0|<δ,|y-y 0|<δ,|f(x,y)-f(x 0,y 0)|≤|f(x,y)-f(x,y 0)|+|f(x,y 0)-f(x 0,y 0)|<2ε+2ε= ε.∴f 在P 0(x 0,y 0)连续,由P 0的任意性知,f 在G 上处处连续.8、若一元函数φ(x)在[a,b]上连续,令f(x,y)=φ(x), (x,y)∈D=[a,b]×(-∞,+∞).试讨论f 在D 上是否连续,是否一致连续?解:(1)任取(x 0,y 0)∈D ,∵φ(x)在[a,b]上连续,从而φ(x)对x 0连续, ∀ε>0,∃δ>0,使当x ∈[a,b]且|x-x 0|<δ时,有|φ(x)-φ(x 0)|<ε, ∴当|x-x 0|<δ, |y-y 0|<δ且(x,y)∈D 时,|f(x,y)-f(x 0,y 0)|=|φ(x)-φ(x 0)|<ε, 即f(x,y)在(x 0,y 0)连续,从而在D 上连续.(2)∵φ(x)在[a,b]上连续,从而一致连续. ∀ε>0,∃δ>0,使当x ’,x ”∈[a,b]且|x ’-x ”|<δ时,|φ(x ’)-φ(x ”)|<ε,从而当(x ’,y ’),(x ”,y ”)∈D 且|x ’-x ”|<δ, |y ’-y ”|<δ时,有x ’,x ”∈[a,b]且|x ’-x ”|<δ,从而 |f(x ’,y ’)-f(x ”,y ”)|=|φ(x ’)-φ(x ”)|<ε,∴f 在D 上一致连续.9、设f(x,y)=x y 11-, (x,y)∈D=[0,1)×[0,1), 证明:f 在D 上连续,但不一致连续.证:∵f 是在D 上有定义的初等函数,∵f 是在D 上连续.取ε0=21,无论正数δ取得多么小,当P 1=(1n n +,1n n +),P 2=(n 1-n ,n1-n )取到某个n 时, 总能使|P 1-P 2|<δ, 且P 1,P 2∈D , 但|f(P 1)-f(P 2)|=221)(n n 11+-- 22n 1)-(n 11-=1n 2)1n (2++-1n 2n 2-=22n 1-4n 1-2>21=ε0, ∴f 在D 上不一致连续.10、设f 在R 2上分别对每一个自变量x 和y 连续,并且每当固定x 时,f 对y 是单调的,证明:f 在R 2上二元连续.证:∵f 在R 2上分别对每一个自变量x 和y 连续,∴任取(x 0,y 0)∈R 2,由f(x,y)关于y 连续知,f(x 0,y)在y 0连续,即 ∀ε>0,∃δ1>0,使当|△y |<δ1时,有|f(x 0,y 0+△y)-f(x 0,y 0)|<2ε; 对于点(x 0, y 0±δ1),由f(x,y)关于x 连续知,f(x,y 0±δ1)在x 0连续,即 对上述ε,∃δ2>0,当|△x|<δ2时,有|f(x, y 0±δ1)-f(x 0, y 0±δ1)|<2ε, 取δ=min{δ1,δ2},则当|△x|<δ, |△y|<δ时,由f(x,y)关于y 单调知, |f(x 0+△x,y 0+△y)-f(x 0,y 0)|≤max{|f(x 0+△x, y 0±δ1)-f(x 0, y 0)|}.又 |f(x 0+△x, y 0±δ1)-f(x 0, y 0)|≤|f(x 0+△x, y 0±δ1)-f(x 0, y 0±δ1)|+|f(x 0, y 0±δ1)-f(x 0, y 0)|<2ε+2ε=ε. ∴当|△x|<δ, |△y|<δ时,就有|f(x 0+△x,y 0+△y)-f(x 0,y 0)|<ε. ∴f 在点(x 0,y 0)处连续,由点(x 0,y 0)的任意性可知,f 在R 2上二元连续.。

2020考研数学复习:高数必考的38个知识点

2020考研数学复习:高数必考的38个知识点

2020考研数学复习:高数必考的38个知识点2020考研数学复习:高数必考的38个知识点一、函数极限连续1、正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念。

2、理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系。

掌握利用两个重要极限求极限的方法。

理解无穷小、无穷大以及无穷小阶的概念,会用等价无穷小求极限。

3、理解函数连续性的概念,会判别函数间断点的类型。

了解初等函数的连续性和闭区间上连续函数的性质(最.大值、最小值定理和介值定理),并会应用这些性质。

重点是数列极限与函数极限的概念,两个重要的极限:lim (sinx/x)=1,lim(1+1/x)=e,连续函数的概念及闭区间上连续函数的性质。

难点是分段函,复合函数,极限的概念及用定义证明极限的等式。

二、一元函数微分学1、理解导数和微分的概念,导数的几何意义,会求平面曲线的切线方程,理解函数可导性与连续性之间的关系。

2、掌握导数的四则运算法则和一阶微分的形式不变性。

了解高阶导数的概念,会求简单函数的n阶导数,分段函数的一阶、二阶导数。

会求隐函数和由参数方程所确定的函数的一阶、二阶导数及反函数的导数。

3、理解并会用罗尔中值定理,拉格朗日中值定理,了解并会用柯西中值定理。

4、理解函数极值的概念,掌握函数最.大值和最小值的求法及简单应用,会用导数判断函数的凹凸性和拐点,会求函数图形水平铅直和斜渐近线。

5、了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交角。

6、掌握用罗必塔法则求未定式极限的方法,重点是导数和微分的概念,平面曲线的切线和法线方程函数的可导性与连续性之间的关系,一阶微分形式的不变性,分段函数的导数。

罗必塔法则函数的极值和最.大值、最小值的概念及其求法,函数的凹凸性判别和拐点的求法。

难点是复合函数的求导法则隐函数以及参数方程所确定的函数的一阶、二阶导数的计算。

三、一元函数积分学1、理解原函数和不定积分和定积分的概念。

第一节 多元函数的概念二元函数的极限和连续性

第一节 多元函数的概念二元函数的极限和连续性
又可改写成: 所以 ③ 又可改写成:
ρ →0
lim ∆ z = 0 ,

内各点都连续, 如果函数 z = f (x , y) 在区域 D 内各点都连续, 内连续. 则称函数 z = f (x , y) 在区域 D 内连续
2. 有界闭区域上连续函数的性质 . 1° 最大值最小值定理 在有界闭区域上连续的 二元函数在该区域上一定能取得到最大值和最小值. 二元函数在该区域上一定能取得到最大值和最小值 2° 介值定理 在有界闭区域上连续的二元函数 必能取得介于它的两个不同函数值之间的任何值至 少一次. 少一次.
x → x0 y → y0
lim f ( x , y ) = f ( x0 , y0 ) ,
p → p0


lim f ( P ) = f ( P0 ) ,
处连续. 则称函数 z = f(x, y) 在点 P0(x0, y0) 处连续
若令 x = x 0 + ∆ x , y = y0 + ∆ y , 则当 x → x0 时,
xy 2 2 , x + y ≠0, 2 2 x +y g( x , y ) = 0 , x2 + y2 = 0
0 ) 当 ( x , y ) → ( 0 , 时极限是否存在 .
解 当 ( x, y ) 沿 y 轴趋向于原点, 轴趋向于原点, 即当 y = 0 而 x → 0 时, 有 lim g( x , y ) = lim g ( x ,0) = lim 0 = 0 ,
x →0 y →0
三、二元函数的连续性
1. 二元函数的连续定义 定义 3 设函数 z = f(x , y) 在点 P0(x0 , y0) 的 一个邻域内有定义, 一个邻域内有定义, 如果当点 P(x , y) 趋向于点 P0(x0 , y0) 时,函数 z = f(x , y) 的极限存在, 且等 极限存在, 于它在点 P0 处的函数值,即 处的函数值,

浅谈二元函数连续性

浅谈二元函数连续性

指导教师:贾化冰作者简介:石 斐(1989-),女,陕西咸阳人,数学与应用数学专业2007 级3 班.1摘 要:二元函数的性质,是研究二元函数可微性及可积性等问题的基础.本文对二元函数连续性的判断做以进一步的探讨,并总结了一些常用的、常见的判断二元函数连续性的方法.关键词:二元函数;连续性;一致连续一、预备知识1 定义: 设f 为定义在点集D 2R ⊂上的二元函数,0P D ∈,对于任给的正数ε,总存在相应的正数δ,只要0(;)P U P D δ∈⋂,就有 0()()f P f Pε-<,则称f 关于集合D 在点0P 连续.以上定义的等价定义为:设f 为定义在点集2R D ⊂上的二元函数,0P D ∈,若有00lim ()()P P f P f P →= 或 000lim [()()]0P P f P f P -→-=,则称f 关于集合D 在点0P 连续.2 一致连续定义:若定义在区间A (A 可为开区间、闭区间、无穷区间)上的连续函数()f x ,如果对于任意给定的正数ε,存在一个只与ε有关与x 无关的实数0ξ>,使得对任意A 上的12,x x ,只需要12,x x 满足12x x ξ-<,就有12()()f x f x ε-<,则称()f x 在区间A 上是一致连续的.3 一致连续性定理:若函数(,)f x y 在有界闭域2D R ⊂上连续,则(,)f x y 在D 上一致连续. 即对任何0ε>,总存在只依赖于ε的正数δ,使得对一切点P 、Q ,只要P Q δ-<, 就有()()f P f Q ε-<.二、 二元函数连续性的判断方法1 若0P 是(,)f x y 的定义域D 的孤立点时,(,)f x y 在0P 必连续2 若0P 是D 的聚点且(,)f x y 的解析式给出,可用连续函数的四则运算性质,复合函数的连续性及初等函数在它的定义域内连续等来证明其在D 上连续.定理1[3] 若二元函数(,)f x y 与(,)g x y 在点00(,)x y 处连续,则其和、差、积、商(当分母00(,)0g x y ≠时)在点00(,)x y 处也连续.例1[3] (只证明乘积的情形)若函数()f P 与()g P 在点0P 连续,则()()f P g P 在点0P 连续.证明: 已知()f P 与()g P 在0P 连续,即当0ε∀>时,1010,:P P P δδ∃>∀-<,有0()()f P f P ε-<, 2020,:P P P δδ∃>∀-<,有0()()g P g P ε-<,又已知()g P 在点0P 的某邻域有界,即0M ∃>,30δ∃>,03:P P P δ∀-<,有()g P M ≤.123min{,,}0δδδδ∃=>,于是0:P P P δ∀-<,有00()()()()f P g P f P g P -0000()()()()()()()()f P g P f P g P f P g P f P g P ≤-+-000()()()()()()g P f P f P f P g P g P =⋅-+⋅-0()M f P εε<+⋅0(())M f P ε=+⋅.即()()f P g P 在点0P 连续.定理2[1](复合函数连续性定理) 设函数(,)u x y ϕ=和(,)v x y ψ=在xy 平面上点000(,)P x y 的某邻域内有定义,并在点0P 连续;函数(,)f u v 在uv 平面上点000(,)Q u v 的某邻域内有定义,并在点0Q 连续,其中000(,)u x y ϕ=,000(,)v x y ψ=.则复合函数(,)[(,),(,)]g x y f x y x y ϕψ=在点000(,)P x y 连续.例 2[1] 设(,)u x y ϕ=与(,)v x y ψ=在平面xy 中的点集E 上一致连续;ϕ与ψ把点集E 映射为平面uv 中的点集D ,且(,)f u v 在D 上一致连续.证明:复合函数[(,),(,)]f x y x y ϕψ在E 上一致连续.证明: 因为(,)f u v 在D 上一致连续,所以0ε∀>,()0δε∃>,使得对一切点1122(,),(,)P u v Q u v D ∈,只要12u u δ-<,12v v δ-<,就有1122(,)(,)f u v f u v ε-<.又(,)u x y ϕ=,(,)v x y ψ=在E 上一致收敛,于是对上述0δ>,0η∃>,对一切1122(,),(,)x y x y E ∈,只要12x x η-<,12y y η-<,就有12u u δ-<,12v v δ-<,其中(,)k k k u x y ϕ=,(,)k k k v x y ψ= (1,2)k =从而 11112222[(,),(,)][(,),(,)]f x y x y f x y x y ϕψϕψ- =1122(,)(,)f u v f u v ε-<,故复合函数[(,),(,)]f x y x y ϕψ在E 上一致连续.3 若(,)f x y 是分段函数,则在分段点处用定义证明其连续性.例3[6] 证明:函数2222222,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在原点(0,0)分别对x 或y 都连续,但(,)f x y 在(0,0)不连续.证明: y R ∀∈与x R ∀∈,分别有lim (,0)0(0,0)x f x f →==, 0lim (0,)0(0,0)y f y f →==, 故(,)f x y 在(0,0)分别对x 与y 都连续.但沿y x =时,222200022lim (,)lim lim 12x x x y x y xxy x f x y x y x →→→=====+, 沿2y x =时,222200022244lim (,)lim lim 55x x x y x y xxy x f x y x y x →→→=====+, 即(,)f x y 在(0,0)极限不存在,从而在该点不连续.4 若(,)f x y 为抽象函数,可任取0P D ∈,用定义证明其连续性.例4[4] (尤格定理)设函数(,)f x y 在区域D 上分别对,x y 连续,对固定的y ,(,)f x y 是x 的单调函数,证明(,)f x y 在区域D 上连续.证明: 00(,)x y D ∀∈, 由于(,)f x y 关于x 连续,故对任意给定0ε>,存在10δ>,当01x x δ-<时,有 000(,)(,)f x y f x y ε-<,设120101,(,)x x x x δδ∈-+特别有2000(,)(,)f x y f x y ε-<,1000(,)(,)f x y f x y ε-<,再由(,)f x y 关于y 连续知,存在'0δ>,使'0y y δ-<时有110(,)(,)f x y f x y ε-<,220(,)(,)f x y f x y ε-<, 综上所述,当'0y y δ-<,有100(,)(,)2f x y f x y ε-<,200(,)(,)2f x y f x y ε-<,从而由(,)f x y 是x 的单调函数知:当'010,x x y y δδ-<-<时,下式成立00200100(,)(,)max{(,)(,),(,)(,)}f x y f x y f x y f x y f x y f x y -≤--2ε<, 这说明(,)f x y 于00(,)x y 处连续,由00(,)x y 任意性知(,)f x y 于D 上连续.注:在证明抽象函数(,)f x y 的连续性时,往往根据已知条件,巧妙地运用连续的εδ-定义给出证明.三、典型例题求解例5[5] 函数(,)f x y 在2R 上连续且lim (,)r f x y →∞存在,其中22r x y =+,则(,)f x y 在2R 上一致连续.证明: lim (,)r f x y →∞存在,由柯西准则:0ε∀>,0G ∃>,对满足22i i i r x y G =+> 的点(,),(1,2)i i i P x y i =,总有12()()f P f P ε-<.又f 在有界闭区域{(,),1}D x y r G =≤+上连续,从而一致连续,故对上述0ε>,10δ∃>,当12121,;P P D P P δ∈-<时,恒有: 12()()f P f P ε-<,取2112min{,1},,P P R δδ=∀∈,当12P P δ-<时,12,PP 或同属于D 或同满足(1,2)i r G i >=,从而总有12()()f P f P ε-<.故(,)f x y 在2R 上一致连续. 例6[2] 设函数(,)f x y 在矩形[,][,]a b c d ⨯上连续,证明函数[,]()max (,)y c d x f x y ϕ∈≡在[,]a b 上连续.证明: 任取12,[,]x x a b ∈,设 111()(,)x f x y ϕ=,222()(,)x f x y ϕ=显然有112()(,)x f x y ϕ≥.任给0ε>,由于f 在[,][,]a b c d ⨯上一致连续,故0δ∃>,当12x x δ-<时,有1222(,)(,)f x y f x y ε-<,及 1222(,)(,)f x y f x y ε>-,故12()()x x ϕϕε>-.交换12,x x 得21()()x x ϕϕε>-,所以 12()()x x ϕϕε-<, 当12x x δ-<,12,[,]x x a b ∈时成立.固定1x ,令2x 在1(,)U x δ内变化,可得()x ϕ 在1x 的连续性,同理可得()x ϕ在2x 的连续性.进而可得()x ϕ在[,]a b 上连续.例7【7】 设函数(,)f x y 在域D 内对变数x 是连续的,并对变量y 满足Lipschitz 条件,即'''(,),(,)x y x y D ∀∈,有''''''(,)(,)f x y f x y L y y -≤-,其中L 为常数.证明:(,)f x y 在D 上连续.证明: 00(,)x y D ∀∈ 由于(,)f x y 对x 连续,则0(,)f x y 在0x 连续,1000,(,)0x y εδ∀>∃>,使得当01x x δ-<时,有 000(,)(,)2f x y f x y ε-<. 取202L εδ=>,则当02y y δ-<时,由条件有00(,)(,)22L f x y f x y L y y L εε-≤-<=,故取12min{,}δδδ=,则当00,x x y y δδ-<-<,且00((,),)U x y D δ⊂时,有000000(,)(,)(,)(,)(,)(,)f x y f x y f x y f x y f x y f x y -≤-+-22εεε≤+=,即知(,)f x y 在点0(,)x y 连续.由0(,)x y 的任意性知,(,)f x y 在D 上连续.致谢:本文在写作过程中得到贾化冰老师的指导,在此表示感谢!参考文献[1]华东师范大学数学系.《数学分析》第3版(下册)[M].北京.高等教育出版社.2001.6. 100-106.[2]胡适耕,姚云飞.《数学分析---定理、问题、方法》第1版[M].北京.科学出版社.2007.1. 40-45.[3]刘玉琏,刘伟,刘宁等.《数学分析讲义---练习题选解》第2版[M].北京.高等教育出版社.2005.3. 353-359.[4]王勇,曹学广.《数学分析全程导学及习题全解》第2版(下册)[M].北京.中国时代经济出版社.2007.2. 88-102.[5]翟明清,浅析二元函数的一致连续性[J].滁州学院学报.2004.9.第6卷第3期. 98-99.[6]李克典,马云苓.《数学分析选讲》第一版[M].厦门大学出版社.2006.6. 444-666.[7]孙清华,孙昊.《数学分析—内容、方法与技巧》第1版(下册)[M].武汉.华中科技大学出版社.2003.11. 254-258.Study the continuity of dual functionSHI Fei(Department of Mathematics, Baoji University of Arts and Sciences, Baoji 721013,Shaanxi, China)Abstract: Dual function the nature, is the study differentiable binary function sex and integrability of problems such as foundation. This paper of continuity of binary function do to further discuss judgment, and sums up some commonly used, common judgment method of dual function continuitykey words: dual function ;continuity ;Uniformly continuous课题条件:1、目的和意义:二元函数的性质,是研究二元函数可微性及可积性等问题的基础。

二元函数连续条件的探讨【】.docx

二元函数连续条件的探讨【】.docx

指导老师:张颖媛摘要:本文研究的是二元函数连续的条件,若二元函数连续,则二元函数按每一个单变量必连续。

反之,二元函数按每一个单变量都连续,但二元函数不一定连续,当增加某些条件后,二元函数就连续了。

关键词:二元函数;连续;单变量连续* * 1刖S二元函数的“全面连续”是指二维连续,相应地,“按单变量连续”可理解为函数f(x,y)分别对x和y连续。

关于二元函数连续条件,有下面结果:全面连续必按各单变量连续;反之,按各单变量连续,不一定全面连续,只有补充某些条件之后,才能保证二元函数的连续性,以下通过两种方法对此证明。

正面证明:因f(x,y)全面连续,不妨设其定义在DuR?上,Pq (Xq> y0)e D是D上的聚点或孤立点,则对于任给的正数总存在相应的正数5,只要P w U (人,5) C D, 就有即|./'(儿刃一/(兀,儿)|<£故有:f(x,y)按各单变量连续。

举出反例证明:心」拦-当八Z时0 ,当x2 + y2 = 0时在原点处显然不连续。

但由于/(O,y) = /(x,O)^O因此,在原点处f(x,y)对x和y对分别都连续。

1二元函数的连续性概念定义1.1 (用“£-3”定义二元函数连续)设函数f(.r,y)为定义在点集DUR?上的二元函数,P o eD (它或者是D 的聚点,或者是D 的孤立点),若对0£〉0, E J>0, 使得当Peo(^,J)nD 时,都有则称/(-r,v)关于集合D 在人点连续,简称/在人点连续。

若函数/在D 上任何点都连续,则称/■为D 上的连续函数。

由连续定义,若P 。

是D 的孤立点,则厶必定是/■关于集合D 的连续点;若佗是D 的聚点,则/■关于集合D 在人连续等价于limf(P) = /(^)P&D如果是D 的聚点,而上式不成立,则称/•关于集合D 在厶不连续(或间断点)。

特别iimy (p )= A^y (q )时,称p°是/■的可去间断点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Pnk

P0 . 所 以P0
是D 的聚点, 再因
D 是 闭 集, 知 P0 D. 由于 f 在 D 上连续, 当然在点P0 也连续, 因此
有 lim k
f ( Pnk )
f (P0 ).
这与不等式 ⑶ 相矛盾, 所以 f 在 D 上有界.
上一页
下一页
主页
定理16.9(一致连续性定理)若函数 f 在有界闭域D R2上连续,则f 在 D 上
u ( x, y) 和 v ( x, y) 在 xy 平面上点
P0 ( x0 , y0 ) 的 某 邻 域 内 有 定 义, 并 在 P0 点 连 续; 函 数 f (u, v) 在 uv 平 面 上 点Q0 (u0 , v0 ) 的 邻 域 内 有 定 义, 并 在 Q0 点 连 续,其 中
u0 ( x0 , y0 ), v ( x0 , y0 ). 则 复 合 函 数 g( x, y) f [ ( x, y),( x, y)] 在 点 P0 也 连 续.
上一页
下一页
主页

二、有界闭域上连续函数的性质
定理16.8(有界性与最大、最小值定理) 若函数 f 在有界闭域D R2 上连续,则f 在 D 上有界, 且 能 取 得 最 大 值 与 最 小值.
其中 L 为常数,则此函数在 G 内连续。
上一页
下一页
主页
证 因 为 f ( x, y0 ) 对 变量 x 连 续, 所 以
0, 1 0, 使 得 当| x x0 | 1 时,
| f ( x, y0 ) f ( x0 , y0 ) |


min{
L
, 1},
但 二 元 函 数 f 在 ( x0 , y0 ) 不 一 定 连 续.
上一页
下一页
主页
1, xy 0 设 f ( x, y) 0, xy 0
显然 f 在原点处不连续.
但 lim f ( x,0) lim0 0 f (0,0)
x0
x0
所以 f ( x, 0 ) 在 x =0 连续.
上一页
下一页
主页
设P0 ( x0 , y0 ),P( x, y) D, x x x0 , y y y0 , 则 称 z f ( x0 , y0 ) f ( x, y) f ( x0 , y0 )
f ( x0 x, y0 y) f ( x0 , y0 ) 为 函 数 f 在 点 P0 的 全 增 量.
一致连续.(即 0, 0,使得 P,Q D,只要(P,Q) ,就有 | f (P) - f (Q) | .)
上一页
下一页
主页
定理16.10(介值性定理)设函数 f 在区域
D R2上 连 续 , 若P1,P2为 D 中 任 意 两点 , 且 f (P1 ) f (P2 ),则对任何满足不等式
若 lim z 0, 则称 (x,y )(0,0)
f
关于 D 在点 P0
连 续.
( x, y )D
称 x f ( x0 , y0 ) f ( x0 x, y0 ) f ( x0 , y0 ) y f ( x0 , y0 ) f ( x0 , y0 y) f ( x0 , y0 )
lim f (0, y) lim0 0 f (0,0)
y0
y0
f ( 0, y ) 在 y =0 连续.
上一页
下一页
主页
与一元函数的性质类似,若二元函数在某一点连续, 那么在这一点也有局部有界性、局部保号性、有理 运算的各个法则以及复合函数的连续性.
上一页
下一页
主页
定 理 16.7 (复 合 函 数 的 连 续 性) 设 函 数
当| x x0 | ,| y y0 | 时,
| f ( x, y0 ) f ( x0 , y0 ) |
| f ( x, y) f ( x, y0 ) | | f ( x, y0 ) f ( x0 , y0 ) |
L | y y0 | L 2

0,
则 f ( x0 , y) 在 y0 连续.
上一页
下一页
主页
若 f 在 ( x0 , y0 ) 连续, 则 f ( x, y0 ) 在 x0 连续,
f ( x0 , y) 在 y0 连续.
但 反 过 来 不 一 定 成 立, 若 f ( x, y0 ) 在 x0 连 续, f ( x0 , y) 在 y0 连 续,
为 函 数 f 在 点 P0 的 偏 增 量.
上一页
下一页
主页

lim
x 0
x
f
( x0 ,
y0 )

0,
即 lim[ x 0
f ( x0
x,
y0 )
f
( x0 ,
y0 )]
0
这 说 明 f ( x, y0 ) 在 x0 连 续.
同理若
lim
y0

y
f
(
x0
,
y0
)
若 f 在 P0 不连续,则称 P0 是 f 的不连续点,
或间断点.
若 lim P P0
f (P) 存 在, 但 lim P P0
f (P)
f (P0 )
PD
PD
则 称 P0 是 f 的 可 去 间 断 点.
若 f 在 D 上任何点都关于集合 D 连续,则称
f 为 D 上的连续函数.
上一页
下一页
主页
▪二元函数连续性的 概念
▪有界闭域上连续函 数的性质
上一页
下一页
主页
一、二元函数的连续性概念
定 义 设 f 为 定 义 在 点 集D R2 上 的 二 元 函 数 , P0 D( 或 者 是 D 的 聚 点, 或 者 是 D 的 孤 立 点),
0, 0, 当P U(P0;) D时 ,
f (P1 ) u f (P2 ) 的实数u,必存在点P0 D,使得 f (P0 ) u.
上一页
下一页
主页
P.105 习题6
6. 若 f (x, y) 在某一区域 G 内对变量 x 为连续,对
变量 y 满足李普希兹条件,即对任何
(x, y) G, (x, y) G
有 | f (x, y) f (x, y) | L | y y |

| f (P) f (P0 ) |
则 称 f 关 于 集 合D 在 点 P0 连 续.
若 P0 是 D 的孤立点,则 P0 必定是 f 关于 D 的连续点.
上一页
下一页
主页
若 P0 是 D 的聚点,则 f 关于 D 在 P0 连续等价于
lim
P P0
f (P)
f (P0 )
PD
上一页
下一页
主页
上一页
下一页
主页
证 先证 f 在 D 上有界. 假设 f 在 D 上无界,
则对每个正整数 n, 必存在互不相同的 Pn D, 使得
| f (Pn ) | n, n 1,2,

于是得一个有界无限点列 {Pn } D
由聚点定理的推论, {Pn } 存在收敛子列{Pnk },

lim
k
相关文档
最新文档