电子产品失效分析技术59页PPT
合集下载
半导体器件可靠性与失效分析微电子ppt
![半导体器件可靠性与失效分析微电子ppt](https://img.taocdn.com/s3/m/9e097811443610661ed9ad51f01dc281e53a563b.png)
包括热设计、防静电设计、防辐射设 计、布线设计等。
02
失效分析
失效定义与分类
失效定义
器件无法完成其预定功能或性能恶化到无法接受的程度。
失效分类
功能失效和结构失效,按性质可分为软失效和硬失效,按物理效应可分为可恢复失效和不可恢复失效 。
失效分析方法
外观检查
电气测试
X射线检测
切片分析
化学成分分析
通过肉眼观察器件外观 是否存在明显的缺陷或 损伤,如裂纹、变形、 烧伤等。
05
案例分析与讨论
典型失效案例分析
案例1
一个高可靠性MEMS压力传感器的失效分析 。
案例2
一个微电子电路中的热失效问题。
案例3
一个存储器芯片的突发性失效。
失效预防与可靠性提升措施
预防措施1
采用高可靠性设计和制造技术。
预防措施2
优化芯片封装和测试流程。
预防措施3
重视生产过程中的质量控制。
提升措施1
控制晶圆的几何形状、表 面平整度和化学组成,确 保晶圆具有一致性和可靠 性。
薄膜沉积环节
通过优化工艺参数和选用 合适的薄膜材料,提高薄 膜的质量和可靠性。
光刻环节
精确控制光刻胶的厚度、 光刻掩膜版的质量以及曝 光能量等参数,确保器件 的尺寸精度和可靠性。
刻蚀环节
通过选用合适的刻蚀气体 、功率等参数,确保刻蚀 的效果和可靠性。
通过测试器件的电压、 电流、电阻等电气参数 ,判断器件是否存在电 气故障。
利用X射线对器件内部进 行无损检测,发现微小 缺陷和内部结构问题。
通过将器件切割成薄片 进行观察和分析,了解 器件内部结构和材料的 组成及分布情况。
采用光谱分析、质谱分 析、能谱分析等方法, 检测器件中各元素的种 类、含量及分布情况。
02
失效分析
失效定义与分类
失效定义
器件无法完成其预定功能或性能恶化到无法接受的程度。
失效分类
功能失效和结构失效,按性质可分为软失效和硬失效,按物理效应可分为可恢复失效和不可恢复失效 。
失效分析方法
外观检查
电气测试
X射线检测
切片分析
化学成分分析
通过肉眼观察器件外观 是否存在明显的缺陷或 损伤,如裂纹、变形、 烧伤等。
05
案例分析与讨论
典型失效案例分析
案例1
一个高可靠性MEMS压力传感器的失效分析 。
案例2
一个微电子电路中的热失效问题。
案例3
一个存储器芯片的突发性失效。
失效预防与可靠性提升措施
预防措施1
采用高可靠性设计和制造技术。
预防措施2
优化芯片封装和测试流程。
预防措施3
重视生产过程中的质量控制。
提升措施1
控制晶圆的几何形状、表 面平整度和化学组成,确 保晶圆具有一致性和可靠 性。
薄膜沉积环节
通过优化工艺参数和选用 合适的薄膜材料,提高薄 膜的质量和可靠性。
光刻环节
精确控制光刻胶的厚度、 光刻掩膜版的质量以及曝 光能量等参数,确保器件 的尺寸精度和可靠性。
刻蚀环节
通过选用合适的刻蚀气体 、功率等参数,确保刻蚀 的效果和可靠性。
通过测试器件的电压、 电流、电阻等电气参数 ,判断器件是否存在电 气故障。
利用X射线对器件内部进 行无损检测,发现微小 缺陷和内部结构问题。
通过将器件切割成薄片 进行观察和分析,了解 器件内部结构和材料的 组成及分布情况。
采用光谱分析、质谱分 析、能谱分析等方法, 检测器件中各元素的种 类、含量及分布情况。
电子元器件 失效分析培训 PPT
![电子元器件 失效分析培训 PPT](https://img.taocdn.com/s3/m/587ea235eefdc8d376ee3259.png)
航天材料及工艺研究所
四、元器件失效分析方法和程序
元器件失效分析程序 5、启封 、
目的: 目的:暴露失效元器件内部薄弱环节 内容: 内容:采用合理的方法和程序逐步分解失效元器件 技术手段:机械方法(针对金属、陶瓷、玻璃封装) 技术手段:机械方法(针对金属、陶瓷、玻璃封装) 化学方法(针对塑料封装) 化学方法(针对塑料封装) 注意事项:确认外观检查和无损检测已经充分系统, 注意事项:确认外观检查和无损检测已经充分系统,无遗漏 小心仔细, 小心仔细,切忌引入人为损伤或多余物 避免多余物遗失或位置变化 重要的或随机失效的元器件, 重要的或随机失效的元器件,解剖前应获得同意
航天材料及工艺研究所
四、元器件失效分析方法和程序
元器件失效分析程序 7、微探针测试(适用于集成电路) 、微探针测试(适用于集成电路)
目的: 目的:确定失效部位 内容:根据标准、技术条件或原理, 内容:根据标准、技术条件或原理,发现内部单元 或局部电特性的异常现象 技术手段:微探针、测微探针台、电测仪器等 技术手段:微探针、测微探针台、电测仪器等 重点: 重点:比对寻找差异 注意事项: 注意事项:与良品比对 经重复测试确认,同时, 经重复测试确认,同时,关注瞬态现象 剔除假象
航天材料及工艺研究所
三、术语和定义
1、失效性质 —— 引起失效的宏观原因 、
一般分为:误用失效、本质失效、从属失效、 一般分为:误用失效、本质失效、从属失效、重测合格 本质失效包括:批次性问题和个别(非批次) 本质失效包括:批次性问题和个别(非批次)问题两类
确定失效性质是为决策者判定失效的严重程度和 可能造成的后果而提供依据
航天材料及工艺研究所
四、元器件失效分析方法和程序
(一)失效分析方法和元器件失效分析方法标准
四、元器件失效分析方法和程序
元器件失效分析程序 5、启封 、
目的: 目的:暴露失效元器件内部薄弱环节 内容: 内容:采用合理的方法和程序逐步分解失效元器件 技术手段:机械方法(针对金属、陶瓷、玻璃封装) 技术手段:机械方法(针对金属、陶瓷、玻璃封装) 化学方法(针对塑料封装) 化学方法(针对塑料封装) 注意事项:确认外观检查和无损检测已经充分系统, 注意事项:确认外观检查和无损检测已经充分系统,无遗漏 小心仔细, 小心仔细,切忌引入人为损伤或多余物 避免多余物遗失或位置变化 重要的或随机失效的元器件, 重要的或随机失效的元器件,解剖前应获得同意
航天材料及工艺研究所
四、元器件失效分析方法和程序
元器件失效分析程序 7、微探针测试(适用于集成电路) 、微探针测试(适用于集成电路)
目的: 目的:确定失效部位 内容:根据标准、技术条件或原理, 内容:根据标准、技术条件或原理,发现内部单元 或局部电特性的异常现象 技术手段:微探针、测微探针台、电测仪器等 技术手段:微探针、测微探针台、电测仪器等 重点: 重点:比对寻找差异 注意事项: 注意事项:与良品比对 经重复测试确认,同时, 经重复测试确认,同时,关注瞬态现象 剔除假象
航天材料及工艺研究所
三、术语和定义
1、失效性质 —— 引起失效的宏观原因 、
一般分为:误用失效、本质失效、从属失效、 一般分为:误用失效、本质失效、从属失效、重测合格 本质失效包括:批次性问题和个别(非批次) 本质失效包括:批次性问题和个别(非批次)问题两类
确定失效性质是为决策者判定失效的严重程度和 可能造成的后果而提供依据
航天材料及工艺研究所
四、元器件失效分析方法和程序
(一)失效分析方法和元器件失效分析方法标准
失效分析步骤与方法 PPT
![失效分析步骤与方法 PPT](https://img.taocdn.com/s3/m/906a51d959f5f61fb7360b4c2e3f5727a5e924ce.png)
1、摄影与光学显微术 • 本厂有0-400倍得光学显微镜与影象摄取装
置,基本上可以含盖整个分析过程需要得光 学检查
– 每个元件都需要记录一般状态得全景照片与特 殊细节得一系列照片
– 不涉及分析结果或最终结论得照片可以在报告 中不列入
拥有但不需要总比需要但没有要好
四、失效分析技术
• 光学显微镜作用
– 用来观察器件得外观及失效部位得表现形状、 分布、尺寸、组织、结构、缺陷、应力等,如观 察器件在过电应力下得各种烧毁与击穿现象,芯 片得裂缝、沾污、划伤、焊锡覆盖状况等。
例:分别用红外热像仪与液晶方法获得得失效点照片
四、失效分析技术
红外热像仪
液晶
四、失效分析技术
• 7、电子扫描(SEM)及能谱分析(EDX)
– 原理:利用阴极所发射得电子束经阳极加速,由磁 透镜聚焦后形成一束直径为几百纳米得电子束 流打到样品上激发多种信息(如二次电子,背散 射电子,俄歇电子,X射线),经收集处理,形成相应 得图象,通常使用二次电子来形成图象观察,同时 通过特征X射线可以进行化学成分得分析。
四、失效分析技术
• 高级得DE-CAP设备原理图(一般用于集成电路)
四、失效分析技术
• 6、定位技术(HOT SPOT)
– 红外热像仪,液晶探测
• 原理:将失效得芯片通电,在失效点附近会有大得漏电 通过,这部分得温度会升高,利用红外热像仪或芯片表 面涂液晶用偏振镜观察(可以找到失效点,从而可以进 一步针对失效点作分析
• 严重时失效特征很明显,芯片有明显得surge mark,甚 至会使芯片开裂,塑封体炭化等
五、器件失效机理得分析
器件失效机理得内容
– 失效模式与材料、设计、工艺得关系 – 失效模式与环境应力得关系
置,基本上可以含盖整个分析过程需要得光 学检查
– 每个元件都需要记录一般状态得全景照片与特 殊细节得一系列照片
– 不涉及分析结果或最终结论得照片可以在报告 中不列入
拥有但不需要总比需要但没有要好
四、失效分析技术
• 光学显微镜作用
– 用来观察器件得外观及失效部位得表现形状、 分布、尺寸、组织、结构、缺陷、应力等,如观 察器件在过电应力下得各种烧毁与击穿现象,芯 片得裂缝、沾污、划伤、焊锡覆盖状况等。
例:分别用红外热像仪与液晶方法获得得失效点照片
四、失效分析技术
红外热像仪
液晶
四、失效分析技术
• 7、电子扫描(SEM)及能谱分析(EDX)
– 原理:利用阴极所发射得电子束经阳极加速,由磁 透镜聚焦后形成一束直径为几百纳米得电子束 流打到样品上激发多种信息(如二次电子,背散 射电子,俄歇电子,X射线),经收集处理,形成相应 得图象,通常使用二次电子来形成图象观察,同时 通过特征X射线可以进行化学成分得分析。
四、失效分析技术
• 高级得DE-CAP设备原理图(一般用于集成电路)
四、失效分析技术
• 6、定位技术(HOT SPOT)
– 红外热像仪,液晶探测
• 原理:将失效得芯片通电,在失效点附近会有大得漏电 通过,这部分得温度会升高,利用红外热像仪或芯片表 面涂液晶用偏振镜观察(可以找到失效点,从而可以进 一步针对失效点作分析
• 严重时失效特征很明显,芯片有明显得surge mark,甚 至会使芯片开裂,塑封体炭化等
五、器件失效机理得分析
器件失效机理得内容
– 失效模式与材料、设计、工艺得关系 – 失效模式与环境应力得关系
电子元器件失效分析培训总结报告PPT(42张)
![电子元器件失效分析培训总结报告PPT(42张)](https://img.taocdn.com/s3/m/de94c84b240c844768eaee8f.png)
2022/3/23
IR CONFIDENTIAL
2
一. 關於可靠性?
電子產品可靠性定義: 是指產品在規定的條件下及規定的時間內完成規定功能的能
力,它是電子產品品質的一個重要組成部分。
可靠性的表徵: 壽命;失效率;故障;MTBF;返修;賠償……
注:電子產品的壽命:包括硬體壽命到期;技術壽命到期(過了換代期的電子產品 )
結束這中間的所有管理,培訓,控制等等成本之和)
2022/3/23
IR CONFIDENTIAL
6
另一領域的失效分析
醫藥學的歷史與人類的病痛一樣長,大量醫藥科學的進步都是建立 在外科醫生的屍體解剖上。(仁慈的東方人除外);
在這個專業領域,這一做法通常稱為“失效分析”;
每個失效部件都應被視為進行可靠性改進的機會,從這個角度講, 失效部件有時甚至是“珍貴的”
現時觀念 可靠性是一種資產 為用戶提供價值 可靠性良好的設計和生產 與設計和生產融為一體 同時用故障率和有效壽命作為 可靠性的統計參數 分析故障,消除故障 改進運作
2022/3/23
IR CONFIDENTIAL
5
失效物理方法的8個步驟:
1. 確定真正的系統要求; 2. 確定使用環境;(包括生產環境,但這點經常被忽略) 3. 驗明潛在的失效部位和失效機理; 4. 采用可靠的原材料的元器件; 5. 設計可靠的產品; 6. 鑒定加工和裝配過程; 7. 控制加工和裝配過程;(從設計和製造過程加強可靠性) 8. 對產品的壽命期成本和可靠性進行管理(採購後到達到使用壽命
2022/3/23
IR CONFIDENTIAL
8
失效分析的目的和作用
失效分析:是對已失效的器件進行的一種事後檢查,使用電測 試和先進的物理,進行和化學分析技術,驗證所報告的失效, 確定其失效模式,找出失效機理。
电子产品失效分析技术演示幻灯片
![电子产品失效分析技术演示幻灯片](https://img.taocdn.com/s3/m/3a37d0844a7302768f99394c.png)
过电压场致失效——放电回路阻抗较 高,元器件因接受高电荷而产生高电压 导致电场损伤,多发生于电容器件。 过电流热致失效——放电回路阻抗较 低,元器件因放电期间产生强电流脉冲 导致高温损伤,多发生于双极器件。
13
失效机理
4. 金属腐蚀失效
当金属与周围介质接触时, 由于发生化学反应或电化学 作用而引起金属腐蚀。
18
失效机理
9. “爆米花效应”(分层效应)
“爆米花效应”是指塑封器件塑封材料内的水份在高温 下受热发生膨胀,使塑封料与金属框架和芯片间发生分 层,拉断键合丝,发生开路失效或间歇失效。
19
失效分析基本程序
20
失效分析基本程序
3. 失效分析程序
样 失 外 失 方 非 破综 报
品 效 观 效 案 破 坏合 告
这Au些5AIlM2,CA的u物4Al理呈性浅质金不黄同色,,电俗导称率黄较斑低;。AuA2AulA呈l2白呈色紫俗色称,白俗斑称。紫斑;
键合点生成金铝化合物后,键合强度降低、变脆开裂、接触电阻增大,
器件出现性能退化或引线从键合界面处脱落导致开路。
IMC
IMC
16
失效机理
7. 柯肯德尔效应
金铝键合系统中,若采用Au丝热压焊工艺, 由于高温,金向铝中迅速扩散,在金层一 侧留下部分原子空隙,这些原子空隙自发 聚积,在金属间化合物与金属交界面上形 成了空洞,这称为柯肯德尔效应。
5
主要失效模式及机理
6
失效模式
失效模式就是失效的外在表现形式。
按持续性分类:致命性失效,间歇失效,缓慢退化 按失效时间分:早期失效,随机失效,磨损失效 按电测结果分:开路,短路或漏电,参数漂移,功能失效 按失效原因分:电应力(EOS)和静电放电(ESD)导致的
13
失效机理
4. 金属腐蚀失效
当金属与周围介质接触时, 由于发生化学反应或电化学 作用而引起金属腐蚀。
18
失效机理
9. “爆米花效应”(分层效应)
“爆米花效应”是指塑封器件塑封材料内的水份在高温 下受热发生膨胀,使塑封料与金属框架和芯片间发生分 层,拉断键合丝,发生开路失效或间歇失效。
19
失效分析基本程序
20
失效分析基本程序
3. 失效分析程序
样 失 外 失 方 非 破综 报
品 效 观 效 案 破 坏合 告
这Au些5AIlM2,CA的u物4Al理呈性浅质金不黄同色,,电俗导称率黄较斑低;。AuA2AulA呈l2白呈色紫俗色称,白俗斑称。紫斑;
键合点生成金铝化合物后,键合强度降低、变脆开裂、接触电阻增大,
器件出现性能退化或引线从键合界面处脱落导致开路。
IMC
IMC
16
失效机理
7. 柯肯德尔效应
金铝键合系统中,若采用Au丝热压焊工艺, 由于高温,金向铝中迅速扩散,在金层一 侧留下部分原子空隙,这些原子空隙自发 聚积,在金属间化合物与金属交界面上形 成了空洞,这称为柯肯德尔效应。
5
主要失效模式及机理
6
失效模式
失效模式就是失效的外在表现形式。
按持续性分类:致命性失效,间歇失效,缓慢退化 按失效时间分:早期失效,随机失效,磨损失效 按电测结果分:开路,短路或漏电,参数漂移,功能失效 按失效原因分:电应力(EOS)和静电放电(ESD)导致的
失效分析基本方法PPT课件
![失效分析基本方法PPT课件](https://img.taocdn.com/s3/m/108f19ac7cd184254a35353f.png)
系统工程法
9
3.1 失效分析的思路及方法
1 失效系统工程分析法主要类型:
(1)故障树分析法(简称FTA法) (2)特征—因素图分析法 (3)事件时序树分析法(简称 ETA法) (4)故障率预测法 (5)失效模式及后果分析法(简称FMEA法) (6)模糊数学分析法
主要类型
10
3.1 失效分析的思路及方法
四M方法
7
3.1 失效分析的思路及方法 3. “四M”分析思路及方法
(1)人员情况的分析 (2)环境情况的分析 (3)设备情况的分析 (4)管理情况的分析
四M方法
8
3.1 失效分析的思路及方法
3.1.3 失效系统工程分析法
失效系统工程是把复杂的设备或系统和人的 因素当作一个统一体,运用数学方法和计算机等现 代化工具,来研究设备或系统失效的原因与结果之 间的逻辑联系,并计算出设备或系统失效与部件之 间的定量关系。
故障树例
15
3.1 失效分析的思路及方法
故障树例
16
3.1 失效分析的思路及方法
定义与特征
17
3.1 失效分析的思路及方法
各底事件发生概率的均值及其左右分布
事件 均值m 分布、 事件 均值m 分布、 事件 均值m 分布、
x1 0.0002 5.03410-5 x2 0.0010 2.51710-4 x3 0.0030 7.55110-4 x4 0.0004 1.00710-4 x5 0.0007 1.76210-4 x6 0.0006 1.51010-4 G18 0.0002 5.03310-5 G6 0.0075 1.88110-3
,材料成分不合格,夹杂物超级,显微组织不符合要求 ,材料各向异性严重,冶金缺陷等。
封装可靠性及失效分析(共66张PPT)
![封装可靠性及失效分析(共66张PPT)](https://img.taocdn.com/s3/m/a2eedf380622192e453610661ed9ad51f11d5449.png)
封装可靠性及失效分析
封装可靠性及失效分析
1.1芯片键合
失效机理
扩散 化学失效 热失配和热疲劳
影响芯片键合热疲劳寿命的因素
• 焊点形状对疲劳寿命的影响
• 焊点界面的金属间化合物
• 老化时间对接头强度的影响 ACF键合的剥离强度失效
铜引线上镀锡层的Whisker生长机理 铜引线上镀锡层的Whisker生长机理 焊点界面的金属间化合物 桥连过程的结果-能量变化 由热失配导致的倒装失效 桥连过程的结果-能量变化 由热失配导致的倒装失效 由热失配导致的倒装失效 老化时间对接头强度的影响 热膨胀系数不匹配导致的Whisker 焊点形状对疲劳寿命的影响 钎料合金的力学性能对寿命的影响 扩散引起的失效-电位移 老化时间对接头强度的影响 焊点形状对疲劳寿命的影响 桥连过程的结果-能量变化 钎料合金的力学性能对寿命的影响 焊点形状对疲劳寿命的影响 钎料合金的力学性能对寿命的影响
• 电位移引起的失效评估-防治措施
• 电位移导致的晶须短路
铜引线上镀锡层的Whisker生长机理
引线桥连缺陷
• 桥连发生的过程
• 桥连发生的过程解析
• 桥连过程的结果-能量变化
• 焊盘宽度的设计准则
• 墓碑缺陷
• 热膨胀系数不匹配导致的Whisker
钎料合金的力学性能对寿命的影响 老化时间对接头强度的影响 封装可靠性及失效分析 钎料合金的力学性能对寿命的影响 铜引线上镀锡层的Whisker生长机理 由热失配导致的倒装失效 影响芯片键合热疲劳寿命的因素 老化时间对接头强度的影响 1芯片键合 1芯片键合 ACF键合的剥离强度失效 焊点界面的金属间化合物 1芯片键合 桥连过程的结果-能量变化 桥连过程的结果-能量变化 ACF键合的剥离强度失效 疲劳寿命与应力和应变的关系 焊点形状对疲劳寿命的影响 疲劳寿命与应力和应变的关系 扩散引起的失效-电位移
封装可靠性及失效分析
1.1芯片键合
失效机理
扩散 化学失效 热失配和热疲劳
影响芯片键合热疲劳寿命的因素
• 焊点形状对疲劳寿命的影响
• 焊点界面的金属间化合物
• 老化时间对接头强度的影响 ACF键合的剥离强度失效
铜引线上镀锡层的Whisker生长机理 铜引线上镀锡层的Whisker生长机理 焊点界面的金属间化合物 桥连过程的结果-能量变化 由热失配导致的倒装失效 桥连过程的结果-能量变化 由热失配导致的倒装失效 由热失配导致的倒装失效 老化时间对接头强度的影响 热膨胀系数不匹配导致的Whisker 焊点形状对疲劳寿命的影响 钎料合金的力学性能对寿命的影响 扩散引起的失效-电位移 老化时间对接头强度的影响 焊点形状对疲劳寿命的影响 桥连过程的结果-能量变化 钎料合金的力学性能对寿命的影响 焊点形状对疲劳寿命的影响 钎料合金的力学性能对寿命的影响
• 电位移引起的失效评估-防治措施
• 电位移导致的晶须短路
铜引线上镀锡层的Whisker生长机理
引线桥连缺陷
• 桥连发生的过程
• 桥连发生的过程解析
• 桥连过程的结果-能量变化
• 焊盘宽度的设计准则
• 墓碑缺陷
• 热膨胀系数不匹配导致的Whisker
钎料合金的力学性能对寿命的影响 老化时间对接头强度的影响 封装可靠性及失效分析 钎料合金的力学性能对寿命的影响 铜引线上镀锡层的Whisker生长机理 由热失配导致的倒装失效 影响芯片键合热疲劳寿命的因素 老化时间对接头强度的影响 1芯片键合 1芯片键合 ACF键合的剥离强度失效 焊点界面的金属间化合物 1芯片键合 桥连过程的结果-能量变化 桥连过程的结果-能量变化 ACF键合的剥离强度失效 疲劳寿命与应力和应变的关系 焊点形状对疲劳寿命的影响 疲劳寿命与应力和应变的关系 扩散引起的失效-电位移
《失效分析》PPT课件
![《失效分析》PPT课件](https://img.taocdn.com/s3/m/a2c09b6a28ea81c759f57806.png)
弹性变形失效 疲劳断裂失效 磨损失效 蠕变失效
电子元件的失效模式通过废次品、早期失 效、试验失效等形式表现出来 。
由于软件的错误导致系统输出不满足规定的
要求,称为软件失效。 通常由软件的内在缺陷即软件故障引起。
软件的失效模式具有如下特点: 软件的失效主要由设计缺陷造成,与拷贝无关; 软件没有磨损现象; 软件通过纠错其可靠性随时间可能提高; 软件的可靠性与其使用的环境没有直接的关系; 同样的软件在同样的条件下发生失效,不能通过
2
…
n
ti
t1
t2
…
tn
F(ti)
F(t1)
F(t2)
…
F(tn)
b. 估计累积分布函数F(ti) 当产品数n≤20时 F(ti)=i/(n+1) (平均秩) F(ti)=(i-0.3)/(n+0.4) (中位秩)
当产品数n>20时 F(ti)=i/n
c. 以失效时间ti为横坐标,R(ti)为纵坐标,在直角坐 标系中作图,并连成光滑曲线,得到可靠度函数曲线。
将区间(-∞,∞)根据具体情况分为k个不相交的 区间:(a1,a2],(a2,a3],…,(ak,ak+1)。
子样观测值x1、x2、…、xn落在第i个区间(ai,ai+1) 的个数mi称为第i个区间的实际频数,mi/n为相应的频 率。在第i个区间内的理论概率pi由下式决定
pi=P(ai<x≤ai+1)=F0(ai+1)- F0(ai), i=1,2,…,k npi称为第i个区间内的理论频数.
ቤተ መጻሕፍቲ ባይዱ
其中计算:
pi 1 exp( ti/ 293) 1 exp( ti1/ 293)
2 k (mi npi )2 36.905
电子元件的失效模式通过废次品、早期失 效、试验失效等形式表现出来 。
由于软件的错误导致系统输出不满足规定的
要求,称为软件失效。 通常由软件的内在缺陷即软件故障引起。
软件的失效模式具有如下特点: 软件的失效主要由设计缺陷造成,与拷贝无关; 软件没有磨损现象; 软件通过纠错其可靠性随时间可能提高; 软件的可靠性与其使用的环境没有直接的关系; 同样的软件在同样的条件下发生失效,不能通过
2
…
n
ti
t1
t2
…
tn
F(ti)
F(t1)
F(t2)
…
F(tn)
b. 估计累积分布函数F(ti) 当产品数n≤20时 F(ti)=i/(n+1) (平均秩) F(ti)=(i-0.3)/(n+0.4) (中位秩)
当产品数n>20时 F(ti)=i/n
c. 以失效时间ti为横坐标,R(ti)为纵坐标,在直角坐 标系中作图,并连成光滑曲线,得到可靠度函数曲线。
将区间(-∞,∞)根据具体情况分为k个不相交的 区间:(a1,a2],(a2,a3],…,(ak,ak+1)。
子样观测值x1、x2、…、xn落在第i个区间(ai,ai+1) 的个数mi称为第i个区间的实际频数,mi/n为相应的频 率。在第i个区间内的理论概率pi由下式决定
pi=P(ai<x≤ai+1)=F0(ai+1)- F0(ai), i=1,2,…,k npi称为第i个区间内的理论频数.
ቤተ መጻሕፍቲ ባይዱ
其中计算:
pi 1 exp( ti/ 293) 1 exp( ti1/ 293)
2 k (mi npi )2 36.905
电容失效分析PPT课件
![电容失效分析PPT课件](https://img.taocdn.com/s3/m/6f3c54a669eae009591bec17.png)
第3页/共81页
失效物理的定义
• 定义:研究电子元器件失效机理的学科 • 失效机理:失效的物理化学根源 • 举例:金属电迁移
第4页/共81页
金属电迁移
• 失效模式:金属互连线电阻值增大或开路 • 失效机理:电子风效应 • 产生条件:电流密度大于10E5A/cm2
高温 • 纠正措施:高温淀积,增加铝颗粒直径,掺铜,降低工作温度,
第41页/共81页
失效分析的受益者
• 元器件厂:获得改进产品设计和工艺的依据 • 整机厂:获得索赔、改变元器件供货商、改进电路设计、改进
电路板制造工艺、提高测试技术、设计保护电路的依据 • 整机用户:获得改进操作环境和操作规程的依据 • 提高产品成品率和可靠性,树立企业形象,提高产品竞争力
第42页/共81页
第48页/共81页
失效发生期与失效机理的关系
• 早期失效:设计失误、工艺缺陷、材料缺陷、筛选不充分 • 随机失效:静电损伤、过电损伤 • 磨损失效:元器件老化 • 随机失效有突发性和明显性 • 早期失效、磨损失效有时间性和隐蔽性
第49页/共81页
失效发生期与失效率
失效率= 试验时间内失效的元件 数 试验初始的元件数试验时间
失 效
早期
率
磨损
随机
第50页/共81页
时间
以失效分析为目的的电测技术
• 电测在失效分析中的作用 重现失效现象,确定失效模式,缩小故障隔离区,确定失效定位的激励条件,为进行信号寻迹法失效定位 创造条件
• 电测的种类和相关性 连接性失效、电参数失效和功能失效
第51页/共81页
电子元器件失效分析的简单实用测试技术(一)
2.50E-02
2.00E-02
1.50E-02
失效物理的定义
• 定义:研究电子元器件失效机理的学科 • 失效机理:失效的物理化学根源 • 举例:金属电迁移
第4页/共81页
金属电迁移
• 失效模式:金属互连线电阻值增大或开路 • 失效机理:电子风效应 • 产生条件:电流密度大于10E5A/cm2
高温 • 纠正措施:高温淀积,增加铝颗粒直径,掺铜,降低工作温度,
第41页/共81页
失效分析的受益者
• 元器件厂:获得改进产品设计和工艺的依据 • 整机厂:获得索赔、改变元器件供货商、改进电路设计、改进
电路板制造工艺、提高测试技术、设计保护电路的依据 • 整机用户:获得改进操作环境和操作规程的依据 • 提高产品成品率和可靠性,树立企业形象,提高产品竞争力
第42页/共81页
第48页/共81页
失效发生期与失效机理的关系
• 早期失效:设计失误、工艺缺陷、材料缺陷、筛选不充分 • 随机失效:静电损伤、过电损伤 • 磨损失效:元器件老化 • 随机失效有突发性和明显性 • 早期失效、磨损失效有时间性和隐蔽性
第49页/共81页
失效发生期与失效率
失效率= 试验时间内失效的元件 数 试验初始的元件数试验时间
失 效
早期
率
磨损
随机
第50页/共81页
时间
以失效分析为目的的电测技术
• 电测在失效分析中的作用 重现失效现象,确定失效模式,缩小故障隔离区,确定失效定位的激励条件,为进行信号寻迹法失效定位 创造条件
• 电测的种类和相关性 连接性失效、电参数失效和功能失效
第51页/共81页
电子元器件失效分析的简单实用测试技术(一)
2.50E-02
2.00E-02
1.50E-02
电子产品失效分析技术
![电子产品失效分析技术](https://img.taocdn.com/s3/m/c3ee94501711cc7930b71624.png)
第 19 页
失效分析基本程序
第 20 页
失效分析基本程序 3. 失效分析程序
样 失 外 失 方 非 破综 报
品 效 观 效 案 破 坏合 告
基 现 检 模 设 坏 性分 编
本 场 查 式 计 性 分析 写
信信
确
分析
息息
认
析
调调
查查
第 21 页
失效分析基本程序
非破坏性分析的基本路径
外观检查 模式确认(测试和试验,对比分析) 检漏 可动微粒检测 X光照相 声学扫描 模拟试验
故障定位技术
电参数检测分析定位(探针检测) 形貌观察定位 液晶敏感定位 红外热成像定位 光辐射显微定位
第 42 页
失效分析技术与设备
电参数检测分析
目的:确认失效模式和失效管脚定位, 识别部分失效机理。
方法:与同批次好品同时进行功能测 试和管脚直流特性(I-V特性)测试, 对照良好样品、产品规范,解释差异。
聚焦离子束(FIB)
第 28 页
失效分析技术与设备
形貌观察技术
目检 光学显微镜(立体显微镜、金相显微镜) SEM—扫描电子显微镜 TEM—投射电子显微镜 AFM—原子力显微镜 X-RAY透视 SAM—扫描声学显微镜
第 29 页
失效分析技术与设备
光学显微镜
结构
主架 载物台 照明系统 目镜系统 物镜系统 拍照系统
137 6.10369 7.5 4 126 9.2 0
111 7.0 7 107 1.6 9
104 0.7 8
71 9.1 0
第 40 页
失效分析技术与设备
内部无损分析技术
失效分析基本程序
第 20 页
失效分析基本程序 3. 失效分析程序
样 失 外 失 方 非 破综 报
品 效 观 效 案 破 坏合 告
基 现 检 模 设 坏 性分 编
本 场 查 式 计 性 分析 写
信信
确
分析
息息
认
析
调调
查查
第 21 页
失效分析基本程序
非破坏性分析的基本路径
外观检查 模式确认(测试和试验,对比分析) 检漏 可动微粒检测 X光照相 声学扫描 模拟试验
故障定位技术
电参数检测分析定位(探针检测) 形貌观察定位 液晶敏感定位 红外热成像定位 光辐射显微定位
第 42 页
失效分析技术与设备
电参数检测分析
目的:确认失效模式和失效管脚定位, 识别部分失效机理。
方法:与同批次好品同时进行功能测 试和管脚直流特性(I-V特性)测试, 对照良好样品、产品规范,解释差异。
聚焦离子束(FIB)
第 28 页
失效分析技术与设备
形貌观察技术
目检 光学显微镜(立体显微镜、金相显微镜) SEM—扫描电子显微镜 TEM—投射电子显微镜 AFM—原子力显微镜 X-RAY透视 SAM—扫描声学显微镜
第 29 页
失效分析技术与设备
光学显微镜
结构
主架 载物台 照明系统 目镜系统 物镜系统 拍照系统
137 6.10369 7.5 4 126 9.2 0
111 7.0 7 107 1.6 9
104 0.7 8
71 9.1 0
第 40 页
失效分析技术与设备
内部无损分析技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
电子产品失效分析技术能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)