高等流体力学复习总结共69页文档

合集下载

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结流体力学是一门研究流体(包括液体和气体)运动规律以及流体与固体之间相互作用的学科。

它在工程、物理、化学、生物等多个领域都有着广泛的应用。

以下是对流体力学一些重要知识点的总结。

一、流体的物理性质1、密度流体的密度是指单位体积流体的质量。

对于液体,其密度通常较为稳定;而气体的密度则会随着压力和温度的变化而显著改变。

2、黏性黏性是流体内部阻碍其相对流动的一种特性。

黏性的大小用黏度来衡量。

牛顿流体遵循牛顿黏性定律,其黏度为常数;非牛顿流体的黏度则随流动条件而变化。

3、压缩性压缩性表示流体在压力作用下体积缩小的性质。

液体的压缩性通常很小,在大多数情况下可以忽略不计;气体的压缩性则较为显著。

二、流体静力学1、压力压力是指流体作用于单位面积上的力。

在静止流体中,压力的大小只与深度和流体的密度有关,遵循静压力基本方程。

2、帕斯卡定律加在密闭液体任一部分的压强,必然按其原来的大小,由液体向各个方向传递。

3、浮力物体在流体中受到的浮力等于排开流体的重量。

三、流体运动学1、流线与迹线流线是在某一瞬时,流场中一系列假想的曲线,曲线上每一点的切线方向都与该点的流速方向相同。

迹线则是某一流体质点在一段时间内运动的轨迹。

2、流量与流速流量是单位时间内通过某一截面的流体体积,流速是流体在单位时间内通过的距离。

四、流体动力学1、连续性方程连续性方程表明,在定常流动中,通过流管各截面的质量流量相等。

2、伯努利方程伯努利方程描述了理想流体在沿流线运动时,压力、速度和高度之间的关系。

其表达式为:\\frac{p}{\rho} +\frac{1}{2}v^2 + gh =\text{常数}\其中,\(p\)为压力,\(\rho\)为流体密度,\(v\)为流速,\(g\)为重力加速度,\(h\)为高度。

3、动量方程动量方程用于研究流体与固体之间的相互作用力。

五、黏性流体的流动1、层流与湍流层流是一种流体质点作有规则、分层的流动;湍流则是流体质点的运动杂乱无章。

(完整版)流体力学知识点总结汇总

(完整版)流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。

2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。

3 流体力学的研究方法:理论、数值、实验。

4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。

作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。

(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。

质量越大,惯性越大,运动状态越难改变。

常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。

B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。

即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。

由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。

动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。

运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。

2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。

无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。

流体力学 大学考试复习资料 知识点总结

流体力学 大学考试复习资料 知识点总结

第一章流体及流场的基本特性1、流体定义——受任何微小剪切力作用都会连续变形的物质。

2、流体的特性——流动性、连续性3、流体的主要物理性质【惯性:密度(单位体积流体内所具有的质量)、比容(单位质量的流体所占有的体积)、重度(单位体积的流体所具有的重量)、关系(流体的密度与比体积之间互为倒数)、密度影响因素(流体种类、温度、压力)】【压缩性(流体的体积随压力增大而缩小的性质)、膨胀性(流体的体积随温度升高而增大的性质)、不可压缩流体(当压力与温度变化时,体积变化不大,密度可以看作是常数的流体)】【粘性定义(流体流动时在流体层与层之间产生内摩擦力的特性)、影响因素(流体的种类、温度、压力)、粘度(动力黏度,运动黏度)、理想流体粘性】(理想流体——假想的没有黏性的流体、实际流体——自然界中存在的具有黏性的流体)(表面张力——液体自由表面存在的力、毛细现象——表面张力可以引起相当显著的液面上升或下降,形成上凸或下凹的曲面)4、水力要素(有效截面面积、湿周——有效截面上液体与固体壁接触线的长度、水力半径——有效截面面积与断面湿周的比值、当量直径——在非圆形的有效截面中,水力半径的四倍)(工程圆管——原因:1.在有效截面面积相等的条件下,湿周愈小,流体与管壁的接触线长度愈小,所引起的流动阻力损失也愈小。

2.节省材料.)5、运动要素(动压力——作用在运动液体内部单位面积上的压力、流速——该质点在空间中移动的速度、流量——单位时间内通过有效截面的流体数量、平均流速——假设在有效截面上的各点均以相同的假象速度流过时,通过的流量与实际力量相等,那么这个假想的流速为平均流速.)第二章流体静力学1、作用在流体上的力表面力:作用在流体表面上的力,与面积成正比。

(包括:压力、内摩擦力)质量力:作用在流体质点上的力,与质量成正比。

(包括:重力、惯性力、离心力)2、静压力概念:静压力(作用在质点上,流体力学)平均静压力(作用在面上,物理学)3、静压力特性:①静压力方向总是垂直并且指向作用面。

流体力学知识重点(全)

流体力学知识重点(全)

流体力学知识点总结流体力学研究流体在外力作用下的宏观运动规律!流体质点:1.流体质点无线尺度,只做平移运动2.流体质点不做随即热运动,只有在外力的作用下作宏观运动;3.将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性;流体元:就有线尺度的流体单元,称为流体“质元",简称流体元.流体元可看做大量流体质点构成的微小单元。

连续介质假设:假设流体是有连续分布的流体质点组成的介质.连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律。

分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力。

液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力.、流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止。

牛顿流体:动力粘度为常数的流体称为牛顿流体.牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的:温度对粘度的影响:温度对流体的粘度影响很大。

液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大.压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大。

毛细现象:玻璃管内的液体在表面张力的作用下液面升高或降低的现象称为毛细现象;描述流体运动的两种方法拉格朗日法:拉格朗日法又称为随体法。

它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结一、流体的物理性质流体区别于固体的主要特征是其具有流动性,即流体在静止时不能承受切向应力。

流体的物理性质包括密度、重度、比容、压缩性和膨胀性等。

密度是指单位体积流体所具有的质量,用符号ρ表示,单位为kg/m³。

重度则是单位体积流体所受的重力,用γ表示,单位为 N/m³,且γ =ρg(g 为重力加速度)。

比容是密度的倒数,它表示单位质量流体所占有的体积。

流体的压缩性是指在温度不变的情况下,流体的体积随压强的变化而变化的性质。

通常用体积压缩系数β来表示,其定义为单位压强变化所引起的体积相对变化率。

对于液体来说,其压缩性很小,在大多数情况下可以忽略不计;而气体的压缩性则较为明显。

膨胀性是指在压强不变的情况下,流体的体积随温度的变化而变化的性质。

用体积膨胀系数α来表示,它是单位温度变化所引起的体积相对变化率。

二、流体静力学流体静力学主要研究静止流体的力学规律。

静止流体中任一点的压强具有以下特性:1、静止流体中任一点的压强大小与作用面的方向无关,只与该点在流体中的位置有关。

2、静止流体中压强的大小沿垂直方向连续变化,即从液面到液体内部,压强逐渐增大。

流体静力学基本方程为 p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,h 为该点在液面下的深度。

作用在平面上的静水总压力可以通过压力图法或解析法来计算。

对于矩形平面,采用压力图法较为简便;对于不规则平面,则通常使用解析法。

三、流体动力学流体动力学研究流体的运动规律。

连续性方程是流体动力学的基本方程之一,它基于质量守恒定律。

对于不可压缩流体,在定常流动中,通过流管各截面的质量流量相等。

伯努利方程则是基于能量守恒定律得出的,它表明在理想流体的定常流动中,单位体积流体的动能、势能和压力能之和保持不变。

其表达式为:p/ρ + 1/2 v²+ gh =常数其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。

高等流体力学复习

高等流体力学复习

1流体:液体虽然可承受很大的压力,但在受到微小的拉力或剪切力时,就会发生流动与变形,因此液体虽然有固定的体积但没有固定的形态。

气体既不可承受拉力或剪切力,否则就会发生流动,也不能承受压力,否则就会被压缩。

因此气体既没有固定的形状也没有固定的体积。

正是因为液体与气体都表现出在受到微小的拉力或剪切力是易流动和变形的性质,所以都叫作流体。

从力学观点看,固体与流体的主要差别在于可否承受拉力或剪切力;从运动学观点看,二者区别在于有没有变形运动,固体运动有平动和转动,而流体除平动与转动外还有变形运动即流体的角变形运动与线变形运动。

2流体质点:是能反映流体分子的统计平均特性(即其宏观特性)的特征尺寸内所有流体分子的总和。

3连续介质模型假定:从微观上看,流体是由大量运动着的分子组成的,是有空隙的,不连续的。

但是从宏观上看,流体可假定为是由连续分布的流体质点组成的连续介质。

连续介质模型使该流体质点的物理量在时空上被视为是连续分布的并且是无限可微的,在物理上被视为经典力学和热力学的基本关系,因此可用微积分这一数学工具及力学的基本关系对流体的宏观特性进行分析研究。

4流体的粘滞性:流体抵抗剪切变形运动的一种属性。

5流体粘滞性的产生机理:一般因为这时流体分子动量交换和分子间的吸引力两种机理作用的结果,而且后者是主要的。

粘滞性是流体分子运动的输运性质的一种体现。

其分子的动量输运宏观表现为粘性;分子的能量输运宏观表现为热传导;分子的质量输运,宏观表现为扩散。

粘滞性是机械能耗散的原因之一,粘性耗散是不可逆过程。

6按作用力的性质分为:惯性力:a m F = 由流体的惯性力引起,重力:g m G = 由流体的万有引力特性引起粘滞力: dyduA F μ=由流体的粘滞性引起,压力:P=Ap 由流体的可压缩性、重力、惯性力引起表面张力: σ 由流体的表面张力特性引起,静电力: qEV q 点和密度 E 电场强度7按作用力的作用形式划分:质量力和表面力两种质量力或体积力:与体积元素有关的非接触力,其一般与流体的质量或体积成正比。

高等流体力学复习总结

高等流体力学复习总结
w(z) i bi ln(rei ) bi(ln r i ) b bi ln r
iQ
cdw
dw
c dz dz
ib
c z dz
dw
c
dw dz
c dz
ib c rei d
rei
ib c rei
ei dr irei d
ib dr bd
cr
2b
2b Q 0
第三章 流体力学基本方程组
divv 0
t
连续性方程ຫໍສະໝຸດ dv F divPdt
运动方程
dU dt
P: S div(kgradT)
q
能量方程
P pI 2 S 1 I v
3
p f (T,V )
本构方程 状态方程
粘性不可压缩均质流体
理想不可压缩均质流体
(2) P200 第9题(1);P201 第13题(1) 粘性不可压缩均质流体定常、运动方程在二维直角坐标系 中的形式
第五章 流体静力学
(u) (v) (w) 0
t x y w
du dt
Fx
pxx x
pxy y
pxz z
dv dt
Fy
pxy x
p y y y
p y z z
dw dt
Fz
pxz x
pzy y
pzz z
直角坐标系中的形式
pxx
p
2
u x
2 3
u x
v y
w z
pyy
p
2
v y
2 3
w(z) i a ln(rei ) a ln r i
a ln r
a
等势线族 流线族
w(z) a ln z a是实数

流体力学知识重点(全)

流体力学知识重点(全)

流体力学知识点总结流体力学研究流体在外力作用下的宏观运动规律!流体质点:1.流体质点无线尺度,只做平移运动2.流体质点不做随即热运动,只有在外力的作用下作宏观运动;3.将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性;流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。

流体元可看做大量流体质点构成的微小单元。

连续介质假设:假设流体是有连续分布的流体质点组成的介质。

连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律。

分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力。

液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力。

、流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止。

牛顿流体:动力粘度为常数的流体称为牛顿流体。

牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的:温度对粘度的影响:温度对流体的粘度影响很大。

液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大。

压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大。

毛细现象:玻璃管内的液体在表面张力的作用下液面升高或降低的现象称为毛细现象;描述流体运动的两种方法拉格朗日法:拉格朗日法又称为随体法。

它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌。

大学《工程流体力学》期末复习重点总结

大学《工程流体力学》期末复习重点总结

第一章1、流体定义受任何微小切力都会产生连续变形(流动)的物质。

2、流体承受的作用力流体承受的力主要为压力,流动的流体可以承受切力。

3、流体特性:易流动性及粘性。

4、流体质点的概念流体质点就是流体中宏观尺寸非常小而微观尺寸又足够大的任意一个物理实体,也称流体微团 。

5、流体质点具有四层含义:(1)宏观尺寸非常小; (2)微观尺寸足够大; (3)是包含有足够多分子的一个物理实体; (4)形状可以任意划分。

6、连续介质的概念:把流体视为由无数连续分布的流体微团所组成的连续介质,这就是流体的连续介质假设。

8、粘性的概念:流体运动时内部产生切应力的性质叫作流体的粘性。

9、粘性产生的原因 :分子间的相互引力;分子不规则热运动所产生的动量交换10、牛顿内摩擦定律δμV A F = dydV μτ±= 物理意义:切应力与速度梯度成正比。

12、体胀系数:())1(1lim 0TV V dT dV V T V V T T V ∆∆≈=∆∆=→∆βα当压强不变时,每增加单位温度所产生的流体体积相对变化率。

压缩系数:())1(1lim 0pV V dp dV V p V V k p p T ∆∆-≈-=∆∆-=→∆β 当温度不变时,每增加单位压强所产生的流体体积相对变化率。

体积弹性系数:)(1Vp V dV dp V k K T ∆∆-≈-== 每产生一个单位体积相对变化率所需要的压强变化量。

12、理想流体的概念假定不存在粘性,即其μ=ν=0的流体为理想流体或无粘性流体。

13、不可压缩流体的概念压缩系数和体胀系数都为零的流体叫做不可压缩流体, 或 ρ=C (常量)14、流体的主要力学模型连续介质、无粘性和不可压缩性第2章 流体静力学1、作用在流体上的力质量力(重力、惯性力)、表面力(法向力、切向力)2、静压力特性:方向性、等值性4、等压面及选取流体中压强相等的点组成的面叫等压面。

等压面的选取:(1)同种流体;2)静止;3)连续。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。

2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。

3 流体力学的研究方法:理论、数值、实验。

4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。

作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。

(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。

质量越大,惯性越大,运动状态越难改变。

常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔA Vτ法向应力周围流体作用的表面力切向应力AP p ∆∆=A T ∆∆=τAFA ∆∆=→∆limδAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 AT A ∆∆=→∆limτ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。

B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。

即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。

由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。

动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。

运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。

2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。

无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。

流体力学期末考试总结

流体力学期末考试总结
5
第一章 流体的属性
6
§1.1 流体的密度和重度
一、密度(mass density) 单位体积的流体所具有的质量,表示符号。 单位:kg/m3 密度反映流体的惯性。 均匀流体:
m V
非均匀流体:
limmdm
V0V dV
dm——所取微元体的质量;dV——微元体的体积 7
§1.1 流体的密度和重度
p p0
式中,t——摄氏温度
p——绝对压力
18
§1.3 气体的重要性质
三、空气的湿度与含湿量 饱和湿空气:水蒸气含量达到最大值,即饱和状态。 未饱和湿空气(过热状态) 1、湿度 1)绝对湿度 1m3湿空气中含有的水蒸气的质量。 饱和绝对湿度s ——一定温度下,湿空气达到饱和状态时的绝对湿 度。 <s,湿空气未饱和; =s,湿空气饱和。
28
§1.4 流体的粘性
四、理想流体和实际流体 自然界中存在的流体都具粘性,统称为粘性流体或实 际流体。 完全没有粘性的流体称为理想流体(一种假想)
29
第二章 流体静力学
30
§2.1 作用在流体上的力
一、表面力 作用在所研究流体体积表面上的力就称为表面力。是 由与流体相接触的其他物体(可以是流体,也可以是固体) 的作用而产生的。 单位面积上作用的表面力称为表面应力。 法向应力:与流体表面垂直 切向应力:与流体表面相切 注意:静止平衡的流体不存在切向应力,其表面应力 只有法向应力。
Fx m Fy
m
a
x
a
y
Z
Fz V
Fz m
az
32
§2.2 流体静压力及其特性
一、含义 流体单位面积上所受到的垂直指向该平面的力。 流体在单位面积上所受的内法向力。 单位:N/m2(Pa)、MPa、kgf/cm2(at、工程大气

高等流体力学复习总结

高等流体力学复习总结

m y 2 x 2 y 2
四、倒数函数-偶极子
m 1 m x yi w( z ) i 2 2 2 x yi 2 x y
m 1 w( z ) 2 z
m是实数
dw m 1 iQ dw dz dz 0 2 c c dz c 2 z
0
Q0
下册P168 习题12 13
第九章
粘性不可压缩流体运动
粘性不可压缩均质流体运动方程组
v 0
dv 1 F gradp v dt
连续性方程 N-S方程 本构方程
P pI 2S
d ( )v dt
涡旋运动方程
粘性流体运动的一般性质
2
1 u w 2 z x 1 v w z y 2 w z
1 u v 2 y x v y 1 v w z y 2
a是实数
用极坐标下的复数表达式
z re
i
w( z ) i a ln(rei ) a ln r i
a ln r
a
等势线族 流线族
w( z ) a ln z
a是实数
i
w( z ) i a ln(re ) a ln r i
直角坐标系中的形式
u 2 u v w p xx p 2 x y z x 3 v 2 u v w p yy p 2 x y z y 3 w 2 u v w p zz p 2 x y z z 3
μ为常数时涡旋矢量Ω应满足的微分方程

流体力学总结复习(1)

流体力学总结复习(1)

流体力学总结复习(1)流体力学总结复习流体力学是研究流体运动规律和特性的学科,广泛应用于工程、地质、气象、海洋等众多领域。

下面我们来对流体力学知识进行一次总结复习。

一、基本概念1. 流体:能够流动,在外力作用下形状能够变化的物质。

2. 流动:在流体中,由于外力作用下引起的变形并迅速影响到流体的整个体积的现象。

3. 流量:单位时间内穿过某一横截面的流体体积。

4. 压力:单位面积上的力。

二、流体力学的基本方程1. 质量守恒定律(连续方程):流体在任意两个截面的实际流量相等。

2. 动量守恒定律(牛顿第二定律):力是液体加速度的乘数。

3. 能量守恒定律(伯努利方程):流体在稳态流动过程中,流速越大,压力越小,反之亦然。

三、常见问题1. 流体的稳定性问题:稳定流动和不稳定流动分别是哪两种类型,有何区别?答:稳定流动指的是流体在正常工作状态下保持相同的流速、流量或密度的现象;不稳定流动指流体存在涡流,会导致流体在某些区域压力变低,而在其它区域则压力变高的现象。

2. 压力的公式推算问题:在同一高度、不同密度流体内,相等的质量在重力作用下会产生相等的压力,如何推算压力的公式?答:根据巴斯德公式p=F/A可得出,同等质量下仅仅因为液体密度而引起压力的不同,则对应产生的质量也相对应减小或增大,乘上液体密度,可得出公式p= (F/m)/A =g(h1-h2)/A。

其中,F为质量,A为面积,g为重力加速度,h1-h2为液体高度差。

3. 管道系统的计算问题:已知流量、水管长度、摩擦系数等参数,如何通过管路系统的计算公式推算管道流量?答:在未考虑管道阻力的前提下,管道系统的计算公式为Q=C*A*V。

其中,Q为单位时间内的流量,C为摩擦系数,A为管道横截面积,V为流速。

在考虑管道阻力之后,还需要增加修正系数,将管道阻力纳入考虑之中。

四、结语上述流体力学的相关内容是我们学习和应用流体力学的基础,同时也是我们将来学习更为复杂的流体力学问题的必要条件。

高等流体力学复习资料

高等流体力学复习资料

扩散:指流体在没有对流混合情况下,流体由分子的随机运动引起的质量传递的一种性质。

本构方程:是反应物体的外部效应与内部结构之间关系的方程。

对动力的粘性流体而言,外部黏性应力与内部变形速度之间的关系成为本构方程。

变形速度张量:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=zz zy zx yz yy yx xz xy xx s εεεεεεεεε,,,,,,,其中,z y v x zz yy xx ∂∂=∂∂=∂∂=ωεεμε,,, ⎪⎪⎭⎫⎝⎛∂∂+∂∂==x v y yx xy μεε21,⎪⎭⎫⎝⎛∂∂+∂∂==z x zx xz μωεε21,⎪⎪⎭⎫ ⎝⎛∂∂+∂∂==y z v zy yz ωεε21 雷诺应力:在不可压缩流体的雷诺方程中,j i -μμρ称为雷诺应力(i ,j>1,2,3)当i=j 时为法相雷诺应力,不等时称为均向雷诺应力。

镜像法:是确定干扰后流场的方法之一,是一种特别的奇点法。

粘性:流体微团发生相对滑移时产生切向阻力的性质。

不可压缩流体:0=DtD ρ的流体称为不可压缩流体。

不可压缩均质流体:C =ρ 可压缩流体:密度随温度和压强变化的流体称为可压缩流体。

紊流:是一种随机的三维非定常有旋流动。

紊流的基本特征:1,不规则流动状态;2,参数随时间空间随机变化;3,空间分布大小形状各不相同漩涡;4,具有瞬息万变的流动特征;5,流动参数符合概率规律;6,相邻参数有关联。

流体:通常说能流动的物质为流体,液体和气体易流动,我们把液体和气体称之为流体。

严格地说:在任何微小剪切力的持续作用下,能够连续不断变形的物质称为流体,流体显然不能保持一定的形状,即具有流动性。

耗散函数:iiij x p ∂∂μ'称为耗散函数Γ,Γ表示单位时间内单位体积流体由机械能耗散成热能ii ij ij i i ijx v div x p ∂∂⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛-=∂∂=Γμμεδμμμ232'' 应力张量:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=zz zy zx yz yy yx xz xy xx p p p p p p p p p p ,,,,,,称为应力张量,它是描述运动黏性流体内任一点应力状态的物理量。

流体力学资料复习整理.doc

流体力学资料复习整理.doc

流体复习整理资料第一章 流体及其物理性质1.流体的特征——流动性:在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。

也可以说能够流动的物质即为流体。

流体在静止时不能承受剪切力,不能抵抗剪切变形。

流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。

只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。

运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不是变形的大小(与弹性体的不同之处)。

2.流体的重度:单位体积的流体所的受的重力,用γ表示。

g 一般计算中取9.8m /s 23.密度:=1000kg/,=1.2kg/,=13.6,常压常温下,空气的密度大约是水的1/8003. 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。

通常液体和低速流动的气体(U<70m /s )可作为不可压缩流体处理。

4.压缩系数:弹性模数:21d /d p p E N mρβρ==膨胀系数:)(K /1d d 1d /d TVV T V V t ==β5.流体的粘性:运动流体内存在内摩擦力的特性(有抵抗剪切变形的能力),这就是粘滞性。

流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现。

温度升高时,液体的粘性降低,气体粘性增加。

6.牛顿内摩擦定律: 单位面积上的摩擦力为:内摩擦力为: 此式即为牛顿内摩擦定律公式。

其中:μ为动力粘度,表征流体抵抗变形的能力,它和密度的比值称为流体的运动粘度ν内摩擦力是成对出现的,流体所受的内摩擦力总与相对运动速度相反。

为使公式中的τ值既能反映大小,又可表示方向,必须规定:公式中的τ是靠近坐标原点一侧(即t -t 线以下)的流体所受的内摩擦应力,其大小为μ du/dy ,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。

流体力学知识重点(全)

流体力学知识重点(全)

流体力学知识点总结流体力学研究流体在外力作用下的宏观运动规律!流体质点:1. 流体质点无线尺度,只做平移运动2. 流体质点不做随即热运动,只有在外力的作用下作宏观运动;3. 将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性;流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。

流体元可看做大量流体质点构成的微小单元。

连续介质假设:假设流体是有连续分布的流体质点组成的介质。

连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律。

分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力。

液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力。

、流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止。

牛顿流体:动力粘度为常数的流体称为牛顿流体。

牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的:温度对粘度的影响:温度对流体的粘度影响很大。

液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大。

压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大。

毛细现象:玻璃管内的液体在表面张力的作用下液面升高或降低的现象称为毛细现象;描述流体运动的两种方法拉格朗日法:拉格朗日法又称为随体法。

它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结x一、流体力学基本概念1、流体:指气体和液体,其中气体又称气态物质,液体又称液态物质,也指过渡态的固、液、气。

2、流体静力学:指研究流体在外力作用下的静态特性、压强及重力场等的一般理论。

3、流体动力学:指研究复杂流动现象的动态特性,如流速、湍流及涡流等。

4、流体性质:指流体具有的物理性质,如密度、粘度、比容、表面张力和热特性等。

二、基本假定1、流体的原子间的相互作用是可以忽略的,可以认为是稀薄的。

2、可以假设流体每@点的性质是一致的,允许有速度和温度的变化,其变化有连续性。

3、流体的流动受力不受力,受力的变化很小。

4、流体流动的程度比凝固物体的几何比例大,可以忽略凝固物体对流体流动的影响。

三、流体力学基本概念1、流体质量流率:是流体中的所有物质在某一时刻的移动量,单位为千克/秒(千克/秒)。

2、流体动量流率:是流体中所有物质在某一时刻的动量的移动量,单位是千克·米/秒(千克·米/秒)。

3、流体的动量守恒:流体系统中的动量移动量不变,即:动量进入系统等于动量离开系统。

4、流体的动量定理:假定流体的粘度是恒定的,在流体力学中,运动的流体的动量守恒定理如下:5、流体的能量守恒:流体系统中的能量移动量不变,即:能量的一部分进入系统、离开系统或转移到其他系统中等于能量的一部分离开系统或转移到系统中。

6、绝对动量守恒:在不考虑粘度、流体的办法、温度及热量的变化的情况下,流体系统的绝对动量总量不变。

四、流体力学基本公式1、流体的动量定理:即Bernoulli定理,它用来描述非稳定流动中的动量转换,其形式为:p+ρv2∕2+ρgz=P+ρV+2;2、流体的能量定理:即费休定理,它用来描述流体中的施加动能和升能变化,其形式为:p+ρv2∕2+ρgz=P+ρV∕2+ρgz;3、流体力学定理:即拉格朗日定理,它用来描述流体的流动变化,其形式为:p+ρv2∕2+ρgz=p0+ρv02∕2+ρgz0;4、流体的动量方程:用来描述流体的动量变化,其形式为:(ρv)t+·ρvv=p+·μv+ρf。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档