复合材料PPt
合集下载
复合材料ppt课件
Pc 表示复合材料的某性能,如强度、弹性模量、密度、电导率、热 导率、热膨胀系数等;Pi 表示各组分材料的对应复合材料的某性能; V表示组成复合材料各组分的体积百分比(vol.%);下标i表示组成 复合材料的组分数(包括基体、若干增强材料)。
第三章 例:
连续纤维单向增强复合材料,当只采用一种纤维增强时,复合材料 沿纤维方向的拉伸强度可以表示为:
除其优异性能外,复合材料还具有可设计性,可以根据 对材料的性能要求,在基体、增强材料的类型和含量上 进行选择,并进行适当的制备与加工。
第三章 3.5.2 复合材料复合原理
由于复合材料是由两种或两种以上不同的材料组分复合而 成的,除工艺因素外,基体和增强材料的性能必然影响复 合材料的性能。此外增强材料的形状、含量、分布以及与 基体的界面结合、结构也会影响复合材料的性能。
第三章
第三章
在民用工业如机械工业、交通运输、建筑工业以及生物医 学、体育等领域,由于3-73 玻璃钢建筑材料用于上海东方明珠电视塔大堂装潢(左) 复合材料(玻璃钢)制作的渔船 (右)
第三章
复合材料与基体材料相比具有以下优异的性能:
(1)比强度(强度/密度)和比模量(弹性模量/密度)高; (2)抗疲劳性能好; (3)高韧性和抗热冲击性,在PMC和CMC中尤为重要; (4)耐热性高; (5)减振性能好; (6)耐烧蚀性、耐磨损、导电和导热; (7)特殊的光、电、磁性能等。
第三章
颗粒增强复合材料的弹性模量与颗粒体积分量的关系
第三章
混合法则简明表达了复合材料的性能与基体、增强材料性能之间的 关系,但在应用混合法则对复合材料性能进行估算时,由于增强材 料的形状、长径比、分布以及基体与增强材料的结合等因素,还需 要对此进行一定的修正。
第三章 例:
连续纤维单向增强复合材料,当只采用一种纤维增强时,复合材料 沿纤维方向的拉伸强度可以表示为:
除其优异性能外,复合材料还具有可设计性,可以根据 对材料的性能要求,在基体、增强材料的类型和含量上 进行选择,并进行适当的制备与加工。
第三章 3.5.2 复合材料复合原理
由于复合材料是由两种或两种以上不同的材料组分复合而 成的,除工艺因素外,基体和增强材料的性能必然影响复 合材料的性能。此外增强材料的形状、含量、分布以及与 基体的界面结合、结构也会影响复合材料的性能。
第三章
第三章
在民用工业如机械工业、交通运输、建筑工业以及生物医 学、体育等领域,由于3-73 玻璃钢建筑材料用于上海东方明珠电视塔大堂装潢(左) 复合材料(玻璃钢)制作的渔船 (右)
第三章
复合材料与基体材料相比具有以下优异的性能:
(1)比强度(强度/密度)和比模量(弹性模量/密度)高; (2)抗疲劳性能好; (3)高韧性和抗热冲击性,在PMC和CMC中尤为重要; (4)耐热性高; (5)减振性能好; (6)耐烧蚀性、耐磨损、导电和导热; (7)特殊的光、电、磁性能等。
第三章
颗粒增强复合材料的弹性模量与颗粒体积分量的关系
第三章
混合法则简明表达了复合材料的性能与基体、增强材料性能之间的 关系,但在应用混合法则对复合材料性能进行估算时,由于增强材 料的形状、长径比、分布以及基体与增强材料的结合等因素,还需 要对此进行一定的修正。
材料表界面第八章-复合材料界面PPT课件
❖ 分子链中引入环氧基一般有两种方法,一种是由含 活泼氢的化合物如酚类、有机酸类、胺类与环氧氯 丙烷发生开环反应,然后在碱的作用下闭环,引入 环氧基:
16
缩水甘油醚型环氧树脂
R - O H + C H 2 - C H - C H 2 C l O
R - O - C H 2 - C H - C H 2 C l O H
陶瓷基、水泥基、玻璃基
3
复合材料的特性
(1). 轻质高强
复合材料的密度低,在1.4~2.0之 间,约为钢的1/5,铝的1/2,因而 其比强度(抗张强度与密度的比)、 比模量(弹性模量与密度的比)比 钢、铝合金高,如高模量碳纤维/环 氧复合材料的比强度为钢的5倍,铝 合金的4倍。其比模量是钢、铝、钛 的4倍。轻质高强是复合材料适宜用 作航空、航天材料的宝贵性能。
缩水甘油胺型环氧树脂
R - O - C H 2 - C H - C H 2 O
R - N H 2 + C H 2 - C H - C H 2 C l O
R - N H - C H 2 - C H - C H 2 C l O H
R - N H - C H 2 - C H - C H 2 O
O
O
C O HC= C O CH HC=C
调节饱和二元酸和不饱和二元酸的比例,可以控制不饱和聚酯中双键的含量
然后,在引发剂的存在下,不饱和聚酯中的双键与苯乙烯 发生自由基共聚反应,交联成三元网状结构
O CO
O HC-CHCO
HC-CH
CH-Ph
CH-Ph
CH
O
n
O
CH n
CO
HC-CHCO
HC-CH
第8章 复合材料的界面
16
缩水甘油醚型环氧树脂
R - O H + C H 2 - C H - C H 2 C l O
R - O - C H 2 - C H - C H 2 C l O H
陶瓷基、水泥基、玻璃基
3
复合材料的特性
(1). 轻质高强
复合材料的密度低,在1.4~2.0之 间,约为钢的1/5,铝的1/2,因而 其比强度(抗张强度与密度的比)、 比模量(弹性模量与密度的比)比 钢、铝合金高,如高模量碳纤维/环 氧复合材料的比强度为钢的5倍,铝 合金的4倍。其比模量是钢、铝、钛 的4倍。轻质高强是复合材料适宜用 作航空、航天材料的宝贵性能。
缩水甘油胺型环氧树脂
R - O - C H 2 - C H - C H 2 O
R - N H 2 + C H 2 - C H - C H 2 C l O
R - N H - C H 2 - C H - C H 2 C l O H
R - N H - C H 2 - C H - C H 2 O
O
O
C O HC= C O CH HC=C
调节饱和二元酸和不饱和二元酸的比例,可以控制不饱和聚酯中双键的含量
然后,在引发剂的存在下,不饱和聚酯中的双键与苯乙烯 发生自由基共聚反应,交联成三元网状结构
O CO
O HC-CHCO
HC-CH
CH-Ph
CH-Ph
CH
O
n
O
CH n
CO
HC-CHCO
HC-CH
第8章 复合材料的界面
复合材料应用PPT课件
基体材料增强材料金属基复合材料聚合物基复合材料无机非金属基复合材料种类外形碳纤维复合材料玻璃纤维复合材料芳纶纤维复合材料连续纤维短纤维复合材料片状粒状材料增强复合材料金属基复合材料一方面具有一系列与金属性能相似的优点另一方面增强相的加入又赋予材料一些特殊性能这样不同金属与合金基体及不同增强体的优化组合就使金属基复合材料具有各种特殊性能和优异的综合性能
石墨烯/铜 复合材料
石墨烯/银 复合材料
石墨烯是目前发现的唯一存在的一种由碳原子致密堆积而成的二维蜂窝状晶格结构的环 保型碳质新材料,具有超大比表面积(2630 m 2/g),是目前已知强度最高的材料(达130 gpa)。
美国科学家研发了一 种全新的金属材料,能够 漂浮在水面上。在设计上, 这种镁合金基复合材料利 用中空碳化硅颗粒进行加 固,密度只有每立方厘米 0.92克,相比之下,水的 密度为每立方厘米1克。 无论是制造船只甲板、汽 车零部件、浮力模块还是 车辆装甲,这种新材料都 拥有广阔的应用前景
应力工ቤተ መጻሕፍቲ ባይዱ下的耐高温材料。
陶瓷基复合材料(CMC)由于其本身耐温高、密度低的优势,在航空发动机上的应用 呈现出从低温向高温、从冷端向热端部件、从静子向转子的发展趋势。 CMC材料具有耐温 高、密度低、类似金属的断裂行为、对裂纹不敏感、不发生灾难性损毁等优异性能,有望取 代高温合金满足热端部件在更高温度环境下的使用,不仅有利于大幅减重,而且还可以节约 甚至无须冷气,从而提高总压比,实现在高温合金耐温基础上进一步提升工作温度400~ 500℃,结构减重50%~70%,成为航空发动机升级换代的关键热结构用材。
树脂基复合材料在国外先进航空发动机冷端上的主要应用部位
树脂基复合材料在短舱的主要应用部位
树脂基复合材料由于其优异的比强度和比刚度,最初应用于航空航 天领域,目前正在快速商业化到其他行业,如汽车和体育用品行业。树 脂基复合材料通过成分设计和结构设计,实现特殊应用,这种功能定制 设计能实现许多其他功能,如电、热、光和/或磁性性能。MGI列出了 树脂基复合材料的9个重点发展方向。
石墨烯/铜 复合材料
石墨烯/银 复合材料
石墨烯是目前发现的唯一存在的一种由碳原子致密堆积而成的二维蜂窝状晶格结构的环 保型碳质新材料,具有超大比表面积(2630 m 2/g),是目前已知强度最高的材料(达130 gpa)。
美国科学家研发了一 种全新的金属材料,能够 漂浮在水面上。在设计上, 这种镁合金基复合材料利 用中空碳化硅颗粒进行加 固,密度只有每立方厘米 0.92克,相比之下,水的 密度为每立方厘米1克。 无论是制造船只甲板、汽 车零部件、浮力模块还是 车辆装甲,这种新材料都 拥有广阔的应用前景
应力工ቤተ መጻሕፍቲ ባይዱ下的耐高温材料。
陶瓷基复合材料(CMC)由于其本身耐温高、密度低的优势,在航空发动机上的应用 呈现出从低温向高温、从冷端向热端部件、从静子向转子的发展趋势。 CMC材料具有耐温 高、密度低、类似金属的断裂行为、对裂纹不敏感、不发生灾难性损毁等优异性能,有望取 代高温合金满足热端部件在更高温度环境下的使用,不仅有利于大幅减重,而且还可以节约 甚至无须冷气,从而提高总压比,实现在高温合金耐温基础上进一步提升工作温度400~ 500℃,结构减重50%~70%,成为航空发动机升级换代的关键热结构用材。
树脂基复合材料在国外先进航空发动机冷端上的主要应用部位
树脂基复合材料在短舱的主要应用部位
树脂基复合材料由于其优异的比强度和比刚度,最初应用于航空航 天领域,目前正在快速商业化到其他行业,如汽车和体育用品行业。树 脂基复合材料通过成分设计和结构设计,实现特殊应用,这种功能定制 设计能实现许多其他功能,如电、热、光和/或磁性性能。MGI列出了 树脂基复合材料的9个重点发展方向。
复合材料力学性能ppt课件
低分子是瞬变过程
(10-9 ~ 10-10 秒)
各种运动单元的运动需要 克服内摩擦阻力,不可能
瞬时完成。
高分子是松弛过程
运动单元多重性:
键长、键角、侧基、支链、 链节、链段、分子链
需要时间
( 10-1 ~ 10+4 秒)
.
8
Tg 粘流态
Tf
Td
Tf ~ Td
分解温 度
(1)分子运动机制:整链分子产生相对位移
应变硬化
E D A
D A
O A
B
y
图2.4 非晶态聚合物的应力. -应变曲线(玻璃态)
20
2.2 高分子材料的力学性能
.
21
2.2 高分子材料的力学性能
序号 类型
1
2
硬而脆 硬而强
3 强而韧
4 软而韧
5 软而弱
曲线
模量
高
高
高
低
低
拉伸强度
中
高
高
中
低
断裂伸长率 小
中
大
很大
中
断裂能
小
中
大
大
小
F
F
A0
一点弯曲
三点弯曲
均匀压缩 体积形变 压缩应变
F
扭转
F
.
17
2.2 高分子材料的力学性能
应力-应变曲线 Stress-strain curve
标准哑 铃型试
样
实验条件:一定拉伸速率和温度
.
电子万能材料试验机
18
2.2 高分子材料的力学性能
图2.3 高分子材料三种典型的应力-应变曲线
.
19
《复合材料》PPT课件(2024)
优异的抗疲劳性能
复合材料能够抵抗循环载荷作用下的疲劳破坏,具有较长的疲劳寿命, 适用于承受交变应力的结构件。
2024/1/26
03
良好的减震性能
Hale Waihona Puke 复合材料具有较好的阻尼性能,能够吸收和分散振动能量,降低结构的
振动和噪音水平。
16
物理性能
耐高低温性能
复合材料能够在极端温度环境下保持稳定的性能,适用于高温或低 温工作条件。
2024/1/26
25
建筑领域应用
建筑结构
复合材料可用于制造建 筑结构部件,如梁、板 、柱和墙体等,具有轻 质、高强度和耐腐蚀等 优点。
2024/1/26
建筑材料
复合材料还可作为建筑 材料使用,如复合地板 、复合门窗和复合墙板 等,具有美观、环保和 耐用等特点。
装饰装修
复合材料也可用于建筑 装饰装修领域,如吊顶 、隔断和家具等,具有 多样化的外观和优良的 性能。
X射线衍射(XRD)
分析复合材料的晶体结构和相组成,确定增 强体和基体的晶体类型。
2024/1/26
透射电子显微镜(TEM)
揭示复合材料内部微观结构,如增强体的分 布、取向和缺陷等。
原子力显微镜(AFM)
研究复合材料表面纳米级形貌和力学性质。
20
宏观性能测试方法
拉伸试验
测定复合材料的拉伸强度、弹性模量 和断裂伸长率等力学性能指标。
性能变化。
疲劳试验
2024/1/26
研究复合材料在交变应力作用下的疲 劳性能,预测其疲劳寿命和疲劳强度
。
耐化学腐蚀试验
测试复合材料在不同化学介质中的耐 腐蚀性能,评估其耐酸、耐碱、耐盐 雾等能力。
加速老化试验
复合材料能够抵抗循环载荷作用下的疲劳破坏,具有较长的疲劳寿命, 适用于承受交变应力的结构件。
2024/1/26
03
良好的减震性能
Hale Waihona Puke 复合材料具有较好的阻尼性能,能够吸收和分散振动能量,降低结构的
振动和噪音水平。
16
物理性能
耐高低温性能
复合材料能够在极端温度环境下保持稳定的性能,适用于高温或低 温工作条件。
2024/1/26
25
建筑领域应用
建筑结构
复合材料可用于制造建 筑结构部件,如梁、板 、柱和墙体等,具有轻 质、高强度和耐腐蚀等 优点。
2024/1/26
建筑材料
复合材料还可作为建筑 材料使用,如复合地板 、复合门窗和复合墙板 等,具有美观、环保和 耐用等特点。
装饰装修
复合材料也可用于建筑 装饰装修领域,如吊顶 、隔断和家具等,具有 多样化的外观和优良的 性能。
X射线衍射(XRD)
分析复合材料的晶体结构和相组成,确定增 强体和基体的晶体类型。
2024/1/26
透射电子显微镜(TEM)
揭示复合材料内部微观结构,如增强体的分 布、取向和缺陷等。
原子力显微镜(AFM)
研究复合材料表面纳米级形貌和力学性质。
20
宏观性能测试方法
拉伸试验
测定复合材料的拉伸强度、弹性模量 和断裂伸长率等力学性能指标。
性能变化。
疲劳试验
2024/1/26
研究复合材料在交变应力作用下的疲 劳性能,预测其疲劳寿命和疲劳强度
。
耐化学腐蚀试验
测试复合材料在不同化学介质中的耐 腐蚀性能,评估其耐酸、耐碱、耐盐 雾等能力。
加速老化试验
材料导论第十四章复合材料ppt课件
混凝土=水泥+砂+石
复合材料的种类
金属基
陶瓷基
按基体相分
聚合物基
水泥基
复 合 材
按增强相 的形态分
颗粒增强 纤维增强 晶须增强
碳纤维 玻璃纤维 有机纤维
复合纤维
料
编织物增强
按用途分
结构复合材料 承受载荷,作为承力结构使用
功能复合材料
电、磁、光、热、声、摩 擦、阻尼、化学分离性能
复合材料的特点
多相: 至少两相 复合效应:不仅保留了原组成材料的特色,而且
3、石墨/镁复合材料
这种材料密度低、线膨胀系数为零,尺寸的稳定性好,是金属基复合材料中具 有最高比强度和比弹性模量的复合材料。可在石墨纤维表面沉积TiB2,提高石 墨纤维的润湿性。
金属基复合材料
长纤维增强金属基复合材料
4、碳化硅/钛复合材料
碳化硅纤维比强度高、比模量高,高温强度高,耐热、耐氧化,与金属的反 应小,润湿性好。
主要应用于飞机发动机部件和涡轮叶片以及火箭发动机箱体材料。
5、氧化铝/铝复合材料
氧化铝纤维在氧化气氛中稳定,能在高温下保持其强度、刚度, 且硬度高,耐磨性好。这种复合材料具有高强度和高刚度,可用于 汽车发动机活塞和其他发动机零件。
金属基复合材料
1、氧化铝/铝复合材料
短纤维/晶须增强金属基复合材料 2、碳化硅/铝复合材料 3、氧化铝/镍复合材料
突出特点
性树脂基体—热塑性玻璃钢。
密度低:1.6~2.0g/cm3;
比强度高:较最高强度的合金钢还高3倍;
耐烧蚀
耐腐蚀
应用
航空航天工业:如雷达罩、机舱门、燃料箱、行李架和地板等。 火箭:发动机壳体、喷管。 汽车工业:如汽车车身、保险杠、车门、挡泥板、灯罩、内部装饰件等。 石油化工工业:如玻璃钢贮罐、容器、管道、洗涤器、冷却塔等
复合材料的种类
金属基
陶瓷基
按基体相分
聚合物基
水泥基
复 合 材
按增强相 的形态分
颗粒增强 纤维增强 晶须增强
碳纤维 玻璃纤维 有机纤维
复合纤维
料
编织物增强
按用途分
结构复合材料 承受载荷,作为承力结构使用
功能复合材料
电、磁、光、热、声、摩 擦、阻尼、化学分离性能
复合材料的特点
多相: 至少两相 复合效应:不仅保留了原组成材料的特色,而且
3、石墨/镁复合材料
这种材料密度低、线膨胀系数为零,尺寸的稳定性好,是金属基复合材料中具 有最高比强度和比弹性模量的复合材料。可在石墨纤维表面沉积TiB2,提高石 墨纤维的润湿性。
金属基复合材料
长纤维增强金属基复合材料
4、碳化硅/钛复合材料
碳化硅纤维比强度高、比模量高,高温强度高,耐热、耐氧化,与金属的反 应小,润湿性好。
主要应用于飞机发动机部件和涡轮叶片以及火箭发动机箱体材料。
5、氧化铝/铝复合材料
氧化铝纤维在氧化气氛中稳定,能在高温下保持其强度、刚度, 且硬度高,耐磨性好。这种复合材料具有高强度和高刚度,可用于 汽车发动机活塞和其他发动机零件。
金属基复合材料
1、氧化铝/铝复合材料
短纤维/晶须增强金属基复合材料 2、碳化硅/铝复合材料 3、氧化铝/镍复合材料
突出特点
性树脂基体—热塑性玻璃钢。
密度低:1.6~2.0g/cm3;
比强度高:较最高强度的合金钢还高3倍;
耐烧蚀
耐腐蚀
应用
航空航天工业:如雷达罩、机舱门、燃料箱、行李架和地板等。 火箭:发动机壳体、喷管。 汽车工业:如汽车车身、保险杠、车门、挡泥板、灯罩、内部装饰件等。 石油化工工业:如玻璃钢贮罐、容器、管道、洗涤器、冷却塔等
复合材料PPT
总论 复合材料的基体材料 复合材料的增强材料 复合材料的界面 聚合物基复合材料 金属基复合材料 碳/碳复合材料
第一章
总 论
1.1 发展概况
1.2 复合材料定义、命名 和分类 1.3 复合材料的基本性能
第一章 总 论
1.1 发展概况
材料发展历史: 石器、铜器、铁器时代等 实现生产、科学目的: 新材料研究 材料科学历史: 四十多年
问 题: (1)复合产物能否为液体或气体? (2)复合材料是不是只能是一个
连续相与一个分散相的复合?
1.2.2 命名
例:玻璃纤维增强树脂基复合材料命名
玻璃钢 玻纤增强塑料、玻璃塑料、玻璃布 层压板、玻璃纤维复合材料
命名原则:
增强材料+基体材料+复合材料
例:碳纤维环氧树脂复合材料 书写: 碳/环氧复合材料
亚短钢纤维(长度40—60mm) 短钢纤维(长度20—35mm) 超短钢纤维(长度<15mm)
横截面形状:圆形、矩形截面 钢纤维主要品种:不锈钢、低碳钢
图 15
高架桥
1.3.6 三种复合材料性能比较 (1)使用温度、硬度 使用温度: CMC >MMC > PMC 硬 度: CMC >MMC > PMC
纤维增强树脂基复合材料:
● 基体强韧性降低裂纹扩展速度 ● 纤维对裂纹阻隔作用,使裂纹 尖端变纯或改变方向
裂纹扩展路径曲折、复杂
图12 三种材料疲劳性能比较
1—碳纤维复合材料
3—铝合金
2—玻璃钢
金属疲劳强度=20—50%抗张强度
碳纤维复合材料疲劳强度=
70—80%抗张强度
(3)减振性能好 影响自振频率因素:
1.3.2 聚合物基复合材料及主要性能
第一章
总 论
1.1 发展概况
1.2 复合材料定义、命名 和分类 1.3 复合材料的基本性能
第一章 总 论
1.1 发展概况
材料发展历史: 石器、铜器、铁器时代等 实现生产、科学目的: 新材料研究 材料科学历史: 四十多年
问 题: (1)复合产物能否为液体或气体? (2)复合材料是不是只能是一个
连续相与一个分散相的复合?
1.2.2 命名
例:玻璃纤维增强树脂基复合材料命名
玻璃钢 玻纤增强塑料、玻璃塑料、玻璃布 层压板、玻璃纤维复合材料
命名原则:
增强材料+基体材料+复合材料
例:碳纤维环氧树脂复合材料 书写: 碳/环氧复合材料
亚短钢纤维(长度40—60mm) 短钢纤维(长度20—35mm) 超短钢纤维(长度<15mm)
横截面形状:圆形、矩形截面 钢纤维主要品种:不锈钢、低碳钢
图 15
高架桥
1.3.6 三种复合材料性能比较 (1)使用温度、硬度 使用温度: CMC >MMC > PMC 硬 度: CMC >MMC > PMC
纤维增强树脂基复合材料:
● 基体强韧性降低裂纹扩展速度 ● 纤维对裂纹阻隔作用,使裂纹 尖端变纯或改变方向
裂纹扩展路径曲折、复杂
图12 三种材料疲劳性能比较
1—碳纤维复合材料
3—铝合金
2—玻璃钢
金属疲劳强度=20—50%抗张强度
碳纤维复合材料疲劳强度=
70—80%抗张强度
(3)减振性能好 影响自振频率因素:
1.3.2 聚合物基复合材料及主要性能
【大学课件】复合材料PPT
.
28
③ 基体金属与增强物的相容性
金属基复合材料需要在高温下成型,制备 过程中,处于高温热力学非平衡状态下的纤维与 金属之间很容易发生化学反应,在界面形成反应 层。界面反应层大多是脆性的,当反应层达到一 定厚度后,材料受力时将会因界面层的断裂伸长 小而产生裂纹,并向周围纤维扩展,容易引起纤 维断裂,导致复合材料整体破坏。
• 仿照骨骼的组织特点,人们制造了类似结构的风力发电机和 直升飞机的旋翼,外层是刚度、强度高的碳纤维复合材料, 中层是玻璃纤维增强复合材料、内层是硬泡沫塑料。
.
20
9.3 复合材料的基体材料
复合材料的原材料: • 基体材料
– 金属材料 – 陶瓷材料 – 聚合物材料
• 增强材料
– 纤维 – 晶须 – 颗粒
则、增韧机制和界面作用; • 了解复合材料的成型工艺。
.
3
参考书目
• 王荣国 主编,复合材料概论,哈尔滨工业大学 出版社,1999
• 闻荻江主编,复合材料原理,武汉理工大学出 版社,1998
• 鲁云,先进复合材料,机械工业出版社,2004 • ASM International, Engineered materials
– 基体主要是镍基、铁基耐热合金和金属间化合物。较成熟 的是镍基、铁基高温合金,金属间化合物基复合材料尚处 于研究阶段。
.
31
9.3.1.3 功能用金属基复合材料的基体
• 要求材料和器件具有优良的综合物理性能,如同时具 有高力学性能、高导热、低热膨胀、高导电率、高抗 电弧烧蚀性、高摩擦系数和耐磨性等。
Chapter 9 Composites
复合材料
.
1
本章内容
1. 复合材料概述 2. 复合材料分类 3. 复合材料的基体 4. 复合材料的增强相 5. 复合材料的复合原理 6. 复合材料的成型工艺
《复合材料的特性》课件
详细描述
复合材料是由两种或多种材料组合而成的,这些材料可以是金属、非金属、有机或无机材料,通过一定的工艺技 术,如挤压、铸造、热压等,将它们结合在一起,形成一个整体。这个整体具有各组分材料所不具备的特性,从 而满足各种不同的需求。
分类
要点一
总结词
复合材料可以根据不同的分类标准进行分类,如按组分类 型、形态、制造工艺等。
声学性能
通过调整复合材料的结构和组成,可 以控制其声学性能,如隔音、吸音效 果。
化学性能
耐腐蚀性
环境适应性
复合材料中的基体和纤维对各种化学环境 有很好的耐受性,不易被腐蚀。
某些复合材料能在极端环境中保持稳定, 如高温、高压、高湿或强辐射环境。
良好的密封性
可设计性强
复合材料的结构特性使其具有很好的气密 性和水密性,适用于需要密封的场合。
高性能化
随着科技的不断进步,对复合材料性能的要求也越来越高,高性能 复合材料将得到更广泛的应用。
智能化
随着物联网、传感器等技术的不断发展,复合材料将逐渐实现智能 化,提高其使用效率和安全性。
技术挑战
01
02
03
制造技术
复合材料的制造技术要求 高,需要精确控制各组分 的比例和分布,提高制造 效率和质量。
聚合物基复合材料的生产工艺主要包 括手糊成型、喷射成型、层压成型、 模压成型等。
喷射成型是通过将树脂和增强材料混 合后,通过喷枪喷射到模具表面,快 速固化形成复合材料制品。
金属基复合材料工艺
金属基复合材料是以金属或其 合金为基体,以纤维、晶须、 颗粒等为增强剂,通过复合工
艺制备而成的材料。
金属基复合材料的生产工艺主 要包括铸造、粉末冶金、扩散
可以根据特定的化学环境需求,设计复合 材料的组成和结构,以满足各种应用需求 。
复合材料是由两种或多种材料组合而成的,这些材料可以是金属、非金属、有机或无机材料,通过一定的工艺技 术,如挤压、铸造、热压等,将它们结合在一起,形成一个整体。这个整体具有各组分材料所不具备的特性,从 而满足各种不同的需求。
分类
要点一
总结词
复合材料可以根据不同的分类标准进行分类,如按组分类 型、形态、制造工艺等。
声学性能
通过调整复合材料的结构和组成,可 以控制其声学性能,如隔音、吸音效 果。
化学性能
耐腐蚀性
环境适应性
复合材料中的基体和纤维对各种化学环境 有很好的耐受性,不易被腐蚀。
某些复合材料能在极端环境中保持稳定, 如高温、高压、高湿或强辐射环境。
良好的密封性
可设计性强
复合材料的结构特性使其具有很好的气密 性和水密性,适用于需要密封的场合。
高性能化
随着科技的不断进步,对复合材料性能的要求也越来越高,高性能 复合材料将得到更广泛的应用。
智能化
随着物联网、传感器等技术的不断发展,复合材料将逐渐实现智能 化,提高其使用效率和安全性。
技术挑战
01
02
03
制造技术
复合材料的制造技术要求 高,需要精确控制各组分 的比例和分布,提高制造 效率和质量。
聚合物基复合材料的生产工艺主要包 括手糊成型、喷射成型、层压成型、 模压成型等。
喷射成型是通过将树脂和增强材料混 合后,通过喷枪喷射到模具表面,快 速固化形成复合材料制品。
金属基复合材料工艺
金属基复合材料是以金属或其 合金为基体,以纤维、晶须、 颗粒等为增强剂,通过复合工
艺制备而成的材料。
金属基复合材料的生产工艺主 要包括铸造、粉末冶金、扩散
可以根据特定的化学环境需求,设计复合 材料的组成和结构,以满足各种应用需求 。
《复合材料原理》PPT课件
的树脂(如乙烯基酯树脂)为基体; 对于碱性介质:宜采用无碱玻璃纤维为增强体和耐碱性
良好的树脂(如胺固化环氧树脂)。
.
15
复合材料特性:
.
16
抗拉强度与密度 之比 比强度高的材料 能承受高的应力
弹性模量与密度之 比 比模量高说明材料 轻而且刚性大
.
17
疲劳破坏的种类不同: 金属: 突发性破坏 疲劳强度极 限是其拉伸强度的30%~50% 聚合物基复合材料: 有预兆破坏 极限为拉伸强度的70%~80%
.
20
(1) 密度低 ; (2) 耐腐蚀; (3) 易氧化、老化; (4) 聚合物的耐热性通常较差; (5) 易燃; (6) 低的摩擦系数; (7) 低的导热性和高的热膨胀性; (8) 极佳的电绝缘性和静电积累; (9) 聚合物可以整体着色而制得带色制品。 (10) 聚合物的一些力学性能随其分子结构的改变而变化。
复合材料原理
.
1
主要内容
1、绪论 2、复合材料的复合效应 3、复合材料的界面状态解析 4、复合体系的界面结合特性 5、复合体系的典型界面反应 6、复合材料的界面处理技术
.
2
7、复合材料物理和化学性能的复合规律 8 、结构复合材复合材料的起源:
.
4
二、复合材料的定义
和聚芳酰胺纤维等高模量纤维为增强剂;
☼ 4、金属、陶瓷基复合材料:上世纪70年代则又出现以
金属、陶瓷等为基体材料的复合材料。
.
7
四、复合材料的分类:
1、无机非金属基复合材料 2、聚合物基复合材料 3、金属基复合材料
基体材料不同
.
8
4.1 复合材料中的材料设计和结构设计
工程应用的角度
结构复合材料
良好的树脂(如胺固化环氧树脂)。
.
15
复合材料特性:
.
16
抗拉强度与密度 之比 比强度高的材料 能承受高的应力
弹性模量与密度之 比 比模量高说明材料 轻而且刚性大
.
17
疲劳破坏的种类不同: 金属: 突发性破坏 疲劳强度极 限是其拉伸强度的30%~50% 聚合物基复合材料: 有预兆破坏 极限为拉伸强度的70%~80%
.
20
(1) 密度低 ; (2) 耐腐蚀; (3) 易氧化、老化; (4) 聚合物的耐热性通常较差; (5) 易燃; (6) 低的摩擦系数; (7) 低的导热性和高的热膨胀性; (8) 极佳的电绝缘性和静电积累; (9) 聚合物可以整体着色而制得带色制品。 (10) 聚合物的一些力学性能随其分子结构的改变而变化。
复合材料原理
.
1
主要内容
1、绪论 2、复合材料的复合效应 3、复合材料的界面状态解析 4、复合体系的界面结合特性 5、复合体系的典型界面反应 6、复合材料的界面处理技术
.
2
7、复合材料物理和化学性能的复合规律 8 、结构复合材复合材料的起源:
.
4
二、复合材料的定义
和聚芳酰胺纤维等高模量纤维为增强剂;
☼ 4、金属、陶瓷基复合材料:上世纪70年代则又出现以
金属、陶瓷等为基体材料的复合材料。
.
7
四、复合材料的分类:
1、无机非金属基复合材料 2、聚合物基复合材料 3、金属基复合材料
基体材料不同
.
8
4.1 复合材料中的材料设计和结构设计
工程应用的角度
结构复合材料
复合材料的成型工艺ppt课件
第二节 金属基复合材料(MMC)成形工艺
一、固态法
1.扩散黏结法(Diffusion Bonding) 如图9-2所示,扩散黏结是一种在较长时间、
较高温度和压力下,通过固态焊接工艺,使同类 或不同类金属在高温下互扩散而黏结在一起的工 艺方法。
2.形变法(Plastic Forming) 形变法就是利用金属具有塑性成型的工艺特点
2.复合材料的特点
(1)比强度和比刚度高 (2)抗疲劳性好 (3)高温性能好 (4)减振性能好 (5)断裂安全性高 (6)可设计性好
为 了 规 范 事 业单位 聘用关 系,建 立和完 善适应 社会主 义市场 经济体 制的事 业单位 工作人 员聘用 制度, 保障用 人单位 和职工 的合法 权益
第一节 复合材料简述
四 、 复 合 材 料 的 失 效 (Failure of Composite)
复合材料的失效一般是指其疲劳破坏过程。
1.制造加工损伤
此种损伤产生初始缺陷。,它包括:纤维铺设不 均,扭结、死扣等,树脂不均;纤维切断、错排; 固化不足;有孔隙、气泡;材质污染等。
2.使用引起的损伤
此种损伤导致缺陷发展。它包括:树脂裂纹或老 化;分层;纤维断裂;振动较大导致的纤维断裂; 温度变化较大;机加工产生内应力;碰撞等。
二、复合材料用原料
1.增强材料
(1)碳纤维(Carbon Fiber) (2)硼纤维(Boron Filament) (3)芳纶(Aramid Ring) (4)玻璃纤维(Glass Fiber) (5)碳化硅纤维(Silicon Carbide Fiber) (6)晶须(Whisker)
2.基体材料
3)基体能够很好地保护纤维表面,不产生表面 损伤、不产生裂纹。
复合材料界面教学课件PPT
2.1概述
• 复合材料的界面是指基体与增强相之间化学 成分有显著变化的、构成彼此结合的、能起 载荷传递作用的微小区域。
• 复合材料的界面是一个多层结构的过渡区域, 约几个纳米到几个微米。此区域的结构与性 质都不同于两相中的任何一相。这一界面区 由五个亚层组成,每一亚层的性能都与基体 和增强相的性质、复合材料成型方法有关。
接触角随温度、保持时间、吸附气体等而变化。
2.4 复合材料的界面理论
2.4.1界面润湿理论 : 根据力的合成:
L cos = S - SL , 粘合功可表示为:
WA = S + L - SL= L(1+ cos )。 粘合功WA最大时, cos =1,即 = 0,液体完全 平铺在固体表面。同时 = SL , S = L 。 热力学说明两个表面结合的内在因素,表示结合的 可能性;动力学反映实际产生界面结合的外界条件, 如温度、压力等的影响,表示结合过程的速度问题。
4)交换反应结合。基体与增强材料间发生化学反应,生成化合物, 且还通过扩散发生元素交换,形成固溶体而使两者结合。
5)混合结合。这种结合较普遍,是最重要的一种结合方式。是以 上几种结合方式中几个的组合。
2.2 复合材料的界面效应
• 界面是复合材料的特征,可将界面的机能归 纳为以下几种效应:
• (1)传递效应:界面可将复合材料体系中 基体承受的外力传递给增强相,起到基体和 增强相之间的桥梁作用。
• 对SiC晶须表面采用化学方法处理后XPS(X-ray Photoelectron Spectroscopy)分析的结果。由C(1s)和Si(2p)的波谱可以看出, 有 态的的地差方来存增在强界SiO面2的,结有合的力地。方不存在SiO2。利用这样的表面状
• 复合材料的界面是指基体与增强相之间化学 成分有显著变化的、构成彼此结合的、能起 载荷传递作用的微小区域。
• 复合材料的界面是一个多层结构的过渡区域, 约几个纳米到几个微米。此区域的结构与性 质都不同于两相中的任何一相。这一界面区 由五个亚层组成,每一亚层的性能都与基体 和增强相的性质、复合材料成型方法有关。
接触角随温度、保持时间、吸附气体等而变化。
2.4 复合材料的界面理论
2.4.1界面润湿理论 : 根据力的合成:
L cos = S - SL , 粘合功可表示为:
WA = S + L - SL= L(1+ cos )。 粘合功WA最大时, cos =1,即 = 0,液体完全 平铺在固体表面。同时 = SL , S = L 。 热力学说明两个表面结合的内在因素,表示结合的 可能性;动力学反映实际产生界面结合的外界条件, 如温度、压力等的影响,表示结合过程的速度问题。
4)交换反应结合。基体与增强材料间发生化学反应,生成化合物, 且还通过扩散发生元素交换,形成固溶体而使两者结合。
5)混合结合。这种结合较普遍,是最重要的一种结合方式。是以 上几种结合方式中几个的组合。
2.2 复合材料的界面效应
• 界面是复合材料的特征,可将界面的机能归 纳为以下几种效应:
• (1)传递效应:界面可将复合材料体系中 基体承受的外力传递给增强相,起到基体和 增强相之间的桥梁作用。
• 对SiC晶须表面采用化学方法处理后XPS(X-ray Photoelectron Spectroscopy)分析的结果。由C(1s)和Si(2p)的波谱可以看出, 有 态的的地差方来存增在强界SiO面2的,结有合的力地。方不存在SiO2。利用这样的表面状
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合材料的应用
•交通运输行业 •新型能源领域
•建筑行业
交通运输行业应用
XPMI泡沫塑料
•能够减重提速,降低功率消耗,低惯性,减少磨损。 •减震降噪,绝缘阻燃,防潮防蛀。 •降低重心,加强稳定性。 •设计灵活性,安装简便和维护费用低。
新型能源领域的应用
•风能 •潮汐能 •太阳能
复合材料在风车叶 片中的应用
袖珍"胶囊"宾馆
东京的地盘寸土寸金,因 此也诞生了匪夷所思的宾 馆——胶囊宾馆。所谓的 胶囊由注模塑胶或玻璃纤 维制成,几十个整齐撂起 来的“胶囊”,每个胶囊 “盛放”一个顾客。房间 大小约为2米×1米×1.25 米。1979年,世界首个 “胶囊”宾馆在日本大阪 出现,胶囊虽小,却有完 备的附件。包括一些日常 用品和电器 。
目前,有一种新型光伏材料表现出 来的性能与如今最好的太阳能电池 一样,但这种新型复合材料将明显 便宜得多。
英国一商业规模的 名为种已达SenGen的 潮汐发电机
建筑行业应用
在位于德国汉堡附近的赖恩 贝克(Reinbek)市,座落着 一座名为 ‘Holländerbrücke’ 的跨 ‘Hamburgerstrasse’公路大桥, 这座桥梁长100米宽 3.5米,它 的主体是采用轻型钢玻璃钢 和钢铁共同建造而成。 这座桥是在工厂完成制造, 通过公路运输到工地,然后 将三座桥模块安装到预先准 备好的基脚位置,尽量不妨 碍交通运输。
全碳纤维门世界最物 质,稳定的碳结 构让它牢不可破。 不过,钻石做门 依目前市价有点 奢侈,于是 Choate Carbon就 用碳纤维做了个 门,可这门还是 很奢侈。
这扇全碳纤维门造价高达15000美 元,总重不到50KG,外观非常酷。 门的纹理参考了乔丹鞋底部的碳板纹 路,相当时尚。此门没钥匙,只能凭 指纹开启,保证了私密性。
•交通运输行业 •新型能源领域
•建筑行业
交通运输行业应用
XPMI泡沫塑料
•能够减重提速,降低功率消耗,低惯性,减少磨损。 •减震降噪,绝缘阻燃,防潮防蛀。 •降低重心,加强稳定性。 •设计灵活性,安装简便和维护费用低。
新型能源领域的应用
•风能 •潮汐能 •太阳能
复合材料在风车叶 片中的应用
袖珍"胶囊"宾馆
东京的地盘寸土寸金,因 此也诞生了匪夷所思的宾 馆——胶囊宾馆。所谓的 胶囊由注模塑胶或玻璃纤 维制成,几十个整齐撂起 来的“胶囊”,每个胶囊 “盛放”一个顾客。房间 大小约为2米×1米×1.25 米。1979年,世界首个 “胶囊”宾馆在日本大阪 出现,胶囊虽小,却有完 备的附件。包括一些日常 用品和电器 。
目前,有一种新型光伏材料表现出 来的性能与如今最好的太阳能电池 一样,但这种新型复合材料将明显 便宜得多。
英国一商业规模的 名为种已达SenGen的 潮汐发电机
建筑行业应用
在位于德国汉堡附近的赖恩 贝克(Reinbek)市,座落着 一座名为 ‘Holländerbrücke’ 的跨 ‘Hamburgerstrasse’公路大桥, 这座桥梁长100米宽 3.5米,它 的主体是采用轻型钢玻璃钢 和钢铁共同建造而成。 这座桥是在工厂完成制造, 通过公路运输到工地,然后 将三座桥模块安装到预先准 备好的基脚位置,尽量不妨 碍交通运输。
全碳纤维门世界最物 质,稳定的碳结 构让它牢不可破。 不过,钻石做门 依目前市价有点 奢侈,于是 Choate Carbon就 用碳纤维做了个 门,可这门还是 很奢侈。
这扇全碳纤维门造价高达15000美 元,总重不到50KG,外观非常酷。 门的纹理参考了乔丹鞋底部的碳板纹 路,相当时尚。此门没钥匙,只能凭 指纹开启,保证了私密性。