同济汽车操纵稳定性实验报告新

合集下载

第二节传动系性能试验-第五章汽车操纵稳定性试验(.pdf

第二节传动系性能试验-第五章汽车操纵稳定性试验(.pdf
图4-1-4是一辆仪器设备安装齐全的操纵稳定性试验车的示意图。
二、操纵稳定性道路试验 1、稳态回转试验 2、蛇行试验 3、转向回正性能试验 4、转向轻便性试验 5、瞬态响应试验
稳态回转试验
1、试验的基本原理和意义
¾汽车在车速V行驶时,驾驶员以一个固定的转向盘输入,汽车产生转向运 动。根据汽车本身的固有转向特性(由汽车结构参数决定),其后若干时 间一般会出现两种现象:一种是汽车出现不稳定现象,发生激转(或称甩 尾);另—种是转向进入稳定状态,即汽车绕某定点转动且角速度不变, 这种现象称汽车进入稳态转向。前一种情况汽车的转向特性称过多转向; 后一种情况汽车的转向特性理论上有两种:—种称中性转向,另一种称不 足转向。
蛇行试验
1、试验的目的和意义
蛇行试验属于驾驶员——汽车——外界环境组合而成的闭路系统性能 试验方法之一。这种试验方法可反映出此闭路系统进行急剧的转向能力, 同时可反映出在此种急剧转向情况下乘员的舒适性和安全性。
蛇行试验
2、引用标准 ①GB/T 12534 汽车道路试验方法通则 ②GB 3730.1 汽车和挂车的术语和定义 车辆类型 ③GB 3730.2 汽车和挂车的术语和定义 车辆质量 ④GB/T 12549 汽车操纵稳定性术语及其定义
稳态回转试验
具体试验方法:
⑴仪器设备:第五车轮、车辆动态测试仪、操纵稳定性现场数据处理系统
⑵试验步骤:
①在试验场地上,用明显颜色画出半径为15m或20m的圆周。
②试验开始之前,汽车应以侧向加速度为3m/s2的相应车速沿画定的圆周行 驶500m以使轮胎升温。
③驾驶员操纵汽车以最低稳定速度沿所画圆周行驶,待安装于汽车纵向对 称面上的车速传感器(第五轮仪)在半圈内都能对准地面所画圆周时,固定 转向盘不动,然后缓缓连续而均匀地加速(纵向加速度不超0.25m/s2), 直至汽车的侧向加速度达到6.5m/s2(或车速不能再升高而出现甩尾、或轮 胎发出尖叫声)为止。记录整个过程。

同济汽车操纵稳定性实验报告新

同济汽车操纵稳定性实验报告新

《汽车平顺性和操作稳定性》实验报告学院(系)汽车学院专业车辆工程(汽车)学生姓名同小车学号******同济大学汽车学院实验室2014年11 月1.转向轻便性实验实验目的驾驶员通过操纵方向盘来控制汽车的行驶方向,操纵方向盘过重,会增加驾驶员的劳动强度,驾驶员容易疲劳;操纵方向盘过轻,驾驶员会失去路感,难以控制汽车的形式方向。

操纵方向盘的轻重,是评价汽车操纵稳定性的基本条件之一。

转向轻便性实验的目的在于通过测量驾驶员操纵方向盘力的大小,与其他实验仪器评价汽车操纵稳定性的好处。

实验仪器设备参量方向盘转矩方向盘转角车速仪器测力方向盘测力方向盘GPS测速仪实验条件试验车:依维柯实验场地与环境于圆形试车场,实验时按照桩桶圈出的双扭线,以10Km/h的车速行驶。

双扭线的极坐标方程见下,形状如下图实验当天天气晴好,无风,气温20度***在ψ=0 时,双扭线顶点处的曲率半径最小,相应数值为Rmin=1/3d ,双扭线的最小曲率半径应按照实验汽车的最小转弯半径乘以1,1 倍,并圆整到比此乘积大的一个整数来确定。

试验中记录转向盘转交及转向盘转矩,并按双扭线路经过每一周整理出转向盘转矩转向盘转矩曲线。

通常以转向盘最大转矩,转向盘最大作用力以及转向盘作用功等来评价转向轻便性。

转向轻便型实验数据记录转向盘转向盘转向盘转向盘转向盘作转向盘转向盘平均车速最大作最大作右转最左转最用功平均摩平均摩(Km/h) 用力矩用力大转角大转角擦力矩擦力(J )(N ·m) (N) (°) (°) (N ·m) (N)第一周 6.49 31.6 274 -277 44.71 0.094 0.46 9.99 第二周7.16 34.9 281 -284 47.72 0.095 0.46 10.03 第三周 6.35 30.9 283 -289 45.43 0.092 0.45 10.09 均值 6.67 32.5 279.3 -283 45.96 0.094 0.46 10.04 方向盘转角-转矩曲线2.蛇形试验实验目的本项试验是包括车辆- 驾驶员-环境在内的闭路试验的一种,用来综合评价汽车行驶的稳定性及乘坐的舒适性,与其他操纵试验项目一起,共同评价汽车的操纵稳定性。

汽车操纵稳定性-稳态回转实验

汽车操纵稳定性-稳态回转实验

汽车操纵稳定性-稳态回转试验一、试验目的1、了解稳态回转实验方法和数据处理过程。

2、加深理解车辆参数变化对车辆操作稳定性的影响。

二、试验内容1、行驶圆周为15米,试验车绕着圆周旋转,直到车速传感器对准地上标识,锁定方向盘。

2、第一圈以最低稳定速度行驶,记录数据。

3、记录不同车速下的7组数据。

4、改变前轮气压,再测一次。

三、试验对象、仪器、条件四、试验数据胎压:F—0.35Mpa R—0.26Mpa胎压:F —0.2Mpa R —0.26Mpa五、 数据处理1)计算转弯半径比Ri/R0与侧向加速度ay由2i s R π= ;22(/)y i iv s t a R R ==可得Ri 与ay 如下表:由上表可得到两次试验的侧向加速度与转弯半径比的关系曲线,如下:2)计算汽车前后轴侧偏角差值(δ1-δ2)与侧向加速度ay 关系表格,并绘制曲线。

已知轴距L=2800mm ,12036011()2i L R R δδπ-=-则可作前后轴侧偏角差值(δ1-δ2)与侧向加速度ay关系曲线,如下:六、试验比较分析1、转弯半径比比较由两组试验的结果可见,第二次试验,前胎胎压降低后,相同车速下,转弯半径比要大于第一次试验。

这说明胎压减小后,汽车侧偏加重,轮胎侧向刚度降低。

2、侧向加速度ay与转弯半径比Ri/R0的关系比较可得,随着转弯半径的上升,胎压低的那组试验侧向加速度的上升没有第一次试验快。

这就说明,在相同的侧向加速度下,第二组的侧偏角要比第一组大,这是由于胎压低导致轮胎侧向刚度降低导致的。

从两次试验可得随侧向加速度得增大,转弯半径比也随之增大,且二者转弯半径比相差越大。

这说明随着车速上升,胎压小的车侧偏程度上升快。

3、前后侧偏角之差δ1-δ2与侧向加速度ay的关系由图可得,胎压低时,曲线上翘程度大,相同侧向加速度下,第二次试验前后侧偏角之差大于第一次试验,也说明了胎压降低,轮胎侧偏刚度下降且下降快。

汽车操纵稳定性试验解析汇报

汽车操纵稳定性试验解析汇报

汽车操纵稳定性试验解析!汽车的操稳性不仅影响到汽车驾驶的操纵方面,而且也是决定汽车安全行驶的一个主要性能;为了保证安全行驶,汽车的操稳性受到汽车设计者很大的重视,成为现代汽车的重要使用性能之一,如何试验并评价汽车的操稳性显得极其重要。

汽车操控稳定性分为两个方面:1、操控性: 指汽车能够确切的响应驾驶员转向指令的能力;2、稳定性:指汽车受到外界扰动(路面扰动或阵风扰动)后恢复原来运动状态的能力。

一、常用试验仪器1、陀螺仪:用于汽车运动状态下测动态参数,如汽车行进方位角,汽车横摆角速度,车身侧倾角及纵倾角等;2、光束水准车轮定位仪:测车轮外倾角,主销内倾角,主销外倾角,车轮前束,车轮最大转角及转角差;3、车辆动态测试仪:测汽车横摆角速度,车身侧倾角及纵倾角,汽车横向加速度与纵向加速度等运动参数;4、力矩及转角仪:测转向盘转角或力矩;5、五轮仪和磁带机等。

二、试验分类三、稳态回转试验01试验步骤1、在试验场上,用明显的颜色画出半径为15m或20m的圆周;2、接通仪器电源,使之加热到正常工作温度;3、试验开始前,汽车应以侧向加速度为3m/s2的相应车速沿画定的圆周行驶500m以使轮胎升温。

4、以最低稳定速度沿所画圆周行驶,待安装于汽车纵向对称面上的车速传感器在半圈内都能对准地面所画的圆周时,固定转向盘不动,停车并开始记录,记下各变量的零线,然后,汽车起步,缓缓连续而均匀地加速(纵向加速度不超过0·25m/s2),直至汽车的侧向加速度达到6·5m/s2为止,记录整个过程。

5、试验按向左转和右转两个方向进行,每个方向试验三次。

每次试验开始时车身应处于正中央。

02评价条件1、中性转向点侧向加速度值An:前后桥侧偏角之差与侧向加速度关系曲线上斜率为零的点的侧向加速度值,越大越好;2、不足转向度:按前后桥侧偏角之差与侧向加速度关系曲线上侧向加速度2m/s2点的平均值计算,越小越好;3、车厢侧倾度K:按车厢侧倾角与侧向加速度关系曲线上侧向加速度2m/s2点的平均斜率计算,越小越好。

汽车操纵稳定性1

汽车操纵稳定性1

汽车操纵稳定性实验报告姓名:班级:指导老师:日期:汽车操纵稳定性实验一、实验目的1、通过本次实验学习并应用Simulink仿真。

2、通过实验加深对汽车操纵稳定性知识的理解,并掌握汽车前轮角阶跃输入下的瞬态响应的基本原理和实验方法。

3、通过实验的建模编程仿真培养运用理论知识解决转向系统中遇到的实际问题的能力。

二、实验方法通过软件MATLAB的控制系统仿真Simulink模块进行仿真。

三、实验过程1、建立模型2、编写程序程序如下:m=2480;a=1.33;b=1.48;k1=-25000;k2=-35000;Iz=2600;u=20;K=m*(a/k2-b/k1)/(a+b)^2;l=((a+b)*4/u^2+(a+b)*K*4)*180/pi;mm=m*u*Iz;h=-(m*(a^2*k1+b^2*k2)+Iz*(k1+k2));c=m*u*(a*k1-b*k2)+(a+b)^2*k1*k2/u;b1=-m*u*a*k1;b0=(a+b)*k1*k2;Wo=sqrt(c/mm);j=h/(2*Wo*mm);B1=b1/mm;B0=b0/mm;new_system('ex01');open_system('ex01');add_block('built-in/Step','ex01/Step','position',[20,90,5 0,130]);add_block('built-in/TransferFcn','ex01/Fcn1','position',[70,90,100,130]);add_block('built-in/Scope','ex01/Scope','position',[140,9 0,200,130]);add_line('ex01','Step/1','Fcn1/1');add_line('ex01','Fcn1/1','Scope/1');set_param('ex01','stoptime','6');set_param('ex01/Step','time','0','before','0','after','5. 898');set_param('ex01/Fcn1','Numerator','19.066','Denominator', '[1,3.534,9.8131]');[t,x,y]=sim('ex01',[0,6]);plot(t,x(:,2));四、实验结果1、运行结果图:2、Simulink仿真模块:。

第十七讲汽车操纵稳定性试验

第十七讲汽车操纵稳定性试验

侧倾刚度
方法:车身固定,保持左右轮负荷之和恒定的条件下, 使左右轮交互上下移动,由左右轮负荷变化算出侧倾扭矩, 由左右轮位移求得侧倾角,两者之比为侧倾刚度。 车轮定位──测定车轮外倾角、前束、主销后倾角、 轮距等 方法:使用专门的车轮定位仪。 车轮定位参数影响转向特性、越线响应特性、直线行驶 特性(自动回正)和方向盘操纵力。
2.
转弯性能试验
a.稳态横摆响应试验(稳态圆周行驶试验)
目的:主要用于定量测定不足转向、中性转向或过多 转向。 测量参数: 横摆角速度;横向加速度;纵向车速;方 向盘转角(与力矩) ;侧倾角;质心侧偏角。 试验方法:
• 圆周半径恒定,分级提高车速,作匀速圆周行驶DIN/ISO4138, • 方向盘转角恒定,分级提高车速作匀速行驶,显然R会改变。 • 横向加速度恒定,分级提高车速,作匀速行驶,调整方向盘转 角ESV。
评价方法:
汽车横摆角速度随时间变化曲线应落在规定的区域内; 松开方向盘2秒后,80Km/h时 4 ° /s , 0 。 40Km/h时,
同济大学汽车实验室
操纵稳定性道路试验
同济大学汽车实验室
操纵稳定性道路试验
同济大学汽车实验室
操纵稳定性道路试验
4.转向操纵力试验
a.静态转向操纵力试验 反映停车、入库时的操纵力情况 b.低速转向操纵力试验 用双纽线进行转向轻便性试验 c. 蛇形穿杆试验
2. 惯性矩测定 方法:用两根钢丝绳将汽 车吊起,测定其回转摆动 周期T,算出惯性矩。具体 如下 围绕z轴的惯性矩
T 2 r1 r2W Jz 4 2 h
T2 h 围绕x轴的惯性矩 J x ( 4 2 g ) hW
T2 h 围绕y轴的惯性矩 J y ( 2 ) hW g 4

操纵稳定性试验总结

操纵稳定性试验总结

操纵稳定性试验总结1 . 稳态回转试验测量的量:横摆角速度AngleRateDown,前进车速speed 侧倾角Angroll 汽车重心的侧偏角纵向的加速度侧向加速度试验方法:半径为15或20米的圆,缓慢而均匀的加速,直至侧向加速度达到6.5m/s2.记录整个过程,左右方向各三次。

实验开始时车身处于正中位置。

考核指标:转弯半径比特性、前后轴侧偏角差值特性、侧倾角特性(侧倾角大小)。

不足转向度U:U按前、后桥侧偏角差值与侧向加速度关系曲线上侧向加速度值为2m/s2处的平均斜率的一半计算。

车身侧倾刚度:拟合A y—(α1-α2)曲线,微分,取侧向加速等于2时的值。

.2. 转向轻便性:测量的量:转向盘作用力矩Torque、转向盘转角angel、前进车速speedforward、转向盘半径。

试验方法:驾驶员操纵转向盘,以10km/h的车速匀速沿双纽线绕8字行驶,车速稳定后开始记录方向盘转角和力矩。

汽车沿双纽线绕行一周为一次,全部试验进行三次。

考核指标:转向盘的最大作用力、力矩;转向盘(左、右)的最大转角、转向盘作用功、转向盘平均摩擦力、力矩;3. 转向回正性能测量的量:前进车速speedforward、横摆角速度AngrateDown (yaw)、侧向加速度Accellateral 试验方法:一定要使用转向盘转角开关,触发switch低速回正性能试验:在半径15米的圆上,调整车速使侧向加速度达到4m/s2,误差0.2m/s2;稳定车速开始记录,三秒后突然松开方向盘,至少记录松开后4S的汽车运动过程。

高速回正性能试验:驾驶车速为最高车速的70%,侧向加速度为2m/s2.其他同上。

试验左转、右转各三次考核指标:稳定时间、残留横摆角速度、横摆角速度超调量、横摆角速度自然频率、相对阻尼系数、横摆角速度总方差。

评分标准:按松开转向盘后3S时的残留横摆角速度绝对值Δr及横摆角速度总方差Er两项指标进行评价。

4. 脉冲测量的量:汽车前进车速speedforward、转向盘转角Angle、侧向加速度Accellateral、横摆角速度AngRatedown试验方法:以100km/h的车速直线行驶使其横摆角速度为0,然后给转向盘一个三角脉冲输入,试验时向左(或向右)转动转向盘,并迅速转会原处保持不动,记录全部过程,直至汽车回到直线行驶位置。

汽车操稳性实验报告

汽车操稳性实验报告

汽车操稳性实验目录汽车操稳性实验 (1)1.实验目的 (2)2.实验条件 (2)3.试验仪器设备 (2)4.试验内容 (3)5.试验数据 (3)6.数据处理 (4)7.实验总结 (8)1.实验目的了解汽车稳态回转试验方法和数据处理过程。

加深理解车辆参数变化对车辆操作稳定性的影响。

2.实验条件试验汽车:应是按厂方规定装备齐全的汽车,试验前,应测定车轮定位参数,对转向系、悬架系进行检查,并按规定进行调整紧固和润滑。

只有认定汽车已符合厂方规定的技术条件时,方可进行试验。

轮胎:试验时若用新轮胎,轮胎至少应经过200km正常行驶的磨合,若用旧轮胎,试验终了时,残留花纹的高度应不小于1.6mm。

轮胎气压应符合GB/T12534 中的3.2条的规定。

载质量:试验汽车应为厂定最大总质量状态(驾驶员、试验员及仪器的质量,计入总质量)和轻载状态;乘员和装载物(推荐用沙袋)的分布应符合GB/T 12534的规定。

轴载质量必须符合厂方规定。

注:轻载状态是指除驾驶员、试验员及仪器外,没有其它加载物的状态。

对于承载能力小的汽车,如果轻载质量已经超过最大总质量的70%,则不必进行轻载状态的试验。

试验场地与环境:试验场地应为干燥平坦且清洁的水泥或沥青路面,任意方向的坡度不大于2%;试验时的风速应不大于5m/s;大气温度在0-40度之间。

3.试验仪器设备光学车速仪、秒表、桩桶光学车速仪:测速范围0.5-200km/h,配合二次仪表使用,可输出TTL脉冲和模拟信号,脉冲信号的标尺为:10mm/P。

4.试验内容1)在试验场地上,用明显颜色画出半径为15米的圆周。

试验开始前,汽车应以侧向加速度为3的相应车速沿画定的圆周行驶500米以使轮胎升温。

驾驶员操纵汽车以最低稳定速度沿所画圆周行驶,待安装于汽车纵向对称平面上的车速传感器能对准地面所画圆周时,固定方向盘不动。

然后汽车以最低速度,匀速行使一周,记下行使距离和时间。

然后提高车速,重复以上过程,至少测量六组数据。

汽车稳定实验报告总结(3篇)

汽车稳定实验报告总结(3篇)

第1篇一、实验背景随着我国经济的快速发展和汽车产业的日益壮大,汽车在人们生活中的地位越来越重要。

然而,汽车在行驶过程中,受到各种因素的影响,如路面状况、车辆性能等,可能导致车辆出现不稳定现象,给驾驶者和乘客带来安全隐患。

为了提高汽车的安全性能,降低交通事故的发生率,汽车稳定性实验成为汽车研发和检测的重要环节。

本实验旨在通过对汽车稳定性进行测试和分析,为汽车设计和改进提供理论依据。

二、实验目的1. 了解汽车稳定性实验的基本原理和方法;2. 掌握汽车稳定性测试设备的使用技巧;3. 分析汽车稳定性测试结果,为汽车设计和改进提供参考;4. 培养实验者的实际操作能力和数据分析能力。

三、实验内容1. 实验设备:汽车稳定性测试台、测速仪、转向角传感器、测力计、数据采集器等;2. 实验方法:采用实车实验和仿真实验相结合的方式,对汽车稳定性进行测试和分析;3. 实验步骤:(1)搭建实验平台,将汽车稳定性测试台、测速仪、转向角传感器、测力计等设备安装到位;(2)调整实验参数,如车速、转向角等,使实验条件符合测试要求;(3)进行实车实验,记录实验数据;(4)将实验数据输入计算机,进行数据处理和分析;(5)根据实验结果,对汽车稳定性进行评价和改进。

四、实验结果与分析1. 实验结果:(1)稳定性因数:通过实验,计算出汽车的稳定性因数,判断汽车在行驶过程中的稳定性;(2)特征车速:根据实验数据,确定汽车在特定路面条件下的特征车速;(3)稳态横摆角速度:分析汽车在转向过程中的横摆角速度,评估汽车的操纵稳定性;(4)侧向加速度:测量汽车在侧向力作用下的加速度,判断汽车在侧向力作用下的稳定性。

2. 分析与讨论:(1)稳定性因数与特征车速:稳定性因数越高,汽车在行驶过程中的稳定性越好;特征车速越高,汽车在高速行驶时的稳定性越差。

因此,在汽车设计和改进过程中,应注重提高稳定性因数,降低特征车速;(2)稳态横摆角速度:稳态横摆角速度越小,汽车在转向过程中的稳定性越好。

汽车操纵稳定性实验指导书

汽车操纵稳定性实验指导书

汽车操纵稳定性实验指导书(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--汽车操纵稳定性实验指导书课程编号:课程名称:实验一汽车转向轻便性实验一、实验目的汽车的转向轻便性和操纵稳定性是现代汽车重要的使用性能,通过对实验了解和掌握测试系统的安装调试、基本实验方法并学会数据处理和运用理论知识对汽车操纵稳定性研究、评价。

以培养学生解决实际工程问题的能力。

二、实验的主要内容了解测试系统的组成和测试原理,汽车转向轻便性实验的数据的实时采集和处理。

测定汽车在低速大转角时的转向轻便性,与操纵稳定性其他试验项目一起,共同评价汽车的操纵稳定性。

采集测量变量及参数方向盘转角;方向盘力矩;方向盘直径。

三、实验设备和工具1.测量仪器汽车方向盘转角——力矩传感器汽车操纵稳定性数据采集和分析仪2.实验车辆小型客车一辆3.标明试验路径的标桩16个。

四、实验原理测定汽车在道路上进行转向行驶时,驾驶员作用在方向盘上的力矩和方向盘转角的变化关系评价汽车的转向操纵性能五、验方法和步骤1.实验准备试验场地应为干燥、平坦而清洁的水泥或柏油路面。

任意方向上的坡度不大于2%。

在试验场地上,用明显颜色画出双纽线路径(图1),双纽线轨迹的极坐标方程为:轨迹上任意点的曲率半径R为:当Ψ=0°时,双纽线顶点的曲率半径为最小值,即双纫线的最小曲率半径(m)应按试验汽车的最小转弯半径(m)乘以倍,并圆整到比此乘积大的一个整数来确定。

并据此画出双纽线,在双纽线最宽处、顶点和中点(即结点)的路径两侧共放置16个标桩(图1)。

标桩与试验路径中心线的距离,按汽车的轴距确:定,当试验汽车轴距大于时,为车宽一半加50cm,当试验汽车轴距小于或等于2m时,为车宽一半加30cm。

图1 双纽线路径示意图2.试验方法2.1接通仪器电源,使之预热到正常工作温度。

2.2汽车以低速直线滑行,驾驶员松开方向盘,停车后,记录方向盘中间位置及方向盘力矩零线。

同济汽车操纵稳定性实验报告新终审稿

同济汽车操纵稳定性实验报告新终审稿

同济汽车操纵稳定性实验报告新终审稿实验报告:同济汽车操纵稳定性实验摘要:本实验以同济汽车为研究对象,通过系统的实验设计和精确的测量手段,对同济汽车的操纵稳定性进行了全面而深入的研究。

通过实验结果分析和对比,得出一系列结论,为同济汽车的设计和改进提供了理论依据和实际参考。

1.引言:操纵稳定性是汽车行驶安全和驾驶舒适性的重要指标之一、为了更好地了解同济汽车的操纵稳定性性能,开展了本次实验。

本实验的目的是通过操纵稳定性实验,评估同济汽车的操纵稳定性性能,并通过实验结果进行分析和解释。

2.实验方法:本实验采用了减速器放大、转向力矩测量、侧向加速度测量等一系列实验方法,以获取同济汽车的操纵稳定性性能指标。

实验中先对同济汽车的车速、转向角度、侧向加速度等进行测量,然后对实验结果进行数据处理和分析。

3.实验结果与讨论:通过对实验数据的处理和分析,我们得到了同济汽车的操纵稳定性性能指标。

首先,通过减速器放大和转向力矩测量,我们得到了同济汽车的转向灵敏度。

转向灵敏度越高,意味着车辆对车主的操纵指令的响应越快。

其次,通过侧向加速度测量,我们得到了同济汽车的侧倾角。

侧倾角越小,意味着车辆在急转弯等情况下的横向稳定性越好。

最后,通过实验结果的对比和分析,我们发现同济汽车的操纵稳定性性能在一些方面有待改善。

例如,转向灵敏度较低,导致车辆转向响应不够迅速;侧倾角较大,影响了车辆在高速行驶时的稳定性。

4.改进建议:基于对同济汽车操纵稳定性实验的结果和分析,我们提出了以下改进建议:首先,可以通过调整转向系统的参数,提高同济汽车的转向灵敏度,增强车辆的转向响应;其次,可以通过改变车身结构和改进悬挂系统,减小同济汽车的侧倾角,提高车辆的横向稳定性。

5.结论:通过本次实验,我们深入了解了同济汽车的操纵稳定性性能,并提出了对于不足之处的改进建议。

这对于同济汽车的设计和改进具有重要意义,可以提高车辆的行驶安全性和驾驶舒适性。

附录:1.同济汽车的技术参数表2.实验数据记录表3.实验过程的照片及记录注:以上为虚拟助手生成的模拟实验报告,实际内容与同济汽车实验无关。

汽车操纵稳定性的影响因素分析

汽车操纵稳定性的影响因素分析

.ξ > 1 称为大阻尼,当车速超过临界车速后, ωr 是发散的,趋于无穷大,此时汽车失
去稳定性。 ξ = 1,称为临界阻尼,横摆角速度 ωr 也是单调上升且趋进于 ωr0 。 ξ < 1 ,称
为小阻尼,横摆角速度 ωr 是一条收敛于 ωr0 减幅正弦曲线。由于正常的汽车都具有小阻尼
的瞬态响应,所以只讨论在角阶跃输入后,ξ < 1 时的横摆角速度 ωr 的变化规律,并讨论结
这是一个二阶常系数非齐次微分方程,其通解等于它的一个特解与对应的齐次微分方程 的通解之和。显然其特解为
ωr
=
B0δ 0 ω02
=
u 1+
/L Ku
2
δ
0
= ωr δ
⎟⎞ ⎠
s
δ
0
即为稳态横摆角速度 ωr0
=
ωr δ
⎟⎞ δ ⎠s

0
对应的齐次方程式为
ωr
+ 2ω0ξω r
+
ω
ω2
0r
=0
齐次方程的通解为
汽车操纵稳定性的影响因素分析
同济大学汽车学院 周莺莺 052071
一、汽车操纵稳定性的瞬态响应 用横摆角速度表示。
设系统的输入 δ 为阶跃形式,根据二自由度的汽车运动微分方程,可以写成以 ωr 为变
量的形式,通常写作
m′ωr + hω r + cωr = b1δ + b0δ
其中:
m′ = muI z
lr
m
1.26
前轮侧偏刚度
kf
N / rad
18500
后轮侧偏刚度
kr
N / rad
22500

汽车操作稳定性范文

汽车操作稳定性范文

汽车操作稳定性范文首先,悬挂系统对于车辆的稳定性起着关键作用。

一个稳定的悬挂系统可以提供更好的路面接触,减少车辆的倾斜和侧滑现象。

常见的悬挂系统有独立悬挂和梁式悬挂两种。

独立悬挂可以使车轮更好地适应路面变化,保持较好的路面抓地力,从而提高车辆的稳定性。

而梁式悬挂由于刚性较强,相对稳定性较差。

其次,转向系统对于车辆的操控性和稳定性同样非常重要。

一个良好的转向系统应该具备良好的回馈性、精准度和灵敏度。

在紧急情况下,驾驶者可以准确地控制车辆的转向,避免事故的发生。

刹车系统是保证车辆安全的关键部件之一,对于车辆的操控和稳定性起着至关重要的作用。

一个优秀的刹车系统应该具备良好的刹车感觉、响应速度和制动力量。

驾驶者可以通过控制刹车系统来保持车辆的稳定性和安全性。

车身结构也对车辆的稳定性产生较大的影响。

一个结构合理的车身可以提供较好的刚性和稳定性。

在面对弯道、急转弯等行驶情况时,一个稳定的车身结构可以减少动力侧滑和倾斜,提高车辆的操控性和稳定性。

此外,轮胎的选择和状况也对车辆的操控性和稳定性起着至关重要的作用。

轮胎是车辆与路面之间唯一的接触面,对车辆的抓地力和操控性具有重要的影响。

驾驶者应选择适合路况和自身需求的轮胎,并保持良好的轮胎状况,例如适时更换磨损严重的轮胎以确保车辆的操控性和稳定性。

为提高汽车的操作稳定性,制造商在设计和制造过程中也应该加强相应的措施。

首先,通过模拟计算和试验等方法来优化汽车的悬挂系统、转向系统和刹车系统等关键部件。

其次,应该合理设计车身结构,提高车身刚性。

此外,还可以通过各种控制系统来提高汽车的操控性,例如电子稳定控制系统(ESC)、主动安全系统等。

这些系统可以通过感知驾驶环境和车辆状态,准确预测潜在的危险并及时采取相应的控制措施,提高车辆的稳定性和安全性能。

总之,汽车操作稳定性是衡量一辆汽车性能的重要指标,影响着驾驶者的操控感受和行驶安全。

通过优化车辆的悬挂系统、转向系统、刹车系统、车身结构和轮胎等关键因素,以及加强制造商在设计和制造过程中的技术和措施,可以提高汽车的操作稳定性,为驾驶者提供更好的操控性和安全性能。

汽车操纵稳定性测试实验

汽车操纵稳定性测试实验

操稳性测试
一、理论基础
1、操纵稳定性定义: 操稳性好的表现:
(1) 根据道路、地形和交通情况的限制,汽车能 够正确地按驾驶员通过操纵机构所给定的方向 行驶。 (2) 汽车在行驶过程中具有抵抗力图改变其行驶 方向的各种干扰,并保持稳定性的适当能力。
差的表现:速度达到一定值时发“飘”,
转向迟钝,过多转向,丧失路感等方面。
4.实验步骤
(5) 处理试验数据 ② 平均转向盘角为
i

ij j 1
4
4
转向盘转角变化过程
操稳性测试
五、实验方法和步骤
4.实验步骤
(5) 处理试验数据
③ 平均横摆角速度为
1 4 ri rij 4 j 1
横摆角速度变化过程
操稳性测试
五、实验方法和步骤
4.实验步骤
(5) 处理试验数据
(3) 试验按自行规定的车速间隔,从高到低,每1 个车速各进行1次,共10次(撞倒标桩的次数不 计在内)。 (4) 准确记录试验的各项有效数据。 (5) 处理试验数据,并拟合画出平均横摆角速度 与车速的关系图,平均转向盘角与车速的关系 图,平均车身侧倾角与车速的关系图和平均侧 向加速度与车速的关系图。
轿车、小型客车及最大总质量≤2.5 t的载 货汽车 最大总质量>2.5 t而≤6 t的载货汽车及中 型客车 最大总质量>6 t而≤15 t的货车及大型客车 最大总质量>15 t的载货汽车及客车 标桩间 距/m 基准车速 /(km/h ) 65 30 50 60 50
50
操稳性测试
五、实验方法和步骤
操稳性测试
Байду номын сангаас
一、理论基础
2.汽车操纵稳定性的基本内容 :

整车操纵稳定性仿真分析报告讲述

整车操纵稳定性仿真分析报告讲述

L11整车操纵稳定性仿真分析报告(HB11A/HB12A)编制(日期)校对(日期)审核(日期)批准(日期)简式国际汽车设计(北京)有限公司L11整车操纵稳定性仿真分析报告(HB11A/HB12A)1.定半径稳态圆周试验1.1试验方法HB11A处于满载状态,沿半径为40m的定半径圆周进行回转运动,开始以最低稳定速度进入圆周,找准方向盘的位置,使汽车可以沿圆周进行回转运动,开始记录,然后缓慢连续而均匀地加速(纵向加速度不超过0.2 m/s2),加速的同时调整方向盘转角以维持定半径圆周运动,这个过程中车辆不应超出车道0.5 m,直至不能维持稳态定半径圆周运动条件时或受发动机功率限制所能达到的最大侧向加速度为止。

记录整个过程,建议使用满足试验条件的最高档位。

试验按向左转和向右转两个方向进行,每次试验开始时车身应处于正中位置。

1.2数据处理1.2.1不足转向梯度“方向盘转角——侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为0.25g时的曲线斜率。

1.2.1.1左转图1 方向盘转角—侧向加速度(左转)从图1 计算得到左转不足转向梯度为137º/g1.2.1.2右转图2 方向盘转角—侧向加速度(右转)右转不足转向梯度为134.5º/g,则HB11A平均不足转向梯度为135.75º/g。

1.2.2不足转向梯度/转向系角传动比HB11A的角传动比约为23.333,则不足转向梯度/转向系角传动比为5.817º/g。

1.2.3侧偏角梯度“质心侧偏角——侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为0.25g时的曲线斜率。

1.2.3.1左转图3 质心侧偏角——侧向加速度(左转)左转侧偏角梯度为5.987º/g。

1.2.3.2右转图4 质心侧偏角——侧向加速度(右转)右转侧偏角梯度为5.987º/g,则HB11A平均侧偏角梯度为5.987º/g。

基于动力学仿真模型的汽车操纵稳定性研究

基于动力学仿真模型的汽车操纵稳定性研究

摘要汽车的操纵稳定性是指驾驶人员在精神状态没有过于紧张的条件下,驾驶者发出的转向指令,能被汽车准确及时的接受到,汽车按照指定的方向行驶,并且当汽车在工作过程中,被外界因素干扰(道路坑坑洼洼、相对于车身的横向风力、货物或乘客不全部负载)时,汽车能够不受这些干扰的影响,维持相对稳定行驶状态的性能。

是否具有良好的操纵能力,行驶中是否有良好的稳定能力是判断汽车是否安全的重要判断依据。

因此,汽车的操纵稳定性的评价标准和科学研究问题一直是汽车行业的热点问题。

汽车的操纵稳定性的研究,需要对样车来回进行复杂的试验,重复的测试造成人力资源、物质资源等的剧烈消耗,而利用仿真软件,能够解决这些缺点。

本文的主要内容是基于动力学仿真软件ADAMS对汽车操纵稳定性进行研究。

首先在CAR模块建立简化整车模型,在进行相关的仿真试验,分析仿真得出的结果,对车辆的操纵稳定性进行评价关键词:汽车操纵稳定性ADAMS软件整车模型AbstractThe handling stability of the vehicle is when the driver feel not too nervous and fatigue , the car can follow the driver through the steering system and steering wheel of a given direction, and when suffering from outside interference(bumpy, crosswind,cargo or passengers partial load),the automobile can resist interference and keep stable driving. Good handling ability and good stability is an important basis for judging whether the car is safe. Therefore, how to study and evaluate the handling stability of the vehicle, in order to obtain good vehicle active safety is always one of the most important topics in the automotive field.The study of the handling stability of the vehicle that need to repeated tests on the prototype, spend a lot of time and money, however, the simulation software can solve these shortcomings. The main content of this paper is to study vehicle handling stability base on ADAMS. First, establishing a simplified vehicle module in the CAR module, then debugging simulation model, by analyzing the simulation results to evaluate the handling stability of the vehicle.Keywords: Car Handling stability ADAMS Vehicle model目录摘要 (1)Abstract (2)第1章绪论 (4)1.1课题的研究背景 (4)1.2国内外研究现状 (4)1.3课题的目的和研究内容 (7)1.3.1 课题的目的 (7)1.3.2 研究内容 (7)第2章ADAMS软件 (8)2.1ADAMS软件的介绍 (8)2.2 ADAMS软件的组成 (8)第3章整车模型的建立 (11)3.1 ADAMS/Car模块的简介 (11)3.2 整车模型的创建 (11)第四章整车操纵稳定性仿真 (14)4.1 蛇行试验仿真分析 (14)4.1.1 试验设计 (14)4.1.2 仿真设置 (15)4.1.3 仿真分析 (16)4.2稳态回转特性仿真试验 (19)4.2.1稳态回转特性试验的目的 (20)4.2.2 仿真结果 (20)4.2.3 仿真结果分析 (22)4.3综合评价分析 (24)第5章全文总结与工作展望 (26)5.1 全文总结 (26)5.2 工作展望 (26)致谢 (28)参考文献 (29)第1章绪论1.1课题的研究背景如今,随着国内汽车市场的渐渐扩大与持续改进,我国已成为世界上最大的汽车市场,汽车作为交通工具,已经使得人们不能离开对它的使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《汽车平顺性和操作稳定性》实验报告学院(系)汽车学院专业车辆工程(汽车)学生姓名同小车学号000001同济大学汽车学院实验室2014年11月1.转向轻便性实验实验目的驾驶员通过操纵方向盘来控制汽车的行驶方向,操纵方向盘过重,会增加驾驶员的劳动强度,驾驶员容易疲劳;操纵方向盘过轻,驾驶员会失去路感,难以控制汽车的形式方向。

操纵方向盘的轻重,是评价汽车操纵稳定性的基本条件之一。

转向轻便性实验的目的在于通过测量驾驶员操纵方向盘力的大小,与其他实验仪器评价汽车操纵稳定性的好处。

实验仪器设备参量方向盘转矩方向盘转角车速仪器测力方向盘测力方向盘GPS测速仪实验条件试验车:依维柯实验场地与环境于圆形试车场,实验时按照桩桶圈出的双扭线,以10Km/h的车速行驶。

双扭线的极坐标方程见下,形状如下图实验当天天气晴好,无风,气温20度在ψ=0时,双扭线顶点处的曲率半径最小,相应数值为Rmin=1/3d,双扭线的最小曲率半径应按照实验汽车的最小转弯半径乘以1,1倍,并圆整到比此乘积大的一个整数来确定。

试验中记录转向盘转交及转向盘转矩,并按双扭线路经过每一周整理出转向盘转矩转向盘转矩曲线。

通常以转向盘最大转矩,转向盘最大作用力以及转向盘作用功等来评价转向轻便性。

转向轻便型实验数据记录方向盘转角-转矩曲线2. 蛇形试验实验目的本项试验是包括车辆-驾驶员-环境在内的闭路试验的一种,用来综合评价汽车行驶的稳定性及乘坐的舒适性,与其他操纵试验项目一起,共同评价汽车的操纵稳定性。

也可以用来考核汽车在接近侧滑或侧翻工况下的操纵性能,在若干汽车操纵稳定性对比试验时,作为主观评价的一种感性试验。

实验原理将试验车辆以不同车速行驶于规定的蛇形试验中,通过实验仪器可以得到行驶时的车速,方向盘转角,横摆角速度,车身侧倾角。

试验方法遵照GB/T 6323.1-94汽车操纵稳定性试验方法蛇形试验实验仪器记录下列测量变量所使用的仪器方向盘转角:测力方向盘横摆角速度:陀螺仪车身侧倾角:陀螺仪汽车通过有效标桩区的时间:秒表实验数据记录(1)将实验结果填入下表:车型:依维柯实验路面:平坦水泥路面(圆形试车场)标桩间距:30m天气:晴温度:30度风速:10m/s依维柯换悬架:蛇形横摆角速度与车速关系实验数据的意义和结果分析由于前三张图线可以大体看出,在蛇形试验的条件下,车辆方向盘转角与车速基本无关,一直维持在某个常数附近;汽车横摆叫速度与汽车车速大致呈线性关系,车速越高,车辆横摆叫速度越大;而车身侧倾角与车速大致呈线性关系,车速越高时车身侧倾角越大。

由于蛇形绕桩试验时摆放位置不变,故驾驶员在行驶时无论车速快慢,所需转动方向盘的角度大致相同;而车速高时,车辆在较短的时间完成左右的穿梭,故r 会随着uc的增大而增大,在高速转向时,uy也较大,故慢性力会导致侧倾角也越大。

本次试验结果显示横摆角速度与车身侧倾角呈线性关系。

3. 汽车平顺性试验实验目的1.通过对汽车在随机不平的路面上行驶时振动对乘员及货物影响的测定,评价汽车的平顺性;2.通过对汽车行驶过单个凸块时的冲击对乘员及货物影响的测定,评价汽车的平顺性。

实验仪器与设备加速度传感器,GPS测速仪,DASP速采系统实验原理1.随机输入:本试验采用道路随机输入,及实际道路试验。

因试验车为轿车,加速度传感器安装在左侧前排和后排座椅上;若为客车,安装在驾驶员座椅左侧后轴上和最后排座椅上。

其他类型汽车安装在驾驶员座椅上,车厢地板中心及局车厢边板、后板300mm处,安装在座椅上的加速度传感器应能测三个方向的震动。

传感器应与人体紧密接触,并且在人体与座椅间放入一安装传感器的垫盘,试验时,汽车在稳速段要稳住车速,然后以规定的车速匀速驶过试验路段,在进入试验路段时启动测试仪器,同时测量通过试验路段的时间,计算平均车速。

样本记录长度不短于3min,对于人体振动评价用加权加速度均方值,处理数据用三分之一倍频法。

2.脉冲输入:标准采用三角形的单凸块作为脉冲输入,其凸块尺寸随车重变化,可参照相应标准,加速度传感器安装位置同随机输入。

将凸块放置在试验道路中央,并按汽车车轮距调整好两个凸块的距离,为保证汽车左右车轮同时驶过凸块,应将两凸块放在与汽车行驶方向垂直的一条线上。

试验时汽车以规定的车速匀速驶过凸块,试验车速为10KM/H,20KM/H,30KM/H40KM/H,50KM/H,60KM/H。

在汽车驶过后且冲击响应消失后,停止记录,每种车速的试验次数不得少于八次。

3.车辆平顺性试验测试简图:加速度传感器——电荷放大器——收集信号——速采系统。

4. 汽车稳态回转试验试验内容测定汽车定方向盘转角稳态回转时的汽车前进车速、汽车横摆角速度、绘制转弯半径比与侧向加速度关系曲线、汽车前后轴侧偏角速度差值与侧向加速度的关系曲线,计算稳态回转的特征参数。

试验目的通过试验掌握汽车稳态回转试验的原理以及实验方法,掌握仪器的使用方法以及试验数据的处理方法。

试验条件试验车辆-依维柯场地-圆形试车场试验仪器-陀螺仪、GPS测试仪、数据采集器试验数据处理及结果表达1.转弯半径比Ri/R0与侧向加速度ay,关系曲线。

根据记录的横摆角速度及汽车前进车速,用下述公式计算各点的转弯半径及侧向加速度。

Ri =Vi/ωi , ayi= Vi*ωi , i=1,2,3, ,n式中:Vi——第i点车速,m/sωi——第i点横摆角速度,rad/sRi——第i点转弯半径,mayi——第i点侧向加速度,m/s/sn——采样点数进而算出各点的转弯半径比(Ri/R0)(R0为初始半径,m)。

根据计算结果,绘出(R/R0)—ay曲线2. 汽车前后侧偏角差值(δ1一δ2)与侧向加速度ay关系曲线对于两轴汽车,汽车稳态回转时,(δ1一δ2)用下式确定:δ1一δ2 =360/2∏ * L (1/ R0-1/ Ri)式中:δ1、δ2——前后轴侧偏角,0L——汽车轴距,m (全顺汽车:L=3.55m) Ri 、R0、——第各点转弯半径及初始半径,m,根据计算结果,绘制(δ1一δ2)—ay关系曲线。

3. 不足转向度u及不足转向度评价记分值Nu。

1)不足转向度u按前后轴侧偏角差值与侧向加速度值为2m/s/s处的平均斜率计算。

2)不足转向度的评估记分值Nu:根据,GB/T 13047《汽车操纵稳定性指标与评价方法》经过计算,可得六、转向回正性能试验1 主题内容与适用范围本标准规定了汽车操纵稳定性试验方法中的转向回正性能试验方法。

本标准适用于轿车、客车、货车及越野汽车,其他类型汽车可参照执行。

2 引用标准GB/T 12534汽车道路试验方法通则GB/T 12549汽车操纵稳定性术语及其定义3 测量变量和仪器设备3.1 测量变量a.汽车前进速度;b.横摆角速度;c.侧向加速度。

3.2 试验仪器设备3.2.1 试验仪器设备应符合GB/T 12534中3.5条规定。

3.2.2 各测量用仪器,其测量范围及最大误差满足表1的要求。

3.2.3 包括传感器及记录仪器在内的整个测量系统的频带宽度不小于3Hz。

3.2.4 各种传感器按各自使用说明书进行安装。

4 试验条件4.1 试验汽车4.1.1 试验汽车是按厂方规定装备齐全的汽车。

试验前,测定车轮定位参数,对转向系、悬架系进行检查、调整和紧固,按规定进行润滑。

只有认定试验汽车已符合厂方规定的技术条件,方可进行试验。

测定及检查的有关参数的数值,记入附录A(补充件)中。

4.1.2 试验时若用新轮胎,试验前至少应经过200km正常行驶的磨合;若用旧轮胎,试验终了残留花纹高度不小于1.5mm。

轮胎气压应符合GB/T 12534中3.2条的规定。

4.1.3 试验汽车在厂定最大总质量(驾驶员,试验员及测试仪器质量,计入总质量)状态下进行。

货车的装载物(推荐用砂袋)均匀分布于货箱内;客车的装载物(推荐用砂袋)分布于座椅和地板上,其比例应符合GB/T 12534中表1的规定。

轴载质量必须符合厂方规定。

4.2 试验场地与环境a.试验场地为干燥、平坦而清洁的,用水泥混凝土或沥青铺装的路面,任意方向的坡度不大于2%;b.风速不大于5m/s;c.大气温度在0~40℃范围内。

5 试验方法5.1 低速回正性能试验5.1.1 在试验场地上用明显的颜色画出半径为15m的圆周。

5.1.2 试验前试验汽车沿半径为15m的圆周、以侧向加速度达3m/s2的相应车速,行驶500m,使轮胎升温。

5.1.3 接通仪器电源,使其达到正常工作温度。

5.1.4 试验汽车直线行驶,记录各测量变量零线,然后调整转向盘转角,使汽车沿半径为15±1m的圆周行驶,调整车速,使侧向加速度达到4±0.2m/s2,固定转向盘转角,稳定车速并开始记录,待3s后,驾驶员突然松开转向盘并做一标记(建议用一微动开关和一个讯号通道同时记录),至少记录松手后4s的汽车运动过程。

记录时间内油门开度保持不变。

对于侧向加速度达不到4±0.2m/s2的汽车,按试验汽车所能达到的最高侧向加速度进行试验,应在试验报告中(表2备注)加以说明。

5.1.5 试验按向左转与向右转两个方向进行,每个方向三次。

5.2 高速回正性能试验5.2.1 对于最高车速超过100km/h的汽车,要进行本项试验。

5.2.2 试验车速按被试汽车最高车速的70%并四舍五入为10的整数倍。

5.2.3 接通仪器电源,使其达到正常的工作温度。

5.2.4 试验汽车沿试验路段以试验车速直线行驶,记录各测量变量的零线。

随后驾驶员转动转向盘使侧向加速度达到2±0.2m/s2,待稳定并开始记录后,驾驶员突然松开转向盘并做一标记(建议用一微动开关和一个讯号通道同时记录),至少记录松手后4s内的汽车运动过程。

记录时间内油门开度保持不变。

5.2.5 试验按向左转与向右转两个方向进行,每个方向三次。

6 试验数据处理与结果表达6.1 试验数据处理横摆角速度时间历程曲线分两大类:收敛型(图1中曲线1~4)与发散型(图1中曲线5、6)。

对于发散型,不进行数据处理;对于收敛型,按向左转与向右转分别确定下述指标。

6.1.1 时间坐标原点在微动开关时间历程曲线上,松开转向盘时微动开关所做的标记。

6.1.2 稳定时间从时间坐标原点开始,至横摆角速度达到新稳态值(包括零值)为止的一段时间间隔。

其均值按下式确定:6.1.3 残留横摆角速度在横摆角速度时间历程曲线上,松开转向盘3s时刻的横摆角速度值(包括零值),按下式确定:6.1.4 横摆角速度超调量在横摆角速度时间历程曲线上,横摆角速度响应第一个峰值超过新稳态值的部分与初始值之比(见图2)。

横摆角速度超调量均值按下式确定:6.1.5 横摆角速度自然频率6.1.6 相对阻尼系数可先由公式(6)求得衰减率D'i,后,再由公式(7)求得相对阻尼系数,或由图4查得相对阻尼系数。

相关文档
最新文档