导数大题经典练习及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数大题专题训练
1.已知f(x)=xlnx-ax,g(x)=-x2-2,
(Ⅰ)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围;
(Ⅱ)当a=-1时,求函数f(x)在[m,m+3](m>0)上的最值;(Ⅲ)证明:对一切x∈(0,+∞),都有lnx+1>成立.
2、已知函数.(Ⅰ)若曲线y=f (x)在点P(1,f (1))处的切线与直线y=x+2垂直,求函数y=f (x)的单调区间;(Ⅱ)若对于都有f (x)>2(a―1)成立,试求a的取值范围;(Ⅲ)记g (x)=f (x)+x―b(b∈R).当a=1时,函数g (x)在区间[e―1,e]上有两个零点,求实数b的取值范围.
3.设函数f (x)=lnx+(x-a)2,a∈R.(Ⅰ)若a=0,求函数f (x)在[1,e]上的最小值;
(Ⅱ)若函数f (x)在上存在单调递增区间,试求实数a的取值范围;
(Ⅲ)求函数f (x)的极值点.
4、已知函数.
(Ⅰ)若曲线在和处的切线互相平行,求的值;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得,求的
取值范围.
5、已知函数
(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;
(Ⅱ)若对于任意成立,试求a的取值范围;
(Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间上有两个零点,求实数b的取值范围.
6、已知函数.
(1)若函数在区间(其中)上存在极值,求实数a的取值范围;
(2)如果当时,不等式恒成立,求实数k的取值范围.
1.解:(Ⅰ)对一切恒成立,即恒成立.也就是在恒成立;令,则,
在上,在上,因此,在处取极小值,也是最小值,
即,所以.
(Ⅱ)当,,由得.
①当时,在上,在上
因此,在处取得极小值,也是最小值. .
由于因此,
②当,,因此上单调递增,所以,
……9分
(Ⅲ)证明:问题等价于证明
由(Ⅱ)知时,的最小值是,当且仅当时取得,
设,则,易知,当且仅当时取到,
但从而可知对一切,都有成立.
2、解:(Ⅰ)直线y=x+2的斜率为1.函数f (x)的定义域为(0,+∞),因为,所以,所以a=1.所以. .由解得x>0;由解得0<x<2. 所以f (x)的单调增区间是(2,+∞),单调减区间是(0,2)(Ⅱ),由解得;由解得.所以f (x)在区间上单调递增,在区间上单调递减.所以当时,函数f (x)取得最小值,. 因为对于都有成立,
所以即可. 则.由解得.所以a的取值范围是.
(Ⅲ)依题得,则.由解得x>1;由解得0<x<1.所以函数在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数在区间[e-1,e]上有两个零点,所以.解得.所以b的取值范围是.
3.解:(Ⅰ)f (x)的定义域为(0,+∞). 因为,所以f (x)在[1,e]上是增函数,
当x=1时,f (x)取得最小值f (1)=1.所以f (x)在[1,e]上的最小值为1.
(Ⅱ)解法一:设g (x)=2x2―2ax+1,依题意,在区间上存在子区间使得不等式g (x)>0成立. 注意到抛物线g (x)=2x2―2ax+1开口向上,所以只要g (2)>0,或即可由g (2)>0,即8―4a+1>0,得,由,即,得,所以,
所以实数a的取值范围是.
解法二:,依题意得,在区间上存在子区间使不等式2x2―2ax+1>0成立.又因为x>0,所以.
设,所以2a小于函数g (x)在区间的最大值.又因为,
由解得;由解得.
所以函数g (x)在区间上递增,在区间上递减.
所以函数g (x)在,或x=2处取得最大值.又,,所以,
所以实数a的取值范围是.
(Ⅲ)因为,令h (x)=2x2―2ax+1
①显然,当a≤0时,在(0,+∞)上h (x)>0恒成立,f (x)>0,此时函数f (x)没有极值点;
②当a>0时,
(i)当Δ≤0,即时,在(0,+∞)上h (x)≥0恒成立,这时f (x)≥0,此时,函数f (x)没有极值点;(ii)当Δ>0时,即时,易知,当时,h (x)<0,这时f (x)<0;
当或时,h (x)>0,这时f (x)>0;
所以,当时,是函数f (x)的极大值点;是函数f (x)的极小值点.
综上,当时,函数f (x)没有极值点;
当时,是函数f (x)的极大值点;是函数f (x)的极小值点.
4.解:. (Ⅰ),解得.
(Ⅱ).
①当时,,,在区间上,;在区间上,
故的单调递增区间是,单调递减区间是.
②当时,,在区间和上,;在区间上,
故的单调递增区间是和,单调递减区间是.
③当时,,故的单调递增区间是.
④当时,,在区间和上,;在区间上,
故的单调递增区间是和,单调递减区间是.
(Ⅲ)由已知,在上有.由已知,,由(Ⅱ)可知,
①当时,在上单调递增,故,
所以,,解得,故.
②当时,在上单调递增,在上单调递减,故.
由可知,,,所以,,,
综上所述,.
5、解:(Ⅰ)直线y=x+2的斜率为1,函数f(x)的定义域为因为,所以,所以a=1,所以由解得x>2 ;由解得0<x<2所以f(x)得单调增区间是,单调减区间是
(Ⅱ),由解得由解得
所以f(x)在区间上单调递增,在区间上单调递减
所以当时,函数f(x)取得最小值
因为对于任意成立,所以即可
则,由解得;所以a得取值范围是
(Ⅲ)依题意得,则
由解得x>1,由解得0<x<1所以函数g(x)在区间上有两个零点,
所以解得
所以b得取值范围是
6、解:(1)因为,,则,
当时,;当时,.
∴在上单调递增;在上单调递减,
∴函数在处取得极大值.………3分
∵函数在区间(其中)上存在极值,∴解得.
(2)不等式,即为,
记∴,…9分
令,则,∵,∴,∴在上递增,∴,从而,故在上也单调递增,∴,∴.。