垂径定理—知识讲解(提高)

合集下载

人教版初三数学:垂径定理—知识讲解(基础)

人教版初三数学:垂径定理—知识讲解(基础)

垂径定理—知识讲解(基础)【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm,则DC的长为()A.5 cm B.2.5 cm C.2 cm D.1 cm【思路点拨】欲求CD 的长,只要求出⊙O 的半径r 即可,可以连结OA ,在Rt △AOD 中,由勾股定理求出OA. 【答案】D ;【解析】连OA ,由垂径定理知13cm 2AD AB ==, 所以在Rt △AOD 中,2222435AO OD AD =+=+=(cm ).所以DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。

举一反三:【高清ID 号:356965 关联的位置名称(播放点名称):例4-例5】【变式】如图,⊙O 中,弦AB ⊥弦CD 于E ,且AE=3cm ,BE=5cm ,求圆心O 到弦CD 距离。

九年级数学垂径定理知识点

九年级数学垂径定理知识点

九年级数学垂径定理知识点数学是一门令我们既爱又恨的学科,而九年级的数学则是更加具有挑战性和深度的一门课程。

在九年级数学中,垂径定理是一个重要的知识点,它不仅在几何学中有广泛的应用,而且在实际生活中也有着许多有趣的应用。

在本文中,我们将一起来探索九年级数学中的垂径定理。

首先,我们来了解一下垂径定理的定义和概念。

垂径定理是几何学中的一个基本定理,它指出:“如果两条直线相交于一个点,并且其中一条直线垂直于另一条直线的过程中所产生的垂直线段与交点的距离相等,那么这两条直线是垂线。

”简单来说,垂径定理就是通过一个垂直线段来判断两条直线是否垂直的方法。

举个例子来说明垂径定理的应用。

假设有一个四边形的对角线相交于一个点,我们需要判断对角线是否垂直。

按照垂径定理,我们可以通过在交点处作一条垂直于对角线的线段,并将它延长至相邻的边上。

如果延长后的线段与相邻边的距离相等,那么我们可以断定对角线是垂直的;反之,如果距离不相等,则对角线不是垂直的。

通过这个简单的方法,我们可以快速判断一个四边形的对角线是否垂直。

垂径定理不仅在几何学中有重要的应用,而且在实际生活中也有许多有趣的应用。

例如,我们在修建房屋时需要确保墙体垂直,这就需要使用垂径定理来检验墙体是否垂直。

另一个应用是在导航系统中,也需要使用垂径定理来计算地球上两点之间的最短距离。

除了应用方面,垂径定理还有着一些有趣的数学性质。

一个有趣的性质是,如果两条直线是垂线,那么它们的斜率乘积为-1。

这个性质是垂径定理的一个重要推论,通过它我们可以更直观地理解垂线的概念。

此外,垂径定理还与其他几何定理有着密切的关系。

例如,垂径定理与直角三角形定理、等腰直角三角形定理以及勾股定理之间有着紧密的联系。

通过运用这些定理,我们可以更好地理解垂径定理的应用,并解决一些复杂的几何问题。

在学习垂径定理时,我们还需要注意一些容易出错的地方。

例如,我们在判断两条直线是否垂直时,不能只通过一个垂直线段的长度是否相等来判断,还需要考虑这个线段是否垂直于另一条直线。

垂径定理讲解

垂径定理讲解

垂径定律1.定义垂径定理(Vertical Theorem)的通俗表达是:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。

用数学语言表示,如果在一个圆中,直径DC垂直于弦AB于点E,则弦AB被点E平分(即AE=EB),且弦AB所对的两段弧AD和BD(包括优弧和劣弧)也被平分2.性质垂径定理包含多个重要的性质和推论,这些性质和推论在解决与圆相关的几何问题时非常有用。

1)基本性质:平分弦:垂直于弦的直径将弦平分为两段相等的部分。

平分弧:该直径还平分弦所对的两条弧,无论是优弧还是劣弧。

推论一:平分弦(非直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧。

这个推论是垂径定理的逆命题之一,它表明如果一条直径平分了一条非直径的弦,那么这条直径必然垂直于这条弦,并且平分弦所对的两段弧推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧。

这个推论进一步强化了垂径定理与圆的中心性质之间的联系,指出弦的垂直平分线不仅平分弦,还经过圆心,并平分弦所对的弧。

推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧。

这个推论是垂径定理的另一种逆命题形式,它说明如果一条直径平分了弦所对的一条弧,那么这条直径也垂直平分这条弦,并平分弦所对的另一条弧。

推论四:在同圆或者等圆中,两条平行弦所夹的弧相等。

这个推论虽然不直接由垂径定理推导出来,但它与垂径定理共同构成了圆内线段和弧之间关系的重要框架。

平行弦的性质与垂径定理相结合,为解决复杂的圆内几何问题提供了有力工具。

3.数学证明垂径定理的证明通常依赖于圆的基本性质,如半径相等、等腰三角形的性质等。

以下是一个简化的证明过程:设⊙O为给定的圆,DC为⊙O的直径,AB为⊙O内的一条弦,且DC⊥AB于点E。

连接OA和OB。

由于OA和OB都是⊙O的半径,所以OA=OB。

△OAB是一个等腰三角形,因为两边相等(OA=OB)。

由于AB⊥DC,根据等腰三角形的性质,等腰三角形底边上的高、中线和顶角的角平分线重合。

圆的垂径定理及推论知识点与练习(最新整理)

圆的垂径定理及推论知识点与练习(最新整理)

圆的垂径定理及其推论知识点与练习(1)垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧。

若直径AB ⊥弦CD 于点E ,则CE=DE ,⌒ AC=⌒ AD ;⌒ BC=⌒ BD (2)推论:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

若CE=DE ,AB 是直径,则⌒ AC=⌒AD ;⌒ BC=⌒ BD②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

若AB ⊥CD ,CE=DE ,则CD 是直径,⌒ AC=⌒ AD ;⌒ BC=⌒ BD③平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

若⌒ AC=⌒ AD ,AB 是直径,则AB ⊥CD ,CE=DE ,⌒ BC=⌒BD ④圆的两条平行弦所夹的弧相等。

若CD ∥FG ,CD 、FG 为弦,则⌒FC=⌒ GD 特别提示:①垂径定理及其推论可概括为:过圆心垂直于弦直径 平分弦 知二推三平分弦所对的优弧平分弦所对的劣弧②垂径定理可改写为:如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧.其中有四个条件:直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧.它的三个推论可看作“如果四个条件中有两个成立,那么另外两个也成立”.(3)垂径定理及推论的应用:它是证明圆内线段相等、角相等、垂直关系及利用勾股定理计算有关线段的长度提供了依据,也为圆中的计算、证明和作图提供了依据、思路和方法。

①垂径定理中的垂径可以是直径、半径或过圆心的直线、线段,其本质是“过圆心”;②在圆的有关计算中常用圆心到弦垂线段、弦的一半、半径构造出垂径定理的条件和直角三角形,从而应用勾股定理解决问题;例:如图,在⊙O 中,弦AB 所对的劣弧为圆的, 31圆的半径为2cm ,求AB 的长。

解:如图,连接OB ,过点O 作OD ⊥AB 交AB 于点C ,由题意得,∵⌒ AB= ×360º=120º31∴∠AOB=120º,∴∠AOC=60º,在Rt △AOC 中,∵∠AOC=60º,OA=2,∴OC =OA=1,∴AB=2AC=2=22122OC AO 3故AB 的长为23练习一、选择题1、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是( )A 、CM=DMB 、∠ACB=∠ADBC 、AD=2BD D 、∠BCD=∠BDCGA A(1题图) (2题图) (3题)2、圆弧形蔬菜大棚的剖面如图所示,AB=8m ,∠CAD=30°,则大棚高度CD 约为( )A 、2.0mB 、2.3mC 、4.6mD 、6.9m3、如图,在⊙O 中,AB 、AC 是互相垂直的两条弦,OD ⊥AB 于D ,OE ⊥AC 于E ,且AB=8cm ,AC=6cm ,那么⊙O 的半径OA 长为( )A 、4cmB 、5cmC 、6cmD 、8cm4、半径为2cm 的圆中,有一条长为2cm 的弦,则圆心到这条弦的距离为( )A 、1cmB 、 cmC 、 cmD 、2cm5、如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不一定成立的是( )A 、∠COE=∠DOEB 、CE=DEC 、OE=BED 、⌒ BC=⌒ BD(题5)(题6)6、如图所示,在⊙O 中,OD ⊥AB 于P ,AP=4cm ,PD=2cm ,则OP 的长等于( )A 、9cmB 、6cmC 、3cmD 、1cm 二、填空题1、如图1中有 对全等的直角三角形;有 个等腰三角形;有 条相等的弧。

垂径定理知识点

垂径定理知识点

垂径定理知识点1. 垂径定理说啦,垂直于弦的直径平分弦!就好像你有一根绳子,我拿一根直直的杆子从中间穿过,那这根杆子是不是就把绳子给平均分成两半啦!比如说,一个圆形的蛋糕,直径把它分成相等的两半,这就是垂径定理在起作用呀,是不是很神奇?2. 嘿,垂径定理还提到,平分弦的直径垂直于弦呢!这不就像拔河比赛,中间的红绳被公平地分成两半,那和地面肯定是垂直的呀!就像一个圆形的大饼,用刀平分它,这刀肯定和饼是垂直的呀,是不是很有意思呢?3. 你想想看呀,垂径定理告诉我们,垂直于弦的直径平分弦且平分这条弦所对的两条弧!好比一把撑开的伞,伞骨垂直伞面,把伞面分成相等的部分,那同时也把下面的空间也给平分啦!比如一个圆形的池塘,中间有根柱子垂直立着,那柱子两边的水面区域就是相等的,超厉害的吧!4. 不得了哦,垂径定理里说平分弦所对的一条弧的直径,必垂直平分这条弦!就好像英雄总是和他的武器相得益彰,武器能发挥最大威力,英雄也能更厉害!像个钟的指针,钟的中心轴线平分了指针划过的弧,那必然也和指针是垂直的呀,多形象呀!5. 哇塞,垂径定理也包括平分弦所对的两条弧的直径,垂直平分弦呢!这就好像有个神奇的魔法棒,只要一挥,就能让东西变得整齐有序!比如一个摩天轮,中间的轴既能把那些车厢走过的弧平分,又能让连接车厢的杆子垂直,这就是垂径定理的魅力呀!6. 哎呀呀,垂径定理还有哦,弦的垂直平分线经过圆心!这简直就像是给圆心找到回家的路一样清楚明白呀!好比你放风筝,线的垂直平分线肯定是要经过风筝的中心呀!像个圆形的轮子,轮子上一根线的垂直平分线肯定会经过轮子中心,是不是很明了?7. 最后呢,平分弦的直径,不一定垂直于弦哦!这就好像不是所有的好人都一定是强壮的一样。

比如有根不太直的棍子平分了一根线,但它们不一定是垂直的呀。

垂径定理真的很有趣呢,我们一定要好好掌握呀!我的观点结论就是:垂径定理非常的神奇和有趣,在很多方面都有重要的应用,我们要多多去理解和运用它呀!。

3.52垂径定理—知识讲解(提高)

3.52垂径定理—知识讲解(提高)

3.52垂径定理—知识讲解(提高)【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.学会运用垂径定理及其推论解决有关的计算、证明和作图问题.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.(4)圆的两条平行弦所夹的弧相等.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1. 如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是.【答案】5.【解析】作OM⊥AB于M、ON⊥CD于N,连结OA,∵AB=CD,CE=1,ED=3,∴OM=EN=1,AM=2,∴.【点评】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题.举一反三:【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径.【答案】如图所示,过点O分别作OM⊥AB于M,ON ⊥CD于N,则四边形MONH为矩形,连结OB,∴12MO HN CN CH CD CH==-=-11()(38)3 2.522CH DH CH=+-=+-=,111()(46)5222BM AB BH AH==+=+=,∴在Rt△BOM中,OB==【变式2】如图,AB为⊙O的弦,M是AB上一点,若AB=20cm,MB=8cm,OM=10cm,求⊙O的半径. 【答案】14cm.2.已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.【思路点拨】在⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.【答案与解析】(1)如图1,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长MO,交CD于N点.分别连结AO、CO.∵AB∥CD∴ON⊥CD,即ON为弦CD的弦心距.∵AB=12cm,CD=16cm,AO=OC=10cm,=8+6=14(cm)图 1 图2(2)如图2所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O的同侧)时,同理可得:MN=OM-ON=8-6=2(cm)∴⊙O中,平行弦AB、CD间的距离是14cm或2cm.【点评】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.举一反三:【变式】在⊙O中,直径MN⊥AB,垂足为C,MN=10,AB=8,则MC=_________.【答案】2或8.类型二、垂径定理的综合应用3. 要测量一个钢板上小孔的直径,通常采用间接的测量方法.如果用一个直径为10mm的标准钢珠放在小孔上,测得钢珠顶端与小孔平面的距离h=8mm(如图所示),求此小孔的直径d.【思路点拨】此小孔的直径d就是⊙O中的弦AB.根据垂径定理构造直角三角形来解决.【答案与解析】过O作MN⊥AB,交⊙O于M、N,垂足为C,则1105mm2OA=⨯=,OC=MC-OM=8-5=3mm.在Rt△ACO中,AC4mm =,∴ AB=2AC=2×4=8mm.答:此小孔的直径d为8mm.【点评】应用垂径定理解题,一般转化为有关半径、弦、弦心距之间的关系与勾股定理的运算问题.4. 不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F.(1)在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(OA=OB除外)(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.【答案与解析】(1)如图所示,在图①中AB、CD延长线交于⊙O外一点;在图②中AB、CD交于⊙O内一点;在图③中AB∥CD.(2)在三个图形中均有结论:线段EC=DF.(3)证明:过O作OG⊥l于G.由垂径定理知CG=GD.∵ AE⊥l于E,BF⊥l于F,∴ AE∥OG∥BF.∵ AB为直径,∴ AO=OB,∴ EG=GF,∴ EC=EG-CG=GF-GD=DF.【点评】在运用垂径定理解题时,常用的辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形.【巩固练习】一、选择题1.如图所示,三角形ABC的各顶点都在⊙O上,AC=BC,CD平分∠ACB,交圆O于点D,下列结论:①CD是⊙O的直径;②CD平分弦AB;③AC BC=;④AD BD=;⑤CD⊥AB.其中正确的有()A.2个 B.3个 C.4个D.5个2.下面四个命题中正确的是( ).A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心3.如图,弦CD垂直于⊙O的直径AB,垂足为H,且COBDACD=,则AB的长为()A.2 B.3 C.4D.5第3题第5题第6题4.⊙O的半径OA=1,弦AB、AC,则∠BAC的度数为( ).A.15° B.45° C.75°D.15°或75°5.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE为1寸,AB为10寸,求直径CD的长.依题意,CD长为( ).A.252寸 B.13寸 C.25寸D.26寸6.如图,EF是⊙O的直径,AB是弦,EF=10cm,AB=8cm,则E、F两点到直线AB的距离之和为().A.3cm B.4cm C.8cmD.6cm二、填空题7.如图,⊙O的弦AB垂直于CD,E为垂足,AE=3,BE=7,则圆心O到CD的距离是______.8.如图,P为⊙O的弦AB上的点,P A=6,PB=2,⊙O的半径为5,则OP=______.7题图8题图9题图9.如图,⊙O的弦AB垂直于AC,AB=6cm,AC=4cm,则⊙O的半径等于______cm.10.圆心都在y轴上的两圆相交于A、B两点,如果A点的坐标为(2,那么B点的坐标为____________.11.在图11中,半圆的直径AB=4cm,O为圆心,半径OE⊥AB,F为OE的中点,CD∥AB,则弦CD的长为.(第12题)12.如图,点A、B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合)连结AP,PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF= .三、解答题13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,CD=15,35OE OC=∶∶,求弦AB和AC的长.14.如图所示,C为ACB的中点,CD为直径,弦AB 交CD于P点,PE⊥BC于E,若BC=10cm,且CE:BE=3:2,求弦AB的长.15.如图所示,已知O是∠MPN的平分线上的一点,以O为圆心的圆与角的两边分别交于点A、B和C、D.⑴求证:PB=PD.⑵若角的顶点P在圆上或圆内,⑴中的结论还成立吗?若不成立,请说明理由;若成立,请加以证明.16.如图,点M,N分别是AB、AC的中点,且MN 交AB于D,交AC于E,求证:△ADE是等腰三角形.【答案与解析】一、选择题1.【答案】D.【解析】由圆的对称性、等腰三角形的三线合一的性质可得到5个结论都是正确的.2.【答案】D.【解析】根据垂径定理及其推论来判断.3.【答案】B.【解析】由垂径定理得HD=,由勾股定理得HB=1,设圆O的半径为R,在Rt△ODH中,则()2221R R=+-,由此得R=32,所以AB=3.故选 B.4.【答案】D.【解析】分弦AB、AC在圆心的同侧和异侧讨论. 5.【答案】D.【解析】连结AO,∵ CD为直径,CD⊥AB,∴152AE AB==.设⊙O半径为R,则OE=R-1.Rt△AOE中,OA2=AE2+OE2,∴ R2=52+(R-1)2,P∴ R =13,∴ CD =2R =26(寸). 故选D .6.【答案】D .【解析】E 、F 两点到直线AB 的距离之和为圆心O 到AB 距离的2倍. 二、填空题 7.【答案】2. 8.【答案】.13 9.【答案】.13 10.【答案】(2-.【解析】因为y 轴是两圆的对称轴,所以两圆的交点关于y 轴对称,则B (2-. 11.【答案】.【解析】连接OC,易求CD=. 12.【答案】5.【解析】易证EF 是△APB 的中位线,EF=15.2AB = 三、解答题13.【答案与解析】连结OA ,∵CD=15,35OE OC =∶∶, ∴OA=OC=7.5,OE=4.5,CE=3,∴6212AE AB AE AC ========,14.【答案与解析】因为C 为ACB 的中点,CD 为直径,弦AB 交CD 于P 点,所以 CD ⊥AB.由BC=10cm ,且CE :BE=3:2,得CE=6cm ,BE=4cm ,设,,BP a CP b ==则22222221046a b a b ⎧+=⎪⎨-=-⎪⎩解得a =,2AB a ==.15.【答案与解析】(1)证明:过O 作OE ⊥PB 于E ,OF ⊥PD 于F. ∵ PO 平分∠MPN∴ OE=OF ,PE=PF ∴ AB=CD ,BE=DF ∴ PE+BE=PF+DF ∴ PB=PD(2)上述结论仍成立.如下图所示.证明略. 16.【答案与解析】连结OM 、ON ,分别交AB 、AC 于F 、G 点.∵ M 、N 分别为AB 、AC 中点,∴ ∠MFD =90°=∠EGN . ∵ OM =ON ,有∠M =∠N ,知∠MDB =∠NEC , 而∠MDB =∠1,∠NEC =∠2,于是∠l =∠2,故AD =AE .所以△ADE 是等腰三角形.。

第07讲 垂径定理

第07讲 垂径定理

第07讲垂径定理(核心考点讲与练)【知识梳理】一.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.二.垂径定理的应用垂径定理的应用很广泛,常见的有:(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.【核心考点精讲】一.垂径定理(共5小题)1.(2022•拱墅区一模)已知AB是⊙O的弦,半径OC⊥AB于点D.若DO=DC,AB=12,则⊙O的半径为()A.4B.4C.6D.62.(2016秋•北仑区期末)⊙O的直径AB和弦CD相交于点E,已知AE=6,EB=2,∠CEA=30°,则弦CD的长为()A.8B.4C.2D.23.(2022春•长兴县月考)如图,AB是⊙O的直径,CD⊥AB于点E,连结CO并延长,交弦AD于点F.若AB=10,BE=2,则OF的长度是()A.B.3C.D.4.(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B(0,4),与x轴交于C,D,则点D的坐标为()A.B.C.D.5.(2021秋•北仑区校级期中)如图,⊙•O的直径AB=5,弦AC=3,点D是劣弧BC上的动点,CE⊥DC交AD于点E,则OE的最小值是()A.B.C.2﹣D.﹣1二.垂径定理的应用(共4小题)6.(2021秋•鹿城区校级期中)如图是一个小圆同学设计的一个鱼缸截面图,弓形ACB是由优弧AB与弦AB组成,AC是鱼缸的玻璃隔断,弓形AC部分不注水,已知CD⊥AB,且圆心O在CD上,AB=CD=80cm.注水时,当水面恰好经过圆心时,则水面宽EF为cm;注水过程中,求水面宽度EF的最大值为cm.7.(2022•旌阳区二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.2米C.米D.米8.(2021秋•温岭市期末)把一个球放入长方体纸盒,球的一部分露出盒外,球与纸盒内壁都刚好相切,其截面如图所示,若露出部分的高度为6cm,AF=DE=3cm,则这个球的半径是cm.9.(2021秋•诸暨市期末)一根排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=12,如果再注入一些水,当水面AB的宽变为16时,则水面AB上升的高度为.【过关检测】一.选择题(共7小题)1.(2022春•市中区校级月考)如图,在⊙O中,OC⊥AB于点C,若⊙O的半径为10,OC=5,则弦AB的长为()A.5B.10C.5D.102.(2021秋•温州期末)如图,在⊙O中,半径OC⊥AB于点D.已知OC=5,OD=4,则弦AB的长为()A.3B.4C.5D.63.(2021秋•嘉兴期末)如图,⊙O的直径AB=12,弦CD垂直AB于点P.若BP=2,则CD的长为()A.2B.4C.4D.84.(2021秋•嵊州市期末)如图,CD是⊙O的弦,直径AB⊥CD,垂足为M,连结AD.若CD=8,BM=2,则AD的长为()A.10B.5C.4D.35.(2021秋•东阳市期末)在圆柱形油槽内装有一些油,截面如图所示,已知截面⊙O半径为5cm,油面宽AB为6cm,如果再注入一些油后,油面宽变为8cm,则油面AB上升了()cm.A.1B.3C.3或4D.1或7 6.(2021秋•宁波期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=6cm,则球的半径为()A.3cm B.cm C.cm D.cm 7.(2021秋•拱墅区期中)如图,在⊙O中,直径AB=10,弦DE⊥AB于点C,若OC:OA=4:5,则DE的长为()A.6B.7C.8D.9二.填空题(共8小题)8.(2021秋•余姚市期末)如图1,水车又称孔明车,是我国最古老的农业灌溉工具,是珍贵的历史文化遗产.如图2,圆心O在水面上方,且⊙O被水面截得的弦AB长为8米,半径为5米,则圆心O到水面AB的距离为米.9.(2021秋•瑞安市期末)如图,AB为⊙O的直径,弦CD⊥AB于点E,CD=10,BE=3,则AE长为.10.(2021秋•拱墅区期末)如图,一个底部呈球形的烧瓶,球的半径为5cm,瓶内原有液体的最大深度CD=4cm.部分液体蒸发后,瓶内液体的最大深度下降为2cm,则截面圆中弦AB的长减少了cm(结果保留根号).11.(2021秋•温州校级月考)如图是郑州圆形“戒指桥”,其数学模型为如图所示.已知桥面跨径AB=20米,D为圆上一点,DC⊥AB于点C,且CD=BC=14米,则该圆的半径长为米.12.(2022•瑞安市开学)如图,矩形ABCD中,E,F分别是边AB,BC上的两个动点,将△BEF沿着直线EF作轴对称变换,得到△B′EF,点B′恰好在边AD上,过点D,F,B′作⊙O,连结OF.若OF⊥BC,AB′=CF=3时,则AE=.13.(2021秋•镇海区期末)⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为cm.14.(2020•金华模拟)如图,依据九上教材中的丁字尺,小明开始自制丁字尺:F、A、D、E在同一直线上,AF⊥AB,AB∥CD,AF=4cm,AD=DE=2cm.(1)现有一圆经过F、E,弧EF为劣弧,且与AB交于G,如果测得AG的长为10cm,那么圆的半径为;(2)小明在DC上制作单位刻度时不小心把尺子割断了,只余DM=1cm,此时只运用这把残破的丁字尺的已知数据(一条线段不能分段测量且不能作延长线),能计算或测量(不计误差)得到的最大半径是.15.(2022•海曙区一模)如图,圆O的半径为4,点P是直径AB上定点,AP=1,过P 的直线与圆O交于C,D两点,则△COD面积的最大值为;作弦DE∥AB,CH ⊥DE于H,则CH的最大值为.三.解答题(共5小题)16.(2021秋•西湖区校级月考)如图,CD为⊙O的直径,CD⊥AB于E,CE=8,DE=2,求AB的长.17.(2021•柯桥区模拟)如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=2.(1)求OD的长;(2)计算阴影部分的周长.18.(2021秋•玄武区校级月考)如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB 的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=EG=8,求⊙O的半径.19.(2021秋•下城区校级月考)如图,有一座圆弧形拱桥,它的跨度AB为30m,拱高PM 为9m,当洪水泛滥到跨度只有15m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有2m,即PN=2m时,试求:(1)拱桥所在的圆的半径;(2)通过计算说明是否需要采取紧急措施.20.(2020秋•永嘉县校级期末)如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD 交AC于点E,AD=CD.(1)求证:OD∥BC;(2)若AC=10,DE=4,求BC的长.。

垂径定理—知识讲解(提高)

垂径定理—知识讲解(提高)

垂径定理-知识讲解(提高)【学习目标】1.理解圆得对称性;2.掌握垂径定理及其推论;3。

学会运用垂径定理及其推论解决有关得计算、证明与作图问题.【要点梳理】知识点一、垂径定理1、垂径定理ﻫ垂直于弦得直径平分这条弦,并且平分弦所对得两条弧、ﻫ2、推论平分弦(不就是直径)得直径垂直于弦,并且平分弦所对得两条弧、ﻫ要点诠释:(1)垂径定理就是由两个条件推出两个结论,即ﻫ(2)这里得直径也可以就是半径,也可以就是过圆心得直线或线段、知识点二、垂径定理得拓展根据圆得对称性及垂径定理还有如下结论:(1)平分弦(该弦不就是直径)得直径垂直于弦,并且平分弦所对得两条弧;(2)弦得垂直平分线经过圆心,并且平分弦所对得两条弧;(3)平分弦所对得一条弧得直径,垂直平分弦,并且平分弦所对得另一条弧、(4)圆得两条平行弦所夹得弧相等、要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对得优弧、平分弦所对得劣弧,在这五个条件中,知道任意两个,就能推出其她三个结论、(注意:“过圆心、平分弦”作为题设时,平分得弦不能就是直径)【典型例题】类型一、应用垂径定理进行计算与证明1、如图,⊙O得两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O得半径就是.【答案】错误!、【解析】作OM⊥AB于M、ON⊥CD于N,连结OA,∵AB=CD,CE=1,ED=3,∴OM=EN=1,AM=2,∴OA=、【点评】对于垂径定理得使用,一般多用于解决有关半径、弦长、弦心距之间得运算(配合勾股定理)问题、举一反三:【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径。

【答案】如图所示,过点O分别作OM⊥AB于M,ON⊥CD于N,则四边形MONH为矩形,连结OB,∴,,∴在Rt△BOM中,。

【高清ID号:356965关联得位置名称(播放点名称):例2—例3】【变式2】如图,AB为⊙O得弦,M就是AB上一点,若AB=20cm,MB=8cm,OM=10cm,求⊙O得半径、【答案】14cm、【高清ID号:356965 关联得位置名称(播放点名称):例2—例3】2、已知:⊙O得半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间得距离、【思路点拨】在⊙O中,两平行弦AB、CD间得距离就就是它们得公垂线段得长度,若分别作弦AB、CD得弦心距,则可用弦心距得长表示这两条平行弦AB、CD间得距离、【答案与解析】(1)如图1,当⊙O得圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长MO,交CD于N点、分别连结AO、CO、ﻫ∵AB∥CD∴ON⊥CD,即ON为弦CD得弦心距、∵AB=12cm,CD=16cm,AO=OC=10cm,ﻫﻫ=8+6=14(cm)ﻫ图1 图2(2)如图2所示,当⊙O得圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O得同侧)时,ﻫ同理可得:MN=OM-ON=8-6=2(cm)∴⊙O中,平行弦AB、CD间得距离就是14cm或2cm、ﻫ【点评】解这类问题时,要按平行线与圆心间得位置关系,分类讨论,千万别丢解、举一反三:【变式】在⊙O中,直径MN⊥AB,垂足为C,MN=10,AB=8,则MC=_________.【答案】2或8.类型二、垂径定理得综合应用3、要测量一个钢板上小孔得直径,通常采用间接得测量方法。

九年级数学圆第三节垂径定理知识梳理及典例分析

九年级数学圆第三节垂径定理知识梳理及典例分析

第三节垂径定理知识点梳理【知识点一】垂径定理1.圆的轴对称:圆是轴对称图形,每一条过圆心的直线都是它的对称轴。

2.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

3.弧的中点:分一条弦成相等的两条弧的点,叫做这条弧的中点。

4.弦心距:圆心到圆的一条弦的距离叫做弦心距。

【知识点二】垂径定理的逆定理1.定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

2.定理2:平分弧的直径垂直平分弧所对的弦。

典例分析【题型一】利用垂径定理进行计算【例1】如图,在⊙O中,AB,AC为互相垂直且相等的两条弦,OD丄AB ,0E丄AC,垂足分别为D,E.若 AC=AB=2 cm,求⊙O的半径.【变式1】如图⊙O的直径AB =16 cm,P是0B的中点,∠APD=30°,求CD的长.【题型二】在直角坐标系中利用垂径定理求点的坐标【例1】如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2) ,点A的坐标为(2,0) ,则点B的坐标为_______【变式1】如图在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A 两点,点A的坐标为(6,0),⊙P的半径为13,则点P的坐标为_________【题型三】应用垂径定理等分弧【例1】如图为一自行车内胎的一部分,如何利用所学知识将它平均分给四个小朋友做玩具?【变式1】小云出黑板报时遇到了一个难题,在版面设计过程中需要将一个半圆面三等分.如图,请帮她设计一个合理的等分方案,要求尺规作图,保留作图痕迹。

【题型四】垂径定理的实际应用【例1】某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图,污水水面宽度为60 cm,水面至管道顶部距离为10 cm,问:修理人员应准备内径多大的管道?【变式1】如图是一条水平铺设的直径为2 m的通水管道横截面,其水面宽1.6 m,则这条管道中此时最深为__________m【题型五】利用垂径定理求最值【例1】如图 , ⊙O的半径为5 ,弦AB 的长为8,M是弦AB上的一个动点,则线段0M长的最小值为( ).A.2B.3C.4D.5【变式1】如图,在⊙O 中,AB 是⊙O 的直径,AB = 8 cm,AC =CD =BD ,M 是AB 上一动点,CM十DM 的最小值为______cm【题型六】与垂径定理有关的分类讨论问题【例1】已知点 A,B,C 都在⊙O 上,且 AB=AC,圆心O 到BC 的距离为6 cm,圆的半径为l4 cm,求AB 的长.【变式1】已知⊙O 的直径CD=10 cm ,AB 是⊙O 的弦,AB= 8 cm,且AB 丄CD,垂足为点 M,则 AC 的长为( ). A.52cm B.54cm C.52cm 或54cm D.32cm 或34cm【变式2】已知,⊙O 的半径是5,AB, CD 为⊙O 的两条弦,且 AB ∥CD, AB=6, CD = 8,求 AB, CD 间的距离。

垂径定理九年级知识点

垂径定理九年级知识点

垂径定理九年级知识点垂径定理,也称为垂径长定理,是几何中一个重要的定理,用来描述圆内任意两条互相垂直的直径和其所对应的弦的关系。

下面将详细介绍有关垂径定理的九年级知识点。

1. 垂径定理的表述垂径定理指出,一个圆的直径与其所对应的弦垂直相交,具体表述为:"在一个圆内,如果一条弦垂直于直径,那么这条弦将被切成两段,而且这两段的乘积等于每个一段的长度与直径的乘积,即 d1×d2=2×r×a"。

其中,d1和d2分别代表切割弦的两段,r代表圆的半径,a代表这两段与直径的距离。

2. 垂径定理的证明垂径定理的证明可以通过数学推理和几何推导来完成。

首先,假设圆的直径AB与弦CD互相垂直相交于点O,以及切割弦CD的两段为CE和ED。

根据垂径定理的表述,我们可以得出以下几个等式:AE×EB = CE×ED (1)AO×OB = CO×OD (2)由于AO = CO, OB = OD,将式(2)代入式(1),我们可以得到:AE×EB = AO×OB = r×r = r²因此,垂径定理得证。

3. 垂径定理的应用垂径定理在几何证明和问题求解中经常被应用。

下面介绍几个常见的应用场景:a. 证明两条直线垂直相交当需要证明两条直线垂直相交时,可以利用垂径定理。

首先,通过画圆和连接弦的方式将直线和圆相交,然后利用垂径定理得出圆内两条互相垂直的直径和它们对应的弦的关系,进而推断出直线的垂直关系。

b. 求解弦长已知圆的半径和一个垂直切线与弦的交点坐标,可以利用垂径定理求解弦的长度。

根据垂径定理的表述,我们可以通过已知的半径和切线坐标计算出弦的长度,从而得到所需的结果。

c. 求解直径长已知圆的半径和两条互相垂直的弦的长度,可以利用垂径定理求解直径的长度。

根据垂径定理的表述,我们可以通过已知的弦长和半径计算出直径的长度,进而得到所需的结果。

垂径定理九年级数学知识点

垂径定理九年级数学知识点

垂径定理九年级数学知识点垂径定理是九年级数学中的一个重要知识点,它涉及到平面几何的基本概念和性质。

在学习垂径定理之前,我们先来了解一下什么是垂径。

一、垂径的定义和性质垂径是在平面上与一条直线垂直相交的线段。

根据垂径的定义,我们可以得到以下性质:1. 一个点到直线的垂径只有一个。

2. 直径的两个垂径互相垂直。

3. 如果两条直径互相垂直,那么它们一定相交于圆的圆心上。

了解了垂径的定义和性质,我们就可以进一步探讨垂径定理了。

二、垂径定理的表述垂径定理是指:如果一条直径和一条垂径相交于圆上的一个点,那么这条垂径所对的弧就是直径所对的弧的一半。

换句话说,直径和垂径所对的弧互为一半。

三、垂径定理的证明垂径定理的证明可以通过利用圆的基本性质和几何知识来完成。

下面我们通过具体的例子来进行证明。

假设在圆O中,AB是直径,CD是与AB垂直相交于点E的垂径。

我们要证明的是:弧CD是弧AB的一半。

首先,连接OA和OB。

根据垂径的性质,我们知道OA和CD互相垂直,所以OA和CD构成一对垂直线段。

同样地,OB和CD也构成一对垂直线段。

由于OA和OB是圆的直径,所以它们穿过圆心O,并且与圆相交于圆上的两个点A和B。

根据圆的性质,直径的两条垂径与圆相交的弧互为一半。

因此,我们可以得出结论:弧CA等于弧CB的一半。

根据弧度的性质,我们知道弧度等于圆心角的度数。

所以弧度CA等于角CBA的度数。

同理,弧度CB等于角CAB的度数。

既然我们已经知道角CBA和角CAB是互补角,而且它们的两条弧互为一半。

所以我们可以得出结论:弧CD等于弧AB的一半。

四、垂径定理的应用垂径定理的应用非常广泛,不仅在九年级的几何学中常常被使用,而且在实际生活中也可以见到它的应用。

例如,在建筑设计中,我们经常会使用垂径定理来确定建筑物的位置和相对位置。

通过利用垂径定理,我们可以确定建筑物的中心位置,从而达到平衡和美观的效果。

此外,在航空和导航领域,垂径定理也被广泛运用。

2024年公开课大赛《垂径定理》一等奖教案

2024年公开课大赛《垂径定理》一等奖教案

引导学生发现问题并思考
教师通过举例或提出实际问题,引导学生发现与垂径定理相关的数学问题或实际应 用场景。
鼓励学生提出自己的疑问或想法,激发他们的探究欲望。
教师可针对学生的问题或想法,给予适当的引导或提示,帮助学生明确探究方向。
分组讨论与交流心得
各组围绕垂径定理的应用、证明 方法、相关性质等展开讨论,分 享各自的理解和心得。
05
06
在讲解重点内容时适当放慢语速、增加示 范次数,确保学生能够充分理解和掌握。
不断完善教学方法和手段
引入更多实际案例和应用场景,帮助学 生更好地理解和应用垂径定理。
采用多媒体教学手段,如动画演示、视 频教程等,增加课堂趣味性和互动性。
鼓励学生进行小组讨论和合作学习,培 养他们的团队协作能力和自主学习能力
课堂练习(10分钟)
学生独立完成课堂练习,巩固所 学知识。
例题解析(15分钟)
通过具体例题解析垂径定理的应 用方法。
02
知识点梳理与讲解
垂径定理及其逆定理
垂径定理
垂直于弦的直径平分这条弦,并 且平分弦所对的两条弧。
垂径定理的逆定理
平分弦(不是直径)的垂直平分 线必过圆心。
相关性质与推论
性质
圆的两条平行弦所夹的弧相等;弦心距相等则弦相等;弦相等则弦心距相等。
案。
提供一些开放性的问题和任务, 如设计一个与垂径定理相关的数 学实验或数学模型,培养学生的
创新思维和实践能力。
引导学生对解决问题的过程进行 反思和总结,帮助学生形成解决 问题的策略和方法论,提高学生
的元认知能力。
05
课堂小结与作业布置
总结本节课重点内容
1 2 3
垂径定理的定义和性质

垂径定理---圆弧型拱桥问题

垂径定理---圆弧型拱桥问题

24.1.2(3)垂径定理---圆弧型拱桥问题
一.【知识要点】
1.方法:“定宽比高”或“定高比宽”
二.【经典例题】
1.如图,某地有一座圆弧形拱桥,桥下水面宽度AB为7.2m,拱高CD为
2.4m.
(1)求拱桥的半径;
(2)现有一艘宽3m、船舱顶部为长方形并高出水面2m的货船要经过这里,问此货船能顺利通过拱桥吗?
2.有一石拱桥,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当水面到拱顶距离为
3.5米时需要采取紧急措施,当水面宽MN=32m时.
(1)石拱桥为圆弧形时,是否需要采取紧急措施?
(2)石拱桥为抛物线形时,是否需要采取紧急措施?
三.【题库】
【A】
1.如图,有一座石拱桥的桥拱是以O为圆心,OA为半径的一段圆弧。

若∠AOB=120°,OA=4米,请求出石拱桥的高度。

【B】【C】【D】
B
O
A。

垂径定理的课件讲义.doc

垂径定理的课件讲义.doc

2、内容提要:圆的轴对称性:过圆心的任一条直线(直径所在的直线)都是它的对称轴。

垂径定理⎩⎨⎧平分弦所对的两条弧。

)的直径垂直于弦,且推论:平分弦(非直径对的两条弧;平分弦,并且平分弦所定理:垂直于弦的直径推论:平行的两弦之间所夹的两弧相等。

相关概念:弦心距:圆心到弦的距离(垂线段OE)。

应用链接:垂径定理常和勾股定理联系在一起综合应用解题(利用弦心距、半径、半弦构造Rt△OAE)。

3、垂径定理常见的五种基本图形4、垂径定理的两种变形图基本题型一、求半径例1.高速公路的隧道和桥梁最多.图1是一个隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=10米,净高CD=7米,则此圆的半径OA=((A)5 (B)7 (C)375(D)377图1练习1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求圆的半径.练习2、如图,在⊙O 中,AB 是弦,C 为的中点,若32=BC ,O 到AB 的距离为1.求⊙O 的半径.练习3、如图,一个圆弧形桥拱,其跨度AB 为10米,拱高CD 为1米.求桥拱的半径.二、求弦长例2.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图2所示,则这个小孔的直径AB mm .练习2、在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm ,那么油面宽度AB 是 cm.图3BA8mm图2三、求弦心距例 3.如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F .(1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.练习3.如图4,O 的半径为5,弦8AB =,OC AB ⊥于C ,则OC 的长等于 .四、求拱高例4.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图5所示,已知AB,高度CD 为_____m .五、求角度例5.如图6,在⊙O 中,AB 为⊙O 的直径,弦CD ⊥AB ,∠AOC=60º,则∠B = .六、探究线段的最小值例6.如图7,⊙O 的半径OA =10cm ,弦AB =16cm ,P为AB 上一动点,则点P 到圆心O 的最短距离为 cm .七、其他题型例7、如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长.BAO图5B图6图7例8、在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离.例9、如图所示,P 为弦AB 上一点,CP ⊥OP 交⊙O 于点C ,AB =8,AP:PB =1:3,求PC 的长。

垂径定理—知识讲解(基础)

垂径定理—知识讲解(基础)

垂径定理—知识讲解(基础)责编:常春芳【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm,则DC的长为()A.5 cm B.2.5 cm C.2 cm D.1 cm【思路点拨】欲求CD 的长,只要求出⊙O 的半径r 即可,可以连结OA ,在Rt △AOD 中,由勾股定理求出OA.【答案】D ;【解析】连OA ,由垂径定理知13cm 2AD AB ==, 所以在Rt △AOD 中,2222435AO OD AD =+=+=(cm ).所以DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。

举一反三:【高清ID 号:356965 关联的位置名称(播放点名称):例4-例5】【变式】如图,⊙O 中,弦AB ⊥弦CD 于E ,且AE=3cm ,BE=5cm ,求圆心O 到弦CD 距离。

垂径定理—知识讲解(基础)

垂径定理—知识讲解(基础)

垂径定理—知识讲解(基础)【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm,则DC的长为()A.5 cm B.2.5 cm C.2 cm D.1 cm【思路点拨】欲求CD 的长,只要求出⊙O 的半径r 即可,可以连结OA ,在Rt △AOD 中,由勾股定理求出OA.【答案】D ;【解析】连OA ,由垂径定理知13cm 2AD AB ==, 所以在Rt △AOD 中,2222435AO OD AD =+=+=(cm ).所以DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。

举一反三:【变式】如图,⊙O 中,弦AB ⊥弦CD 于E ,且AE=3cm ,BE=5cm ,求圆心O 到弦CD 距离。

【答案】1cm .2.如图所示,直线与两个同心圆分别交于图示的各点,则正确的是( )A .MP 与RN 的大小关系不定B .MP =RNC .MP <RND .MP >RN【答案】B ;【解析】比较线段MP 与RN 的大小关系,首先可通过测量猜测MP 与RN 相等,而证明两条线段相等通常利用全等三角形,即证△OMP ≌△ONR ,如果联想到垂径定理,可过O 作OE ⊥MN 于E ,则ME =NE ,PE =RE ,∴ ME -PE =NE -RE ,即MP =RN .【点评】在圆中,解有关弦的问题时,常常需要作“垂直于弦的直径”.举一反三:【高清ID 号:356965 关联的位置名称(播放点名称):例2-例3】【变式】已知:如图,割线AC 与圆O 交于点B 、C ,割线AD 过圆心O. 若圆O 的半径是5,且30DAC ︒∠=,AD=13. 求弦BC 的长.【答案】6.类型二、垂径定理的综合应用3.如图1,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24m,拱的半径为13m,则拱高为()A.5m B.8m C.7m D.53m【思路点拨】解决此题的关键是将这样的实际问题转化为数学问题,即能够把题目中的已知条件和要求的问题转化为数学问题中的已知条件和问题.【答案】B;【解析】如图2,AB表示桥拱,弦AB的长表示桥的跨度,C为AB的中点,CD⊥AB于D,CD表示拱高,O为AB的圆心,根据垂径定理的推论可知,C、D、O三点共线,且OC平分AB.在Rt△AOD中,OA=13,AD=12,则OD2=OA2-AD2=132-122=25.∴ OD=5,∴ CD=OC-OD=13-5=8,即拱高为8m.【点评】在解答有关弓形问题时,首先应找弓形的弧所在圆的圆心,然后构造直角三角形,运用垂径定理(推论)及勾股定理求解.4.如图,一条公路的转弯处是一段圆弧(即图中,点O是的圆心,•其中CD=600m,E为上一点,且OE⊥CD,垂足为F,EF=90m,求这段弯路的半径.【答案与解析】如图,连接OC,设弯路的半径为R,则OF=(R-90)m,∵OE⊥CD,∴CF=12CD=12×600=300(m),根据勾股定理,得:OC2=CF2+OF2即R2=3002+(R-90)2,解得R=545,∴这段弯路的半径为545m.【点评】构造直角三角形,利用垂径定理、勾股定理,解题过程中使用了列方程的方法,这种用代数方法解决几何问题的数学方法一定要掌握.举一反三:【变式】有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面距拱顶不超过3m时拱桥就有危险,现在水面宽MN=32m时是否需要采取紧急措施?请说明理由.【答案】不需要采取紧急措施设OA=R,在Rt△AOC中,AC=30,OC=OD-CD=R-18,R2=302+(R-18)2, R2=900+R2-36R+324,解得R=34(m).连接OM,设DE=x,在Rt△MOE中,ME=16,342=162+(34-x)2,x2-68x+256=0,解得x1=4,x2=64(不合题意,舍),∴DE=4m>3m,∴不需采取紧急措施.。

初三数学垂径定理知识精讲

初三数学垂径定理知识精讲

初三数学垂径定理知识精讲知识考点:1、垂径定理及其推论是指:一条直线①过圆心;②垂直于一条弦;③平分这条弦;④平分弦所对的劣弧;⑤平分弦所对的优弧。

这五个条件只须知道两个,即可得出另三个(平分弦时,直径除外),要求理解掌握。

2、掌握垂径定理在圆的有关计算和证明中的广泛应用。

精典例题:【例1】如图,⊙O 的直径AB 和弦CD 相交于E ,若AE =2cm ,BE =6cm ,∠CEA =300,求: (1)CD 的长; (2)C 点到AB 的距离与D 点到AB 的距离之比。

分析:有关弦、半径、弦心距的问题常常利用它们构造的直角三角形来研究,所以连半径、作弦心距是圆中的一种常见辅助线添法。

解:(1)过点O 作OF ⊥CD 于F ,连结DO ∵AE =2cm ,BE =6cm ,∴AB =8cm∴⊙O 的半径为4 cm ∵∠CEA =300,∴OF =1 cm∴1522=-=OF OD DF cm 由垂径定理得:CD =2DF =152cm(2)过C 作CG ⊥AB 于G ,过D 作DH ⊥AB 于H ,易求EF =3cm ∴DE =)315(+cm ,CE =)315(-cm∴253315315-=+-==DE CE DH CG 【例2】如图,半径为2的圆内有两条互相垂直的弦AB 和CD ,它们的交点E 到圆心O 的距离等于1,则22CD AB +=( )A 、28B 、26C 、18D 、35分析:如图,连结OA 、OC ,过O 分别作AB 、CD 的垂线,垂足分别为M 、N ,则AM =MB ,CN =ND 。

∵OM ⊥MN ,ME ⊥EN ,CN =ND∴222OE ON OM =+从而22222OE CN OC AM OA =-+-即222221)2(2)2(2=-+-CD AB ∴2822=+CD AB 故选A 。

∙例1图H E F G O DCBA ∙例2图MN E O DCBA∙例2图MN E O DCBA【例3】如图,等腰△ABC 内接于半径为5cm 的⊙O ,AB =AC ,tanB =31。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

垂径定理—知识讲解(提高)
【学习目标】
1.理解圆的对称性;
2.掌握垂径定理及其推论;
3.学会运用垂径定理及其推论解决有关的计算、证明和作图问题.
【要点梳理】
知识点一、垂径定理
1.垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
2.推论
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
要点诠释:
(1)垂径定理是由两个条件推出两个结论,即
(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.
知识点二、垂径定理的拓展
根据圆的对称性及垂径定理还有如下结论:
(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.
(4)圆的两条平行弦所夹的弧相等.
要点诠释:
在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)
【典型例题】
类型一、应用垂径定理进行计算与证明
1.如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O
的半径是.
【答案】5.
【解析】作OM⊥AB于M、ON⊥CD于N,连结OA,
∵AB=CD,CE=1,ED=3,
∴OM=EN=1,AM=2,
∴.
【点评】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题.
举一反三:
【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径.
【答案】如图所示,过点O分别作OM⊥AB于M,ON⊥CD于N,则四边形MONH为矩形,连结OB,

1
2
MO HN CN CH CD CH
==-=-
11
()(38)3 2.5
22
CH DH CH
=+-=+-=,
111
()(46)5
222
BM AB BH AH
==+=+=,
∴在Rt△BOM中,OB==
【变式2】(2020春•安岳县月考)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.
【答案与解析】解:过O作OF⊥CD,交CD于点F,连接OD,
∴F为CD的中点,即CF=DF,
∵AE=2,EB=6,
∴AB=AE+EB=2+6=8,
∴OA=4,
∴OE=OA﹣AE=4﹣2=2,
在Rt△OEF中,∠DEB=30°,
∴OF=OE=1,
在Rt△ODF中,OF=1,OD=4,
根据勾股定理得:DF==,
则CD=2DF=2.
2.已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.
【思路点拨】
在⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.
【答案与解析】
(1)如图1,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,
并延长MO,交CD于N点.分别连结AO、CO.
∵AB∥CD
∴ON⊥CD,即ON为弦CD的弦心距.
∵AB=12cm,CD=16cm,AO=OC=10cm,
=8+6
=14(cm)
图1图2
(2)如图2所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O的同侧)时,
同理可得:MN=OM-ON=8-6=2(cm)
∴⊙O中,平行弦AB、CD间的距离是14cm或2cm.
【点评】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.
举一反三:
【变式】在⊙O中,直径MN⊥AB,垂足为C,MN=10,AB=8,则MC=_________.
【答案】2或8.
类型二、垂径定理的综合应用
3.(2020•普陀区一模)如图,某新建公园有一个圆形人工湖,湖中心O处有一座喷泉,小明为测量湖的半径,在湖边选择A、B两个点,在A处测得∠OAB=45°,在AB延长线上的C处测得∠OCA=30°,已知BC=50米,求人工湖的半径.(结果保留根号)
【答案与解析】
解:过点O作OD⊥AC于点D,则AD=BD,
∵∠OAB=45°,
∴AD=OD,
∴设AD=x,则OD=x,OA=x,CD=x+BC=x+50.
∵∠OCA=30°,
∴=
3,即=3,
+,
解得x=25
+)=(+(米).
∴OA=x=×(25
答:人工湖的半径为(+
【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
4.不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F.
(1)在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形;
(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(OA=OB除外)(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);
(3)请你选择(1)中的一个图形,证明(2)所得出的结论.
【答案与解析】
(1)如图所示,
在图①中AB、CD延长线交于⊙O外一点;
在图②中AB、CD交于⊙O内一点;
在图③中AB∥CD.
(2)在三个图形中均有结论:线段EC=DF.
(3)证明:过O作OG⊥l于G.由垂径定理知CG=GD.
∵AE⊥l于E,BF⊥l于F,
∴AE∥OG∥BF.
∵AB为直径,
∴AO=OB,
∴EG=GF,
∴EC=EG-CG=GF-GD=DF.
【点评】在运用垂径定理解题时,常用的辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形.。

相关文档
最新文档