农田水分状况

合集下载

农田水力学1 灌溉用水量

农田水力学1 灌溉用水量

,有利于根系发育
7
吸着水
Pore Space
Water on soil particle surface
8
毛管水与重力水
毛管水
重力水
9
土壤水
2 土壤水分的有效性
无效水:低于土壤吸着水(最大分子持水率)的 水分。作物不能吸收利用。 过剩水:重力水,在重力作用下向下流失。 有效水:重力水和无效水之间的毛管水。
21
一、农田水分消耗的途径
植株蒸腾( transpiration)
作物根系从土壤中吸入体内的水分,通过叶面的气孔 扩散到大气中去的现象。占根系吸入水分的99%以上。
株间蒸发(棵间蒸发)(evaporation)
植株间土壤或田面的水分蒸发。
☆蒸腾与蒸发合称腾发(evapotranspiration),通常 也称为作物需水量(Water requirement of crops )
—— 需水系数或称蒸发系数。
a,b——经验常数。
•特点
–仅需水面蒸发量,易于获得
–常用于水稻地区
31
三、作物需水量的计算
“K ”值法(以产量为基础,也称产量法) 基本公式:ET=KY 或 ET=KYn+c 式中:ET——作物全生育期内的总需水量,m3/亩
Y——作物单位面积产量,kg/亩; K——以产量为指标的需水系数,m3/kg;
水稻地区 适宜的淹没水层;适宜的渗漏强度;地下水位维
持适宜的深度。
17
三、不良农田水分状况
1.不良土壤水分状况及其原因 (1)土壤水分过多
原因:降雨、洪涝灾害、渍害、不合理灌溉 (2)农田水分不足
原因: 降雨不足(主要原因); 降雨径流损失(水土保持较差); 土壤保水性能差(有机质少) 过度蒸发(气象、地下水、土壤结构等

农田水利知识点

农田水利知识点

农田水利知识点农田水分状况:指农田土壤水、地面水和地下水的状况及其相关的养分、通气、热状况土壤水:通常将存在于非饱和带的水分称为土壤水,(土壤水是联系农田地表水和地下水的纽带,农田土壤水直接影响作物生长的水,气,热,养分等状况,与作物生长关系密切,是作物生长环境的核心要素之一。

)地下水:储存于饱和带的水分称为地下水。

土壤含水率:(习惯上称为含水量)是指一定量的土壤中所含有水分数量的多少,又称土壤湿度。

毛管水:是受土壤毛管力作用保持在土壤中的水分,(毛管水依其在土壤中的分布又可分为毛管悬着水和毛管上升水)。

毛管悬着水:在地下水埋深较大时,降水或灌溉水等地面水进入土壤,借助毛管力保持在上层土壤毛管孔隙中的水分毛管上升水:借助毛管力的作用,由地下水上升进入上层土体的水。

凋萎系数:出现永久凋萎时的土壤含水量称为凋萎点含水量,也称凋萎系数。

田间持水量:在地下水埋藏较深和排水良好的土地上,当充分降水或灌溉后,地表水完全入渗,并防止蒸发,经过几天时间,土壤剖面所保持的含水量,即为田间持水量。

(田间持水量包括吸湿水,薄膜水和毛管悬着水,其数量是三者数量的和)田间持水率:在生产实践中常将灌水两天后土壤所能保持的含水率叫做田间持水率。

SPAC系统的主要内容:水分经由土壤到达植物根系,进入根系,通过细胞传输进入木质部,由植物的木质部到达叶片,再由气孔扩散到大气中去,最后参与大气的湍流交换,形成一个统一、动态的互反馈连续系统,即土壤-植物-大气连续体(SPAC)系统。

在这一连续体中存在物质、能量和信息的传递和交换土壤、植物和大气是SPAC系统的研究对象。

SPAC系统研究的核心内容:水分在土壤、植物和大气中的传输。

水分总是从水势高的地方向水势低的地方运动作物需水量:指生长在大面积上的无病虫害,土壤水分和肥力适宜,能取得高产潜力条件下的作物植株蒸腾和棵间蒸发量,包括组成植株体所需的水量。

参照作物需水量(潜在腾发量):指土壤水分充足、地面完全覆盖、生长正常、高矮整齐的开阔(地块的长度和宽度都大于200m)矮草地(草高8~15cm)上的蒸发量。

农田积水排查情况汇报

农田积水排查情况汇报

农田积水排查情况汇报
尊敬的领导:
根据上级要求,我对所辖农田积水情况进行了排查,并就此进行了汇报。

经过
实地勘察和调查,我得出以下结论:
首先,经过排查,我发现我所辖农田中存在较为严重的积水情况。

主要集中在
田地低洼处以及排水系统不畅的地方,导致了大面积的积水现象。

这不仅影响了农作物的生长,还可能会导致土壤肥力的流失,对农田生态环境造成一定的影响。

其次,积水情况主要是由于排水系统不畅导致的。

在排查中,我发现农田排水
系统存在一定的疏漏和损坏,导致了排水不畅的情况。

另外,部分农田地势较低,雨水难以迅速排除,也是导致积水的重要原因之一。

针对上述问题,我提出了以下改进建议:
首先,应当加强对农田排水系统的维护和修缮工作,及时清理排水沟渠,修复
破损部分,确保排水系统的畅通。

同时,可以考虑在地势较低的地方增设排水设施,加快雨水的排除速度。

其次,可以通过合理的土地整治和改造,提高农田的排水能力。

通过调整田地
的坡度和排水沟渠的布置,有效减少积水的发生。

最后,加强对农田积水情况的监测和预警工作,及时发现问题并采取措施加以
解决,避免积水对农田造成更大的损失。

综上所述,农田积水情况的排查工作对于保障农田生产和生态环境的稳定具有
重要意义。

我将会按照上述建议,积极组织相关部门进行改进工作,努力减少农田积水对农业生产的不利影响。

谨此汇报。

此致。

敬礼。

农田水分状况

农田水分状况

农田水分状况农田水分对于农作物的生长和发展至关重要。

适当的水分状况能够保证农作物的正常生长,高产和优质,而不恰当的水分管理则会导致产量下降和作物质量下降。

本文将介绍农田水分状况的重要性,农田水分的评估方法以及如何进行水分管理。

一、农田水分状况的重要性农田水分是农作物生长中最基本的条件之一。

水分对于作物的光合作用、营养吸收、植物体温调节等生理活动都具有重要影响。

适量的水分可保持农田土壤湿润,为植物提供所需的水分供应。

而不足的水分将导致植物缺水,限制其生长和发育。

二、农田水分的评估方法1.土壤含水量测定法土壤含水量是评价农田水分状况的重要指标之一。

常用的测定方法包括重量法、容积法和电阻法。

重量法是通过称量土壤样品的干重和湿重来计算土壤含水量。

容积法是测量土壤样品的容积以及样品在饱和状态和干燥状态下的容积来计算含水量。

电阻法主要是利用土壤导电率的变化来测定土壤含水量。

2.土壤水势测定法土壤水势是表示土壤水分状况的另一种指标。

常见的测定方法包括压力室法和湿度计法。

压力室法是通过测定土壤样品在不同压力下的含水率来评估土壤水势。

湿度计法则是利用湿度计测定土壤和空气之间的水势差异,进而推算土壤水势。

三、水分管理方法1.合理灌溉合理灌溉是保证农田水分状况的基本手段。

根据不同农作物的需水量、生育期等不同因素,采取适当的灌溉量和灌溉方式,保证水分能够充分满足农作物的需求。

2.土壤覆盖措施土壤覆盖是一种有效的保持土壤湿润的措施。

通过保持农田土壤表面的覆盖物,如秸秆、草坪等,可以减少土壤水分的蒸散和蒸发损失,提高土壤水分利用效率。

3.积极排水排水是调节农田水分状况的重要手段之一。

在高湿度地区或土壤排水不良的地方,采取排水措施能够有效减少土壤含水量过高对作物生长的影响,提高土壤透气性。

四、总结农田水分状况对于农作物生长和发展至关重要。

通过合理评估土壤水分状况,采取适当的水分管理措施,能够保证农田水分的恰当供应,提高农作物的产量和质量。

农田水分知识

农田水分知识

农田水分状况:一般指农田中上午土壤水地面水地下水的状况及其相关的土壤养分通气热状况等。

2,吸湿系数:当空气相对湿度接近饱和时,吸湿水达到最大,此时的土壤含水率为吸湿系数。

3,最大分子持水率:膜状水达到最大时的土壤含水率。

4,田间持水率:悬着毛管达到最大时的土壤含水率。

5,作物需水量:植物蒸腾和棵间蒸发合称腾发,两者消耗的水量合称为腾发量,又把腾发量称为作物需水量。

6,需水临界期:日需水量最多,水缺水最敏感,影响产量最大的时期。

7,灌溉制度:根据作物需水特性和当地气候、土壤农业技术及灌水技术等条件,为作物高产及节约用水而制定的适时适量的灌水方案。

8,灌水定额:指一定灌水单位灌溉面积上的灌水量。

9,灌溉定额:指播种前和全生育期内单位面积上的总灌水量,即名灌水额之和。

10,综合灌水定额:全灌区综合定额是同一时段内各种作物灌溉水定额的面积加权值, 11,灌溉率:值灌溉渠单位灌溉面积上所需要的净灌溉用水量,又称灌水模数。

12,灌溉水质:指灌溉水的化学、物理性状,水中含有的成分和数量。

13,灌溉设计保证率:指灌区用水量在多年期间能够得到充分满足的几率,一般以正常供水的年数或供水不破坏的年数占总年数的百分数表示。

14,抗旱天数:作物生长期间遇到连续干旱时,灌溉设施的供水能保证灌区作物用水要求的天数。

15,田间水利系数:田间水利系数是实际灌田间的有效水量(对旱作农田指蓄存在计划湿润层中的灌溉用水量;对水稻田,指蓄存在格田内的灌溉水量)和未级固定渠道放出水量的比值。

16,渠道水利用系数:某渠道的净流量与毛流量的比值。

17,渠系水利用系数:灌溉渠系的净流量与毛流量的比值。

18,灌溉水利用系数:是实际灌入农田的有效水量和渠道引入水量的比值。

19,渠道不冲流速:在稳定渠道中,允许的最大平均流速称为临界不冲流速。

20,渠道不淤流速:在稳定渠道中,允许的最小平均流速称为临界不淤流速。

21,喷灌强度:指单位时间内喷洒在单位面积上的水量,以水深表示单位mm/h或mm/min。

农田水分状况和土壤水分运动 PPT课件

农田水分状况和土壤水分运动 PPT课件

一、农田水分存在形式
农田水分状况:指农田地表水、土壤水 和地下水的多少及其在时间上的变化。
•地表水:地表积水。
•土壤水:存在于包气带中的水分。 •地下水:饱水带中的重力水。
汽态水、吸着水 汽态水、吸着水、薄膜水 毛细带表面 毛细水为主 地下水面(潜水面) 潜水土壤水分形态
质地 名称
重 吸湿 系数 — 1~2 1~2 2~3 2~3 — — — 凋萎 系数 — 4~6 4~9 6~10 6~13 15.0 12~17 —
量(%) 田间持 水量 16~22 22~30 22~28 22~28 22~28 28~32 25~35 30~35
紧沙土 沙壤土 轻壤土 中壤土 重壤土 轻粘土 中粘土 重粘土
0.1-0.3个大 气压
吸湿系数(Ws):干土壤在水汽
相对饱和的环境中(相对湿度 100%)吸持水分子可达到最大量 ,此时土壤的含水量称为最大吸湿量 或吸湿系数(大概有15—20层水分 子)。
31个大气压
不同土壤吸湿系数不一样: 一般,粘土 >壤土>砂土, 另外吸湿系数大小还 与测定时温度有关,温度高,吸湿系 数小。
土壤三相体示意图
2、土壤水分常数
(2)土壤水分常数
土壤饱和含水率(θs) :当土体孔隙完全被 水充满时的土壤含水 率叫饱和含水率(也 称全持水量)。
VW s V
土壤三相体示意图
2、土壤水分常数
田间持水率(θfc):悬着毛管水
达到最大时的土壤含水率叫田间持水 率。生产实践中,常将灌水两天后土 壤所能保持的含水率叫田间持水率。 一般为饱和含水率的50%左右。
土粒
2、土壤水分常数
凋萎系数(wp):当作物产生 永久凋萎时的土壤含水率叫 凋萎系数。

农田水分状况和土壤水分运动

农田水分状况和土壤水分运动
由于土壤的基质吸力(即弯月面力和吸附力) 对水份的吸持而引起的水份势值的降低,成为 基质势。 一般以纯自由水的水势为零作为参比标准,所 以基质势是负值。 含水量越高,基质势的绝对值越低。 当土壤水分处于饱和状态时,基质势趋于零。 因此,基质势对非饱和土壤的水势运动和保持 有极其重要的作用。
2、压力势(ψp) 、压力势(ψ
毛管上升水的高度与孔隙的半径成反比。 但当孔隙过细时,管壁对水份运动的阻 力增加,因而上升高度反而变小。
4、重力水
当土壤水份超过田间持水量时,多余的水份不 能为毛管所保持而在重力作用下沿着大孔隙向 下渗漏,这部分水就称为重力水。 重力水对作物是有效的,但由于它渗漏很快, 不能被保持,所以对旱作而言是无效的。 当重力水达到饱和,即土壤孔隙全部充满水份 时,土壤的含水量就称为饱和持水量。
4、重力势(ψg) 、重力势(ψ
土壤水由于其所处的位置不同,因重力 影响而产生的势能也不同,有此而产生 的水势称为重力势。 重力势可正可负,它是与参照面相对而 言的。参照面以上的土壤水重力势为正 值,参照面以下的为负值。 通常选择剖面内部或底面边界。
土水势代表土壤水分总的能量水平。土 水势的绝对值越小,土壤水分的能量水 平就越高。 土壤水总是从土水势高(即绝对值)低 处移动。 如果只考虑土壤水分运动,而不考虑植 物对水的吸收,溶质势可以忽略。其余 三个分势和称为水力势: ψh = ψm+ ψp+ ψg
(1)水深(Dw) 指在一定厚度(h)和一定面积土壤中所 含水量相当于同面积水层的厚度。 Dw= θv.h 单位可以用cm或mm,

(2)绝对水体积(容量)
指一定面积一定厚度土壤所含水量的体 积,量纲为L3。 V方/公顷,
V方/亩
二、土壤水的能态

农田水利学

农田水利学

绪论1.《农田水利学》是一门研究利用灌溉排水工程措施来调节农田水分状况及改变和调节地区水情,以消除水旱灾害,合理而科学地利用水资源,为农业生产服务的科学。

2.农田水利学研究对象:①调节农田水分状况【灌溉措施和排水措施】②改变和调节地区水情。

【蓄水保水措施和调水排水措施】第一章:农田水分状况和土壤水分运动1.农田水分三种基本形式:地面水,土壤水【吸着水,毛灌水和重力水】和地下水。

2.凋萎系数:作物产生永久凋萎时的土壤含水量,其数量包括全部的吸湿水和部分薄膜水。

3.田间持水量:土壤中悬着毛管水达到最大时的土壤含水量。

4.田间持水率:常将灌水两天后土壤所能保持的含水率。

5.旱作物对农田水分状况的要求:大气干旱;土壤干旱;作物生理干旱。

6.农田水分过多的原因:①大气降水补给农田水分过多;②洪水泛滥、湖泊漫溢、海潮侵袭或坡地地面径流汇集等使低洼地积水成灾;③地下水位过高,上升毛管水不断向上补给;或因地下水从坡地溢出,大量补给农田水分;④地势低洼,出流条件不好。

7.农田水分不足的原因:降雨量不足;降雨入渗量少,径流损失较多;土壤保水能力差,渗漏及蒸发损失水量过大。

8.SPAC系统:土壤、作物、大气构成的水循环系统。

第二章:作物需水量和灌溉用水量1.农田水分消耗的途径:植株蒸腾;棵间蒸发;深层渗漏或田间渗漏;地表径流;组成植株体的一部分。

2.作物需水量:生长在大面积上的无病虫害作物,土壤水分和肥力适宜时,在给定的生长环境中能取得高产潜力的条件下为满足植株蒸腾、棵间蒸发、组成植株体所需要的水量。

【作物需水量就等于植株蒸腾量和棵间蒸发量之和,即所谓的“蒸发蒸腾量”】3.作物耗水量,简称耗水量:就某一地区而言,指具体条件下作物获得一定产量时实际所消耗的水量。

4.作物需水临界期:作物在不同生育时期对缺水的敏感程度不同,在作物整个生育期中通常把对缺水最敏感、缺水对产量影响最大的时期。

5.水面蒸发量法(蒸发皿法或α值法),一般水稻用α值法比旱作物用此法好。

农田水利学名词解释类

农田水利学名词解释类

农田水利学定义:研究农田水分状况和地区水情况变化规律及调解措施以消除农田水旱灾害,合理利用农利资源,发展农业生产的一门科学水量平衡:某一地区任意时段内水量等于出水量与该区域内蓄水变量之和,这种来水量与出水量的关系称为水量平衡农田水分状况:是指农田土壤水,地下水和地间水的状况及其相关的养分,通气,热状况(措施:灌溉,排水,水土保持)土壤水分特征曲线:假想在地下水面以上有一个很多的土柱,如果地下水位长期保持稳定,地表水也不发生蒸发入渗,则经过很长时间以后,地下水面上将会形成一个稳定的土壤水分分布曲线降水量:在一定时期内降落在某一定面积上的总水量降水历时:一次降水自始至终所经历的时间(不间断的不停的降水)降水时间:对应于某一降水量所经历的时间降水强度:单位时间内的降水量降水面积:降水所笼罩的水平面积下渗强度(入渗率):单位时间内入渗的水层深度(土壤水不饱和,地表水在多种力下运动)径流量:单位时间内通过某一水断面的总水量径流总量:某一时段内经过某一水断面的总水量径流深:将径流总量均匀分布在流域面积上的水层深度径流系数:某一时期的径流深与同时期的降水量之比小于等于一径流模数:单位流域面积上的径流流量频率:变量某值在样本中出现的次数灌溉水质:主要指水中所含有的泥沙危害作物生长发育的盐类,利用生活和工业污水的酸碱度,悬浮体,油质,有毒物质,传染病菌以及水的湿度等灌溉制度:在一定气候,土壤等自然条件下和一定的农业技术措施下,为使作物获得定额稳定的产量所制定的一整套田间灌水制度灌水定额:指一次灌水单位灌溉面积上的灌水量灌溉定额:作物在全生育期内单位面积上应灌溉的总量灌溉强度:就是单位时间内喷洒在单位面积土地上的水量水滴直径:落在地面或作物叶面上的水滴直径灌水均匀度:滴灌是一种局部灌溉,所以不要求在整个灌水面积上水量分布均匀,而要求每一棵作物灌到的水量是均匀的灌溉制度:灌水定额,设计灌水周期,一次灌水延续时间,轮灌区数目的确定,一条毛管控制的灌溉面积。

农田水利学

农田水利学

农田水利学:研究农田水分状况和地区水情变化规律及其调节措施,以消除农田水旱灾害,利用水利资源发展农业生产的一门学科。

农田水分状况:指农田土壤水,地面水和地下水的状况及与其相关的养分、通气、热状况。

大循环:海陆间的水分循环小循环:局部的水分循环区别:是否发生海陆交换水量平衡:对于某一地区来说,在任意时段内,来水量等于出水量与该区域内蓄水变量之和,这种来水量和出水量的关系。

地区水量平衡:指某一时段内,某一地区闭合面所包括的空间内的水的变量,等于进入此空间的来水量和流出此空间的去水量之差。

降水:指在一定的时段内天空下降的水量未经蒸发、渗透、和流失,在下垫面上积聚的水层深度。

降水历时:指一次降水自始至终所经历的时间降水时间:对应于某一降水量所经历的时间降水强度:单位时间内的降水量降水面积:降雨说笼罩的水平面积集水面积:地面分水线构成的集水区域流域:汇集地面来水和地下水的区域径流:由降水产生的,降水自流域内汇集到河网并沿河槽下泄的水流径流损失:降雨首先消耗于植物截留、下渗、填洼,由于这部分降水并不产生径流,对径流来说,成为径流损失地面径流量:降雨量减去降雨损失部分坡面漫流:当降水强度大于下渗强度,降雨满足下渗和填洼以后,雨水沿坡面流动流量:单位时间内通过某一断面的总水量径流总量:某一时段内通过某一断面的总水量径流深:将径流总量均匀分布在流域面积上所得的水层深度径流模数:单位流域面积的产流量径流系数:某时段内径流深与同一时期降水量之比蒸发:水由液体或固体状态变成气体状态的过程水面蒸发的两个过程:水分汽化过程和水分扩散过程影响水面蒸发因素:饱和水汽压差、温度、风、气压、水质土壤蒸发:水分自地表散失土壤由湿变干三个阶段:定常蒸发率阶段、蒸发率下降阶段、蒸发率微弱阶段影响土壤蒸发因素:土壤因素(土壤含水量、地下水埋藏深度、土壤质地和结构、土壤色泽和下垫面的特性,土壤有机质含量)气象因素(辐射、温度、湿度、风、降水方式)入渗:指水分自地表进入土壤的过程达西定律P24影响土壤入渗因素:土壤含水率、土壤质地结构,地面平整度、坡度、地下水埋藏深度、土壤肥力频率:变量某值在样本中出现的机会概率:随机变量某值在总体中出现的机会总体:数理统计中被研究的随机变量的全体样本:总体中的一部分抽样:总体中抽取样本抽样误差:抽取样本而引起的误差灌溉保证率:以灌溉设施供给灌溉用水全部获得满足的年数占总年数的百分率重现期:平均多少年出现一次作物需水量:作物在适宜的外界环境条件下,正常生长发育达到或接近达到该作物品种的最高产量水平,所消耗的水量测定旱作物的田间需水量的方法:筒测、坑测、田测作物需水模系数:某个生育期的需水量与作物需水量的百分比灌水定额:指一次灌于单位灌溉面积的灌水量灌溉定额:农作物在整个生育期要进行多次灌水,全生育期各次灌水定额之和土壤计划湿润深度:在实施灌溉时,计划、调节控制土壤水分状况的土层深度地下水补给量:地下水借毛细管作用,上升至作物根系活动层内而被作物利用的水量,其大小与地下水埋藏深度、土壤性质、作物种类、作物需水强度、计划湿润层土壤含水量有效降雨量:设计降雨量减去地面径流量与深层渗漏量之后,保持在土壤计划湿润层内,可为作物吸收利用的水量旱作物总灌溉定额:是播前灌水定额与生育期灌溉额之和水力最优断面:在过水断面面积,渠底坡度和糙率一定的条件下,使渠道所通过的流量最大的断面形式渠道安全超高:为了保证渠道正常供水,或者在一些特殊情况下,不致使渠道中的水溢出来,因此在渠道水位确定后,应加一个高度,此高度为安全超高渠道边坡:一般用1:m表示,1表示斜坡的垂直高度,m表示斜坡的水平长度,m为边坡系数渠道横断面形状:按几何形状:矩形断面,梯形断面,U形断面;按渠道挖填方的情况:挖方渠道,填方渠道,挖填方渠道田间水利用系数:农渠以下的水的利用系数某一渠道的渠道水利用水系数:某渠道的净流量与毛流量的比值全灌区的灌溉水利用系数:田间所需的净流量与渠道引入流量之比,或等于渠系水利用系数和田间水利用系数和乘积地面灌溉:水从地表进入田间并借重力和毛断作用浸润土壤的一种灌水方法。

灌溉排水工程

灌溉排水工程

一.名词解释1.灌溉排水工程学:灌溉排水工程学是研究农田水分状况和有关地区水情的变化规律及其调节措施,消除水旱灾害,并运用水利资源为发展农业生产而服务的科学。

2.农田水分状况:农田水分状况一般是指农田土壤水、地面水和地下水的状况及其相应的养分、通气、热状况3.凋萎系数:作物产生永久凋萎时的土壤含水率,4.田间持水率:悬着毛管水达成最大时的土壤含水率,5.干旱:是指因天气、土壤、生理等因素导致作物体内水分亏缺的现象,或指作物由根吸水局限性而导致其体内水分失去平衡和协调的现象。

6.大气干旱:指农田水分尚不妨碍植物根系的吸取,但由于大气温度过高(T=30°C)和相对湿度过低(≤30%),阳光过强或遇旱风(≥3m/s),导致植物蒸腾耗水过大,使根系吸水速度不能满足蒸发的需要。

7.土壤干旱:土壤含水率过低,作物根系从土壤中所能吸取的水量很少,无法补偿叶面蒸发的消耗。

8.渍害:因降雨、灌溉水量太多,或因地下水补给水量太多,使土壤长期过湿,危害作物生长的灾害。

9.土壤盐害:盐害:指土壤含盐过多,土壤溶液渗透压过高影响植物生长发育的现象。

10.SPAC系统:田间水分运动是在水势梯度的作用下产生的,各环节之间是互相影响和互相制约的,为了完整地解决农田水分运动问题,必须将土壤-植物-大气看作一个连续体统一考虑。

这一连续体即为SPAC系统11.作物需水量:植株蒸腾和株间蒸发两者的腾发量(蒸发蒸腾量)。

12.作物耗水量:土壤在任何水分条件下实际消耗的植株蒸腾、土壤蒸发和植物体含水量之和。

13.需水量模比系数:作物某一生育阶段的需水量占全生育期的比例。

14.需水临界期或关键期:水分亏缺对作物产量影响最敏感最严重的生育时期。

15.灌溉制度:是指特定作物在一定的气候、土壤、供水等自然条件和一定的农业技术措施下,为了获得高产或高效,实现节约用水,所指定的适时适量的农田灌水方案。

16.灌水定额:一次灌水单位面积上的灌水量。

1 农田水分状况

1 农田水分状况

§1 农田水分状况农田水分:指农田中的地表水、土壤水和地下水。

地表水:地表积水。

土壤水:包气带中的水分。

地下水:饱水带中的水分(可自由流动的水体)。

与作物生长最密切的是土壤水。

一、土壤水(一)土壤水分形态土壤水又可分为吸着水、毛管水和重力水等几种水分形态。

1.吸着水(1)吸湿水分子力、紧紧束缚在土粒表面、不能移动、分子状态水。

吸湿水达到最大时的土壤含水率称为吸湿系数。

(2)膜状水分子力、束缚在土粒表面、可沿表面移动但不能脱离土粒表面、液态水膜膜状水达到最大时的土壤含水率称为最大分子持水率。

2.毛管水对于单个土粒,只能依靠分子力吸附水分, 但对于由许多土粒集合而成的土壤,其连续不断的孔隙相当于毛细管,因此还存在一种毛管力,依靠毛管力保持在土壤中的水分称为毛管水。

按水份供给情况不同,分悬着毛管水和上升毛管水。

(1)悬着毛管水灌溉或降雨后,在毛管力作用下保持在上部土层中的水分。

土壤储存水的主要形式。

悬着毛管水达到最大时的土壤含水率称为田间持水率。

(2)上升毛管水在地下水位以上附近土层中,由于毛细管作用所保持的水分。

上升毛管水达到根系,则可被作物吸收利用,但地下水位不允许上升到根系,以防渍害。

盐碱地区应严格控制地下水位,发防发生次生盐碱化。

3.重力水土壤中超过田间持水率的那部分水为重力水。

重力水以深层渗漏的形式进入更下的土层,或地下水。

旱地应避免深层渗漏,以防止水的浪费和肥料的流失。

水田保持适宜的深层渗漏是有益的,会增加根部氧分,有利于根系发育。

(二)土壤水分的有效性土壤对水分的吸力:1000MPa—0.0001MPa作物根系对水分的吸力: 1.5 MPa左右(1 MPa=9.87大气压=100m水柱)如果水分受土壤的吸力小于1.5 MPa, 作物可吸收利用;如水分受土壤的吸力大于1.5 MPa, 则作物不能吸收利用。

1.5 MPa是有效水和无效水的分界点。

土壤水分的有效性可以用下图来说明:(图:土壤水分有效性图)二、农田水分状况(一)旱田适宜的农田水分状况不允许地表积水土壤适宜含水率: 凋萎系数~田间持水率凋萎系数=0.6β田地下水水质较好,则地下水位可较高, 但一下水位不能达到根系层。

第一章1-农田土壤水分状况

第一章1-农田土壤水分状况
离处,以免发生渍害或盐碱化。
二、农田水分状况
(二)水稻地区适宜的农田水分状况 n 传统采用淹灌法. 缺水地区应推广控制灌溉等节水
灌溉技术。 n 除晒田期,地面维持适宜的水层深度或湿润度; n 地下水位不宜过高, 应保证一定的深层渗漏.
二、农田水分状况
(三)农田水分状况的调节 1.农田水分过多的原因及措施 • 原因: 降水量大; 洪水泛滥; 地下水位过高等. • 形成的灾害:洪灾;涝灾;渍害 • 措施:
入渗条件下的土壤水分运动
2、方程
zD zK z t
3、初始条件、边界条件
4、菲利普求得:
入渗速度:
i
S 2
1
t2
i(f 单位:mm/h)
入渗总量:
1
I St2 i f t
(单位:mm)
入渗条件下的土壤水分运动
i f ——稳定入渗率,相当于渗透系数
s——吸水率,与土壤含水率有关, 系。
5、土壤水分入渗规律(图):
防洪——整治排洪河道,兴修水库,加固堤防 等。 防涝——开挖排水河道,修建排涝闸、站等。 防渍——开挖田间排水沟,防止过量灌溉等。
二、农田水分状况
(三)农田水分状况的调节 2.农田水分过少的原因及调节措施 • 原因:降雨少,土壤持水能力差等。 • 措施:
灌溉——主要措施; 疏松土层——减少土壤蒸发; 地表覆盖——阻止土壤蒸发; 化学抗旱——减少叶面蒸腾。
膜状水 1.5
吸湿水 3.1 1000
饱和含水率
过剩水 土
田间持水率

有效水 有
最大分子持水率

难有效水 凋萎系数

无效水 水
吸湿系数 含水率为0 无效水

农田水分状况汇总

农田水分状况汇总

农田水分状况系指农田地面水、土壤水和地下水的多少及其在时间上的变化。

一切农田水利措施,归根结底都是为了调节和控制农田水分状况,以改善土壤中的气、热和养分状况,并给农田小气候以有利的影响,达到促进农业增产的目的。

因此,研究农田水分状况对于农田水利的规划、设计及管理工作都有十分重要的意义。

第一节农田水分状况一、农田水分存在的形式农田水分存在三种基本形式,即地面水、土壤水和地下水,而土壤水是与作物生长关系最密切的水分存在形式。

土壤水按其形态不同可分为汽态水、吸着水、毛管水和重力水等。

(1)汽态水系存在于土壤空隙中的水汽,有利于微生物的活动,故对植物根系有利。

由于数量很少,在计算时常略而不计。

(2)吸着水包括吸湿水和薄膜水两种形式:吸湿水被紧束于土粒表面,不能在重力和毛管力的作用下自由移动;吸湿水达到最大时的土壤含水率称为吸湿系数。

薄膜水吸附于吸湿水外部,只能沿土粒表面进行速度极小的移动;薄膜水达到最大时的土壤含水率,称为土壤的最大分子持水率。

(3)毛管水毛管水是在毛管作用下土壤中所能保持的那部分水分,亦即在重力作用下不易排除的水分中超出吸着水的部分。

分为上升毛管水及悬着毛管水,上升毛管水系指地下水沿土壤毛细管上升的水分。

悬着毛管水系指不受地下水补给时,上层土壤由于毛细管作用所能保持的地面渗入的水分(来自降雨或灌水)。

(4)重力水土壤中超出毛管含水率的水分在重力作用下很容易排出,这种水称为重力水。

在这几种土壤水分形式之间并无严格的分界线,其所占比重视土壤质地、结构、有机质含量和温度等而异。

可以假想在地下水面以上有一个很高(无限长)的土柱,如果地下水位长期保持稳定,地表也不发生蒸发入渗,则经过很长的时间以后,地下水面以上将会形成一个稳定的土壤水分分布曲线。

这个曲线反映了土壤负压和土壤含水率的关系,亦即是土壤水分特征曲线(见图1-1),这一曲线可通过一定试验设备确定。

在土壤吸水和脱水过程中取得的水分特征曲线是不同的,这种现象常称为滞后现象。

农村农田灌溉现状分析

农村农田灌溉现状分析

农村农田灌溉现状分析农田灌溉是农村地区农业生产中至关重要的环节之一,它直接关系到粮食产量、农作物品质和农民收入。

因此,了解和分析农村农田灌溉的现状对于制定科学合理的灌溉政策和提高农田灌溉效率至关重要。

1. 农村农田灌溉的基本状况农田灌溉是指通过供水系统将水源引入农田,满足农作物生长所需的水分。

根据调查数据显示,目前我国农村农田灌溉的基本状况如下:1.1 灌溉设施农村农田灌溉设施包括主渠道、支渠道、田间渠道和配水器等。

然而,由于一些地方发展相对滞后和农村地区的自然环境条件限制,农田灌溉设施普及率仍然较低。

1.2 灌溉方式农村地区的农田灌溉方式主要包括自流灌溉、泵灌和喷灌等。

其中,自流灌溉是最常见的灌溉方式,依靠自然的水流引入农田。

而泵灌和喷灌则是较为现代化和高效的灌溉方式,可以提高灌溉水利用效率。

1.3 水资源利用状况农村农田灌溉的水资源主要来自于降水、河流和地下水。

然而,由于气候变化和人类活动的干扰,水资源的供给不稳定,造成了农村地区灌溉难题。

2. 农村农田灌溉存在的问题尽管农村农田灌溉在一定程度上能够满足农作物的生长需求,但仍然存在一些问题需要加以解决。

2.1 水资源浪费一些农村地区缺乏科学合理的水资源管理措施,导致灌溉用水的浪费现象较为普遍。

例如,过度灌溉和不合理的灌溉排水方式,造成了大量的水资源浪费。

2.2 灌溉设施老化由于农村地区经济发展滞后和投入不足,许多农田灌溉设施老化严重。

老化的灌溉设施会影响到灌溉效率和水资源利用效率,降低农业生产的稳定性和可持续发展能力。

2.3 缺乏科学决策支持在农村地区,农民对于灌溉技术和灌溉规模的决策常常依靠经验和传统习惯,缺乏科学的决策支持。

这导致了灌溉过程中存在过度灌溉或不足灌溉的问题,影响了农作物的生长和产量。

3. 改善农村农田灌溉的对策和建议针对农村农田灌溉存在的问题,我们需要采取一系列的对策和建议来改善现状。

3.1 提高灌溉设施建设政府可加大对农田灌溉设施改造和升级的投资力度,包括修复渠道、维护泵站和配水器等。

农田水力学

农田水力学
该园地面平坦,土壤为砂壤土,果园南部有一眼机井,最大供水量60m3/h,动水位距地面20m。该地电力供应不足,每日开机时间不宜超过14h。为了节约用水,并保证适时适量向果树供水,拟采用固定式喷灌系统。
据测定,该地苹果树耗水高峰期平均日耗水强度为6mm/d,灌水周期可取5~7天。该地属半干旱气候区,灌溉季节多风,月平均风速为2.5m/s,且风向多变。该地冻土层深度0.6m。
基本资料
已知某喷头流量为4m3/h,射程为18m,喷灌水利用系数取0.8。
要求
(1)求该喷头作全圆喷洒时的平均喷灌强度;
(2)求该喷头作240°扇形喷洒时的平均喷灌强度;
(3)若各喷头呈矩形布置,支管间距为18m,支管上喷头间距为15m,组合平均喷灌强度又是多少?
【题3—4】喷灌均匀系数计算
基本资料
要求
运用土壤入渗(渗吸)经验公式计算30min内的入渗水量及平均入渗速度,以及第30min末的瞬时入渗速度。
第二章作物需水量和灌溉用水量
复习思考题:
1.农田水分消耗的途径主要是哪些,各自特点
2.直接主算需水量的方法
3.惯用法的计算
4.了解修正的彭曼公式
5.作物灌溉制度的内容及确定方法
6.水稻的水量平衡方程
解:因为该试验果园土壤为砂壤土,查各类土壤允许喷灌强度值表的砂壤土的
【题3—7】滴灌设计
基本资料
某蔬菜地拟建滴灌系统,已知滴头流量为4L/h,毛管间距为1m,毛管上滴头间距为0.7m,滴灌土壤湿润比为80%,土壤计划湿润层深度为0.3m,土壤有效持水率为15%(占土壤体积的%),需水高峰期日平均耗水强度为6mm/d。
(2)土壤平均孔隙率n=41.3%(占土体)。
(3)土壤田间持水率θmax=75.0%(占孔隙体积的百分比)。

灌排工程学第一章农田水分状况

灌排工程学第一章农田水分状况

(3)土壤最大分子持水率:薄膜水达到最大时的土壤含水率。
二、土壤水分特性曲线
1.概念:表示土壤基质势和含水率的关系曲线。
基质势:是土壤颗粒对水分子的吸附力和毛管现象产 生的毛管力共同形成的,饱和土壤中基质势为零。通 俗地说,是土壤对水的吸力,但对于水来说,所具有 的能量是负值。
2. 影响土壤水分特性曲线的因素
土壤质地:土壤越粘重,含水能力越强。 土壤结构:同一种土壤,孔隙率越小,饱和含水率越小, 但在高吸力时,土壤水分主要受颗粒吸附力的影响, 因而压实程度对含水率的影响很小。
1.土壤水分特性曲线图
二、土壤水分特性曲线
3. 各种土壤水分特性曲线的区别 (1) 土壤越粘,在含水率相同的情况下,吸力越大,表 明粘性土比砂性土排水不易。 (2) 土壤越粘,在相同吸力下,含水量越大,表明孔隙 较多,可持有更多水分,但有效水分不一定大。 (3) 砂土在大孔隙水分排除后。只能保留很少水分,曲 线变化大,而粘土曲线变化比较均匀。 4.滞后现象 同一种土壤,在吸水和释水时,在同一含水率情况下, 吸水比释水吸力小,这种现象叫滞后现象。
思考题

1、土壤水按其形态是如何分类的? 2、绘图并用文字说明砂、壤、粘 三种土壤水 分特性曲线及差异。 3、当地下水位据地面较深、土壤上层干燥时, 如果有一次较大降雨,试说明降雨过程中和雨 后一段时间内土壤剖面上水分的动态变化 。
六、土壤含水量的计算
六、土壤含水量的计算
孔隙率:
n V孔 / V总
空气 Va
Vv
含水率 q : 土壤中能容纳水的体积 和土壤总体积之比
水 Vw 骨架 Vs
V
Vs
饱和度 S: 土壤中能容纳水的体积和 土壤孔隙体积之比

农田水分状况

农田水分状况

1农田水分状况:指农田中大气水、地表水、土壤水、地下河水的数量和时间上的动态变化2吸湿系数:吸湿水达到最大是时的土壤含水率3最大分子持水率:薄膜水达到最大值时的土壤含水率4凋萎系数:相当于吸持力为1.52*10^pa的土壤含水率5田间持水率:悬着毛灌水的最大含水率6最大毛管持水率:上升毛灌水由于有地下水位拖垫在其上升范围内的平均含水率高于悬着毛灌水的含水率7饱和含水率:土壤中超出毛管含水率的水分由于重力作用很容易排除这种排出的水叫重力水,此时的含水率叫饱和含水率8土壤水分特征曲线:反应土壤负压(吸力)和让含水率的关系即土壤水含量与能量之间的关系9体积含水率:Q土体=V水/V自然10孔隙:Q孔=V水/V孔11重量(质量):Q=m水/m干土12干旱:由于根系吸水不足以致破坏了植物水分平衡和协调的现象13大气干旱:农田水分不妨碍植物根系的吸收但是由于大气温度过高和相对湿度过低阳光过强过遇到干热风造成植物耗水过大,都会使根系吸水速度不能满足蒸腾需要这种情况14土壤干旱:土壤水含量过低植物根系从土壤中所能吸取的水量很少无法补偿叶面蒸腾的需要形成15土水势:重力势、溶质势、基质势、压力势16农田水分的消耗:植物叶面的蒸腾、株间土壤蒸发、深层渗漏17滕发量(植物的需水量):正常条件下植物叶面的蒸腾量和株间土壤蒸发量之和18农作物的灌溉制度:作物播种前和全生育期内的灌水次数、每次的灌水时期,灌水定额、灌溉定额19灌水定额:指一次灌水单位灌溉面积上的灌水量20灌溉定额:各次灌水定额之和21充分灌溉制度:指灌溉供水能够充分满足各生育阶段的需水量要求设计而定的灌溉制度22非充分灌溉:由于可供灌水的水源不足不能充分满足生物各个甚于阶段的需要而允许收购到一定的缺水和减产但是得是单位水量获得的经济效益最大的一种灌溉方式23作物水分生产函数:指作物生长发育过程中的产量和投入水量(作物耗水量)之间的关系24非充分灌溉确定方法:减少灌溉次数、降低灌溉定额将剩下的水量扩大灌溉面积获投入到经济效益更大的作物上25灌水率(灌水模数):单位灌溉面积上所需的灌溉的净流量26毛灌溉用水量:指某一灌溉面积上需要水源供给的总灌水量包括了水源之田间各个渠道的渗漏27地面灌溉:使灌溉水通过渠沟输水管道输入田间,水流在田间形成两虚的水或细小水流靠重力湿润土壤的灌水方式畦灌优点:技术简单工程费用小缺点:易形成深层渗漏表面板结浪费水恶化土壤结构沟灌优点:关税后不会破坏根部附近的土壤结构,可保土壤疏松、透气,不会形成严重的表面板结减少深层渗漏减少植株间蒸发28喷灌:利用一种专门的技术使有压水喷射到空中想成细小的雨滴像雨一样湿润土壤的一种方式优点:省水增产,适应性强,生工省地,有利于实现机械化,灌水质量好缺点:一次性投资达运行维修费用高,受风影响大29微灌:优点:省水,节能,灌水均匀,增产,对土壤和地形适应性强,可结合灌水施肥打药缺点:灌水器出水口小容易堵塞30低压管道输水灌溉系统:指灌区以低耗能量的机泵和低压输水管道系统组成的田间输水管网优点:省水,省地,省能,省工,投资低运行费用少适应性强,操作便捷管理维修方便缺点:需要材料设备较多,建筑物类型比较复杂施工工期长31、畦田:技术要素:畦田长度、宽度,每米畦田引用的畦流量和放水入田时间32、喷灌强度:单位时间喷洒在单位面积上的水量或单位时间喷洒在单位面积上的水深33、点喷强度:指一定时间喷洒到某一点上的水深与时间的比34、平均喷洒强度:单位时间喷洒到单位面积上的平均水深35、喷灌均匀度:喷洒到灌溉面积上的水量均匀度36表征喷洒均匀度的方法:喷洒均匀系数Cu,水量分布图37、衡量喷灌灌水质量的的指标:喷灌均匀度,喷水强度,水滴打击强度38、喷灌系统按设备分:管道式,机组式39、管道式:水源工程,水泵及动力机,压力管道,喷头(固定式,移动式,半固定式)40喷头按工作压力及控制范围大小分为:低压喷头,中压喷头,高压喷头。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

农田水分状况系指农田地面水、土壤水和地下水的多少及其在时间上的变化。

一切农田水利措施,归根结底都是为了调节和控制农田水分状况,以改善土壤中的气、热和养分状况,并给农田小气候以有利的影响,达到促进农业增产的目的。

因此,研究农田水分状况对于农田水利的规划、设计及管理工作都有十分重要的意义。

第一节农田水分状况一、农田水分存在的形式农田水分存在三种基本形式,即地面水、土壤水和地下水,而土壤水是与作物生长关系最密切的水分存在形式。

土壤水按其形态不同可分为汽态水、吸着水、毛管水和重力水等。

(1)汽态水系存在于土壤空隙中的水汽,有利于微生物的活动,故对植物根系有利。

由于数量很少,在计算时常略而不计。

(2)吸着水包括吸湿水和薄膜水两种形式:吸湿水被紧束于土粒表面,不能在重力和毛管力的作用下自由移动;吸湿水达到最大时的土壤含水率称为吸湿系数。

薄膜水吸附于吸湿水外部,只能沿土粒表面进行速度极小的移动;薄膜水达到最大时的土壤含水率,称为土壤的最大分子持水率。

(3)毛管水毛管水是在毛管作用下土壤中所能保持的那部分水分,亦即在重力作用下不易排除的水分中超出吸着水的部分。

分为上升毛管水及悬着毛管水,上升毛管水系指地下水沿土壤毛细管上升的水分。

悬着毛管水系指不受地下水补给时,上层土壤由于毛细管作用所能保持的地面渗入的水分(来自降雨或灌水)。

(4)重力水土壤中超出毛管含水率的水分在重力作用下很容易排出,这种水称为重力水。

在这几种土壤水分形式之间并无严格的分界线,其所占比重视土壤质地、结构、有机质含量和温度等而异。

可以假想在地下水面以上有一个很高(无限长)的土柱,如果地下水位长期保持稳定,地表也不发生蒸发入渗,则经过很长的时间以后,地下水面以上将会形成一个稳定的土壤水分分布曲线。

这个曲线反映了土壤负压和土壤含水率的关系,亦即是土壤水分特征曲线(见图1-1),这一曲线可通过一定试验设备确定。

在土壤吸水和脱水过程中取得的水分特征曲线是不同的,这种现象常称为滞后现象。

曲线表示吸力(负压)随着土壤水分的增大而减少的过程。

在曲线中并不能反映水分形态的严格的界限。

根据水分对作物的有效性,土壤水也可分为无效水、有效水和过剩水(重力水)。

吸着水紧缚于土粒的表面,一般不能为作物所利用。

低于土壤吸着水(最大分子持水率)的水分为无效水。

当土壤含水率降低至吸湿系数的1.5~2.0倍时,就会使植物发生永久性凋萎现象。

这时的含水率称为凋萎系数。

不同土质,其永久凋萎点含水率是不相同的。

相应的土壤负压变化于7×40×105Pa(105Pa=l巴=0.987大气压)之间,一般取为15×105Pa。

凋萎系数不仅决定于土壤性质,而且还与土壤溶液浓度、根毛细胞液的渗透压力、作物种类和生育期有关。

重力水在无地下水顶托的情况下,很快排出根系层;在地下水位高的地区,重力水停留在根系层内时,会影响土壤正常的通气状况,这部分水分有时称为过剩水。

在重力水和无效水之间的毛管水,容易为作物吸收利用,属于有效水。

一般常将田间持水率作为重力水和毛管水以及有效水分和过剩水分的分界线。

在生产实践中,常将灌水两天后土壤所能保持的含水率叫做田间持水率。

相应的土壤负压约为0.1~0.5×105Pa。

由于土质不同,排水的速度不同,因此排除重力水所需要的时间也不同。

灌水两天后的土壤含水率,并不能完全代表停止重力排水时的含水率。

特别是随着土壤水分运动理论的发展和观测设备精度的提高,人们认识到灌水后相当长时间内土壤含水率在重力作用下是不断减少的。

虽然变化速率较小,但在长时间内仍可达到相当数量。

因此,田间持水率并不是一个稳定的数值,而是一个时间的函数,田间持水率在农田水利实践中无疑是一个十分重要的指标,但以灌水后某一时间的含水率作为田间持水率,只能是一个相对的概念。

二、旱作地区农田水分状况旱作地区的各种形式的水分,并非全部能被作物所直接利用。

如地面水和地下水必须适时适量地转化成为作物根系吸水层(可供根系吸水的土层,略大于根系集中层)中的土壤水,才能被作物吸收利用。

通常地面不允许积聚水量,以免造成淹涝,危害作物。

地下水一般不允许上升至根系吸水层以内,以免造成渍害,因此,地下水只应通过毛细管作用上升至根系吸水层,供作物利用。

这样,地下水必须维持在根系吸水层以下一定距离处。

在不同条件下,地面水和地下水补给土壤水的过程是不同的,现分别说明如下:1)当地下水位埋深较大和土壤上层干燥时,如果降雨(或灌水),地面水逐渐向土中入渗,在入渗过程中,土壤水分的动态约如图l-2所示。

从图中可以看出,降雨开始时,水自地面进入表层土壤,使其接近饱和,但其下层土壤含水率仍未增加。

此时含水率的分布如曲线l;降雨停止时土壤含水率分布如图中曲线2;雨停后,达到土层田间持水率后的多余水量,则将在重力(主要的)及毛管力的作用下,逐渐向下移动,经过一定时期后,各层土壤含水率分布的变化情况如曲线3;再过一定时期,在土层中水分向下移动趋于缓慢,此时水分分布情况如曲线4;上部各土层中的含水率均接近于田间持水率。

在土壤水分重新分布的过程中,由于植物根系吸水和土壤蒸发,表层土壤水分逐渐减少,其变化情况如图l-2中曲线5及曲线6所示。

2)当地下水位埋深较小,作物根系吸水层上面受地面水补给,而下面又受上升毛管水的影响时,土层中含水率的分布和随时间的变化情况如图l-3所示。

图1-3 降雨(或灌水)后土壤含水率随时间变化示意图(地下水埋深较小时)图l-3(a)中曲线0是还未受到地面水补给的情况,当有地面水补给土壤时,首先在土壤上层出现悬着毛管水,如曲线1、2、3所示。

地面水补给量愈大,则入渗的水量所达到的深度愈大,直至与地下水面以上的上升毛管水衔接,如曲线4。

当地面水补给土壤的数量超过了原地下水位以上土层的田间持水能力时,即将造成地下水位的上升,如图l-3(b)。

在上升毛管水能够进入作物根系吸水层的情况下,地下水位的高低便直接影响着根系吸水层中的含水率,见图l-4。

在地表积水较久时,入渗的水量将使地下水位升高到地表与地面水相连接。

作物根系吸水层中的土壤水,以毛管水最容易被旱作物吸收,是对旱作物生长最有价值的水分形式。

超过毛管水最大含水率的重力水,一般都下渗流失,不能为土壤所保存,因此,很少能被旱作物利用。

同时,如果重力水长期保存在土壤中,也会影响到土壤的通气状况(通气不良),对旱作物生长不利。

所以,旱作物根系吸水层中允许的平均最大含水率,一般不超过根系吸水层中的田间持水率。

当根系吸水层的土壤含水率下降到凋萎系数以下时,土壤水分也不能为作物利用。

当植物根部从土壤中吸收的水分来不及补给叶面蒸发时,便会使植物体的含水量不断减小,特别是叶片的含水量迅速降低。

这种由于根系吸水不足以致破坏了植物体水分平衡和协调的现象,即谓之干旱。

由于产生干旱的原因不同,可分大气干旱和土壤干旱两种情况。

在农田水分尚不妨碍植物根系的吸收,但由于大气的温度过高和相对湿度过低,阳光过强,或遇到干热风造成植物蒸腾耗水过大,都会使根系吸水速度不能满足蒸发需要,这种情况谓之大气干旱。

我国西北、华北均有大气干旱。

大气干旱过久会造成植物生长停滞,甚至使作物因过热而死亡。

若土壤含水率过低,植物根系从土壤中所能吸取的水量很少,无法补偿叶面蒸发的消耗,则形成所谓土壤干旱的情况。

短期的土壤干旱,会使产量显著降低,干旱时间过长,即会造成植物的死亡,其危害性要比大气干旱更为严重。

为了防止土壤干旱,最低的要求就是使土壤水的渗透压力不小于根毛细胞液的渗透压力,凋萎系数便是这样的土壤含水率临界值。

土壤含水率减小,使土壤溶液浓度增大,从而引起土壤溶液渗透压力增加,因此,土壤根系吸水层的最低含水率,还必须能使土壤溶液浓度不超过作物在各个生育期所容许的最高值,以免发生凋萎。

这对盐渍土地区来说,更为重要。

土壤水允许的含盐溶液浓度的最高值视盐类及作物的种类而定。

按此条件,根系吸水层内土壤含水率应不小于(1-1)式中——按盐类溶液浓度要求所规定的最小含水率(占干土重的百分数);S——根系吸水土层中易溶于水的盐类数量(占干土重的百分数);C——允许的盐类溶液浓度(占水重的百分数)。

养分浓度过高也会影响到根系对土壤水分的吸收,甚至发生枯死现象。

因此在确定最小含水率时还需考虑养分浓度的最大限度。

根据以上所述,旱作物田间(根系吸水层)允许平均最大含水率不应超过田间持水率,最小含水率不应小于凋萎系数。

为了保证旱作物丰产所必须的田间适宜含水率范围,应在研究水分状况与其它生活要素之间的最适关系的基础上,总结实践经验,并与先进的农业增产措施相结合来加以确定。

三、水稻地区的农田水分状况由于水稻的栽培技术和灌溉方法与旱作物不同,因此农田水分存在的形式也不相同。

我国水稻灌水技术,传统采用田面建立一定水层的淹灌方法,故田面经常(除烤田外)有水层存在,并不断地向根系吸水层中入渗,供给水稻根部以必要的水分。

根据地下水埋藏深度,不透水层位置,地下水出流情况(有无排水沟、天然河道,人工河网)的不同,地面水、土壤水与地下水之间的关系也不同。

当地下水位埋藏较浅,又无出流条件时,由于地面水不断下渗,使原地下水位至地面间土层的土壤空隙达到饱和,此时地下水便上升至地面并与地面水连成一体。

当地下水埋藏较深,出流条件较好时,地面水虽然仍不断入渗,并补给地下水,但地下水位常保持在地面下一定的深度。

此时,地下水位至地面间土层的土壤空隙不一定达到饱和。

水稻是喜水喜湿性作物,保持适宜的淹灌水层,能对稻作水分及养分的供应提供良好的条件;同时,还能调节和改善其它如湿、热及气候等状况。

但过深的水层(不合理的灌溉或降雨过多造成的)对水稻生长也是不利的,特别是长期的深水淹灌,更会引起水稻减产,甚至死亡。

因此,淹灌水层上下限的确定,具有重要的实际意义。

通常与作物品种发育阶段,自然环境及人为条件有关,应根据实践经验来确定。

四、农田水分状况的调节措施在天然条件下,农田水分状况和作物需水要求通常是不相适应的。

在某些年份或一年中某些时间,农田常会出现水分过多或水分不足的现象。

农田水分过多的原因,不外以下几方面:1)降雨量过大;2)河流洪水泛滥,湖泊漫溢,海潮侵袭和坡地水进入农田;3)地形低洼,地下水汇流和地下水位上升;4)出流不畅等。

而农田水分不足的原因有:1)降雨量不足;2)降雨形成的地表径流大量流失;3)土壤保水能力差,水分大量渗漏;4)蒸发量过大等。

农田水分过多或不足的现象,可能是长期的也可能是短暂的,而且可能是前后交替的。

同时,造成水分过多或不足的上述原因,在不同情况下可能是单独存在,也可能同时产生影响。

农田水分不足,通常叫做“干旱”;农田水分过多,如果是由于降雨过多,使旱田地面积水,稻田淹水过深,造成农业欠收的现象,则谓之“涝”;由于地下水位过高或土壤上层滞水,因而土壤过湿,影响作物生长发育,导致农作物减产或失收现象,谓之“渍”;至于因河、湖泛滥而形成的灾害,则称为洪灾。

相关文档
最新文档