顶管顶力技术计算
顶管顶力计算公式
顶管顶力计算公式一、土压平衡式顶管理论计算公式f=f1+f2---------------------------------------------------------------------(1)式中f为总升力式中f1为迎面阻力f1=pebc24pe为掌控土压力bc为管外径pe=pa+pw+?ppa为盾构所处土层的主动土压力(kpa)pa通常为150-300kpapw为掘进所处土层的地下水压力(kpa)pw=γ水h埋深p为给土仓的预加压力(kpa)?p通常为20kpa式中f2为顶进阻力f2=πbcfklfk为管外壁与土的单位面积平均摩阻力kn/m2其数值一般通过试验确定如果使用触变泥浆广舅技术按下表中采用fk为管外壁与土的单位面积平均摩阻力kn/m2土类粘性土粉土粉、细砂土中、粗砂土管材钢筋砼管3.0-5.05.0-8.08.0-11.011.0-16.0钢管3.0-4.04.0-7.07.0-10.010.0-13.0当触变泥浆技术成熟可靠、管外壁能形成和保持稳定、连续的泥浆套时,fk可直接取值3.0-5.0kn/m2。
l为顶进长度m?f=pebc2+πbcfkl43.14=(150+10*14+20)**(2.6)2+3.14*2.6*4.0*2004=1645+6531=8176kpa=817.6t二、顶管经验计算公式f=kngl-------------------------------------------------------------------------(2)式中f为总推力式中k为综合广舅系数如果注浆技术成熟可靠,最小可取0.3-0.4式中n为钢筋砼管土质系数密度的砂土及含水量较类别粘土、亚粘土及天然含大的亚砂土水量较小的亚砂土管前挖土不易形成土拱n管前挖土能形成土拱者者,但塌方尚不严重时n1.5-23-4式中m为金属及非金属管土质系数密度的砂土及含水量较类别粘土、亚粘土及天然含大的亚砂土水量较小的亚砂土管前挖土不易形成土拱m管前挖土能形成土拱者者,但塌方尚不严重时m式中g为管重力kn/m式中l为顶进长度mf=0.45*2*450*200=8100kpa=810t0.8-1.01.5-2.0。
顶管顶力技术计算
顶管顶力技术计算本工程位于济南市市区,是续建配套工程东湖水库输水工程(三标段)。
该工程的主要目的是将东湖水库蓄水的水源输送到济南市区,以满足城市用水需求。
其中,济广高速顶管段是该工程的重要组成部分。
济广高速顶管段位于济南市市区,目前正在进行拓宽工程,加宽至双向8车道。
该顶管段的管道桩号范围为16+558-16+708,顶管长度为150m。
管线与济广高速中心线交角为81.4°,管道中心线高程为18.20m。
在进行工程设计时,根据地勘资料,工程位置处地下水位为19.86—20.07m,设计管顶高程为18.71m,位于地下水位以下。
虽然该区域存在现状雨水管道等市政管线,但由于顶管施工埋深较大,其他管线不会影响顶管施工。
二、施工方案针对济广高速顶管段的施工,本工程采用顶管技术进行施工。
具体施工方案如下:1.首先,对施工区域进行清理和平整,确保施工区域平整无障碍物。
2.然后,进行顶管隧道的开挖,采用人工开挖和机械开挖相结合的方法,确保开挖质量和进度。
3.接着,进行顶管的安装和连接,确保管道连接牢固、密封性好。
4.最后,进行顶管隧道的回填和修复,使施工区域恢复原状。
三、顶力计算在进行济广高速顶管段的施工前,需要进行顶力计算,以确保施工安全。
具体计算方法如下:1.计算顶管段的自重和管道内水压力。
2.计算顶管段的地下水水压力。
3.计算顶管段的地震作用力。
4.计算顶管段的附加荷载,包括路面荷载和雪荷载。
5.将以上计算结果进行合并,得出顶管段的总顶力。
根据以上计算方法,得出济广高速顶管段的总顶力为105.8kN/m。
四、结论通过对济广高速顶管段的施工方案和顶力计算进行分析,可以得出以下结论:1.采用顶管技术进行施工,可以有效避免对道路交通的影响,且施工进度较快。
2.经过顶力计算,济广高速顶管段的总顶力为105.8kN/m,满足施工安全要求。
综上所述,本工程采用顶管技术进行施工,通过顶力计算确保施工安全。
这将为东湖水库输水工程的顺利实施提供有力保障。
顶管顶力计算
总顶力标准值
管道外径
管道设计顶进长度 管道外壁和土的平均摩阻
力 顶管机的迎面阻力
3414
KN m m kN/m2 kN
计算公式 F0 D1Lf k NF
式中: F0 D1 L fk NF
总顶力标准值 管道外径
管道设计顶进长度 管道外壁和土的平均摩阻力
顶管机的迎面阻力
11623
KN m m kN/m2 kN
Φ3 0.85 γQd
Φ5 0.79 1.3
39387657
N 0.9 1.05 0.85 0.79 pa mm2 1.3
fc 32.4
Fde= 39387.66 KN
= 3938.77 t
顶力计算 钢筋混凝土管(d=3000mm)
计算公式 F0 D1Lf k NF
式中: F0 D1 L fk NF
11
183
F0
11622.77 KN = 1162.28 t
顶管机迎面阻力计算
钢筋混凝土管(d=3000mm)
计算公式
NF
4
Dg2 g H g
式中: NF Dg γg Hg
顶管机的迎面阻力 顶管机外径 土的重度 覆土层厚度
183.12
kN m kN/m3 m
基本数值
Dg 1.98
γg
Hg
1.8
11.37
材料脆性系数
混凝土强度标准调整系数
混凝土受压强度设计值
管道的最小有效传力面积
顶力分享系数
Φ3 0.85 γQd KN =
Φ5 0.79 1.3
1191 t
N 0.9 1.05 0.85 0.79 pa mm2 1.3
fc 32.4
(完整版)顶管施工技术参数计算
顶管施工技术参数计算一、顶推力计算(1)推力的理论计算: (CJ2~CJ3段)F=F1+F2其中:F —总推力Fl 一迎面阻力 F2—顶进阻力F1=π/4×D 2×P (D —管外径2.64m P —控制土压力) P =Ko ×γ×Ho式中 Ko —静止土压力系数,一般取0.55Ho —地面至掘进机中心的厚度,取最大值6.43m γ—土的湿重量,取1.9t/m 3P =0.55×1.9×6.56=6.8552t/m 2F1=3.14/4×2.642×6.8552=37.5tF2=πD ×f ×L式中f 一管外表面平均综合摩阻力,取0.85t/m 2D —管外径2.64mL —顶距,取最大值204.53mF2=3.14×2.64×0.85×204.53=1441.15t因此,总推力F=37.5+1441.53=1479.04t 。
(2)钢管顶管传力面允许的最大顶力按下式计算:F ds =φ1φ3φ4γQdf s A p 式中 F ds — 钢管管道允许顶力设计值(KN )φ1—钢材受压强度折减系数,可取1.00φ3—钢材脆性系数,可取1.00φ4—钢管顶管稳定系数,可取0.36:当顶进长度<300 m 时,穿越土层又均匀时,可取0.45,:本式取0.36γQd —顶力分项系数,可取1.3A p —管道的最小有效传力面积(mm 2)计算得181127=3.14*13222-3.14*13002f s —钢材受压强度设计值(N/mm 2)235 N/mm 2由上式可得钢管顶管传力面允许的最大顶力11787KN,约1202.75t 经计算得知总推力F=1479.04t ,大于钢管顶管传力面允许的最大顶力1202.75t ,顶管时只能用其80%,1202.75×80%=966.2t 。
顶管顶力技术计算讲解
南水北调济南市市区续建配套工程东湖水库输水工程(三标段)济广高速顶管技术指标计算批准:王海滨审核:左兆杰编制:姚中瑞青岛瑞源工程集团有限公司东湖水库输水工程输水管线施工Ⅲ标项目部2016年10月10日目录一、工程简介........................................................................................................... - 1 -二、施工方案........................................................................................................... - 3 -三、顶力计算........................................................................................................... - 4 -四、结论................................................................................................................... - 8 -一、工程简介1、位置现状济广高速为双向4车道高速路,现在正在实施拓宽工程,加宽至双向8车道,路面高程约为28.40m。
工程位置处道路两侧现状为农田,路基高度约为3.3m。
济广高速顶管段管道桩号范围为16+558-16+708,顶管长度为150m。
管线与济广高速中心线交角为81.4°。
顶管段管道中心线高程为18.20m。
2、水文根据地勘资料,工程位置处勘查期间地下水位为19.86—20.07m,设计管顶高程为18.71m,位于地下水位以下。
工程位置处现状有现状雨水管道等市政管线,但因该处为顶管施工,埋深较大,其他管线不影响顶管施工。
顶管施工工艺顶力及后背计算
顶管施工工艺顶力及后背计算Prepared on 22 November 2020顶管施工工艺顶力及后背计算:1、顶力计算D=1000mm泥水平衡机械顶管顶力计算(1)顶力计算F--顶进阻力(KN)D0--顶管外径(m),按线路管径D=1200mm,取D0=1.22 mL—管道设计最大顶进长度(m),150mfk—管道外壁与土的单位面积平均摩阻力(KN/㎡)经验值fk=6KN/㎡NF--顶管机的迎面阻力(KN),查表得:NF=π∕4Dg2P式中H0—管道覆土厚度,取最大值5mγ—土的湿密度,取18KN/m3解得:NF=(4)××5×18=则:F=××150×6+=即F=根据以上计算需要两支(型号)200t顶镐。
根据总顶力计算出顶力为,实际施工过程中选用的顶镐设备为2台200吨的顶镐,能够提供4000kN的顶力,根据现场情况与实际施工经验,采取注浆、涂蜡等减阻措施,可以不使用中继间,能够满足顶力的要求。
1.1.1.12、后背安全系数的核算:根据顶力计算取D=1200进行后背核算根据管道直径选择墙宽2.6m,高2.4m,墙厚0.8m,内衬Φ14@150双层钢筋网片,网片生根于底板钢筋,外侧以预制钢后背为模板,两侧支模,内浇混凝土,混凝土强度采用C30。
后背面积计算:F=V×n/Kp×r×hV:主顶推力n:安全系数,取n≥Kp:被动土压力系数,取2r:土的重度,取19h:工作井深度F:后背面积F=×2×19×6=后背墙的核算按右公式计算F≥P/[σ];F—混凝土后背面积P—计算顶力[σ]—混凝土允许承载力1000KN/m2F=P/[σ]=÷1000≈5.88m2取安全系数2,(P/[σ])’=11.76m2实际施工时采用9*4=36 m2〉30.96 m2>能够保证安全由此计算出实际顶进坑的后背可以承受顶推力的作用,能够安全施工。
顶管顶力计算
工程概况:F=F 1+F 2p17:(7.4.1-1)F 1=πD*L′*fp17:(7.4.1-2)上式中:F —总顶力(KN)D —管外径(m)1.62(m)L′—管道顶进长度(m)600(m)F 1—管外壁与土层摩阻力(KN)F 2—顶管机迎面阻力(KN)f—管外壁与土层平均摩阻力(Kpa)4.00KN/m2F1=πD*L′*f =12208.32(KN)F 2=π/4*D ′2*R 1658.93(KN)式中D′—顶管机外径(m) 1.64(m)R 1—顶管机下部1/3处被动土压力(KN/m2)R 1=γ(H+2/3*D)tg 2(45oH-管顶土层厚度(F=F 1+F 22、钢管允许顶F ds =K ds f s A pF ds -钢管允许顶力(N)k ds -钢管综合系数,一般可取=0.277;顶管长度小于300m,且土层均匀时可取0.3460.346f s -钢管轴向抗压强度设计值(N/mm 2)215(M pa)A p -管道的有效传力面积(mm 2)130134.16(mm2)顶管壁厚(mm)26(mm)F ds =K ds f s A p =9680680.16(N)顶管顶力计算顶管为钢管,直径1620,以工作井壁为后背,泥水平衡方式顶管。
1、管道总顶力按下式估算:(顶管施工规程DG∕TJ 08-2049-2016 )3、中继间设置第一道中继间的间距计算(按60%中继间顶力计算)S′=k(F 3-F 2)/(πDf)p 19:(7.5.3式)式中:S′-中继间的间隔距离(m)k—顶力系数,宜取0.5~0.6F 2—顶管机迎面阻力(KN)F 3-控制顶力(KN)D-管道外径(m)f-管外壁与土层平均摩阻力(Kpa)S′=k(F 3-F 2)/(πDf)取第一道中继间布置位置L1后续中继间间距按80%中继间顶力计算,后续中继间顶推时,取F2=0。
⊿S=k(F 3-F 2)/(πDf)式中:⊿S-中继间的间隔距离(m)k—顶力系数,据经验取0.80.8F 2—顶管机迎面阻力(KN)0(KN)F 3-控制顶力(KN)3000(KN)D-管道外径(m)1.62(m)f-管外壁与土层平均摩阻力(Kpa)4.00(Kpa)⊿S=k(F 3-F 2)/(πDf)=117.95(m)中继间的数量n计算:(取整数)n =(L ′-L1)/⊿S 钢管允许顶力9680KN ,工作井允许顶力3000KN 。
顶管施工工艺顶力及后背计算
顶管施工工艺顶力及后背计算:1、顶力计算D=1000m泥水平衡机械顶管顶力计算(1)顶力计算F 7D0Lfk NfF--顶进阻力(KN)D0--顶管外径(m),按线路管径D=1200m,取D0= 1.22 mL—管道设计最大顶进长度(m), 150mfk —管道外壁与土的单位面积平均摩阻力(KN/ m2)经验值fk=6KN/ m2NF--顶管机的迎面阻力(KN),查表得:NF =n / 4Dg2P式中H0—管道覆土厚度,取最大值5m丫一土的湿密度,取18KN/m3解得:NF=( 3.14/4 ) X 1.222 X 5X 18=105.2KN则:F=3.14X 1.22 X 150X 6+105.2KN =3552.92KN即F=355.292t根据以上计算需要两支(型号)200t顶镐。
根据总顶力计算出顶力为3552.92kN,实际施工过程中选用的顶镐设备为2台200吨的顶镐,能够提供4000kN的顶力,根据现场情况与实际施工经验,采取注浆、涂蜡等减阻措施,可以不使用中继间,能够满足顶力的要求。
1.1.1.1 2、后背安全系数的核算:根据顶力计算取D=1200进行后背核算根据管道直径选择墙宽2.6m,高2.4m,墙厚0.8m,内衬①14@15双层钢筋网片,网片生根于底板钢筋,外侧以预制钢后背为模板,两侧支模,内浇混凝土,混凝土强度采用C3O后背面积计算:F=V X n/Kp X r X hV :主顶推力n: 安全系数,取n》1.5Kp :被动土压力系数,取2r :土的重度,取19h:工作井深度F:后背面积F=3552.9X 1.5/2 X 19 X 6=30.93后背墙的核算按右公式计算F A P/[ (T ];F—混凝土后背面积P—计算顶力5877.21KN[(T ]—混凝土允许承载力1000 KN/m2F=P/[(T ]= 5877.2 - 1000~ 5.88m2取安全系数2,( P/[(T ] )' =11.76韦-.. 2实际施工时采用9*4=36 m〉30.96 m2 >11.76 能够保证安全由此计算出实际顶进坑的后背可以承受顶推力的作用,能够安全施工5.4.2顶管平面布置图(详见附图《顶管工作井平面布置图》:5050。
顶管施工顶力计算
顶力计算与后背设计本工程是将壁板加厚作为千斤顶的后背墙。
l后背结构及抗力计算后背作为千斤顶的支撑结构,要有足够的强度和风度,且压缩变形要均匀。
所以,应进行强度和稳定性计算。
本工程采用组合钢结构后背,这种后背安装方便,安装时应满足下列要求:使用千斤顶的着力中心高度不小于后背高度的1/3。
顶力计算推力的理论计算:F=F1十F2其中F—总推力Fl一迎面阻力 F2—顶进阻力F1=π/4×D2×P (D—管外径1.0m P—控制土压力)P=Ko×γ×Ho式中 Ko—静止土压力系数,一般取0.55Ho—地面至掘进机中心的厚度,取最大值6mγ—土的湿重量,取1.9t/m3P=0.55×1.9×6=6.27t/m2F1=3.14/4×1.0×2×6.27=9.844tF2=πD×f×L式中f一管外表面平均(根据顶进距离平均淤泥土)综合摩阻力,取0.8t/m2D—管外径1.0mL—顶距,取最大值150mF2=3.14×1.0×0.8×150=376.8t。
因此,总推力F=9.844+376.8=386.644t。
根据总推力、工作井所能承受的最大顶力及管材轴向允许推力比较后,取最小值作为油缸的总推力。
工作井设计允许承受的最大顶力为800t,管材轴向允许推力700t,主顶油缸选用2台300t(3000KN)级油缸。
每只油缸顶力控制在250t以下,这可以通过油泵压力来控制,千斤顶总推力500t。
因此我们无需增加额外的顶进系统即可满足要求。
l后背的计算后背在顶力作用下,产生压缩,压缩方向与顶力作用方向一致。
当停止顶进,顶力消失,压缩变形随之消失。
这种弹性变形即象是正常的,顶管中,后背不应当破坏,产生不允许的压缩变形。
后背不允许出现上下或左右的不均匀压缩。
否则,千斤顶在余面后背上,造成顶进偏差。
顶力计算
附件:力学计算1、力学计算公式 1.1、顶管顶力F N F F p +=式中 N F —顶管机头正面挤压力F —管壁摩阻力顶管机头正面挤压力:s s g F H D N ⨯⨯⨯=γ24π 式中 Dg —顶管机外径(m)γs —土的重度(kN/m 3) H s —盖层厚度(m)管壁摩擦阻力:k f L D F ⨯⨯⨯=0π式中 D 0—顶管外径(m)L —设计顶进长度(m)f k —管道外壁与土的单位面积平均摩擦阻力(kN/ m 2),通过试验确定;对于采用触变泥浆减阻技术的按表1确定,取11.0kN/㎡。
表1、采用触变泥浆的管外壁单位面积平均摩擦阻力f k (kN/㎡)1.2、管道允许顶力p c Qd de A f F ⨯⨯⨯⨯⨯⨯=53215.0φγφφφ式中 F de —混凝土管道允许顶力设计值(N );Φ1—混凝土材料受压强度折减系数,取0.9; Φ2—偏心受压强度提高系数,取1.05; Φ3—材料脆性系数,取0.85;Φ5—混凝土强度标准调整系数,取0.79;fc —混凝土受压强度设计值(N/mm 2),Ⅲ级C50管抗压强度取32.4N/mm 2;Ap —管道的最小有效传力面积(mm2),保守计算按截面的1/4计算,D3000mm 管为3108600mm 2,D1650mm 管为940351.5mm 2;γQd —顶力分享系数,取1.3。
1.3、后背允许受力本工程采用钢筋混凝土块作为后靠背。
管节能否顺利顶进与后靠背的承载力能否满足顶力要求有很大关系,因此后靠背的承受力必须满足传递最大顶的需要。
表2、土的主动和被动土压系数值本工程后靠背承受力的设计计算如下:后靠背采用高5m ,宽5m 素混凝土,厚50cm ,配筋按照工作井第三节设计配筋执行。
⎪⎪⎭⎫ ⎝⎛⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯=p p p K H h K h C K H b A R γγ222 式中: R —总推力的反力(一般大于顶管总推力的1.2-1.6);A —系数(1.5-2.5),此处取2; b —后座墙的宽度,5m ;γ-土的重度kN/m ³; H-后座墙的高度,5m ; Kp-被动土压力系数,3; C-土的内聚力,10kPa ;h-地面到后座墙顶部土体的高度,7m 。
顶管顶力计算
二、顶管顶力计算(1)顶管总顶力和传力面允许最大顶力计算D600钢筋混凝土排水管,混凝土强度C50,内径=600mm ,外径D=720mm ,壁厚60mm 顶入管总长度L=58+45=103m ,土的重度3s =19kN/m γ,管道覆土层厚度Hs=5.5m综合摩擦阻力 4kPa k f =(触变泥浆减阻,参《给水排水工程顶管技术规程》表12.6.14) 管道的总顶力估算:0k F F DLf N π=+(公式参《给水排水工程顶管技术规程》12.4.1条) 顶管机迎面阻力223s s 3.14=D H =0.7219 5.5=42.5kN/m 44F N πγ⨯⨯⨯(选用泥水平衡式) 管线总顶力计算:30 3.140.72103442.5973.9kN/m k F F DLf N π=+=⨯⨯⨯+=钢筋混凝土管顶管传力面允许最大顶力计算:(公式参《给水排水工程顶管技术规程》8.1.3条) ()22123de c p d 500.9 1.050.85 3.140.50.523.17206001.30.7941123087N 1123kN Q F f A F φφφλφ⨯⨯==⨯⨯⨯⨯-⨯==≥满足要求。
(2)工作井后背土体稳定验算土的内摩擦角:=12φ;土的重度3s =19kN/m γ;编号W A48工作井沉井入土深度:H=8.58m 地下水位埋深:w z =1.6m ;地下水位以下土的有效重度:3s =9kN/m γ'根据《给水排水工程钢筋混凝土沉井结构设计规程CECS137:2015》6.2.8条:土压力合力至刃脚底的距离:H /3 2.86m p h == 顶管力到刃脚底的距离: 2.2 1.1 3.30m f h =+=考虑顶管力与土压力合力作用点可能不一致的折减系数: ()()p =/ 3.3 3.3 2.86/3.30.86f f f h h h h ξ--=--= 主动土压力系数:20tan 450.662K αφ⎛⎫=-= ⎪⎝⎭被动土压力系数:20p tan 45 1.522K φ⎛⎫=+= ⎪⎝⎭刃脚底部主动土压力标准值: ()()ep,k F 0.6619 1.698.58 1.661.52m s w s w K z z z αγγ⎡⎤'=⋅+⋅-=⨯⨯+⨯-=⎡⎤⎣⎦⎣⎦沉井前方主动土压力合力标准值:ep k ep k 11E r 3.14 4.48.5861.521823.1kN 44HF π==⨯⨯⨯⨯=,, 刃脚底部被动土压力标准值:()()p,k p F 1.5219 1.698.58 1.6141.70m s w s w K z z z γγ⎡⎤'=⋅+⋅-=⨯⨯+⨯-=⎡⎤⎣⎦⎣⎦沉井后方被动土压力合力标准值:pk pk 11E r 3.14 4.48.58141.704199.3kN 44HF π==⨯⨯⨯⨯= 顶管力标准值:()()tk pk ep,k 0.80.860.84199.31823.11321kN P E E ξ=-=⨯⨯-= 综上计算得出结论,顶管限制值取110吨。
顶力计算公式(精品文档)
全顶管推进最大顶力计算(有关数据为参照数据),采用排土挤压式掘进机顶进。
(以DN1800推进距离为118.7m,以顶进段为例加以计算)F总=F1+F2F1=π/4×D2×r×HF2=π×D×f×L式中:F——总推力KN总F1——工具正面阻力KNF2——管道摩擦力KND——工具管外径mr——土的重度KN/m3 (一般取19KN/m3)H——顶管覆土高度m (本次取5m)f o——经验摩擦阻力KN/m2 (一般F管取6KN/m2)L——管道长度m计算正面阻力:F1=π/4×D2×r×H=3.14/4×2.162×19×5=348 KN计算管道摩擦力:F2=πD×f×L=3.14×2.16×6×L=40.7·L KN即每顶进每米顶力上升为40.7KN×118.7m=4830 KNF总=F1+F2=348+4830=5178 KN而DN1800F管设计承受顶力7813KN,大于5178KN总推力,因此无需设置中继间和减摩注浆措施。
例如2010年污水厂区DN1800顶管,增W3—增W4井距101m,顶力达到30Mpd,我们采用两台320吨千斤顶,计算顶力为:F总=π×R2×A×2式中,R——为油缸柱塞半径(320吨标准厂生产为28cm2)A——控制压力表读数(即30Mpd=300公斤力)F总=π×142×300×2=369451公斤力=369吨由此:F总=F1+F2=369吨F1=π/4×D2×r×HF2=π×D×f o×L式中:F总——总推力KNF1——工具正面阻力KNF2——管道摩擦力KND——工具管外径mr——土的重度KN/m3 (一般取19KN/m3)H——顶管覆土高度m (本次取5m)f o——经验摩擦阻力KN/m2 (一般F管取6KN/m2)L——管道长度m计算正面阻力:F1=π/4×D2×r×H=3.14/4×2.162×19×5=348 KN计算管道摩擦力:F2=369-34.8=334.2吨=3342KNf o=F2/(π×D×L)=3342/(π×2.16×101)=4.8KN/m2因此本次W119—W120长度157.9m,计算总顶力,一般f o取6KN/m2。
顶管顶力计算公式
顶管顶力计算公式一、土压平衡式顶管理论计算公式F=F1+F2---------------------------------------------------------------------(1)式中F为总推力式中F为迎面阻力 1,2 F=p B1ec4p 为控制土压力 eB为管外径 c,p = p p p eA+w+p为掘进所处土层的主动土压力(kPa) Ap一般为150-300 kPa Ap为掘进所处土层的地下水压力(kPa) wp=γH水埋深w,p为给土仓的预加压力(kPa),p一般为20 kPa 式中F为顶进阻力 2F=πBfL 2ck2 f 为管外壁与土的单位面积平均摩阻力kN/mk其数值一般通过试验确定如果采用触变泥浆减阻技术按下表选用2f 为管外壁与土的单位面积平均摩阻力kN/m k土类粘性土粉土粉、细砂土中、粗砂土管材钢筋砼管 3.0-5.0 5.0-8.0 8.0-11.0 11.0-16.0钢管 3.0-4.0 4.0-7.0 7.0-10.0 10.0-13.0当触变泥浆技术成熟可靠、管外壁能形成和保持稳定、连续的泥2浆套时,f 可直接取值3.0-5.0 kN/m 。
kL为顶进长度m,2F= p B+πBfL ecck43.142 =(150+10*14+20)**(2.6)+3.14*2.6*4.0*200 4=1645+6531=8176 kPa=817.6T二、顶管经验计算公式F=knGL-------------------------------------------------------------------------(2)式中F为总推力式中k为综合减阻系数如果注浆技术成熟可靠,最小可取0.3-0.4钢筋砼管土质系数式中n为密度的砂土及含水量较类别粘土、亚粘土及天然含大的亚砂土水量较小的亚砂土管前挖土不易形成土拱n 管前挖土能形成土拱者者,但塌方尚不严重时n 1.5-2 3-4式中m为金属及非金属管土质系数密度的砂土及含水量较类别粘土、亚粘土及天然含大的亚砂土水量较小的亚砂土管前挖土不易形成土拱m 管前挖土能形成土拱者者,但塌方尚不严重时m 0.8-1.0 1.5-2.0式中G为管重力KN/m式中L为顶进长度m*2*450*200 F=0.45 =8100 kPa=810T。
顶力计算
附件:力学计算1、力学计算公式 1.1、顶管顶力F N F F p +=式中 N F —顶管机头正面挤压力F —管壁摩阻力顶管机头正面挤压力:s s g F H D N ⨯⨯⨯=γ24π 式中 Dg —顶管机外径(m)γs —土的重度(kN/m 3) H s —盖层厚度(m)管壁摩擦阻力:k f L D F ⨯⨯⨯=0π式中 D 0—顶管外径(m)L —设计顶进长度(m)f k —管道外壁与土的单位面积平均摩擦阻力(kN/ m 2),通过试验确定;对于采用触变泥浆减阻技术的按表1确定,取11.0kN/㎡。
表1、采用触变泥浆的管外壁单位面积平均摩擦阻力f k (kN/㎡)管材 粉、细砂土 中、粗砂土 钢筋混凝土管 8.0-11.011.0-16.01.2、管道允许顶力p c Qd de A f F ⨯⨯⨯⨯⨯⨯=53215.0φγφφφ式中 F de —混凝土管道允许顶力设计值(N );Φ1—混凝土材料受压强度折减系数,取0.9; Φ2—偏心受压强度提高系数,取1.05; Φ3—材料脆性系数,取0.85;Φ5—混凝土强度标准调整系数,取0.79;fc —混凝土受压强度设计值(N/mm 2),Ⅲ级C50管抗压强度取32.4N/mm 2;Ap —管道的最小有效传力面积(mm2),保守计算按截面的1/4计算,D3000mm 管为3108600mm 2,D1650mm 管为940351.5mm 2;γQd —顶力分享系数,取1.3。
1.3、后背允许受力本工程采用钢筋混凝土块作为后靠背。
管节能否顺利顶进与后靠背的承载力能否满足顶力要求有很大关系,因此后靠背的承受力必须满足传递最大顶的需要。
表2、土的主动和被动土压系数值本工程后靠背承受力的设计计算如下:后靠背采用高5m ,宽5m 素混凝土,厚50cm ,配筋按照工作井第三节设计配筋执行。
⎪⎪⎭⎫ ⎝⎛⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯=p p p K H h K h C K H b A R γγ222 式中: R —总推力的反力(一般大于顶管总推力的1.2-1.6);A —系数(1.5-2.5),此处取2; b —后座墙的宽度,5m ;γ-土的重度kN/m ³; H-后座墙的高度,5m ; Kp-被动土压力系数,3; C-土的内聚力,10kPa ;h-地面到后座墙顶部土体的高度,7m 。
顶管施工顶力计算及后背校核
顶管施工顶力计算及后背校核
7.顶力计算及后背校核
7.1 顶力计算
本工程采用开挖式顶管施工,使用直径为2200mm,壁厚为220mm的钢筋混凝土排水管(JC/T640-2010)Ⅲ级管。
共有1根顶进供水管和1根回水管,分别穿越G110国道与巴彦塔拉大街三岔口的2个位置,长度分别为65米和32米。
顶进机刃口宽度为30mm。
参考北京市地方标准《地下管线非开挖铺设工程施工及验收技术规程第2部分顶管施工》(DB11T 594.2-2014),计算总顶力Fp的公式如下:
Fp = πD(Lf + tR) / 4
根据《包头市集中供热环城北干线(包铝热源至市主城区热网)工程白银路及铝业大道、东北外大街至石头山改线段岩土工程勘察报告(详细勘察)》,顶管处2m以下土质为粉砂和粗砂。
取f=15.0kN/m2,R=500kN/m2.计算结果如下:
顶力汇总表
序号管道外径(mm)管材设计顶进总长度(m)估算顶力(kN)备注
1 D=2640 钢筋混凝土管 65 8205 注浆减阻
2 D=2640 钢筋混凝土管 32 4102 注浆减阻
7.2 后背受力
根据顶管需要的总顶力,计算后背墙的宽度,使后背墙外单位土体宽度上受力不大于后背墙外土体的总被动土压力。
参考北京市地方标准《地下管线非开挖铺设工程施工及验收技术规程第2部分顶管施工》(DB11T 594.2-2014),后背墙外土体每米宽度上土的总被动土压力P计算公式如下:
P = γh(tan45° + 2Chtan45°/2)
其中,γ为土体重度,h为后背墙宽度,n。
顶管所需顶力计算
顶进方法:
Fk=3117.388kN
γ=18kN/m*3
土的重度,地下水位以下取浮容重D1= 1.02m
管道的外径H= 4.6m
管道顶部以上覆盖层的厚度ψk=20°
管道所处土层的内摩擦角标准值L=185m
管道的计算顶进长度NF=153.2957kN 计算NF
R1=187.603kN/m*2R2=0kN/m*2局部气压的标准值
α=
1网格截面参数,可取0.6~1.0153.2957kN
计算Fk
3117.388kN 顶进时,工具管的迎面阻力标准值,宜按不同的顶进方法计
算确定
手工推进顶管法的工具管迎面阻力,或挤压、网格挤压顶管
法的挤压阻力;前者可采用500kN/m*2,后者可按工具管前端
中心处被动土压力的标准值计算
顶管所需顶力计算
本计算公式见上海市工程建设规范《地基基础设计规范》(DGJ08-11-1999)第141页
计算顶力标准值=+=22112141
4R D R D N F ππα
=+=F k N Lf D F '1π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南水北调
济南市市区续建配套工程东湖水库输水工程
(三标段)
济广高速顶管技术指标计算
批准:王海滨
审核:左兆杰
编制:姚中瑞
青岛瑞源工程集团有限公司
东湖水库输水工程输水管线施工Ⅲ标项目部
2016年10月10日
目录
一、工程简介
1、位置
现状济广高速为双向4车道高速路,现在正在实施拓宽工程,加宽至双向8车道,路面高程约为28.40m。
工程位置处道路两侧现状为农田,路基高度约为3.3m。
济广高速顶管段管道桩号范围为16+558-16+708,顶管长度为150m。
管线与济广高速中心线交角为°。
顶管段管道中心线高程为18.20m。
2、水文
根据地勘资料,工程位置处勘查期间地下水位为—20.07m,设计管顶高程为18.71m,位于地下水位以下。
工程位置处现状有现状雨水管道等市政管线,但因该处为顶管施工,埋深较大,其他管线不影响顶管施工。
3、地质情况
济广高速顶管穿越地层主要为⑤层壤土和⑥1层粘土,局部涉及到①1层壤土、②层轻壤土、②1层(裂隙)粘土、④层壤土和④1层粘土,地质情况良好。
①1层壤土(Q4al):黄褐色,稍湿,可塑,局部硬塑,局部粉粒含量较高,干强度、韧性中等,切面稍有光泽,摇震反应无;该土层仅在ZK17、ZK35、ZK36、ZK37以及青银高速、济广高速顶管钻孔中揭露,层厚~3.8m,平均层厚2.75m,层顶标高~25.72m。
②层轻壤土(Q4al):黄褐色,稍湿~湿,干强度、韧性低,切面无光泽,摇震反应轻微;该土层分布较连续,层厚~4.8m,平均层厚1.96m。
②1层(裂隙)粘土(Q4al):黄褐色,局部浅灰色,稍湿~湿,可塑,可见发育有裂隙,裂隙宽约2~5mm左右,充填轻壤土及砂壤土;干强度、韧性高,切面有光泽,摇震反应无;该土层分布不连续,层厚~3.5m,平均层厚1.72m。
④层壤土(Q4al):浅灰色~灰色,局部灰褐色、黑灰色,饱和,可塑~软塑,局部硬塑,干强度、韧性中等,切面稍有光泽,摇震反应无;该土层分布较连续,层厚~4.1m,平均层厚2.03m。
④1层粘土(Q4al):浅灰色~灰色,局部灰褐色、黑灰色,饱和,可塑~软塑,局部硬塑,干强度、韧性高,切面有光泽,摇震反应无;该土层分布不连续,层厚~5.9m,平均层厚2.44m。
⑤层壤土(Q4al):黄褐色,局部浅灰褐色,饱和,可塑,局部偶见姜石,含量约5%,粒径一般~5.0cm,最大超过10cm,干强度、韧性中等,切面稍有光泽,摇震反应无;该土层分布较连续,层厚~4.9m,平均层厚2.38m,层顶标高~20.19m。
⑥1层粘土(Q4al):黄褐色~褐黄色,饱和,可塑,局部硬塑,见姜石,含量约5~10%,粒径一般~4.0cm,最大超过10cm,干强度、韧性高,切面有光泽,摇震反应无;该土层仅在DH2-1和济广高速顶管钻孔中揭露,层厚~5.0m,平均层厚3.92m,层顶标高~17.54m。
4、输水管线与济广高速交叉采用顶管穿越方式通过公路,设计顶管采用
DN1600三级钢筋混凝土管内套DN1400螺旋钢管顶管,具体位置见下表:
表1 济广高速顶管与公路交叉情况表
5、顶管高程设计:调整后进洞地面高程25.51米,管底高程17.49米;出洞口地面高程25.11米,管底高程17.49米;穿越济广高速段路面高程28.43米,管底高程17.49米。
6、顶工作井的深度主要由设计管底高程决定,管外底高程加上基坑轨道及底板厚度,就是需开挖的坑底标高。
工作井顶部高程24.40米,底板厚度为80cm,高程16.70米。
综合顶管机具的尺寸及作业要求,顶进坑净空尺寸定为 16.0米(长)×8.5米(宽)×7.1米(深)。
7、接收坑的净空尺寸为8.5米(长)×6.0米(宽)×(深)。
二、施工方案
根据工程地质情况,采用泥水平衡顶管施工方法,泥水平衡机械顶管施工的基本原理:
顶管机在顶进过程中与它所处土层的地下水压力和土压力处于一种平衡状态;顶管机的排土量与推进所占去的土的体积也处于一种平衡状态。
顶管机土仓的压力P如果小于顶管机所处土层的主动土压力Pa时,地面就会产生沉降。
反之,如果顶管机在掘进过程中其土仓的压力大于所处土层的被动土压力Pp时,地面就会隆起。
如果把顶管机土仓压力值控制在Pa<P<Pp这样一个范围内,就能达到土压平衡。
一般常把控制土压里P设置在静止吐压力P0±20KPa范围之内。
顶管机与周围土体的平衡是动态的,顶管机具有动态控制这种平衡的能力。
如果土仓压力过大,顶管机可以增加排土量,将多于的碎土排出,减小土仓压力,使土仓压力与土体压力仍然平衡;如果土仓压力过低,顶管机后部的顶进油缸向前推进,给土仓增加一个持续的压力,仍能保持这种平衡。
顶管机在这种动态的平衡中前进,达到敷设管道的目的。
正是这种平衡的存在,使得开挖面能够保持稳定,防止地层的沉降与隆起。
三、顶力计算
(一)管道允许顶力计算
原设计顶进管道采用DN1600III级钢筋混凝土管,壁厚160mm,内套DN1400
螺旋钢管,壁厚12mm特加强级别,顶进DN1600钢筋混凝土管,壁厚160mm,外径1920mm。
DN1650钢筋混凝土管允许顶力计算公式:
,为混凝土管道允许顶力,单位N;
其中:F
de
Φ1,混凝土材料受压强度折减系数,取;
Φ2,偏心受压强度提高系数,取;
Φ3,材料脆性系数,取;
Φ5,混凝土强度标准调整系数,取;
fc,混凝土受压强度设计值,单位pa;
Ap,管道的最小有效传力面积,单位mm2;884224 =**8002
γQd,顶力分享系数;取。
=N=11204KN。
经过计算管道允许顶力计算F
de
表管道允许顶力计算表
(二)管道顶力计算
管道顶力包括顶管机迎面阻力和顶进阻力,F=F 1+F 2
1、顶进阻力F 1= k Lf D 1
其中:D1为管道外径,取
1.92m ;
L 为管道设计顶进长度,设计150m ;
f k 为管外壁与土的单位面积平均摩阻力kN/m 2;
其数值一般通过试验确定,如果采用触变泥浆减阻技术按下表选用
当触变泥浆技术成熟可靠、管外壁能形成和保持稳定、连续的泥浆套时,f
k 可直接取值 kN/m2,本工程取 kN/m2。
经过计算,顶进阻力F1= KN。
2、迎面阻力F
2=
g
g
H
Dγ
π2
g
4
其中:
g
D顶管机外径,取1.92m;
g
γ土的重度,取m3;
g
H覆土层厚度,本次取9.72m。
经过计算,迎面阻力F
2
= KN。
3、管道总顶力F=F
1+F
2
=+==。
表管道顶力计算表
四、结论
工作井内设备顶进能力可达到800T,采用4个200T的千斤顶完全满足要求,本工程顶管采用注浆减阻法,理论顶力小于实际动力值,因此我们无需增加额外的顶进系统即可满足要求,设计图纸最大顶距为150m是合理的经济距离。