最新赵近芳版《大学物理学上册》课后答案
大学物理学第四版课后习题答案赵近芳上册
大学物理学第四版课后习题答案赵近芳上册对于很多学习大学物理的同学来说,课后习题的答案是检验自己学习成果、加深对知识点理解的重要参考。
赵近芳老师编写的《大学物理学》第四版上册是一本深受师生喜爱的教材,然而,在完成课后习题的过程中,同学们往往会遇到一些难题,迫切需要一份准确详尽的答案来指导。
在大学物理的学习中,上册的内容通常涵盖了力学、热学等基础部分。
力学部分包括质点运动学、牛顿运动定律、动量守恒定律和能量守恒定律等重要知识点。
这些知识点不仅是物理学的基础,也是后续学习的基石。
在做相关课后习题时,同学们需要清晰地理解每个概念和定律的应用条件,例如,在求解质点的运动轨迹时,要准确地分析受力情况,从而确定加速度,进而得出速度和位移的表达式。
热学部分则主要涉及热力学第一定律和热力学第二定律等内容。
这部分的习题往往要求同学们能够熟练运用理想气体状态方程,并理解热传递、做功和内能变化之间的关系。
对于一些复杂的热学问题,如循环过程的效率计算,需要同学们具备较强的逻辑思维和综合分析能力。
下面我们来具体看一些常见的课后习题类型及解题思路。
例如,在力学部分有这样一道习题:一个质量为 m 的质点在 xy 平面内运动,其运动方程为 x = 3t,y = 2t^2,求 t = 2s 时质点的速度和加速度。
解题思路如下:首先,对 x 和 y 方向的运动方程分别求导,得到速度分量 vx = 3,vy = 4t。
将 t = 2s 代入,可得 vx = 3m/s,vy = 8m/s。
然后,加速度 ax = 0,ay = 4m/s^2。
再比如热学中的一道习题:一定量的理想气体经历绝热膨胀过程,体积从 V1 增大到 V2。
求该过程中气体对外做功和内能的变化。
对于这道题,首先要明确绝热过程中没有热量交换,即 Q = 0。
然后根据热力学第一定律ΔU = W + Q,可知气体对外做功 W 等于内能的减少量ΔU。
再利用绝热过程的方程PV^γ =常量,结合理想气体状态方程,可以求出气体对外做功的值和内能的变化。
大学物理学答案(北京邮电大学第3版)赵近芳等编著
大学物理学(北邮第三版) 习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆrˆt r t d d d d d d r r r += 式中t rd d 就是速度径向上的分量,∴t r td d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
大学物理(赵近芳)练习册答案
练习1 质点运动学(一)参考答案1. B ;2. D;3. 8m, 10m.4. 3, 3 6;5. 解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2v (2) =-6 m/s(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m6. 答:矢径r是从坐标原点至质点所在位置的有向线段.而位移矢量是从某一个初始时刻质点所在位置到后一个时刻质点所在位置的有向线段.它们的一般关系为0r r r-=∆0r 为初始时刻的矢径, r 为末时刻的矢径,△r为位移矢量.若把坐标原点选在质点的初始位置,则0r =0,任意时刻质点对于此位置的位移为△r =r,即r既是矢径也是位移矢量.1. D ;2. -g /2 , ()g 3/322v3. 4t 3-3t 2 (rad/s), 12t 2-6t (m/s 2)4. 17.3 m/s, 20 m/s .5. 解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰=x 2= t 3 /3+x 0 (SI)6. 解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω24t =ω, 24Rt R ==ωvt=1s 时, v = 4Rt 2 = 8 m/s2s /168/m Rt dt d a t ===v 22s /32/m R a n ==v()8.352/122=+=nt a a a m/s 21.D2.C3.4. l/cos 2θ5.如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m= m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。
(1)求物体A 与水平桌面的摩擦系数;(2)若按图b 放置时,求系统的加速度及绳的张力。
大学物理第4版主编赵近芳课后答案
习题88.1 选择题(1) 关于可逆过程和不可逆过程有以下几种说法:①可逆过程一定是准静态过程.②准静态过程一定是可逆过程.③不可逆过程发生后一定找不到另一过程使系统和外界同时复原.④非静态过程一定是不可逆过程.以上说法,正确的是:[](A) ①、②、③、④. (B) ①、②、③.(C) ②、③、④. (D) ①、③、④.[答案:D. 准静态过程不一定是可逆过程.因准静态过程中可能存在耗散效应,如摩擦、粘滞性、电阻等。
](2) 热力学第一定律表明:[](A) 系统对外做的功不可能大于系统从外界吸收的热量.(B) 系统内能的增量等于系统从外界吸收的热量.(C) 不可能存在这样的循环过程,在此循环过程中,外界对系统做的功不等于系统传给外界的热量.(D) 热机的效率不可能等于1.[答案:C。
热力学第一定律描述个热力学过程中的能量守恒定性质。
](3) 如题8.1图所示,bca为理想气体绝热过程,b1a和b2a是任意过程,则上述两过程中气体做功与吸收热量的情况是: [](A) b1a过程放热,做负功;b2a过程放热,做负功.(B) b1a过程吸热,做负功;b2a过程放热,做负功.(C) b1a过程吸热,做正功;b2a过程吸热,做负功.(D) b1a过程放热,做正功;b2a过程吸热,做正功.题8.1图[答案:B。
b1acb构成正循环,ΔE = 0,A净> 0,Q = Q b1a+ Q acb= A净>0,但Q acb= 0,∴Q b1a >0 吸热; b1a压缩,做负功b2a cb构成逆循环,ΔE = 0,A净< 0,Q = Q b2a+ Q acb= A净<0,但 Q acb = 0,∴ Q b 2a <0 放热 ; b 2a 压缩,做负功](4) 根据热力学第二定律判断下列哪种说法是正确的. [ ](A) 功可以全部变为热,但热不能全部变为功.(B) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体. (C) 气体能够自由膨胀,但不能自动收缩. (D) 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量. [答案:C. 热力学第二定律描述自然热力学过程进行的条件和方向性。
大学物理学答案(北京邮电大学第3版)赵近芳等编著
大学物理学(北邮第三版)习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r td d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
大学物理学上册(赵近芳)第5章习题解答
习题5
5.1选择题
(1)一物体作简谐振动,振动方程为)2cos(πω+=t A x ,则该物体在0=t 时
刻的动能与8/T t =(T 为振动周期)时刻的动能之比为:
(A)1:4 (B )1:2 (C )1:1 (D) 2:1
[答案:D]
(2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为
(A)kA 2 (B) kA 2/2
(C) kA 2//4 (D)0
[答案:D]
(3)简谐振动过程中,动能和势能相等的位置的位移等于
(A)4A ± (B) 2
A ± (C) 2
3A ± (D) 2
2A ± [答案:D]
5.2 填空题
(1)一质点在X 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。
若t =0时质点第一次通过x =-2cm 处且向X 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为____s 。
[答案:23
s ]
(2)一水平弹簧简谐振子的振动曲线如题5.2(2)图所示。
振子在位移为零,速度为-ωA 、加速度为零和弹性力为零的状态,对应于曲线上的____________点。
振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-KA 的状态,则对应曲线上的____________点。
题5.2(2) 图
[答案:b 、f ; a 、e]
(3)一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。
大学物理学第四版课后习题答案赵近芳上册
大学物理学第四版课后习题答案赵近芳上册在大学的学习生活中,物理学是一门重要的基础课程。
赵近芳老师主编的《大学物理学》第四版上册为我们打开了物理学知识的大门。
然而,课后习题的解答对于我们深入理解和掌握这些知识起着至关重要的作用。
当我们翻开这本教材,每一章的课后习题都经过精心设计,旨在帮助我们巩固所学的概念、原理和方法。
但有时候,面对这些具有一定难度和挑战性的题目,我们可能会感到困惑,甚至陷入迷茫。
对于力学部分的习题,往往需要我们熟练运用牛顿运动定律、动量守恒定律和能量守恒定律等重要知识点。
例如,有一道关于物体在斜面上运动的题目,需要考虑摩擦力、重力和支持力的作用,通过受力分析来计算物体的加速度和运动轨迹。
这不仅考验我们对基本概念的理解,还要求我们具备一定的数学运算能力和逻辑推理能力。
在热学部分,有关理想气体状态方程、热力学第一定律和第二定律的习题常常让同学们绞尽脑汁。
比如,给定一定量的理想气体在不同状态下的参数,要求计算其内能的变化、对外做功以及吸收或放出的热量。
解答这类题目时,我们需要清晰地理解各个物理量之间的关系,以及这些定律的适用条件和应用方法。
在电磁学领域,电场、磁场的相关习题更是复杂多样。
像求解带电粒子在电场和磁场中的运动轨迹,需要综合运用库仑定律、安培定律和洛伦兹力公式等。
这需要我们具备较强的空间想象力和数学处理能力,能够将物理问题转化为数学模型进行求解。
光学部分的习题也不简单,涉及光的折射、反射、干涉和衍射等现象。
例如,通过计算光在不同介质中的传播速度和波长,来解释一些光学现象的产生原因。
这要求我们对光学的基本原理有深刻的理解,并能够运用相关公式进行准确的计算。
然而,要获得这些课后习题的准确答案并非易事。
这不仅需要我们在课堂上认真听讲,掌握老师所讲的重点和难点,还需要在课后进行大量的练习和思考。
有时候,我们可能需要参考一些辅导资料或者与同学们进行讨论,才能找到解题的思路和方法。
对于那些难以解决的问题,我们不能轻易放弃,而应该深入探究,查阅相关的教材和文献,或者向老师请教。
赵近芳-大学物理学答案--全
大学物理学(北邮第三版)赵近芳等编著 习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆrˆt r t d d d d d d r r r += 式中t rd d 就是速度径向上的分量, ∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量. ∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.(t t r d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
赵近芳版《大学物理学上册》课后答案之欧阳道创编
习题解答习题一1-1|r ∆|与r ∆有无不同?td d r 和td d r 有无不同?t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)td d r 是速度的模,即t d d r ==v t s d d .trd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d r r r+=式中trd d 就是速度径向上的分量,∴tr td d d d 与r 不同如题1-1图所示.题1-1图 (3)td d v表示加速度的模,即tv a d d =,tv d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tv t v t v d d d d d d ττ +=式中dtdv 就是加速度的切向分量.(tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =tr d d ,及a =22d d tr而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=, jty i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将22d d d d trt r 与误作速度与加速度的模。
大学物理学(上册、下册)课后习题答案 赵近芳 全
m s2
dt
这说明该点只有 y 方向的加速度,且为恒量。
1-4 在离水面高 h 米的岸上,有人用绳子拉船靠岸,船在离岸 S 处,如题 1-4 图所示.当人
以 v0 (m· s 1 )的速率收绳时,试求船运动的速度和加速度的大小.
图 1-4
解: 设人到船之间绳的长度为 l ,此时绳与水面成 角,由图可知
dx dt
R (1 cost)
v y
dy dt
R sin t)
a x a y
R 2 R 2
sin t dvx dt
cost dvy dt
1-10 以初速度 v0 =20 m s1 抛出一小球,抛出方向与水平面成幔 60°的夹角,
求:(1)球轨道最高点的曲率半径 R1 ;(2)落地处的曲率半径 R2 .
解:当滑至斜面底时, y h ,则 vA 2gh , A 物运动过程中又受到 B 的牵连运动影响,
因此,
A 对地的速度为vA地
u
v
' A
(u 2gh cos )i ( 2gh sin ) j
题 1-12 图
1-13 一船以速率 v1 =30km·h-1 沿直线向东行驶,另一小艇在其前方以速率 v2 =40km·h-1 沿解直:线(向1)北大行船驶看,小问艇在,船则上有看v2小1 艇v的2 速v度1 ,为依何题?在意艇作上速看度船矢的量速图度如又题为1-何13? 图(a)
an
即 R 2 R
亦即 (9t 2 )2 18t
t3 2
2 3t 3 2 3 2 2.67 rad
则解得
大学物理学上册(赵近芳)第2章习题解答
习题2
2.1 选择题
(1)一质量为M 的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将 ( )
(A) 保持静止. (B) 向右加速运动.
(C) 向右匀速运动. (D) 向左加速运动.
题2.1(1)图
答案:(A)。
(5) 质量分别为m 1和m 2的两滑块A 和B 通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F 作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度a A 和a B 分别为 ( )
(A) a A =0 , a B =0. (B) a A >0 , a B <0.
(C) a A <0 , a B >0. (D) a A <0 , a B =0.
题2.1(2)图
答案:(D)。
(3) 对功的概念有以下几种说法:
①保守力作正功时,系统内相应的势能增加。
②质点运动经一闭合路径,保守力对质点作的功为零。
③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
在上述说法中:
(A)①、②是正确的。
(B)②、③是正确的。
(C)只有②是正确的。
(D)只有③是正确的。
[答案:C]
2.2填空题
(1) 某质点在力i x F )54(+=(SI )的作用下沿x 轴作直线运动。
在从x=0移动到x=10m
的过程中,力F 所做功为 。
[答案:290J ]
(2) 质量为m 的物体在水平面上作直线运动,当速度为v 时仅在摩擦力作用下开始作匀减速。
《大学物理学》赵近芳 课后习题答案 北京邮电大学出版社
0
∑ r = 8 cm 时,
q = p 4π (r3 3
− r内3 )
∴
( ) E
=
ρ
4π 3
r 3 − r内2
≈ 3.48 ×10 4 N ⋅ C −1 , 方向沿半径向外.
4πε 0r 2
∑ r = 12 cm 时,
q
=
ρ
4π 3
(r外3
−
r内3)
( ) ∴
E
=
ρ
4π 3
r外 3
− r内3
≈ 4.10 ×104
通过圆平面的电通量.(α = arctan R ) x
∫ 解: (1)由高斯定理
Ev
⋅
v dS
=
q
s
ε0
立方体六个面,当 q 在立方体中心时,每个面上电通量相等
∴
各面电通量 Φ e
=
q 6ε 0
.
(2)电荷在顶点时,将立方体延伸为边长 2a 的立方体,使 q 处于边长 2a 的立
方体中心,则边长 2a 的正方形上电通量 Φ e
ρ 3ε 0
(rv
− rv′)
=
ρ 3ε 0
OO' =
ρdv 3ε 0
∴腔内场强是均匀的.
8-14 一电偶极子由 q =1.0×10-6C 的两个异号点电荷组成,两电荷距离
d=0.2cm,把这电偶极子放在1.0×105N·C-1 的外电场中,求外电场作用于
电偶极子上的最大力矩.
解:
∵
电偶极子
pv
N ⋅ C −1
沿半径向外.
4πε 0r 2
8-11 半径为 R1 和 R2 ( R2 > R1 )的两无限长同轴圆柱面,单位长度上分别
赵近芳版《大学物理学上册》课后答案之欧阳育创编
习题解答习题一1-1|r ∆|与r ∆有无不同?td d r 和td d r 有无不同?td d v 和td d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ∆是位移的模,∆r是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)td d r 是速度的模,即t d d r ==v t s d d .trd d 只是速度在径向上的分量.∵有rr ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r td d d d d d r r r+=式中trd d就是速度径向上的分量,∴tr td d d d 与r 不同如题1-1图所示.题1-1图(3)td d v表示加速度的模,即tv a d d =,tv d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以t vt v t v d d d d d d ττ +=式中dtdv 就是加速度的切向分量. (tt rd ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =tr d d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t x t r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将22d d d d trt r 与误作速度与加速度的模。
[实用参考]大学物理学第四版课后习题答案(赵近芳)上册
习题11.1选择题(1)一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr(B)dt r d(C)dtr d ||(D)22)()(dt dy dt dx +[答案:D](2)一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零(B)等于-2m/s (C)等于2m/s(D)不能确定。
[答案:D](3)一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R ππ2,2(B)tRπ2,0 (C)0,0(D)0,2tRπ[答案:B]1.2填空题(1)一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案:10m ;5πm] (2)一质点沿G 方向运动,其加速度随时间的变化关系为a=3+2t(SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。
[答案:23m·s -1](3)轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V和3V 的关系是 。
[答案:0321=++V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1)物体的大小和形状; (2)物体的内部结构; (3)所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)G=4t -3;(2)G=-4t 3+3t 2+6;(3)G=-2t 2+8t+4;(4)G=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
赵近芳 大学物理学答案 全
大学物理学(北邮第三版)赵近芳等编著习题及解答(全)习题一 1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆;(2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆrˆt r t d d d d d d r r r += 式中t rd d 就是速度径向上的分量,∴t rtd d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量. ∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.(t t r d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=, jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
大学物理课后习题答案全 赵近芳版
t 习题十二12-1 某单色光从空气射入水中,其频率、波速、波长是否变化?怎样变化?解: υ不变,为波源的振动频率;nn 空λλ=变小;υλn u =变小.12-2 在杨氏双缝实验中,作如下调节时,屏幕上的干涉条纹将如何变化?试说明理由. (1)使两缝之间的距离变小;(2)保持双缝间距不变,使双缝与屏幕间的距离变小; (3)整个装置的结构不变,全部浸入水中; (4)光源作平行于1S ,2S 联线方向上下微小移动; (5)用一块透明的薄云母片盖住下面的一条缝. 解: 由λdDx =∆知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零级明纹向下移动.12-3 什么是光程? 在不同的均匀媒质中,若单色光通过的光程相等时,其几何路程是否相同?其所需时间是否相同?在光程差与位相差的关系式∆λπϕ∆2= 中,光波的波长要用真空中波长,为什么?解:nr =∆.不同媒质若光程相等,则其几何路程定不相同;其所需时间相同,为Ct ∆=∆. 因为∆中已经将光在介质中的路程折算为光在真空中所走的路程。
12-4 如题12-4图所示,A ,B 两块平板玻璃构成空气劈尖,分析在下列情况中劈尖干涉条纹将如何变化?(1) A 沿垂直于B 的方向向上平移[见图(a)]; (2) A 绕棱边逆时针转动[见图(b)].题12-4图 解: (1)由l2λθ=,2λke k =知,各级条纹向棱边方向移动,条纹间距不变;(2)各级条纹向棱边方向移动,且条纹变密. 12-5 用劈尖干涉来检测工件表面的平整度,当波长为λ的单色光垂直入射时,观察到的干涉条纹如题12-5图所示,每一条纹的弯曲部分的顶点恰与左邻的直线部分的连线相切.试说明工件缺陷是凸还是凹?并估算该缺陷的程度.解: 工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲.按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹向棱边移动了一条,故相应的空气隙厚度差为2λ=∆e ,这也是工件缺陷的程度.题12-5图 题12-6图12-6 如题12-6图,牛顿环的平凸透镜可以上下移动,若以单色光垂直照射,看见条纹向中 心收缩,问透镜是向上还是向下移动?解: 条纹向中心收缩,透镜应向上移动.因相应条纹的膜厚k e 位置向中心移动. 12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk dDx =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-8 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500oA ,求此云母片的厚度.解: 设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ按题意 λδ7=∴ 610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 12-9 洛埃镜干涉装置如题12-9图所示,镜长30cm ,狭缝光源S 在离镜左边20cm 的平面内,与镜面的垂直距离为2.0mm ,光源波长=λ7.2×10-7m ,试求位于镜右边缘的屏幕上第一条明条纹到镜边缘的距离.题12-9图解: 镜面反射光有半波损失,且反射光可视为虚光源S '发出.所以由S 与S '发出的两光束到达屏幕上距镜边缘为x 处的光程差为 22)(12λλδ+=+-=D x dr r 第一明纹处,对应λδ=∴25105.44.0250102.72--⨯=⨯⨯⨯==d Dx λmm 12-10 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到5000 oA 与7000oA 这两个波长的单色光在反射中消失.试求油膜层的厚度.解: 油膜上、下两表面反射光的光程差为ne 2,由反射相消条件有λλ)21(2)12(2+=+=k k k ne ),2,1,0(⋅⋅⋅=k ① 当50001=λoA 时,有2500)21(21111+=+=λλk k ne ②当70002=λoA 时,有3500)21(22222+=+=λλk k ne ③因12λλ>,所以12k k <;又因为1λ与2λ之间不存在3λ满足33)21(2λ+=k ne 式即不存在 132k k k <<的情形,所以2k 、1k 应为连续整数,即 112-=k k ④ 由②、③、④式可得:51)1(75171000121221+-=+=+=k k k k λλ 得 31=k2112=-=k k可由②式求得油膜的厚度为67312250011=+=nk e λo A12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k得 122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λoA (红色)3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k 所以 kk ne 101082==λ 当2=k 时, λ =5054oA (绿色) 故背面呈现绿色.12-12 在折射率1n =1.52的镜头表面涂有一层折射率2n =1.38的Mg 2F 增透膜,如果此膜适用于波长λ=5500 oA 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k∴ 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A 令0=k ,得膜的最薄厚度为996oA . 当k 为其他整数倍时,也都满足要求.12-13 如题12-13图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求:(1)两玻璃片间的夹角=θ?(2)相邻两明条纹间空气膜的厚度差是多少? (3)相邻两暗条纹的间距是多少? (4)在这0.12 m 内呈现多少条明条纹?题12-13图解: (1)由图知,d L =θsin ,即d L =θ故 43100.41012.0048.0-⨯=⨯==L d θ(弧度) (2)相邻两明条纹空气膜厚度差为7104.32-⨯==∆λe m(3)相邻两暗纹间距641010850100.421068002---⨯=⨯⨯⨯==θλl m 85.0= mm (4)141≈=∆lLN 条 12-14 用=λ 5000oA 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的 棱边是暗纹.若劈尖上面媒质的折射率1n 大于薄膜的折射率n (n =1.5).求: (1)膜下面媒质的折射率2n 与n 的大小关系; (2)第10条暗纹处薄膜的厚度;(3)使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么变化?若e ∆=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据?解: (1)n n >2.因为劈尖的棱边是暗纹,对应光程差2)12(22λλ+=+=∆k ne ,膜厚0=e 处,有0=k ,只能是下面媒质的反射光有半波损失2λ才合题意; (2)3105.15.12500092929-⨯=⨯⨯==⨯=∆n e nλλ mm (因10个条纹只有9个条纹间距)(3)膜的下表面向下平移,各级条纹向棱边方向移动.若0.2=∆e μm ,原来第10条暗纹处现对应的膜厚为)100.2105.1(33--⨯+⨯='∆e mm21100.55.12105.3243=⨯⨯⨯⨯='∆=∆--n e N λ 现被第21级暗纹占据.12-15 (1)若用波长不同的光观察牛顿环,1λ=6000oA ,2λ=4500oA ,观察到用1λ时的第k个暗环与用2λ时的第k+1个暗环重合,已知透镜的曲率半径是190cm .求用1λ时第k 个暗环的半径.(2)又如在牛顿环中用波长为5000oA 的第5个明环与用波长为2λ的第6个明环重合,求未知波长2λ.解: (1)由牛顿环暗环公式λkR r k =据题意有 21)1(λλR k kR r +==∴212λλλ-=k ,代入上式得2121λλλλ-=R r10101010210450010600010450010600010190-----⨯-⨯⨯⨯⨯⨯⨯= 31085.1-⨯=m(2)用A 50001 =λ照射,51=k 级明环与2λ的62=k 级明环重合,则有 2)12(2)12(2211λλR k R k r -=-=∴ 4091500016215212121212=⨯-⨯-⨯=--=λλk k o A 12-16 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由1d =1.40×10-2m 变为2d =1.27×10-2m ,求液体的折射率.解: 由牛顿环明环公式2)12(21λR k D r -==空nR k D r 2)12(22λ-==液两式相除得n D D =21,即22.161.196.12221≈==D D n12-17 利用迈克耳逊干涉仪可测量单色光的波长.当1M 移动距离为0.322mm 时,观察到干涉条纹移动数为1024条,求所用单色光的波长. 解: 由 2λNd ∆=∆得 102410322.0223-⨯⨯=∆∆=N d λ 710289.6-⨯=m 6289=oA12-18 把折射率为n =1.632的玻璃片放入迈克耳逊干涉仪的一条光路中,观察到有150条干涉条纹向一方移过.若所用单色光的波长为λ= 5000oA ,求此玻璃片的厚度. 解: 设插入玻璃片厚度为d ,则相应光程差变化为λN d n ∆=-)1(2∴ )1632.1(2105000150)1(210-⨯⨯=-∆=-n N d λ5109.5-⨯=m 2109.5-⨯=mm习题十三13-1 衍射的本质是什么?衍射和干涉有什么联系和区别? 答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动? 答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动.13-3 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗 条纹,单缝处波面各可分成几个半波带?答:半波带由单缝A 、B 首尾两点向ϕ方向发出的衍射线的光程差用2λ来划分.对应于第3级明纹和第4级暗纹,单缝处波面可分成7个和8个半波带.∵由272)132(2)12(sin λλλϕ⨯=+⨯=+=k a284sin λλϕ⨯==a13-4 在单缝衍射中,为什么衍射角ϕ愈大(级数愈大)的那些明条纹的亮度愈小? 答:因为衍射角ϕ愈大则ϕsin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公式),2,1(2)12(sin =+±=k k a λϕ来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?解:当全部装置浸入水中时,由于水中波长变短,对应='='λϕk a sin nk λ,而空气中为λϕk a =sin ,∴ϕϕ'=sin sin n ,即ϕϕ'=n ,水中同级衍射角变小,条纹变密.如用)12(sin +±=k a ϕ2λ),2,1(⋅⋅⋅=k 来测光的波长,则应是光在水中的波长.(因ϕsin a 只代表光在水中的波程差).13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化?(1)缝宽变窄;(2)入 射光波长变长;(3)入射平行光由正入射变为斜入射.解:(1)缝宽变窄,由λϕk a =sin 知,衍射角ϕ变大,条纹变稀; (2)λ变大,保持a ,k 不变,则衍射角ϕ亦变大,条纹变稀;(3)由正入射变为斜入射时,因正入射时λϕk a =sin ;斜入射时,λθϕk a '=-)sin (sin ,保持a ,λ不变,则应有k k >'或k k <'.即原来的k 级条纹现为k '级.13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样 说明?答:不矛盾.单缝衍射暗纹条件为kk a 2sin ==λϕ2λ,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向ϕ方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =sin ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.13-8 光栅衍射与单缝衍射有何区别?为何光栅衍射的明条纹特别明亮而暗区很宽?答:光栅衍射是多光束干涉和单缝衍射的总效果.其明条纹主要取决于多光束干涉.光强与缝数2N 成正比,所以明纹很亮;又因为在相邻明纹间有)1(-N 个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.13-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即⎩⎨⎧=''±==±=+)2,1(sin ),2,1,0(sin )( k k a k k b a λϕλϕ 可知,当k aba k '+=时明纹缺级. (1)a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级; (2)a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级;(3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.13-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1)零级明条纹能 否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什 么因素有关? 解:(1)零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强. (2)可见光中红光的衍射角最大,因为由λϕk b a =+sin )(,对同一k 值,衍射角λϕ∞. 13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000οA 的单色平行光的第二级明条纹位置重合,求前一种单色光的波长. 解:单缝衍射的明纹公式为)12(sin +=k a ϕ2λ 当6000=λoA 时,2=kx λλ=时,3=k重合时ϕ角相同,所以有)132(26000)122(sin +⨯=+⨯=ϕa 2x λ得 4286600075=⨯=x λo A13-12 单缝宽0.10mm ,透镜焦距为50cm ,用5000=λoA 的绿光垂直照射单缝.求:(1)位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少? 解:中央明纹的宽度为f nax λ2=∆半角宽度为naλθ1sin -=(1)空气中,1=n ,所以3310100.51010.01050005.02---⨯=⨯⨯⨯⨯=∆x m33101100.51010.0105000sin ----⨯=⨯⨯=θ rad (2)浸入水中,33.1=n ,所以有33101076.31010.033.110500050.02---⨯≈⨯⨯⨯⨯⨯=∆x m331011076.3101.033.1105000sin ----⨯≈⨯⨯⨯=θ rad 13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm 当 3=k ,得60003=λoA4=k ,得47004=λoA(2)若60003=λoA ,则P 点是第3级明纹; 若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带; 当4=k 时,单缝处的波面可分成912=+k 个半波带.13-14 用5900=λoA 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:5001=+b a mm 3100.2-⨯= mm 4100.2-⨯=o A 由λϕk b a =+sin )(知,最多见到的条纹级数m ax k 对应的2πϕ=,所以有39.35900100.24max ≈⨯=+=λba k ,即实际见到的最高级次为3max =k .13-15 波长为5000oA 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm . 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成30°斜入射时,中央明条纹的位移为多少?解:3100.52001-⨯==+b a mm 6100.5-⨯m (1)由光栅衍射明纹公式 λϕk b a =+sin )(,因1=k ,又f x ==ϕϕtan sin 所以有λ=+f x b a 1)( 即 62101100.51060105000---⨯⨯⨯⨯=+=b a fx λ 2100.6-⨯=m 6= cm(2)对应中央明纹,有0=k正入射时,0sin )(=+ϕb a ,所以0sin =≈ϕϕ斜入射时,0)sin )(sin (=±+θϕb a ,即0sin sin =±θϕ因︒=30θ,∴21tan sin ±==≈f x ϕϕ 故22103010602121--⨯=⨯⨯==f x m 30= cm 这就是中央明条纹的位移值.13-16 波长6000=λo A 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在20.0sin =ϕ与30.0sin =ϕ处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>ϕ>-90°范围内,实际呈现的全部级数.解:(1)由λϕk b a =+sin )(式对应于20.0sin 1=ϕ与30.0sin 2=ϕ处满足:101060002)(20.0-⨯⨯=+b a101060003)(30.0-⨯⨯=+b a得 6100.6-⨯=+b a m(2)因第四级缺级,故此须同时满足 λϕk b a =+sin )(λϕk a '=sin解得 k k b a a '⨯='+=-6105.14取1='k ,得光栅狭缝的最小宽度为6105.1-⨯m(3)由λϕk b a =+sin )( λϕsin )(b a k +=当2πϕ=,对应max k k =∴ 10106000100.6106max =⨯⨯=+=--λb a k 因4±,8±缺级,所以在︒︒<<-9090ϕ范围内实际呈现的全部级数为9,7,6,5,3,2,1,0±±±±±±±=k 共15条明条纹(10±=k 在︒±=90k 处看不到).13-17 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为4800oA 的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹?解:(1)中央明纹宽度为 02.010501048002270⨯⨯⨯⨯==-f a l λmm 4.2=cm (2)由缺级条件λϕk a '=sinλϕk b a =+sin )(知k k a b a k k '='=+'=502.01.0 ⋅⋅⋅=',2,1k 即⋅⋅⋅=,15,10,5k 缺级. 中央明纹的边缘对应1='k ,所以单缝衍射的中央明纹包迹内有4,3,2,1,0±±±±=k 共9条双缝衍射明条纹.13-18 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm ,透镜焦距为50cm ,所用单色光波长为5000oA ,求在透镜焦平面处屏幕上呈现的爱里斑半径.解:由爱里斑的半角宽度 47105.302.010500022.122.1--⨯=⨯⨯==D λθ∴ 爱里斑半径5.1105.30500tan 24=⨯⨯=≈=-θθf f d mm 13-19 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500oA 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星?解:由最小分辨角公式 D λθ22.1=∴ 86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm 13-20 已知入射的X 射线束含有从0.95~1.30o A 范围内的各种波长,晶体的晶格常数为2.75o A ,当X 射线以45°角入射到晶体时,问对哪些波长的X 射线能产生强反射? 解:由布喇格公式 λϕk d =sin 2 得kd ϕλsin 2=时满足干涉相长 当1=k 时, 89.345sin 75.22=⨯⨯=︒λoA2=k 时,91.1245sin 75.22=⨯⨯=︒λo A 3=k 时,30.1389.3==λo A 4=k 时, 97.0489.3==λo A 故只有30.13=λo A 和97.04=λo A 的X 射线能产生强反射.。
大学物理学第四版课后习题答案(赵近芳)上册
大学物理学第四版课后习题答案(赵近芳)上册大学物理学第四版课后习题答案(赵近芳)上册I. 力学基础1.1 物理量、单位和量纲1.2 一维运动1.3 二维运动1.4 多维运动1.5 动力学定律1.6 四个基本定律的应用II. 力学进阶2.1 万有引力定律2.2 物体的机械平衡2.3 力的合成和分解2.4 刚体的平衡条件2.5 动力学定律的矢量形式2.6 力的合成与分解在动力学中的应用III. 力学应用3.1 动量和冲量3.2 动量定理和动量守恒定律3.3 质心运动3.4 矩和对称性3.5 碰撞和动能IV. 振动与波动4.1 简谐振动的基本概念4.2 简谐振动的物理规律4.3 简谐振动的叠加4.4 波的基本概念4.5 机械波的传播4.6 声波的特性V. 热学基础5.1 温度和热量5.2 热学平衡5.3 理想气体状态方程5.4 热力学第一定律5.5 热力学第二定律5.6 热力学循环VI. 热学进阶6.1 热传导6.2 理想气体的物态方程6.3 热机的工作原理6.4 理想气体的热力学过程6.5 热力学第三定律6.6 热力学中的熵VII. 光学基础7.1 几何光学的基本假设7.2 反射和折射7.3 薄透镜的成像7.4 光的衍射7.5 光的干涉与衍射VIII. 光学进阶8.1 光的波动性8.2 波动光学中的衍射现象8.3 干涉与衍射的应用8.4 偏振光的特性和产生8.5 偏振的应用IX. 电学基础9.1 电荷和电场9.2 电场中的电荷9.3 静电场中的电势能9.4 电介质中的电场9.5 电容器和电容9.6 电容器在电场中的应用X. 电学进阶10.1 电流和电阻10.2 欧姆定律和电功率10.3 理想电源和内阻10.4 串联和并联电路10.5 微观电流与输运过程10.6 磁场和电流的相互作用XI. 磁学基础11.1 磁场的基本概念11.2 安培力和磁场的作用11.3 安培环路定理和比奥-萨伐尔定律11.4 磁场中的磁矩和磁矢势11.5 磁场中的电荷和电流XII. 电磁感应12.1 法拉第电磁感应定律12.2 电磁感应的应用12.3 洛伦兹力和电磁感应的关系12.4 电磁感应中的能量转换XIII. 光学和电磁波13.1 光的多普勒效应13.2 光的全反射和光导纤维13.3 电磁波的基本特性13.4 电磁波的干涉和衍射13.5 电磁波的产生和传播XIV. 原子物理14.1 原子的组成和结构14.2 原子能级和辐射14.3 布拉格衍射和X射线的产生14.4 原子谱和拉曼散射14.5 布居和粒子统计XV. 物质内部结构15.1 固体的晶体结构15.2 固体的导电性15.3 半导体的性质和应用15.4 介质的极化和磁化15.5 核能和放射性以上是《大学物理学第四版课后习题答案(赵近芳)上册》的大纲,根据各个章节的内容进行详细解答可帮助学生更好地掌握物理学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题解答 习题一1-1 |r ∆|与r ∆ 有无不同?td d r 和td d r 有无不同?td d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)td d r 是速度的模,即t d d r ==v t s d d .trd d 只是速度在径向上的分量.∵有rr ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中trd d 就是速度径向上的分量,∴trt d d d d 与r 不同如题1-1图所示.题1-1图(3)td d v 表示加速度的模,即tva d d =,tvd d 是加速度a 在切向上的分量. ∵有ττ(v =v表轨道节线方向单位矢),所以 t vt v t v d d d d d d ττ += 式中dtdv就是加速度的切向分量. (tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =trd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v yxy x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d tr t r 与误作速度与加速度的模。
在1-1题中已说明trd d 不是速度的模,而只是速度在径向上的分量,同样,22d d t r也不是加速度的模,它只是加速度在径向分量中的一部分⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=222d d d d t r t r a θ径。
或者概括性地说,前一种方法只考虑了位矢r 在径向(即量值)方面随时间的变化率,而没有考虑位矢r 及速度v的方向随间的变化率对速度、加速度的贡献。
1-3 一质点在xOy 平面上运动,运动方程为x =3t +5, y =21t 2+3t -4.式中t 以 s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0 s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1) j t t i t r)4321()53(2-+++=m(2)将1=t ,2=t 代入上式即有j i r5.081-= mj j r4112+=m j j r r r5.4312+=-=∆m(3)∵ j i r j j r1617,4540+=-=∴ 104s m 534201204-⋅+=+=--=∆∆=j i j i r r t r v(4) 1s m )3(3d d -⋅++==j t i trv则 j i v 734+= 1s m -⋅(5)∵ j i v j i v73,3340+=+=204s m 1444-⋅==-=∆∆=j v v t v a (6) 2s m1d d -⋅==j tva这说明该点只有y 方向的加速度,且为恒量。
1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.图1-4解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l+=将上式对时间t 求导,得 ts s t l ld d 2d d 2= 题1-4图根据速度的定义,并注意到l ,s 是随t 减少的, ∴ ts v v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s l t l s l t s v ==-=-=船或 sv s h s lv v 02/1220)(+==船将船v 再对t 求导,即得船的加速度3202220202002)(d d d d d d sv h s v s l s v slv s v v s t sl t l st v a =+-=+-=-==船船1-5 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2sm -⋅,x 的单位为 m. 质点在x =0处,速度为101sm -⋅,试求质点在任何坐标处的速度值. 解: ∵ xv v t x x v t v ad d d d d d d d ===分离变量: x x adx d )62(d 2+==υυ两边积分得c x x v ++=322221 由题知,0=x时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置.解:∵ t tva 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v++=由题知,0=t,00=v ,∴01=c故 2234t t v +=又因为 2234d d t t t x v +==分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t,50=x ,∴52=c故 521232++=t t x所以s 10=t时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v 1-7 一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33t ,θ式中以弧度计,t 以秒计,求:(1) t =2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少? 解: t tt t 18d d ,9d d 2====ωβθω(1)s 2=t时, 2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n(2)当加速度方向与半径成ο45角时,有145tan ==︒na a τ即 βωR R =2亦即 t t18)9(22=则解得 923=t 于是角位移为rad 67.29232323=⨯+=+=t θ1-8 质点沿半径为R 的圆周按s =2021bt tv -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b .解:(1) bt v tsv -==0d dRbt v R v a b tva n 202)(d d -==-==τ则 240222)(R bt v b a a a n-+=+=τ加速度与半径的夹角为20)(arctanbt v Rb a a n --==τϕ(2)由题意应有2402)(R bt v b b a -+==即 0)(,)(4024022=-⇒-+=bt v Rbt v b b ∴当bv t 0=时,b a =1-9 半径为R 的轮子,以匀速0v 沿水平线向前滚动:(1)证明轮缘上任意点B 的运动方程为x =R)sin (t t ωω-,y =R )cos 1(t ω-,)sin (sin 2cos2sin200t R t R R t v R t v x ωωθθθ-=-=-=式中0v =ω/R 是轮子滚动的角速度,当B 与水平线接触的瞬间开始计时.此时B 所在的位置为原点,轮子前进方向为x 轴正方向;(2)求B 点速度和加速度的分量表示式.解:依题意作出下图,由图可知(1)题1-9图)cos 1()cos 1(2sin2sin2t R R R y ωθθθ-=-== (2)⎪⎪⎩⎪⎪⎨⎧==-==)sin d d )cos 1(d d t R t y v t R t x v y x ωωω⎪⎪⎩⎪⎪⎨⎧====t v t R a t v t R a yy x x d d cos d d sin 22ωωωω1-10 以初速度0v =201sm -⋅抛出一小球,抛出方向与水平面成幔60°的夹角,求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R . (提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示.题1-10图 (1)在最高点,o 0160cos v v v x ==21s m 10-⋅==g a n又∵ 1211ρv a n=∴m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1s m -⋅,而 o 60cos 2⨯=g a n∴m 8060cos 10)20(22222=︒⨯==n a v ρ1-11 飞轮半径为0.4 m ,自静止启动,其角加速度为β=0.2 rad ·2s-,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度.解:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅则16.04.04.0=⨯==ωR v1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n1-12 如题1-12图,物体A 以相对B 的速度v =gy 2沿斜面滑动,y 为纵坐标,开始时A 在斜面顶端高为h 处,B 物体以u 匀速向右运动,求A 物滑到地面时的速度.解:当滑至斜面底时,h y =,则gh v A 2=',A 物运动过程中又受到B 的牵连运动影响,因此,A 对地的速度为jgh i gh u v u v AA )sin 2()cos 2('αα++=+=地题1-12图1-13 一船以速率1v =30km ·h -1沿直线向东行驶,另一小艇在其前方以速率2v =40km ·h -1沿直线向北行驶,问在船上看小艇的速度为何?在艇上看船的速度又为何?解:(1)大船看小艇,则有1221v v v-=,依题意作速度矢量图如题1-13图(a)题1-13图由图可知1222121hkm50-⋅=+=vvv方向北偏西︒===87.3643arctanarctan21vvθ(2)小船看大船,则有2112vvv-=,依题意作出速度矢量图如题1-13图(b),同上法,得5012=v1hkm-⋅方向南偏东o87.361-14 当一轮船在雨中航行时,它的雨篷遮着篷的垂直投影后2 m的甲板上,篷高4 m 但当轮船停航时,甲板上干湿两部分的分界线却在篷前3 m ,如雨滴的速度大小为8 m·s-1,求轮船的速率.解:依题意作出矢量图如题1-14所示.题1-14图∵船雨雨船vvv-=船雨船雨vvv+=由图中比例关系可知1sm8-⋅==雨船vv习题二2-1因绳不可伸长,故滑轮两边绳子的加速度均为a1,其对于m2则为牵连加速度,又知m2对绳子的相对加速度为a′,故m2对地加速度,由图(b)可知,为a2=a1-a′①又因绳的质量不计,所以圆柱体受到的摩擦力f在数值上等于绳的张力T,由牛顿定律,有m1g-T=m1a1 ②T-m2g=m2a2③联立①、②、③式,得2121211212212211)2()()(mmagmmTfmmamgmmammamgmma+'-==+'--=+'+-=讨论 (1)若a′=0,则a1=a2表示柱体与绳之间无相对滑动.(2)若a′=2g,则T=f=0,表示柱体与绳之间无任何作用力,此时m1,m2均作自由落体运动.题2-1图2-2以梯子为对象,其受力图如图(b)所示,则在竖直方向上,N B-mg=0 ①又因梯无转动,以B点为转动点,设梯子长为l,则N A lsinθ-mg2lcosθ=0 ②在水平方向因其有加速度a,故有f+N A=ma ③题2-2图式中f为梯子受到的摩擦力,其方向有两种可能,即 f=±μ0mg ④联立①、②、③、④式得)(2tan,)(2tangaggagMmμθμθ-=+=2-3 283166-⋅===smmfa xx2167-⋅-==smmfa yy(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=2112872167452832smdtavvsmdtavvyyyxxx于是质点在2s时的速度18745-⋅--=smjiv(2)mj i j i j t a i t a tv r y x 874134)167(21)4832122(21)21(220--=⨯-+⨯⨯+⨯-=++=2-4 (1)∵dtdvm kv a=-=分离变量,得m kdt v dv -=即⎰⎰-=v v t m kdt v dv 00 m kt e v v -=ln ln 0∴ tm k ev v-=0(2)⎰⎰---===tttm k m ke kmv dt ev vdt x00)1((3)质点停止运动时速度为零,即t →∞, 故有⎰∞-=='0kmv dt ev x tm k(4)当t=km 时,其速度为ev e v ev v km m k 0100===-⋅-即速度减至v 0的e1. 2-5分别以m 1,m 2为研究对象,其受力图如图(b)所示.(1)设m 2相对滑轮(即升降机)的加速度为a ′,则m 2对地加速度a 2=a ′-a ;因绳不可伸长,故m 1对滑轮的加速度亦为a ′,又m 1在水平方向上没有受牵连运动的影响,所以m 1在水平方向对地加速度亦为a ′,由牛顿定律,有m 2g-T=m 2(a ′-a)T=m 1a ′题2-5图联立,解得a ′=g 方向向下(2) m 2对地加速度为a 2=a ′-a=2g 方向向上m 1在水面方向有相对加速度,竖直方向有牵连加速度,即a 绝=a 相′+a 牵∴g g g a a a 25422221=+=+'= θ=arctan a a '=arctan 21=26.6°,左偏上. 2-6依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为30°,则动量的增量为Δp=mv-mv 0由矢量图知,动量增量大小为|mv 0|,方向竖直向下.2-7由题知,小球落地时间为0.5s .因小球为平抛运动,故小球落地的瞬时向下的速度大小为v 1=gt=0.5g ,小球上跳速度的大小亦为v 2=0.5g .设向上为y 轴正向,则动量的增量Δp=mv 2-mv 1 方向竖直向上,大小 |Δp |=mv 2-(-mv 1)=mg碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒.2-8 (1)若物体原来静止,则Δp 1=⎰⎰=+=tidt t Fdt 04056)210( i kg ·m ·s -1,沿x 轴正向,111111566.5--⋅⋅=∆=⋅=∆=∆s m kg i p I s m i mp v 若物体原来具有-6 m ·s -1初速,则⎰⎰+-=+-=-=t t Fdt mv dt m F v m p mv p 000000)(,于是 ⎰∆==-=∆tp Fdt p p p 0102,同理,Δv 2=Δv 1,I 2=I 1这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.(2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t dt t I 0210)210(亦即t 2+10t-200=0解得t=10 s ,(t ′=-20 s 舍去)2-9 质点的动量为p=mv=m ω(-asin ωti+bcos ωtj)将t=0和t=ωπ2分别代入上式,得p 1=m ωbj,p 2=-m ωai,则动量的增量亦即质点所受外力的冲量为I=Δp=p 2-p 1=-m ω(ai+bj)2-10 (1)由题意,子弹到枪口时,有F=(a-bt)=0,得t=b a(2)子弹所受的冲量⎰-=-=tbt at dt bt a I 0221)(将t=b a 代入,得b a I 22=(3)由动量定理可求得子弹的质量202bv a v I m ==2-11设一块为m 1,则另一块为m 2,m 1=km 2及m 1+m 2=m于是得 1,121+=+=k mm k kmm① 又设m 1的速度为v 1,m 2的速度为v 2,则有2222211212121mv v m v m T -+= ②mv=m 1v 1+m 2v 2③ 联立①、③解得v 2=(k+1)v-kv 1④ 将④代入②,并整理得21)(2v v km T-= 于是有km Tv v 21±=将其代入④式,有m kTv v 22±=又,题述爆炸后,两弹片仍沿原方向飞行,故只能取kmT v v m kT v v 2,221-=+= 证毕. 2-12 (1)由题知,F 合为恒力,∴ A 合=F ·r=(7i-6j)·(-3i+4j+16k)=-21-24=-45 J(2)w t A N 756.045==∆=(3)由动能定理,ΔE k =A=-45 J2-13 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图f=-ky第一锤外力的功为A 1⎰⎰⎰==-='=s s k kydy fdy dy f A 1012① 式中f ′是铁锤作用于钉上的力,f 是木板作用于钉上的力,在dt →0时,f ′=-f .设第二锤外力的功为A 2,则同理,有 ⎰-==21222221y k ky kydy A ② 由题意,有2)21(212k mv A A =∆== ③ 即222122k k ky =- 所以,22=y 于是钉子第二次能进入的深度为Δy=y 2-y 1=2-1=0.414 cm 2-14 1)()(+-==n r nk dr r dE r F方向与位矢r 的方向相反,即指向力心.2-15 弹簧A 、B 及重物C 受力如题2-15图所示平衡时,有题2-15图F A =F B =Mg又 F A =k 1Δx 1F B =k 2Δx 2所以静止时两弹簧伸长量之比为1221k k x x =∆∆弹性势能之比为12222211121212k k x k x k E E p p =∆∆= 2-16 (1)设在距月球中心为r 处F 月引=F 地引,由万有引力定律,有 G 2r mM 月=G ()2r R mM -地 经整理,得 r=R M M M 月地月+ =2224221035.71098.51035.7⨯+⨯⨯81048.3⨯⨯ =38.32⨯106 m则p 点处至月球表面的距离为h=r-r 月 =(38.32-1.74)×106=3.66×107m (2)质量为1 kg 的物体在p 点的引力势能为 ()r R M G r M G E P ---=地月=()72411722111083.34.381098.51067.61083.31035.71067.6⨯-⨯⨯⨯-⨯⨯⨯⨯-- =-1.28J 610⨯2-17取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有-μm 2gh=21 (m 1+m 2)v 2-[m 1gh+21k(Δl)2] 式中Δl 为弹簧在A 点时比原长的伸长量,则Δl=AC-BC=(2-1)h联立上述两式,得v=()()212221122m m kh gh m m +-+υ题2-17图2-18 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点则由功能原理,有-f r s=⎪⎭⎫ ⎝⎛︒+-37sin 212122mgs mv kx k=222137sin 21kx s f mgs mv r -︒+式中 s=4.8+0.2=5 m ,x=0.2 m ,再代入有关数据,解得k=1390 N ·m -1题2-18图再次运用功能原理,求木块弹回的高度h ′-f t s ′=mgs ′sin37°-21kx 3代入有关数据,得 s ′=1.4 m,则木块弹回高度h ′=s ′sin37°=0.84 m题2-19图2-19 m 从M 上下滑的过程中,机械能守恒,以m ,M 地球为系统,以最低点为重力势能零点,则有mgR=222121MV mv + 又下滑过程,动量守恒,以m,M 为系统则在m 脱离M 瞬间,水平方向有mv-MV=0 联立,以上两式,得v=()M m MgR +2 2-20 两小球碰撞过程中,机械能守恒,有222120212121mv mv mv += 即 222120v v v += ①题2-20图(a) 题2-20图(b)又碰撞过程中,动量守恒,即有m v 0=m v 1+m v 2亦即 v 0=v 1+v 2 ②由②可作出矢量三角形如图(b),又由①式可知三矢量之间满足勾股定理,且以v 0为斜边,故知v 1与v 2是互相垂直的.2-21 由题知,质点的位矢为r=x 1i+y 1j作用在质点上的力为f=-fi所以,质点对原点的角动量为L 0=r ×mv=(x 1i+y 1j)×m(v x i+v y j)=(x 1mv y -y 1mv x )k作用在质点上的力的力矩为M 0=r ×f=(x 1i+y 1j)×(-fi)=y 1fk2-22 哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有r 1mv 1=r 2mv 2∴m vv rr12241021121026.51008.91046.51075.8⨯=⨯⨯⨯⨯==2-23 (1) ⎰⎰-⋅⋅===∆31155smkgjjdtfdtp(2)解(一) x=x0+v0x t=4+3=7jattvyy5.2533521362122=⨯⨯+⨯=+=即r1=4i,r2=7i+25.5jv x=v0x=1113356=⨯+=+=atvvyy即v1=i1+6j,v2=i+11j∴ L1=r1×mv1=4i×3(i+6j)=72kL2=r2×mv2=(7i+25.5j)×3(i+11j)=154.5k∴ΔL=L2-L1=82.5k kg·m2·s-1解(二) ∵dtdzM=∴⎰⎰⨯=⋅=∆t t dtFrdtML00)(⎰⎰-⋅⋅=+=⨯⎥⎦⎤⎢⎣⎡⨯+++=313225.82)4(55)35)216()4(smkgkkdttjdtjtti t题2-24图2-24 在只挂重物M1时,小球作圆周运动的向心力为M1g,即M1g=mr0ω20 ①挂上M2后,则有(M1+M2)g=mr′ω′2 ②重力对圆心的力矩为零,故小球对圆心的角动量守恒.即 r0mv0=r′mv′222ωω''=⇒rr③联立①、②、③得32211213212111)()(MMMmMgrgmMMrMMMmrgMmrgM+='+='+='=ωωω2-25 (1)先作闸杆和飞轮的受力分析图(如图(b)).图中N、N′是正压力,F r、F′r是摩擦力,F x和F y是杆在A点转轴处所受支承力,R是轮的重力,P是轮在O轴处所受支承力.题2-25图(a)题2-25图(b)杆处于静止状态,所以对A点的合力矩应为零,设闸瓦厚度不计,则有FlllNlNllF121121)(+='='-+对飞轮,按转动定律有β=-F r R/I,式中负号表示β与角速度ω方向相反.∵ F r=μN N=N′∴FlllNFr121+='=μμ又∵,212mRI=∴FmRlllIRFr121)(2+-=-=μβ①以F=100 N等代入上式,得234010050.025.060)75.050.0(40.02-⋅-=⨯⨯⨯+⨯⨯-=sradβ由此可算出自施加制动闸开始到飞轮停止转动的时间为st06.74060329000=⨯⨯⨯=-=πβω这段时间内飞轮的角位移为radttππππβωφ21.53)49(34021496029002122⨯=⨯⨯-⨯⨯=+=可知在这段时间里,飞轮转了53.1转.(2)ω0=900×(2π)/60 rad·s-1,要求飞轮转速在t=2 s内减少一半,可知221522-⋅-=-=-=sradttπωωωβ用上面式(1)所示的关系,可求出所需的制动力为NllmRlF1772)75.050.0(40.021550.025.060)(2211=⨯+⨯⨯⨯⨯⨯=+-=πμβ2-26 设a,a2和β分别为m1m2和柱体的加速度及角加速度,方向如图(如图b).题2-26(a)图题2-26(b)图(1)m1,m2和柱体的运动方程如下:⎪⎩⎪⎨⎧='-'=-=-3212111112222βIrTRTamTgmamgmT式中 T1′=T1,T2′=T2,a2=rβ,a1=Rβ而 I=(1/2)MR2+(1/2)mr2由上式求得2222222212113.68.910.0220.0210.042120.0102121.022.0-⋅=⨯⨯+⨯+⨯⨯+⨯⨯⨯-⨯=++-=sradgrmRmIrmRmβ(2)由①式T2=m2rβ+m2g=2×0.10×6.13+2×9.8=20.8 N由②式T1=m1g-m1Rβ=2×9.8-2×0.20×6.13=17.1 N2-27 分别以m1,m2滑轮为研究对象,受力图如图(b)所示.对m1,m2运用牛顿定律,有m2g-T2=m2a ①T1=m1a ②对滑轮运用转动定律,有T2r-T1r=(1/2Mr2)β③又, a=rβ④联立以上4个方程,得22126.721520058.92002-⋅=++⨯=++=smMmmgma题2-27(a)图题2-27(b)图题2-28图2-28 (1)由转动定律,有mg(l/2)=[(1/3)ml2]β∴β=lg23(2)由机械能守恒定律,有mg(l/2)sinθ=(1/2)[(1/3)ml2]ω2∴ω=lgθsin32-29 (1)设小球的初速度为v0,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mv0l=Iω+mvl ①(1/2)mv20=(1/2)Iω2+(1/2)mv2 ②上两式中I=1/3Ml2,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度θ=30°,按机械能守恒定律可列式:)30cos1(2212︒-=lMgIω③由③式得2121)231(3)30cos1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=lgIMglω由①式mlIvvω-=④由②式mIvv222ω-=⑤所以221)(2ωωmvmlIv-=-求得glmMmmMlmlIlv+-=+=+=31232(6)311(2)1(22ωω(2)相碰时小球受到的冲量为∫Fdt=Δmv=mv-mv0由①式求得∫Fdt=mv-mv0=-(Iω)/l=(-1/3)Mlω=-glM6)32(6-负号说明所受冲量的方向与初速度方向相反.题2-30图2-30 (1)碎片离盘瞬时的线速度即是它上升的初速度v0=Rω设碎片上升高度h时的速度为v,则有令v=0,可求出上升最大高度为222212ωRggvH==(2)圆盘的转动惯量I=(1/2)MR2,碎片抛出后圆盘的转动惯量I′=(1/2)MR2-mR2,碎片脱离前,盘的角动量为Iω,碎片刚脱离后,碎片与破盘之间的内力变为零,但内力不影响系统的总角动量,碎片与破盘的总角动量应守恒,即Iω=I′ω′+mv0R式中ω′为破盘的角速度.于是(1/2)MR2ω=[(1/2)MR2-mR2]ω′+mv0R[(1/2)MR2-mR2]ω=[(1/2)MR2-mR2]ω′得ω′=ω(角速度不变)圆盘余下部分的角动量为[(1/2)MR2-mR2]ω转动动能为题2-31图E k=(1/2)[(1/2)MR2-mR2]ω22-31 (1)射入的过程对O轴的角动量守恒Rsinθm0v0=(m+m0)R2ω∴ω=Rmmvm)(sin+θ(2)22220sin21])(sin][)[(21mmmvmRmmvmRmmEEkk+=++=θθ2-32 以重物、滑轮、弹簧、地球为一系统,重物下落的过程中,机械能守恒,以最低点为重力势能零点,弹簧原长为弹性势能零点,则有mgh=(1/2)mv2+(1/2)Iω2+(1/2)kh2又ω=v/R故有ImRkkhmghv+-=222)2(12220.25.03.00.63.0)4.00.24.08.90.62(-⋅=+⨯⨯⨯-⨯⨯⨯=sm题2-32图题2-33图2-33 (1)小球与圆环系统对竖直轴的角动量守恒,当小球滑至B点时,有I0ω0=(I0+mR2)ω①该系统在转动过程中,机械能守恒,设小球相对于圆环的速率为v B,以B点为重力势能零点,则有(1/2)I0ω20+mgR=(1/2)(I0+mR2)ω2+(1/2)mv2B②联立①、②两式,得2222mRIRIgRvB++=ω(2)当小球滑至C点时,∵I c=I0∴ωc=ω0故由机械能守恒,有mg(2R)=(1/2)mv2c∴v c=2gR请读者求出上述两种情况下,小球对地速度.习题三3-1 惯性系S′相对惯性系S以速度u运动.当它们的坐标原点O与O'重合时,t=t'=0,发出一光波,此后两惯性系的观测者观测该光波的波阵面形状如何?用直角坐标系写出各自观测的波阵面的方程.解: 由于时间和空间都是均匀的,根据光速不变原理,光讯号为球面波.波阵面方程为:2222)(ctzyx=++2222)(t czyx'='+'+'题3-1图3-2 设图3-4中车厢上观测者测得前后门距离为2l.试用洛仑兹变换计算地面上的观测者测到同一光信号到达前、后门的时间差.解: 设光讯号到达前门为事件1,在车厢)(S'系时空坐标为),(),(11clltx='',在车站)(S系:)1()()(21211cucllcuclxcutt+=+='+'=γγγ光信号到达后门为事件2,则在车厢)(S '系坐标为),(),(22c ll t x -='',在车站)(S 系: )1()(2222c u c l x cu t t -='+'=γγ 于是 2122c lut t γ-=-或者 l x x x t t t t 2,,02121='-'='∆-=∆='∆ )2()(22l cu x c u t t γγ='∆+'∆=∆ 3-3 惯性系S ′相对另一惯性系S 沿x 轴作匀速直线运动,取两坐标原点重合时刻作为计时起点.在S 系中测得两事件的时空坐标分别为1x =6×104m,1t =2×10-4s ,以及2x =12×104m,2t =1×10-4s .已知在S ′系中测得该两事件同时发生.试问:(1)S ′系相对S 系的速度是多少? (2)S '系中测得的两事件的空间间隔是多少?解: 设)(S '相对S 的速度为v ,(1) )(1211x cvt t -='γ )(2222x c vt t -='γ 由题意 012='-'t t 则)(12212x x cvt t -=- 故 812122105.12⨯-=-=--=cx x t t c v1s m -⋅(2)由洛仑兹变换 )(),(222111vt x x vt x x -='-='γγ 代入数值, m 102.5412⨯='-'x x 3-4 长度0l =1 m的米尺静止于S ′系中,与x ′轴的夹角'θ= 30°,S ′系相对S 系沿x 轴运动,在S 系中观测者测得米尺与x 轴夹角为=θ45︒. 试求:(1)S ′系和S 系的相对运动速度.(2)S 系中测得的米尺长度.解: (1)米尺相对S '静止,它在y x '',轴上的投影分别为:m 866.0cos 0='='θL L x ,m 5.0sin 0='='θL L y米尺相对S 沿x 方向运动,设速度为v ,对S 系中的观察者测得米尺在x 方向收缩,而y 方向的长度不变,即y y x x L L cv L L '=-'=,122故221tancvLLLLLLxyxyxy-''='==θ把ο45=θ及yxLL'',代入则得866.05.0122=-cv故cv816.0=(2)在S系中测得米尺长度为m707.045sin=︒=yLL3-5 一门宽为a,今有一固有长度0l(0l>a)的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动.若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u至少为多少?解: 门外观测者测得杆长为运动长度,2)(1cull-=,当a≤1时,可认为能被拉进门,则2)(1cula-≤解得杆的运动速率至少为:2)(1lacu-=题3-6图3-6两个惯性系中的观察者O和O'以0.6c(c表示真空中光速)的相对速度相互接近,如果O测得两者的初始距离是20m,则O'测得两者经过多少时间相遇?解: O测得相遇时间为t∆cvLt6.0200==∆O'测得的是固有时t'∆∴vLtt21βγ-=∆='∆s1089.88-⨯=,6.0==cvβ,8.01=γ , 或者,O '测得长度收缩,vL t L L L L ='∆=-=-=,8.06.01102020β s 1089.81036.0208.06.08.0880-⨯=⨯⨯⨯=='c L t ∆ 3-7 观测者甲乙分别静止于两个惯性参考系S 和S '中,甲测得在同一地点发生的两事件的时间间隔为 4s ,而乙测得这两个事件的时间间隔为 5s .求:(1) S '相对于S 的运动速度.(2)乙测得这两个事件发生的地点间的距离. 解: 甲测得0,s 4==x t∆∆,乙测得s 5=t ∆,坐标差为12x x x '-'='∆′ (1)∴ t cv t x c vt t ∆-∆=∆+∆='∆22)(11)(λγ54122='∆∆=-t t cv解出 c c t t c v 53)54(1)(122=-='∆∆-= 8108.1⨯= 1s m -⋅(2) ()0,45,=∆=∆'∆=∆-∆='∆x t t t v x x γγ ∴ m 1093453458⨯-=-=⨯⨯-=-='c c t v x ∆γ∆负号表示012<'-'x x . 3-8 一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度是多少? 解: 2220153,1513βββ-=-=-=='则l l∴ c c v542591=-=3-9 论证以下结论:在某个惯性系中有两个事件同时发生在不同地点,在有相对运动的其他惯性系中,这两个事件一定不同时. 证: 设在S 系B A 、事件在b a ,处同时发生,则B A a b t t t x x x -=∆-=∆,,在S '系中测得)(2x cvt t t t A B ∆-∆='-'='∆γ 0,0≠∆=∆x t ,∴0≠'∆t即不同时发生. 3-10 试证明:(1)如果两个事件在某惯性系中是同一地点发生的,则对一切惯性系来说这两个事件的时间间隔,只有在此惯性系中最短. (2)如果两个事件在某惯性系中是同时发生的,则对一切惯性关系来说这两个事件的空间间隔,只有在此惯性系中最短. 解: (1)如果在S '系中,两事件B A 、在同一地点发生,则0='∆x ,在S 系中,t t t '∆≥'∆=∆γ,仅当0=v 时,等式成立,∴t '∆最短.(2)若在S '系中同时发生,即0='∆t ,则在S 系中,x x x '∆≥'∆=∆γ,仅当0=v 时等式成立,∴S '系中x '∆最短.3-11 根据天文观测和推算,宇宙正在膨胀,太空中的天体都远离我们而去.假定地球上观察到一颗脉冲星(发出周期无线电波的星)的脉冲周期为 0.50s ,且这颗星正沿观察方向以速度0.8c 离我们而去.问这颗星的固有周期为多少? 解: 以脉冲星为S '系,0='∆x ,固有周期0τ='∆t .地球为S 系,则有运动时t t '∆=∆γ1,这里1t ∆不是地球上某点观测到的周期,而是以地球为参考系的两异地钟读数之差.还要考虑因飞行远离信号的传递时间,ct v 1∆∴ t cvt c t v t t∆+'∆=∆+∆=∆γγ11′ )1(cvt +'=∆γ6.01)8.0(112=-=cc γ 则 γλτ)8.01(5.0)1(0cc c v t t +++∆='∆=s 1666.08.13.06.01)8.01(5.0==+=3-12 6000m 的高空大气层中产生了一个π介子以速度v =0.998c 飞向地球.假定该π介子在其自身静止系中的寿命等于其平均寿命 2×10-6s .试分别从下面两个角度,即地球上的观测者和π介子静止系中观测者来判断π介子能否到达地球.解: π介子在其自身静止系中的寿命s 10260-⨯=t ∆是固有(本征)时间,对地球观测者,由于时间膨胀效应,其寿命延长了.衰变前经历的时间为s 1016.315220-⨯=-=cv t t ∆∆这段时间飞行距离为m 9470==t v d ∆因m 6000>d,故该π介子能到达地球.或在π介子静止系中,π介子是静止的.地球则以速度v 接近介子,在0t ∆时间内,地球接近的距离为m 5990=='t v d ∆m60000=d 经洛仑兹收缩后的值为:m 37912200=-='cv d dd d '>',故π介子能到达地球.3-13 设物体相对S ′系沿x '轴正向以0.8c 运动,如果S ′系相对S 系沿x 轴正向的速度也是0.8c ,问物体相对S 系的速度是多少? 解: 根据速度合成定理,c u8.0=,c v x 8.0='∴ c c c c c c cv u u v v x x x98.08.08.018.08.0122=⨯++='++'=3-14 飞船A 以0.8c 的速度相对地球向正东飞行,飞船B 以0.6c 的速度相对地球向正西方向飞行.当两飞船即将相遇时A 飞船在自己的天窗处相隔2s 发射两颗信号弹.在B 飞船的观测者测得两颗信号弹相隔的时间间隔为多少?解: 取B 为S 系,地球为S '系,自西向东为x (x ')轴正向,则A 对S '系的速度c v x 8.0=',S '系对S 系的速度为c u 6.0=,则A对S 系(B 船)的速度为c cc cv u u v v xx x 946.048.016.08.012=++='++'=发射弹是从A 的同一点发出,其时间间隔为固有时s 2='t ∆,题3-14图∴B 中测得的时间间隔为:s 17.6946.0121222=-=-'=cv t t x ∆∆3-15 (1)火箭A 和B 分别以0.8c 和0.6c 的速度相对地球向+x 和-x 方向飞行.试求由火箭B 测得A 的速度.(2)若火箭A 相对地球以0.8c 的速度向+y 方向运动,火箭B 的速度不变,求A 相对B 的速度.解: (1)如图a ,取地球为S 系,B 为S '系,则S '相对S 的速度c u 6.0=,火箭A 相对S 的速度c v x 8.0=,则A 相对S '(B )的速度为:c c c c c c v c u u v v x x x 946.0)8.0)(6.0(1)6.0(8.0122=----=--='或者取A 为S '系,则c u 8.0=,B 相对S 系的速度c v x 6.0-=,于是B 相对A 的速度为:c c c c cc v c u u v v x x x 946.0)6.0)(8.0(18.06.0122-=----=--=' (2)如图b ,取地球为S 系,火箭B 为S '系,S '系相对S 系沿x -方向运动,速度c u 6.0-=,A 对S 系的速度为,0=x v ,c v y 8.0=,由洛仑兹变换式A 相对B 的速度为:c c v cu u v v xx x 6.001)6.0(012=---=--=' c c v cuv cu v xyy 64.0)8.0(6.01112222=-=--=' ∴A 相对B 的速度大小为c v v v y x 88.022='+'='速度与x '轴的夹角θ'为07.1tan =''='xy v v θο8.46='θ题3-15图3-16 静止在S 系中的观测者测得一光子沿与x 轴成︒60角的方向飞行.另一观测者静止于S ′系,S ′系的x '轴与x 轴一致,并以0.6c 的速度沿x 方向运动.试问S ′系中的观测者观测到的光子运动方向如何? 解: S 系中光子运动速度的分量为c c v x 500.060cos ο==c c v y 866.060sin ο==由速度变换公式,光子在S '系中的速度分量为c c c c c c v c u u v v x x x 143.05.06.016.05.0122-=⨯--=--='c c cc c v c u v cu v x yy 990.05.06.01866.06.011122222=⨯-⨯-=--=' 光子运动方向与x '轴的夹角θ'满足692.0tan -=''='xy v v θθ'在第二象限为ο2.98='θ在S '系中,光子的运动速度为c v v v y x ='+'='22正是光速不变.3-17 (1)如果将电子由静止加速到速率为0.1c ,须对它作多少功?(2)如果将电子由速率为0.8c 加速到0.9c ,又须对它作多少功? 解: (1)对电子作的功,等于电子动能的增量,得)111()1(222020202--=-=-==c vc m c m c m mc E E k k γ∆)11.011()103(101.922831--⨯⨯⨯=-161012.4-⨯=J=eV 1057.23⨯(2) )()(2021202212c m c m c m c m E E E k k k---=-='∆)1111(221222202122cv cvc m c m c m ---=-=))8.0119.011(103101.92216231---⨯⨯⨯=-J 1014.514-⨯=eV 1021.35⨯=3-18μ子静止质量是电子静止质量的 207倍,静止时的平均寿命0τ=2×10-6s ,若它在实验室参考系中的平均寿命τ= 7×10-6s ,试问其质量是电子静止质量的多少倍? 解: 设μ子静止质量为m ,相对实验室参考系的速度为cv β=,相应质量为m,电子静止质量为em 0,因2711,1022==--=ττββττ即由质速关系,在实验室参考系中质量为:。