大学物理学课后习题标准答案-赵近芳-全
大学物理学第五章课后答案赵近芳
习题5选择题(1)一物体作简谐振动,振动方程为)2cos(πω+=t A x ,则该物体在0=t 时刻的动能与8/T t =(T 为振动周期)时刻的动能之比为: (A)1:4 (B )1:2 (C )1:1 (D) 2:1[答案:D](2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA 2 (B) kA 2/2 (C) kA 24A ±2A ±23A ±22A ±4cm2cm2cm 23s 2A cos(2//2)x A t T ππ=-cos(2//3)x A t T ππ=+0d d 222=+ξωξt O θsin mg -S ∆R RS∆=θθmg -中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有θθmg tmR -=22d d令Rg=2ω,则有 222d 0d tθωθ+=弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?解:弹簧振子的振动周期、振动能量、最大速度和最大加速度的表达式分别为222122,m m T E kA v A a Aππωωω===== 所以当振幅增大到原振幅的两倍时,振动周期不变,振动能量增大为原来的4倍,最大速度增大为原来的2倍,最大加速度增大为原来的2倍。
单摆的周期受哪些因素影响?把某一单摆由赤道拿到北极去,它的周期是否变化?解:单摆的周期为22T πω==因此受摆线长度和重力加速度的影响。
把单摆由赤道拿到北极去,由于摆线长度不变,重力加速度增大,因此它的周期是变小。
简谐振动的速度和加速度在什么情况下是同号的?在什么情况下是异号的?加速度为正值时,振动质点的速率是否一定在增大? 解:简谐振动的速度和加速度的表达式分别为020sin()cos()v A t a A t ωωϕωωϕ=-+=-+当00sin()cos()t t ωϕωϕ++与同号时,即位相在第1或第3象限时,速度和加速度同号;当00sin()cos()t t ωϕωϕ++与异号时,即位相在第2或第4象限时,速度和加速度异号。
大学物理第4版主编赵近芳课后答案
习题88.1 选择题(1) 关于可逆过程和不可逆过程有以下几种说法:①可逆过程一定是准静态过程.②准静态过程一定是可逆过程.③不可逆过程发生后一定找不到另一过程使系统和外界同时复原.④非静态过程一定是不可逆过程.以上说法,正确的是:[](A) ①、②、③、④. (B) ①、②、③.(C) ②、③、④. (D) ①、③、④.[答案:D. 准静态过程不一定是可逆过程.因准静态过程中可能存在耗散效应,如摩擦、粘滞性、电阻等。
](2) 热力学第一定律表明:[](A) 系统对外做的功不可能大于系统从外界吸收的热量.(B) 系统内能的增量等于系统从外界吸收的热量.(C) 不可能存在这样的循环过程,在此循环过程中,外界对系统做的功不等于系统传给外界的热量.(D) 热机的效率不可能等于1.[答案:C。
热力学第一定律描述个热力学过程中的能量守恒定性质。
](3) 如题8.1图所示,bca为理想气体绝热过程,b1a和b2a是任意过程,则上述两过程中气体做功与吸收热量的情况是: [](A) b1a过程放热,做负功;b2a过程放热,做负功.(B) b1a过程吸热,做负功;b2a过程放热,做负功.(C) b1a过程吸热,做正功;b2a过程吸热,做负功.(D) b1a过程放热,做正功;b2a过程吸热,做正功.题8.1图[答案:B。
b1acb构成正循环,ΔE = 0,A净> 0,Q = Q b1a+ Q acb= A净>0,但Q acb= 0,∴Q b1a >0 吸热; b1a压缩,做负功b2a cb构成逆循环,ΔE = 0,A净< 0,Q = Q b2a+ Q acb= A净<0,但 Q acb = 0,∴ Q b 2a <0 放热 ; b 2a 压缩,做负功](4) 根据热力学第二定律判断下列哪种说法是正确的. [ ](A) 功可以全部变为热,但热不能全部变为功.(B) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体. (C) 气体能够自由膨胀,但不能自动收缩. (D) 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量. [答案:C. 热力学第二定律描述自然热力学过程进行的条件和方向性。
大学物理学(第三版)第五章课后答案(主编)赵近芳
习题55.1选择题(1)一物体作简谐振动,振动方程为)2cos(πω+=t A x ,则该物体在0=t 时刻的动能与8/T t =(T 为振动周期)时刻的动能之比为: (A)1:4 (B )1:2 (C )1:1 (D) 2:1[答案:D](2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA 2 (B) kA 2/2(C) kA 2//4 (D)0[答案:D](3)谐振动过程中,动能和势能相等的位置的位移等于 (A)4A ±(B) 2A ± (C) 23A±(D) 22A ± [答案:D]5.2 填空题(1)一质点在X 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。
若t =0时质点第一次通过x =-2cm 处且向X 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为____s 。
[答案:23s ](2)一水平弹簧简谐振子的振动曲线如题5.2(2)图所示。
振子在位移为零,速度为-wA 、加速度为零和弹性力为零的状态,对应于曲线上的____________点。
振子处在位移的绝对值为A 、速度为零、加速度为-w 2A 和弹性力为-KA 的状态,则对应曲线上的____________点。
题5.2(2) 图[答案:b 、f ; a 、e](3)一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。
(a)若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为x=___________________。
(b) 若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为x=_________________。
[答案:cos(2//2)x A t T ππ=-; cos(2//3)x A t T ππ=+]5.3 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动: (1)拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短).题5.3图 题5.3图(b)解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用0d d 222=+ξωξt描述时,其所作的运动就是谐振动.(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线性回复力.(2)小球在题5.3图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题5.3图(b)中所示,因S ∆<<R ,故RS∆=θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有θθmg tmR -=22d d令Rg=2ω,则有 222d 0d tθωθ+=5.4 弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?解:弹簧振子的振动周期、振动能量、最大速度和最大加速度的表达式分别为222122,m m T E kA v A a Aππωωω===== 所以当振幅增大到原振幅的两倍时,振动周期不变,振动能量增大为原来的4倍,最大速度增大为原来的2倍,最大加速度增大为原来的2倍。
《大学物理学》(赵近芳主编)第二版课后习题答案物理答案第二单元
《大学物理学》(赵近芳主编)第二版课后习题答案物理答案第二单元习题二2-1因绳不可伸长,故滑轮两边绳子的加速度均为a 1,其对于m 2则为牵连加速度,又知m 2对绳子的相对加速度为a ′,故m 2对地加速度,由图(b)可知,为a 2=a 1-a ′ ①又因绳的质量不计,所以圆柱体受到的摩擦力f 在数值上等于绳的张力T ,由牛顿定律,有m 1g-T=m 1a 1 ②T-m 2g=m 2a 2 ③ 联立①、②、③式,得2121211212212211)2()()(m m a g m m T f m m a m g m m a m m a m g m m a +'-==+'--=+'+-=讨论 (1)若a ′=0,则a 1=a 2表示柱体与绳之间无相对滑动.(2)若a ′=2g ,则T=f=0,表示柱体与绳之间无任何作用力,此时m 1,m 2均作自由落体运动.题2-1图2-2以梯子为对象,其受力图如图(b)所示,则在竖直方向上,N B -mg=0 ①又因梯无转动,以B 点为转动点,设梯子长为l ,则N A lsin θ-mg2lcos θ=0 ② 在水平方向因其有加速度a ,故有f+N A =ma ③题2-2图式中f 为梯子受到的摩擦力,其方向有两种可能,即f=±μ0mg ④ 联立①、②、③、④式得)(2tan ,)(2tan 00g a gg a g M m μθμθ-=+=2-3 283166-?===s m m f a x x2167-?-==s m mf a y y(1)--?-=?-=+=?-=?+-=+=20101200872167452832s m dt a v v s m dt a v v y y y x x x于是质点在2s 时的速度18745-?--=s m ji v(2)mj i j i j t a i t a t v r y x 874134)167(21)4832122(21)21(220--=?-+??+?-=++=2-4 (1)∵dtdvm kv a =-= 分离变量,得m kdt v dv -=即??-=v v t m kdt v dv 00 kt e v v -=ln ln 0 ∴ tk e v v -=0(2)??---===tttm k m ke kmv dt ev vdt x 000)1((3)质点停止运动时速度为零,即t →∞,故有? ∞-=='00kmv dt ev x tk (4)当t=km时,其速度为ev e v ev v km m k 0100===-?- 即速度减至v 0的e1. 2-5分别以m 1,m 2为研究对象,其受力图如图(b)所示.(1)设m 2相对滑轮(即升降机)的加速度为a ′,则m 2对地加速度a 2=a ′-a ;因绳不可伸长,故m 1对滑轮的加速度亦为a ′,又m 1在水平方向上没有受牵连运动的影响,所以m 1在水平方向对地加速度亦为a ′,由牛顿定律,有m 2g-T=m 2(a ′-a)T=m 1a ′题2-5图联立,解得a ′=g 方向向下 (2) m 2对地加速度为a 2=a ′-a=2g方向向上m 1在水面方向有相对加速度,竖直方向有牵连加速度,即a 绝=a 相′+a 牵∴g g g a a a 25422221=+=+'= θ=arctana a '=arctan 21=26.6°,左偏上. 2-6依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为30°,则动量的增量为Δp=mv-mv 0由矢量图知,动量增量大小为|mv 0|,方向竖直向下.2-7由题知,小球落地时间为0.5s .因小球为平抛运动,故小球落地的瞬时向下的速度大小为v 1=gt=0.5g ,小球上跳速度的大小亦为v 2=0.5g .设向上为y 轴正向,则动量的增量Δp=mv 2-mv 1 方向竖直向上,大小|Δp |=mv 2-(-mv 1)=mg碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒. 2-8 (1)若物体原来静止,则Δp 1==+=tidt t Fdt 0456)210( i kg 2m 2s -1,沿x 轴正向,111111566.5--??=?=?=?=s m kg ip I s m i m p v若物体原来具有-6 m 2s -1初速,则+-=+-=-=t tFdt mv dt m Fv m p mv p 000000)(,于是 ??==-=?t p Fdt p p p 0102,同理,Δv 2=Δv 1,I 2=I 1这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.(2)同上理,两种情况中的作用时间相同,即+=+=tt t dt t I 0210)210(亦即t 2+10t-200=0解得t=10 s ,(t ′=-20 s 舍去) 2-9 质点的动量为p=mv=m ω(-asin ωti+bcos ωtj) 将t=0和t=ωπ2分别代入上式,得p 1=m ωbj,p 2=-m ωai,则动量的增量亦即质点所受外力的冲量为I=Δp=p 2-p 1=-m ω(ai+bj)2-10 (1)由题意,子弹到枪口时,有 F=(a-bt)=0,得t=ba (2)子弹所受的冲量-=-=t bt at dt bt a I 0221)(将t=ba代入,得ba I 22=(3)由动量定理可求得子弹的质量202bv a v I m ==2-11设一块为m 1,则另一块为m 2,m 1=km 2及m 1+m 2=m 于是得 1,121+=+=k mm k km m ① 又设m 1的速度为v 1,m 2的速度为v 2,则有2222211212121mv v m v m T -+=② mv=m 1v 1+m 2v 2 ③ 联立①、③解得v 2=(k+1)v-kv 1 ④将④代入②,并整理得21)(2v v kmT-= 于是有kmT v v 21±= 将其代入④式,有mkTv v 22±= 又,题述爆炸后,两弹片仍沿原方向飞行,故只能取kmTv v m kT v v 2,221-=+= 证毕.2-12 (1)由题知,F 合为恒力,∴ A 合=F 2r=(7i-6j)2(-3i+4j+16k)=-21-24=-45 J (2)w t A N 756.045==?=(3)由动能定理,ΔE k =A=-45 J2-13 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图 f=-ky第一锤外力的功为A 1==-='=sskkydy fdy dy f A 112① 式中f ′是铁锤作用于钉上的力,f 是木板作用于钉上的力,在dt →0时,f ′=-f .设第二锤外力的功为A 2,则同理,有-==21222221y kky kydy A ② 由题意,有)21(212kmv A A =?== ③即222122kk ky =- 所以,22=y于是钉子第二次能进入的深度为Δy=y 2-y 1=2-1=0.414 cm 2-14 1)()(+-==n rnkdr r dE r F 方向与位矢r 的方向相反,即指向力心.2-15 弹簧A 、B 及重物C 受力如题2-15图所示平衡时,有题2-15图 F A =F B =Mg 又F A =k 1Δx 1 F B =k 2Δx 2所以静止时两弹簧伸长量之比为1221k k x x =?? 弹性势能之比为12222211121212k kx k x k E E p p =??= 2-16 (1)设在距月球中心为r 处F 月引=F 地引,由万有引力定律,有G2r mM 月=G2r R mM -地经整理,得 r=R M M M 月地月+=2224221035.71098.51035.7?+??81048.3??=38.32?106 m则p 点处至月球表面的距离为h=r-r 月 =(38.32-1.74)3106=3.663107m (2)质量为1 kg 的物体在p 点的引力势能为()r R M GrM GE P ---=地月=()72411722111083.34.381098.51067.61083.31035.71067.6?--?--=-1.28J 6102-17 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有 -μm 2gh=21 (m 1+m 2)v 2-[m 1gh+21k(Δl)2]式中Δl 为弹簧在A 点时比原长的伸长量,则Δl=AC-BC=(2-1)h 联立上述两式,得 v=()()212221122m m kh gh m m +-+υ题2-17图2-18 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点则由功能原理,有 -f r s=+-37sin 212122mgs mv kx k=222137sin 21kx sf mgs mv r -?+式中 s=4.8+0.2=5 m ,x=0.2 m ,再代入有关数据,解得k=1390 N 2m -1题2-18图再次运用功能原理,求木块弹回的高度h ′-f t s ′=mgs ′sin37°-21kx 3代入有关数据,得s ′=1.4 m, 则木块弹回高度h ′=s ′sin37°=0.84 m题2-19图2-19 m 从M 上下滑的过程中,机械能守恒,以m ,M 地球为系统,以最低点为重力势能零点,则有mgR=222121MV mv + 又下滑过程,动量守恒,以m,M 为系统则在m 脱离M 瞬间,水平方向有mv-MV=0联立,以上两式,得 v=()M m MgR+22-20 两小球碰撞过程中,机械能守恒,有222120212121mv mv mv += 即 222120v v v += ①题2-20图(a) 题2-20图(b) 又碰撞过程中,动量守恒,即有m v 0=m v 1+m v 2亦即v 0=v 1+v 2 ②由②可作出矢量三角形如图(b),又由①式可知三矢量之间满足勾股定理,且以v 0为斜边,故知v 1与v 2是互相垂直的. 2-21 由题知,质点的位矢为r=x 1i+y 1j作用在质点上的力为f=-fi所以,质点对原点的角动量为 L 0=r 3mv=(x 1i+y 1j)3m(v x i+v y j) =(x 1mv y -y 1mv x )k作用在质点上的力的力矩为 M 0=r 3f=(x 1i+y 1j)3(-fi)=y 1fk2-22 哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有 r 1mv 1=r 2mv 2∴m v v r r 12241021121026.51008.91046.51075.8?===2-23 (1) ??-??===31155s m kg jjdt fdt p(2)解(一) x=x 0+v 0x t=4+3=7j at t v y y 5.25335213621220=??+?=+=即r 1=4i,r 2=7i+25.5jv x =v 0x =11133560=?+=+=at v v y y即v 1=i 1+6j, v 2=i+11j∴ L 1=r 13mv 1=4i 33(i+6j)=72kL 2=r 23mv 2=(7i+25.5j)33(i+11j)=154.5k∴ΔL=L 2-L 1=82.5k kg 2m 22s -1解(二) ∵dtdz M =∴ =?=t tdt F r dt M L 0)(-??=+=+++=3130225.82)4(55)35)216()4(s m kg kkdt t jdt j t t i t题2-24图2-24 在只挂重物M 1时,小球作圆周运动的向心力为M 1g ,即M 1g=mr 0ω20 ①挂上M 2后,则有(M 1+M 2)g=mr ′ω′2②重力对圆心的力矩为零,故小球对圆心的角动量守恒.即r 0mv 0=r ′mv ′22020ωω''=?r r ③联立①、②、③得322110213212101010)()(M M M mM g r g m M M r M M M mr g M mr g M +='+='+='=ωωω2-25 (1)先作闸杆和飞轮的受力分析图(如图(b)).图中N 、N ′是正压力,F r 、F ′r 是摩擦力,F x 和F y 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力.题2-25图(a )题2-25图(b)杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有F l l l N l N l l F 1211210)(+='='-+ 对飞轮,按转动定律有β=-F r R/I ,式中负号表示β与角速度ω方向相反.∵ F r =μN N=N ′ ∴ F l l l N F r 121+='=μμ 又∵ ,212mR I = ∴F mRl l l I R F r 121)(2+-=-=μβ ① 以F=100 N 等代入上式,得234010050.025.060)75.050.0(40.02-?-=+??-=s rad β由此可算出自施加制动闸开始到飞轮停止转动的时间为s t 06.74060329000==-=πβω这段时间内飞轮的角位移为radt t ππππβωφ21.53)49(340214960290021220?=??-??=+= 可知在这段时间里,飞轮转了53.1转.(2)ω0=9003(2π)/60 rad 2s -1,要求飞轮转速在t=2 s 内减少一半,可知200021522-?-=-=-=s rad ttπωωωβ用上面式(1)所示的关系,可求出所需的制动力为Nl l mRl F 1772)75.050.0(40.021550.025.060) (2211=?+=+-=πμβ2-26 设a ,a 2和β分别为m 1m 2和柱体的加速度及角加速度,方向如图(如图b).题2-26(a)图题2-26(b)图 (1) m 1,m 2和柱体的运动方程如下:='-'=-=-3212111112222βI r T R T a m T g m a m g m T 式中T 1′=T 1,T 2′=T 2,a 2=r β,a 1=R β而 I=(1/2)MR 2+(1/2)mr 2由上式求得2222222212113.68.910.0220.0210.042120.0102121.022.0-?=??+?+??+-?=++-=s rad grm R m I rm Rm β(2)由①式T 2=m 2r β+m 2g=230.1036.13+239.8=20.8 N 由②式T 1=m 1g-m 1R β=239.8-230.2036.13=17.1 N2-27 分别以m 1,m 2滑轮为研究对象,受力图如图(b)所示.对m 1,m 2运用牛顿定律,有m 2g-T 2=m 2a ① T 1=m 1a ②对滑轮运用转动定律,有T 2r-T 1r=(1/2Mr 2)β ③ 又,a=r β ④联立以上4个方程,得22126.721520058.92002-?=++?=++=s m M m m g m a题2-27(a)图题2-27(b)图题2-28图题2-29图 2-29 (1)设小球的初速度为v 0,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mv 0l=I ω+mvl ①(1/2)mv 20=(1/2)I ω2+(1/2)mv 2②上两式中I=1/3Ml 2,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度θ=30°,按机械能守恒定律可列式:)30cos 1(2212?-=lMg I ω ③ 由③式得121)231(3)30cos 1(-=-=lg I Mgl ω由①式mlI v v ω-=0 ④ 由②式mI v v 2202ω-= ⑤ 所以22001)(2ωωm v ml I v -=-求得glmM m m M l mlI l v +-=+=+=31232(6)311(2)1(220ωω(2)相碰时小球受到的冲量为∫Fdt=Δmv=mv-mv 0 由①式求得∫Fdt=mv-mv 0=-(I ω)/l=(-1/3)Ml ω=-gl M 6)32(6-负号说明所受冲量的方向与初速度方向相反.题2-30图2-30 (1)碎片离盘瞬时的线速度即是它上升的初速度v 0=R ω设碎片上升高度h 时的速度为v ,则有 v 2=v 20-2gh令v=0,可求出上升最大高度为2220212ωR gg v H ==(2)圆盘的转动惯量I=(1/2)MR 2,碎片抛出后圆盘的转动惯量I ′=(1/2)MR 2-mR 2,碎片脱离前,盘的角动量为I ω,碎片刚脱离后,碎片与破盘之间的内力变为零,但内力不影响系统的总角动量,碎片与破盘的总角动量应守恒,即I ω=I ′ω′+mv 0R式中ω′为破盘的角速度.于是(1/2)MR 2ω=[(1/2)MR 2-mR 2]ω′+mv 0R[(1/2)MR 2-mR 2]ω=[(1/2)MR 2-mR 2]ω′ 得ω′=ω(角速度不变) 圆盘余下部分的角动量为[(1/2)MR 2-mR 2]ω 转动动能为题2-31图E k =(1/2)[(1/2)MR 2-mR 2]ω22-31 (1)射入的过程对O 轴的角动量守恒Rsin θm 0v 0=(m+m 0)R 2ω ∴ω=Rm m v m )(sin 000+θ(2)020*********sin 21])(sin ][)[(210m m m v m R m m v m R m m E E k k +=++=θθ 2-32 以重物、滑轮、弹簧、地球为一系统,重物下落的过程中,机械能守恒,以最低点为重力势能零点,弹簧原长为弹性势能零点,则有mgh=(1/2)mv 2+(1/2)I ω2+(1/2)kh 2又ω=v/R 故有ImR k kh mgh v +-=222)2( 12220.25.03.00.63.0)4.00.24.08.90.62(-?=+-=s m题2-32图题2-33图2-33 (1)小球与圆环系统对竖直轴的角动量守恒,当小球滑至B 点时,有I 0ω0=(I 0+mR 2)ω ①该系统在转动过程中,机械能守恒,设小球相对于圆环的速率为v B ,以B 点为重力势能零点,则有(1/2)I 0ω20+mgR=(1/2)(I 0+mR 2)ω2+(1/2)mv 2B ②联立①、②两式,得2022002mR I RI gR v B ++=ω(2)当小球滑至C 点时,∵I c =I 0 ∴ωc =ω0 故由机械能守恒,有mg(2R)=(1/2)mv 2c ∴v c =2gR请读者求出上述两种情况下,小球对地速度.。
大学物理学第四版课后习题答案(赵近芳)[上册]
习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dtdr(B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R ππ2,2 (B) tRπ2,0 (C) 0,0 (D) 0,2tRπ[答案:B] 1.2填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。
[答案: 23m ·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V和3V的关系是 。
[答案: 0321=++V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
赵近芳-大学物理学答案--全
大学物理学(北邮第三版)赵近芳等编著 习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆrˆt r t d d d d d d r r r += 式中t rd d 就是速度径向上的分量, ∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量. ∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.(t t r d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
大学物理学第四版课后习题答案(赵近芳)上册
习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dtdr(B)dt r d(C)dtr d ||(D)22)()(dt dy dt dx[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2 ,瞬时加速度2/2s m a ,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R 2,2 (B)tR2,0 (C)0,0 (D)0,2tR[答案:B]1.2填空题(1) 一质点,以1 s m 的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案:10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。
[答案:23m·s -1](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V和3V 的关系是 。
[答案:0321 V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
《大学物理学》赵近芳 课后习题答案 北京邮电大学出版社
0
∑ r = 8 cm 时,
q = p 4π (r3 3
− r内3 )
∴
( ) E
=
ρ
4π 3
r 3 − r内2
≈ 3.48 ×10 4 N ⋅ C −1 , 方向沿半径向外.
4πε 0r 2
∑ r = 12 cm 时,
q
=
ρ
4π 3
(r外3
−
r内3)
( ) ∴
E
=
ρ
4π 3
r外 3
− r内3
≈ 4.10 ×104
通过圆平面的电通量.(α = arctan R ) x
∫ 解: (1)由高斯定理
Ev
⋅
v dS
=
q
s
ε0
立方体六个面,当 q 在立方体中心时,每个面上电通量相等
∴
各面电通量 Φ e
=
q 6ε 0
.
(2)电荷在顶点时,将立方体延伸为边长 2a 的立方体,使 q 处于边长 2a 的立
方体中心,则边长 2a 的正方形上电通量 Φ e
ρ 3ε 0
(rv
− rv′)
=
ρ 3ε 0
OO' =
ρdv 3ε 0
∴腔内场强是均匀的.
8-14 一电偶极子由 q =1.0×10-6C 的两个异号点电荷组成,两电荷距离
d=0.2cm,把这电偶极子放在1.0×105N·C-1 的外电场中,求外电场作用于
电偶极子上的最大力矩.
解:
∵
电偶极子
pv
N ⋅ C −1
沿半径向外.
4πε 0r 2
8-11 半径为 R1 和 R2 ( R2 > R1 )的两无限长同轴圆柱面,单位长度上分别
[实用参考]大学物理学第四版课后习题答案(赵近芳)上册
习题11.1选择题(1)一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr(B)dt r d(C)dtr d ||(D)22)()(dt dy dt dx +[答案:D](2)一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零(B)等于-2m/s (C)等于2m/s(D)不能确定。
[答案:D](3)一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R ππ2,2(B)tRπ2,0 (C)0,0(D)0,2tRπ[答案:B]1.2填空题(1)一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案:10m ;5πm] (2)一质点沿G 方向运动,其加速度随时间的变化关系为a=3+2t(SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。
[答案:23m·s -1](3)轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V和3V 的关系是 。
[答案:0321=++V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1)物体的大小和形状; (2)物体的内部结构; (3)所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)G=4t -3;(2)G=-4t 3+3t 2+6;(3)G=-2t 2+8t+4;(4)G=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
大学物理学第四版课后习题答案(赵近芳)上册
1.2 填空题
(1) 一质点,以 m s 1 的匀速率作半径为 5m 的圆周运动,则该质点在
是
;经过的路程是
。
[答案: 10m; 5πm]
5s 内,位移的大小
(2) 一质点沿 x 方向运动,其加速度随时间的变化关系为 速度 v0 为 5m·s-1,则当 t 为 3s 时,质点的速度 v=
[答案: 23m·s-1 ]
量值)方面随时间的变化率,而没有考虑位矢 速度的贡献。
r 及速度 v 的方向随时间的变化率对速度、加
1.8 一质点在 xOy 平面上运动,运动方程为
x =3 t +5,
y
1
=
t 2+3 t -4.
2
式中 t 以 s 计, x , y 以 m计. (1) 以时间 t 为变量,写出质点位置矢量的表示式;
方向南偏东 36.87o .
习题 2
2.1 选择题 (1) 一质点作匀速率圆周运动时, (A) 它的动量不变,对圆心的角动量也不变。 (B) 它的动量不变,对圆心的角动量不断改变。 (C) 它的动量不断改变,对圆心的角动量不变。 (D) 它的动量不断改变,对圆心的角动量也不断改变。 [ 答案: C]
a=3+2t (SI) ,如果初始时刻质点的 。
(3) 轮船在水上以相对于水的速度 V1 航行,水流速度为 V2 ,一人相对于甲板以速度 V3行走。
如人相对于岸静止,则 V1 、 V 2 和 V3的关系是
。
[答案: V1 V2 V3 0 ]
1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。 解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研
大学物理学规范标准答案(北京邮电大学第3版)赵近芳等编著
大学物理学(北邮第三版) 习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆; (2)t d d r 是速度的模,即t d d r ==v t sd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量, ∴t r td d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量. ∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
1166编号赵近芳版《大学物理学上册》课后答案
习题解答习题一1-1 ||与 有无不同?和有无不同?和有无不同?其不同在哪里?试举例说明.r ∆r ∆td d r td d r td d v td d v 解:(1)是位移的模,是位矢的模的增量,即,;r ∆∆r r ∆12r r -=12r r r-=∆(2)是速度的模,即.只是速度在径向上的分量.td d r td d r==v t s d d t r d d ∵有(式中叫做单位矢),则 式中就是速度径向上的分量,rr ˆr =r ˆtˆr ˆt r t dd d d d d rrr +=t r d d ∴不同如题1-1图所示.trt d d d d 与r 题1-1图(3)表示加速度的模,即,是加速度在切向上的分量.td d v tva d d =tvd d a ∵有表轨道节线方向单位矢),所以ττ(v =v式中就是加速度的切向分量.tvt v t v d d d d d d ττ+=dt dv (的运算较复杂,超出教材规定,故不予讨论)tt r d ˆd d ˆd τ 与1-2 设质点的运动方程为=(),=(),在计算质点的速度和加速度时,有人先求出r =,然后根据 =,及=x x t y y t 22y x +v trd d a 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即22d d t r=及=你认为两种方法哪一种正确?为什么?两者差别何在?v 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x a 222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有,j y i x r+= 故它们的模即为jty i t xt r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将误作速度与加速度的模。
大学物理学习题全解赵近芳版
大学物理习题集第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t-=+,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t-=+. 计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =.图1.3因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=±.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变量得2d d v k t v =-, 故 020d d v tv vk t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )ktv x k -=.(2)如果n ≠1,则得d d n vk t v =-,积分得11n v kt C n-=-+-. 当t = 0时,v = v 0,所以101n v C n -=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t = 解得36t =.所以3242(13)t θ=+==3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为as -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+.即 201c o s c o s 2x v t a t θα=⋅+⋅, 201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由v 图1.7端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于212t h a t =∆, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t .算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为1222l l vl t v u v u v u =+=+-- 022222/1/1/t l v u v u v==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V22l t V ===证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?A B ABv v + uv - uABvu uvv[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-, 所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+.方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F 拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N),图1.101h lα图2.1 M这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m ga m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此1212F F F k k k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度1b 把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度2b (b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力12图2.32 图2.4的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的矢量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+, 因此角度为cos arctansin b g b ϕθϕ=+;而张力为T ==(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,(2)图2.6得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v g h C =+,当h = 0时,v = 0,所以C = 0,因此速率为v2.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程图2.7222d d k x f ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212km v C x =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2n x mv k x =-⎰.(1)当n = 1时,可得21ln 2mv k x C =-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =(2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101n k C x n -=--,因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d vf mg kv mt =--=,分离变量得d d()d v m mg kv t m mg kv k mg kv +=-=-++,积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mg x tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+, 当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m mR t μ=-=, 即 : 2d d k v t Rv μ=-. 积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得 001/k v v v t R μ=+. 由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosgR θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 /20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,mg图2.11小球获得的冲量为I = p 2 – p 1 = -m ωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=- 得:21p p p =+∆,由此可作矢量三角形,可得:p ∆=. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆=s -1).棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).v xΔvv y2.15 如图所示,三个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C之前的运动时间;t =. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作矢量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45°= 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s 的大小为d s = R d θ. 重力G 的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+π sin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f 的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-,积分得摩擦力所做的功为图2.174520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G 、摩擦力f 和马的拉力F 就是平衡力,即0F G f ++=,或者 ()F G f =-+.拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)k mgR =.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因数为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理学第四版课后习题答案(赵近芳)(上册)
习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dtdr(B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2 ,瞬时加速度2/2s m a ,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R 2,2 (B) tR2,0 (C) 0,0 (D) 0,2tR[答案:B]1.2填空题(1) 一质点,以1 s m 的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。
[答案: 23m ·s -1](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V和3V 的关系是 。
[答案: 0321 V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量. ∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
在1-1题中已说明t r d d 不是速度的模,而只是速度在径向上的分量,同样,22d d t r 也不是加速度的模,它只是加速度在径向分量中的一部分⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-=222d d d d t r t r a θ径。
或者概括性地说,前一种方法只考虑了位矢r ϖ在径向(即量值)方面随时间的变化率,而没有考虑位矢r ϖ及速度v ϖ的方向随间的变化率对速度、加速度的贡献。
1-3 一质点在xOy 平面上运动,运动方程为x =3t +5, y =21t 2+3t -4.式中t 以 s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0 s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1)jt t i t r ϖϖϖ)4321()53(2-+++=m (2)将1=t ,2=t 代入上式即有j i r ϖϖϖ5.081-= mj j r ϖϖϖ4112+=mj j r r r ϖϖϖϖϖ5.4312+=-=∆m(3)∵ j i r j j r ϖϖϖϖϖϖ1617,4540+=-= ∴ 104s m 534201204-⋅+=+=--=∆∆=j i j i r r t r v ϖϖϖϖϖϖϖϖ(4) 1s m )3(3d d -⋅++==j t i t r v ϖϖϖϖ则 j i v ϖϖϖ734+= 1s m -⋅ (5)∵ j i v j i v ϖϖϖϖϖϖ73,3340+=+=204s m 1444-⋅==-=∆∆=j v v t v a ϖϖϖϖϖ (6) 2s m 1d d -⋅==j t v a ϖϖϖ这说明该点只有y 方向的加速度,且为恒量。
1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.图1-4解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得t s stl ld d 2d d 2= 题1-4图根据速度的定义,并注意到l ,s 是随t 减少的,∴t s v v t l v d d ,d d 0-==-=船绳 即θcos d d d d 00v v s lt l s l t s v ==-=-=船 或 s v s h s lv v 02/1220)(+==船将船v 再对t 求导,即得船的加速度3202220202002)(d d d d d d s v h s v s l s v s lv s v v s t sl t l st v a =+-=+-=-==船船1-5 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m -⋅,x 的单位为 m. 质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值.解: ∵x v v t x x v t v a d d d d d d d d ===分离变量:x x adx d )62(d 2+==υυ 两边积分得 cx x v ++=322221由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置.解:∵ t t va 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++=由题知,0=t ,00=v ,∴01=c故2234t t v += 又因为2234d d t t t x v +== 分离变量, tt t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c故 521232++=t t x所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1-7 一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33t ,θ式中以弧度计,t 以秒计,求:(1) t =2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少?解:t t t t 18d d ,9d d 2====ωβθω(1)s 2=t 时, 2s m 362181-⋅=⨯⨯==βτR a)sin (sin 2cos2sin 200t R t R R t v Rt v x ωωθθθ-=-=-=2222s m 1296)29(1-⋅=⨯⨯==ωR a n(2)当加速度方向与半径成ο45角时,有145tan ==︒na a τ即βωR R =2 亦即t t 18)9(22= 则解得 923=t 于是角位移为rad67.29232323=⨯+=+=t θ1-8 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b .解:(1) bt v t sv -==0d d R bt v R v a btv a n 202)(d d -==-==τ则 240222)(R bt v b a a a n -+=+=τ加速度与半径的夹角为20)(arctanbt v Rb a a n --==τϕ(2)由题意应有2402)(R bt v b b a -+== 即 0)(,)(4024022=-⇒-+=bt v R bt v b b∴当b v t 0=时,b a = 1-9 半径为R 的轮子,以匀速0v 沿水平线向前滚动:(1)证明轮缘上任意点B 的运动方程为x =R )sin (t t ωω-,y =R )cos 1(t ω-,式中0v =ω/R 是轮子滚动的角速度,当B 与水平线接触的瞬间开始计时.此时B 所在的位置为原点,轮子前进方向为x 轴正方向;(2)求B 点速度和加速度的分量表示式.解:依题意作出下图,由图可知题1-9图(1))cos 1()cos 1(2sin2sin2t R R R y ωθθθ-=-==(2)⎪⎪⎩⎪⎪⎨⎧==-==)sin d d )cos 1(d d t R t y v t R t xv y x ωωω⎪⎪⎩⎪⎪⎨⎧====t v t R a t vt R a yy xx d d cos d d sin 22ωωωω1-10 以初速度0v =201s m -⋅抛出一小球,抛出方向与水平面成幔60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R . (提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示.题1-10图(1)在最高点,o 0160cos v v v x == 21s m 10-⋅==g a n又∵1211ρva n =∴m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1s m -⋅,而o60cos 2⨯=g a n∴m8060cos 10)20(22222=︒⨯==n a v ρ1-11 飞轮半径为0.4 m ,自静止启动,其角加速度为β=0.2 rad ·2s -,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度.解:当s 2=t 时,4.022.0=⨯==t βω1s rad -⋅则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅ 08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n1-12 如题1-12图,物体A 以相对B 的速度v =gy 2沿斜面滑动,y 为纵坐标,开始时A 在斜面顶端高为h 处,B 物体以u 匀速向右运动,求A 物滑到地面时的速度.解:当滑至斜面底时,h y =,则gh v A 2=',A 物运动过程中又受到B 的牵连运动影响,因此,A 对地的速度为j gh i gh u v u v AA ϖϖϖϖϖ)sin 2()cos 2('αα++=+=地题1-12图1-13 一船以速率1v =30km ·h -1沿直线向东行驶,另一小艇在其前方以速率2v =40km ·h -1沿直线向北行驶,问在船上看小艇的速度为何?在艇上看船的速度又为何?解:(1)大船看小艇,则有1221v v v ρϖϖ-=,依题意作速度矢量图如题1-13图(a)题1-13图由图可知 1222121h km 50-⋅=+=v v v方向北偏西︒===87.3643arctan arctan21v v θ(2)小船看大船,则有2112v v v ρϖϖ-=,依题意作出速度矢量图如题1-13图(b),同上法,得5012=v 1h km -⋅方向南偏东o87.361-14 当一轮船在雨中航行时,它的雨篷遮着篷的垂直投影后2 m 的甲板上,篷高4 m 但当轮船停航时,甲板上干湿两部分的分界线却在篷前3 m ,如雨滴的速度大小为8 m ·s -1,求轮船的速率.解: 依题意作出矢量图如题1-14所示.题1-14图∵ 船雨雨船v v v ϖϖϖ-=∴船雨船雨v v v ϖϖϖ+= 由图中比例关系可知1s m 8-⋅==雨船v v习题二2-1 一细绳跨过一定滑轮,绳的一边悬有一质量为1m 的物体,另一边穿在质量为2m 的圆柱体的竖直细孔中,圆柱可沿绳子滑动.今看到绳子从圆柱细孔中加速上升,柱体相对于绳子以匀加速度a '下滑,求1m ,2m 相对于地面的加速度、绳的张力及柱体与绳子间的摩擦力(绳轻且不可伸长,滑轮的质量及轮与轴间的摩擦不计).解:因绳不可伸长,故滑轮两边绳子的加速度均为1a ,其对于2m 则为牵连加速度,又知2m 对绳子的相对加速度为a ',故2m 对地加速度,由图(b)可知,为a a a '-=12 ①又因绳的质量不计,所以圆柱体受到的摩擦力f 在数值上等于绳的张力T ,由牛顿定律,有111a m T g m =- ②222a m g m T =- ③ 联立①、②、③式,得2121211212212211)2()()(m m a g m m T f m m a m g m m a m m a m g m m a +'-==+'--=+'+-=讨论 (1)若0='a ,则21a a =表示柱体与绳之间无相对滑动.(2)若g a 2=',则0==f T ,表示柱体与绳之间无任何作用力,此时1m , 2m 均作自由落体运动.题2-1图2-2 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v ϖ方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.题2-2图X 方向: 0=x F t v x 0= ①Y方向:yy ma mg F ==αsin ②0=t 时 0=y 0=y v2sin 21t g y α=由①、②式消去t ,得220sin 21x g v y ⋅=α2-3 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,yv =0.求当t =2 s 时质点的 (1)位矢;(2)速度.解:2s m 83166-⋅===m f a x x 2s m 167-⋅-==m f a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=ji v ϖϖϖ(2)m874134)167(21)4832122(21)21(220j i ji jt a i t a t v r y x ϖϖϖϖϖϖϖ--=⨯-+⨯⨯+⨯-=++=2-4 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减至0v 的e 1,式中m 为质点的质量.答: (1)∵t v m kv a d d =-= 分离变量,得m t k v v d d -= 即 ⎰⎰-=v v t m tk vv 00d dmkt e v v -=ln ln 0∴tm kev v -=0(2)⎰⎰---===tttm k m k e k mv t ev t v x 000)1(d d (3)质点停止运动时速度为零,即t →∞,故有⎰∞-=='000d k mv t ev x tm k(4)当t=k m时,其速度为e v e v ev v kmm k 0100===-⋅-即速度减至0v 的e 1.2-5 升降机内有两物体,质量分别为1m ,2m ,且2m =21m .用细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速a =21g 上升时,求:(1) 1m 和2m 相对升降机的加速度.(2)在地面上观察1m ,2m 的加速度各为多少?解: 分别以1m ,2m 为研究对象,其受力图如图(b)所示.(1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速度a a a -'=2;因绳不可伸长,故1m 对滑轮的加速度亦为a ',又1m 在水平方向上没有受牵连运动的影响,所以1m 在水平方向对地加速度亦为a ',由牛顿定律,有)(22a a m T g m -'=-a m T '=1题2-5图联立,解得g a ='方向向下 (2) 2m 对地加速度为22ga a a =-'= 方向向上1m 在水面方向有相对加速度,竖直方向有牵连加速度,即牵相绝a a a ϖϖϖ+='∴gg g a a a 25422221=+=+'= a a '=arctan θo6.2621arctan ==,左偏上.2-6一质量为m 的质点以与地的仰角θ=30°的初速0v ϖ从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下, 而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o30,则动量的增量为0v m v m p ϖϖϖ-=∆由矢量图知,动量增量大小为0v m ϖ,方向竖直向下.2-7 一质量为m 的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞.并在抛出1 s ,跳回到原高度,速度仍是水平方向,速度大小也与抛出时相等.求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向.并回答在碰撞过程中,小球的动量是否守恒? 解: 由题知,小球落地时间为s 5.0.因小球为平抛运动,故小球落地的瞬时向下的速度大小为g gt v 5.01==,小球上跳速度的大小亦为g v 5.02=.设向上为y 轴正向,则动量的增量12v m v m p ϖϖϖ-=∆方向竖直向上,大小 mgmv mv p =--=∆)(12ϖ碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒.2-8 作用在质量为10 kg 的物体上的力为i t F ϖ)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j ϖ6-m ·s -1的物体,回答这两个问题.解: (1)若物体原来静止,则it i t t F p t ϖϖϖϖ10401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,i p I im p v ϖϖϖϖϖϖ111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t ttF v m t m F v m p v m p 000000d )d (,ϖϖϖϖϖϖϖ于是⎰∆==-=∆t p t F p p p 0102d ϖϖϖϖϖ, 同理, 12v v ϖϖ∆=∆,12I I ϖϖ= 这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t 解得s 10=t ,(s 20='t 舍去)2-9 一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a r ϖϖϖωωsin cos +=求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为)cos sin (j t b i t a m v m p ϖϖϖϖωωω+-==将0=t 和ωπ2=t 分别代入上式,得j b m p ϖϖω=1,i a m p ϖϖω-=2,则动量的增量亦即质点所受外力的冲量为)(12j b i a m p p p I ϖϖϖϖϖϖ+-=-=∆=ω2-10 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得b a t =(2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将b at =代入,得b a I 22=(3)由动量定理可求得子弹的质量0202bv a v I m ==2-11 一炮弹质量为m ,以速率v 飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为T ,且一块的质量为另一块质量的k 倍,如两者仍沿原方向飞行,试证其速率分别为v +m kT 2, v -km T 2证明: 设一块为1m ,则另一块为2m ,21km m =及m m m =+21于是得1,121+=+=k mm k km m ① 又设1m 的速度为1v , 2m 的速度为2v ,则有2222211212121mv v m v m T -+=②2211v m v m mv += ③联立①、③解得12)1(kv v k v -+= ④将④代入②,并整理得21)(2v v km T-=于是有km Tv v 21±= 将其代入④式,有m kT v v 22±=又,题述爆炸后,两弹片仍沿原方向飞行,故只能取km Tv v m kT v v 2,221-=+=证毕.2-12 设N 67j i F ϖϖϖ-=合.(1) 当一质点从原点运动到m 1643k j i r ϖϖϖϖ++-=时,求F ϖ所作的功.(2)如果质点到r 处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化.解: (1)由题知,合F ϖ为恒力,∴ )1643()67(k j i j i r F A ϖϖϖϖϖϖϖ++-⋅-=⋅=合J 452421-=--=(2) w 756.045==∆=t A P(3)由动能定理,J 45-==∆A E k2-13 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm ,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同.解: 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图ky f -=第一锤外力的功为1A⎰⎰⎰==-='=s s ky ky y f y f A 1012d d d ①式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t 时,f 'f -=. 设第二锤外力的功为2A ,则同理,有⎰-==21222221d y k ky y ky A ②由题意,有2)21(212kmv A A =∆== ③即 222122k k ky =- 所以, 22=y于是钉子第二次能进入的深度为cm 414.01212=-=-=∆y y y2-14 设已知一质点(质量为m )在其保守力场中位矢为r 点的势能为nP r k r E /)(=, 试求质点所受保守力的大小和方向. 解:1d )(d )(+-==n r nkr r E r F方向与位矢r ϖ的方向相反,即指向力心.2-15 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端 一重物C ,C 的质量为M ,如题2-15图.求这一系统静止时两弹簧的伸长量之比和弹性势能之比.解: 弹簧B A 、及重物C 受力如题2-15图所示平衡时,有题2-15图Mg F F B A ==又 11x k F A ∆=22x k F B ∆=所以静止时两弹簧伸长量之比为1221k k x x =∆∆弹性势能之比为12222211121212k k x k x k E E p p =∆∆=2-16 (1)试计算月球和地球对m 物体的引力相抵消的一点P ,距月球表面的距离是多少?地球质量5.98×1024kg ,地球中心到月球中心的距离3.84×108m ,月球质量7.35×1022kg ,月球半径1.74×106m .(2)如果一个1kg 的物体在距月球和地球均为无限远处的势能为零,那么它在P 点的势能为多少? 解: (1)设在距月球中心为r 处地引月引F F =,由万有引力定律,有()22r R mM Gr mM G-=地月经整理,得RM M M r 月地月+==2224221035.71098.51035.7⨯+⨯⨯81048.3⨯⨯m 1032.386⨯= 则P 点处至月球表面的距离为m 1066.310)74.132.38(76⨯=⨯-=-=月r r h(2)质量为kg 1的物体在P 点的引力势能为()r R M GrM GE P ---=地月()72411722111083.34.381098.51067.61083.31035.71067.6⨯-⨯⨯⨯-⨯⨯⨯⨯-=- J 1028.16⨯=2-17 由水平桌面、光滑铅直杆、不可伸长的轻绳、轻弹簧、理想滑轮以及质量为1m 和2m 的滑块组成如题2-17图所示装置,弹簧的劲度系数为k ,自然长度等于水平距离BC ,2m 与桌面间的摩擦系数为μ,最初1m 静止于A 点,AB =BC =h ,绳已拉直,现令滑块落下1m ,求它下落到B 处时的速率.解: 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有])(21[)(21212212l k gh m v m m gh m ∆+-+=-μ式中l ∆为弹簧在A 点时比原长的伸长量,则 h BC AC l )12(-=-=∆联立上述两式,得()()212221122mmkhghmmv+-+-=μ题2-17图2-18 如题2-18图所示,一物体质量为2kg,以初速度0v=3m·s-1从斜面A点处下滑,它与斜面的摩擦力为8N,到达B点后压缩弹簧20cm后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点。