基于Matlab_Simulink的异步电机矢量控制系统仿真

合集下载

基于MatlabSimulink的异步电机矢量控制系统仿真

基于MatlabSimulink的异步电机矢量控制系统仿真

基于Matlab/Simulink 的异步电机矢量控制系统仿真摘要在异步电机的数学模型分析中以及矢量控制系统的基础之上,利用Matlab/Simulink运用建立模块的思想分别组建了坐标变换模块、PI调节模块、转子磁链个观测模块、SVPWM等模块,然后将这些模块有机的结合,最后构成了异步电动机矢量控制的仿真模块,并且进行了仿真验证。

仿真结果分别显示了电机空载与负载情况下转矩、转速的动态变化曲线,验证了该方法的有效性、实用性,为电机在实际使用中打下了坚实的基础。

本文主要研究异步电机在矢量控制下的仿真。

使用Matlab/Simulink中的电气系统模块(PowerSystem Blocksets)将其重组得到新的模型并对其仿真,最后分析仿真结果得出结论。

关键词: 异步电机矢量控制 MATLAB/SIMULINK 变频调速目录摘要 (I)Abstract......................................................................................... 错误!未定义书签。

1 绪论 (1)1.1 电机及电力拖动技术的发展概况 (1)1.2 异步电动机的控制技术现状................................................. 错误!未定义书签。

1.3 仿真软件的简介及其选择..................................................... 错误!未定义书签。

1.4 论文的主要内容及结构安排................................................. 错误!未定义书签。

2 异步电动机的数学模型 (4)2.1 异步电动机的稳态数学模型 (4)2.2 异步电动机的动态数学模型 (5)2.3 本章小结 (7)3 矢量控制系统基本思路 (8)3.1 矢量控制的基本原理 (8)3.2 坐标变换 (9)3.3SVPWM调制 (21)3.3本章小结 (11)4 异步电机矢量控制系统仿真 (14)4.1矢量控制系统模型 (14)4.2仿真结果与分析 (15)4.5本章小结 (17)5结论与展望 (18)5.1结论 (18)5.2后续研究工作的展望 (19)参考文献 ....................................................................................... 错误!未定义书签。

基于Matlab异步电动机矢量控制系统的仿真

基于Matlab异步电动机矢量控制系统的仿真

基于Matlab转差频率控制的矢量控制系统的仿真概述:常用的电机变频调速控制方法有电压频率协调控制(即v/F比为常数)、转差频率控制、矢量控制以及直接转矩控制等。

其中,矢量控制是目前交流电动机较先进的一种控制方式。

它又有基于转差频率控制的、无速度传感器和有速度传感器等多种矢量控制方式。

其中基于转差频率控制的矢量控制方式是在进行U /f恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对输出频率f进行控制的。

采用这种控制方法可以使调速系统消除动态过程中转矩电流的波动,从而在一定程度上改善了系统的静态和动态性能,同时它又具有比其它矢量控制方法简便、结构简单、控制精度高等特点。

Simulink仿真系统是Matlab最重要的组件之一,系统提供了标准的模型库,能够帮助用户在此基础上创建新的模型库,描述、模拟、评价和细化系统,从而达到系统分析的目的。

在此利用Matlab/Simulink软件构建了转差频率矢量控制的异步电机调速系统仿真模型,并对此仿真模型进行了实验分析。

矢量控制是目前交流电动机的先进控制方式,一般将含有矢量交换的交流电动机控制都称为矢量控制,实际上只有建立在等效直流电动机模型上,并按转子磁场准确定向地控制,电动机才能获得最优的动态性能。

转差频率矢量控制系统结构简单且易于实现,控制精度高,具有良好的控制性能、因此,早起的矢量控制通用变频器上采用基于转差频率控制的矢量控制方式。

基于此,本文在Mtalab/Simulink环境下对转差频率矢量控制系统进行了仿真研究。

1转差频率矢量控制系统由于异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。

转差频率矢量控制是按转子磁链定向的间接矢量控制系统,不需要进行复杂的磁通检测和繁琐的坐标变换,只要在保证转子磁链大小不变的前提下,通过检测定子电流和旋转磁场角速度,通过两相同步旋转坐标系(M-T坐标系)上的数学模型运算就可以实现间接的磁场定向控制。

基于MatlabSimulink的异步电机矢量控制系统仿真

基于MatlabSimulink的异步电机矢量控制系统仿真

基于MatlabSimulink的异步电机矢量控制系统仿真一、本文概述随着电力电子技术和控制理论的不断发展,异步电机矢量控制系统已成为现代电机控制领域的重要分支。

该系统通过精确控制异步电机的磁通和转矩,实现了对电机的高效、稳定和动态性能的优化。

Matlab/Simulink作为一种强大的仿真工具,为异步电机矢量控制系统的研究和设计提供了便捷的平台。

本文旨在探讨基于Matlab/Simulink的异步电机矢量控制系统仿真方法。

文章将简要介绍异步电机矢量控制的基本原理和关键技术,包括空间矢量脉宽调制(SVPWM)技术、转子磁链观测技术以及矢量控制策略等。

详细阐述如何利用Matlab/Simulink搭建异步电机矢量控制系统的仿真模型,包括电机模型、控制器模型以及系统仿真模型的构建过程。

文章还将探讨仿真模型的参数设置、仿真过程以及仿真结果的分析方法。

通过本文的研究,读者可以深入了解异步电机矢量控制系统的基本原理和仿真方法,掌握基于Matlab/Simulink的仿真技术,为异步电机矢量控制系统的实际设计和应用提供有益的参考和借鉴。

本文的研究也有助于推动异步电机矢量控制技术的发展和应用领域的拓展。

二、异步电机基本原理异步电机,又称感应电机,是一种广泛应用于工业领域的电动机。

其基本原理基于电磁感应和电磁力作用。

异步电机主要包括定子(静止部分)和转子(旋转部分)。

定子通常由铁芯和三相绕组构成,而转子则可能由实心铁芯、鼠笼型或绕线型结构组成。

当异步电机通电时,定子绕组中的三相电流会产生旋转磁场。

这个旋转磁场与转子中的导体相互作用,根据法拉第电磁感应定律,会在转子导体中产生感应电动势和感应电流。

这些感应电流在旋转磁场的作用下,受到电磁力的作用,从而使转子产生旋转力矩,驱动转子旋转。

异步电机的旋转速度与定子旋转磁场的旋转速度并不完全同步,这也是其被称为“异步”电机的原因。

异步电机的旋转速度通常略低于旋转磁场的同步速度,这是由于转子导体的电感和电阻导致的电磁延迟效应。

基于MATLABSimulink的异步电机仿真

基于MATLABSimulink的异步电机仿真
Therefore, simulation tools must be developed for induction motor experiments to serve as useful preparatory exercises before students come to the laboratory. The objective of thispaper is to present simulation models of these induction motor experiments in an effort to design a computational laboratory.The dc, no-load, and blocked-rotor simulation models are developed as stand-alone applications using MATLAB/Simulink and Power System Blockset (PSB) . For the load experiment, students are required to write a computer program usingMATLAB’s M-flle programming for the per-phase equivalent circuit of the induction motor to compute operating quantities.Such an assignment improves students’ programming skillsthat would be helpful in other classes as well.
For personal use only in study and research; not for commercial use

基于Simulink的异步电机矢量控制调速建模与仿真

基于Simulink的异步电机矢量控制调速建模与仿真

交 流 调 速 的 重 要 方 向 之 一 建 立 异 步 电 机 矢 量 控 制 系 统 一。
的仿 真 模 型 , 能有 效 地 节 省 控 制 系统 的设 计 时 间 , 时验 及
证施加 于 系统 的控制 算法 , 时 呵 以利用 计 算 机 仿 真 的优 同
越 性 , 入 扰 动 和 参 数 变 化 , 便 观 察 系 统 在 不 同 工 况 下 加 以 的动 静态特 性 。
c nr1 o to . Ke r s a y c r n u a h n ; e t r c n r l sm u a i n y wo d : s n h o o s m c i e v c o o t o ; i l t o
矢 量 控 制 是 在 电 机 统 一 理 论 、 电 能 量 转 换 和 坐 标 变 机
换 理 论 的 基 础 上 发 展 起 来 的 一 种 先 进 的 控 制 策 略 , 现 代 是
根 据 矢 量 控 制 的 基 本 概 念 , 用 Malb Smuik软 利 t /i l a n 件 中 的 电 气 系 统 模 块 SmP weS se i o ry tms对 该 系 统 进 行 r 建 模 和 仿 真 研 究 。 构 建 的 异 步 电 机 矢 量 控 制 调 速 系 统 的 仿 真 模 型 如 图 2所 示 。
图 2 系 统 总 体 模 型 结 构 图
2 2 主 要 子 模 块 的 构 造 与 功 能 .
2 2 1 逆 变 器 模 块 .. 逆 变 器 模 块 由 SmP weS se 中 的 P weE et nc i o ry tm o r lcr i o
库 中 的 Unv ra B ig ies l rd e模 块 构 成 , 变 器 的 输 入 p le 逆 us 端

基于MATLAB的异步电机矢量控制调速系统仿真

基于MATLAB的异步电机矢量控制调速系统仿真

宁波大学答题纸(20 13 —20 14 学年第 1 学期)课号: 101G08EA1 课程名称:MATLAB 应用技术 改卷教师: 朱莹 学号: 116040069 姓 名: 覃坤勇 得 分:基于MATLAB/SIMULINK 的异步电机矢量控制调速系统仿真1基本要求在分析异步电机的动态数学模型及矢量控制原理的基础上,利用Matlab/Simulink ,采用模块化的思想分别建立了电流控制型变频器模块、异步电机矢量变换模型、电流滞环PWM 控制模块、以及电流控制观察、速度调节等模块,再进行功能模块的有机整合,构成了交流异步电机矢量控制系统,并进行了仿真试验。

2 理论基础感应电机的数学模型是一高阶、非线性、强耦合的多变量系统,为便于研究,通常通过坐标变换使之简化。

根据交流电机理论,在忽略空间谐波、磁饱和、铁损以及频率和温度变化对绕组的影响的情况下,经过坐标变换,三相交流感应电动机在d-q 坐标系下的数学模型可用如下方程描述:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∙⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++--+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡2211221111111100000t m t m r s m s r m m m S Sm m SS t m i i i i R L L p L R p L p L L p L R L L p L L p L R u u ωωωωωω (1) 式中,S L ,r L 分别为定子和转子的自感;1R ,2R 分别为定子和转子的电阻; m L 为定转子间的互感。

异步电机矢量控制中,被控的是定子电流因此,需要推导出定子电流分量和其他物理量的关系。

磁链方程如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∙⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡221122110000000q d q d r mr m m S m Sq d q d i i i i L L L L L L L L ψψψψ (2)2211ψm m L p T i +=(3) 式中,2T 为转子励磁时间常数,即 22R L T r=。

基于Matlab_Simulink的异步电机直接转矩控制系统仿真_何萍

基于Matlab_Simulink的异步电机直接转矩控制系统仿真_何萍

, 2# ! . ) ! # !’ 2 , ’ . ) # ! . " & , )’$ 2 # ! ! . "
[ ]
( ) !
" $ " 2 $ , ’$ ! " ! 式中,- 5 ( 。 ./ ’ ’ 6’$) * ) 磁链方程为
电气应用 ! " " #年第! $卷第%期
基于 8 5 ’ # 5 6/ . / 0 $ # / 1 2的异步电机直接转矩控制系统仿真
$* ’ 2 ’$ 2# * ! / * ! ! # ! ! # $* 2 ’ 2 ’$ * * * " " $ $* ’$ 2 ’ 2 * ! ) ) !
" $ "2 $* " 转矩方程为
( ) -
’$
2
$ " $ ’ * ) ) " ( ) 7
( ! 0( $ " * * * * !) 4 $* " ) $* " 运动方程为
, 引言
直接转矩控制变频调速技术,是% "世纪2 "年 代由德国鲁尔大学的 3 4 4 , 1 6 7 8 - 教授和日本学者 5 9 / / : / ; : (提出的。它用空间矢量分析方法,在二 相静止坐标系下计算、控制异步电动机的磁链和转 矩,采用两点式调节产生 < =. 信号,直接对逆变 器的开关状态进行最佳控制,以获得转矩的高动态 性能。直接转矩控制技术自诞生起就以其新颖的控 制思想,简洁明了的系统结构,优良的静、动态性
" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " ! " ! 直接转矩控制系统仿真模型 直接转矩控制系统的仿真模型如图!所示,磁 链模型 ( )的实现如图 & 所示,先将测得的三 " # $ % 相定子电压和定子电流经过三相 / 二相变换,然后 用积分模块建立起磁链模型。转矩模型 ( ) ’ ( ) $ + * 的实现比较简单,在此省略。

基于MatlabSimulink的异步电机矢量控制系统仿真

基于MatlabSimulink的异步电机矢量控制系统仿真

基于Matlab/Simulink 的异步电机矢量控制系统仿真摘要在异步电机的数学模型分析中以及矢量控制系统的基础之上,利用Matlab/Simulink运用建立模块的思想分别组建了坐标变换模块、PI调节模块、转子磁链个观测模块、SVPWM等模块,然后将这些模块有机的结合,最后构成了异步电动机矢量控制的仿真模块,并且进行了仿真验证。

仿真结果分别显示了电机空载与负载情况下转矩、转速的动态变化曲线,验证了该方法的有效性、实用性,为电机在实际使用中打下了坚实的基础。

本文主要研究异步电机在矢量控制下的仿真。

使用Matlab/Simulink中的电气系统模块(PowerSystem Blocksets)将其重组得到新的模型并对其仿真,最后分析仿真结果得出结论。

关键词: 异步电机矢量控制 MATLAB/SIMULINK 变频调速目录摘要 (I)Abstract......................................................................................... 错误!未定义书签。

1 绪论 (1)1.1 电机及电力拖动技术的发展概况 (1)1.2 异步电动机的控制技术现状................................................. 错误!未定义书签。

1.3 仿真软件的简介及其选择..................................................... 错误!未定义书签。

1.4 论文的主要内容及结构安排................................................. 错误!未定义书签。

2 异步电动机的数学模型 (4)2.1 异步电动机的稳态数学模型 (4)2.2 异步电动机的动态数学模型 (5)2.3 本章小结 (7)3 矢量控制系统基本思路 (8)3.1 矢量控制的基本原理 (8)3.2 坐标变换 (9)3.3SVPWM调制 (21)3.3本章小结 (11)4 异步电机矢量控制系统仿真 (14)4.1矢量控制系统模型 (14)4.2仿真结果与分析 (15)4.5本章小结 (17)5结论与展望 (18)5.1结论 (18)5.2后续研究工作的展望 (19)参考文献 ....................................................................................... 错误!未定义书签。

基于SIMULINK的异步电机的建模与仿真

基于SIMULINK的异步电机的建模与仿真

基于SIMULINK的异步电机的建模与仿真摘要利用MATLAB软件中的动态仿真工具SIMULINK,构建了异步电机的仿真模型,并通过实验验证了所建电机模型的可行性、与实用性。

关键词异步电机建模仿真MATLAB/SIMULINK1 引言随着电力电子技术的飞速进步和交流电机调速理论的不断深入。

异步电机的应用日益广泛。

然而异步电机是一个高阶、非线性、强耦合的多变量系统。

通过坐标变换,可以消除瞬变过程中的周期性时变系统和降低方程的阶数,从而简化数学模型,基于这种观念,利用计算机仿真技术去建模既省时又直观。

本文采用异步电机基于两相静止坐标系下的数学模型,结合坐标变换,利用MATLAB软件中的动态仿真SIMULINK,建立异步电机的仿真模型。

并通过实例进行实时仿真。

2 基于静止坐标系下异步电机数学模型异步电机的数学建模方法是将三相电机转换成两相电机,按两相电机建模。

2.1电压矩阵方程异步电机在两相静止坐标系中的电压矩阵方程为式中,uα1,uβ1分别是异步电机在α、β轴上定子电压分量;uα2,uβ2分别是异步电机在α、β轴上转子电压分量;iα1,iβ1分别是异步电机在α、β轴上定子电流分量;iα2,iβ2分别是异步电机在α、β轴上转子电流分量;R1、R2分别为定、转子电阻;L1、L2分别为定、转子电感;L m为互感;s为微分算子;ω为转子角速度特别地,对于笼型电机转子侧电压为零。

2.2三相-二相变换三相对称静止绕组,通以三相平衡的正弦电流,产生合成磁动势,以同步转速旋转,则此三相称为三相静止坐标系。

两相静止绕组,它们在空间互差90度电角度,且通入时间上互差90度的两相电流,也产生与上相同的磁动势,则把此两相称为两相静止坐标系。

若它们的磁动势空间位置一致、幅值和转速相等,故可认为这两种坐标系等效。

三相-两相的转换矩阵如下:2.3转矩和运动方程转矩方程式为:式中p n为电机的极对数;J为电机的转动惯量;T l为负载转矩。

基于MATLAB_SIMULINK的异步电动机软起动控制系统的仿真

基于MATLAB_SIMULINK的异步电动机软起动控制系统的仿真

1 A
+ -V
1
A1
电压测量
+
B
-V
B1
+
C
-V
C1
图 7 同步电路模块
2.1.5 电流有效值计算模块
有 效 值 计 算 模 块 可 以 直 接 选 择 MATLAB/
Simulink 中的 Extra Library/Measurements/RMS. 注
意在使用时要将频率设定为 50 Hz.
2.2 软起动 PID 控制环节
本文基于 MATLAB/SIMULINK 建立了异步电 动机软起动 PID 控制系统的仿真模型,并完成仿真 实验。文献[3]在设计软起动控制电路中采用的是利
收稿日期:2010-10-14 作者简介:朱延枫(1977-),女,辽宁北镇人,讲师,硕士。
第6期
朱延枫等:基于 MATLAB/SIMULINK 的异步电动机软起动控制系统的仿真
kP
_
1
+
du/dt
0.01
Iref
1
kD
+
2
Iback
触发角 Saturation +
1/s
1
kI
1
+-
1
A1
Relay Rate Limiter
g1
+
100
触发角初始值
-1
+-
2
Gain
g4
图 6 软起动 PID 控制模块
2
u(1)/18
Function
图 4 触发脉冲产生模块子系统
2.1.2 三相交流调压模块 三相交流调压模块是对图 1 的软起动主电路图

基于MATLAB_SIMULINK的异步电机矢量控制调速系统仿真优秀doc资料

基于MATLAB_SIMULINK的异步电机矢量控制调速系统仿真优秀doc资料

基于MATLAB_SIMULINK的异步电机矢量控制调速系统仿真优秀doc资料文章编号:100022472(2000022*******基于M AT LAB SI M U L I NK的异步电机矢量控制调速系统仿真Ξ杨洋,张桂香(湖南大学机械与汽车工程学院,湖南长沙410082摘要:从异步电机矢量控制数学模型入手,介绍一种基于M A TLAB S I M UL I N K的异步电机按转子磁场定向的矢量控制系统仿真模型Λ该模型可通用于异步笼型电机,使用时只需输入不同电机参数即可Λ通过仿真实验验证了模型的正确性Λ关键词:异步电机;矢量控制;M A TLAB S I M UL I N K;仿真中图分类号:TM921.51文献标识码: ASi m ulati on of V ector Control Inducti on M otor A djusting Syste m Based on M A TLAB S I M UL I N KYAN G Yang,ZHAN G Gui2x iang(Co llege of M echan ical and A utomo tive Engineering,H unan U n iv,Changsha 410082,Ch inaAbstract:A si m ulati on model of vecto r con tro l inducti on mo to r adjusting syste m w ith the reference fra m e fixed to the ro to r is established.T he model can beconven ien tly used by inputting p roper mo to r para m eters.Si m ulati on s show the validity of the model.Key words:inducti on mo to r;vecto r con tro l;M A TLAB S I M UL I N K;si m ulati on0引言矢量控制理论的提出使异步电机调速性能达到甚至超过直流电机调速性能成为可能,而且运用矢量控制已成为当今交流变频调速系统的主流Λ在进行复杂的系统设计时,采取计算机仿真方法来分析和研究交流调速系统性能是非常有效和必要的Λ传统的计算机仿真软件包用微分方程和差分方程建模,直观性、灵活性差,编程量大,操作不便ΛM A TLAB是一个高度集成的软件系统,集科学计算、图象处理、声音处理于一体,具有极高的编程效率ΛM A TLAB提供的S I M UL I N K是一个用来对动态系统进行建模、仿真和分析的软件包,它具有模块化、可重栽、可封装、面向结构图编程及可视化等特点,可大大提高系统仿真的效率和可靠性ΛS I M UL I N K提供有Sink s(输出方式、Source(输入源、Ξ收稿日期:2000202229作者简介:杨洋(1970-,女,湖南长沙人,湖南大学硕士生.D iscrete (离散时间环节、L inear (线性环节、N on linear (非线性环节、Connecti on s (连接与接口、Ex tra (其他环节子模型库Λ用户可以方便定制和创建自己的模型、模块Λ在多种矢量控制方法中,按转子磁场定向的矢量控制运用较为普遍,本文将结合这种矢量控制和S I M UL I N K 的特点,介绍一种异步电机按转子磁场定向的矢量控制系统的建模仿真方法Λ模型将为同类调速系统提供有效、可靠的研究分析依据Λ1异步电机矢量控制系统的仿真模型异步电机的矢量控制相当于把直流电机换向器的功能通过控制的方法来实现,从而达到磁通和转矩单独控制的目的Λ根据感应电机的坐标变换理论,在三相坐标系下的定子输入的电流通过3s 2r 交换,由三相静止坐标变换为两相垂直的静止坐标,再通过从两相静止坐标系到两相旋转坐标系M ,T 轴的变换,并且使得M 轴沿转子总磁链矢量的方向,最终获得等效成同步旋转坐标系下的直流电流i m 1,i t 1,这样异步电机通过坐标变换,变成一台由i m 1,i t 1输入的直流电机Ζ矢量控制系统的构想就是模仿直流电机的控制方法,求得直流电机的控制量,经过相应的坐标反变换,重新获得三相输入电流(或电压,就能控制异步电机了Ζ根据异步电机理论,经坐标变换后,笼型异步电机在同步旋转坐标上按转子磁场定向的电压矩阵方程(转子短路,u m 2=u t 2=0为u m 1u t 10=R 1+L s p -Ξ1L s L m p -Ξ1L m Ξ1L s R 1+L s p Ξ1L m L m p L m p 0R 2+L r p 0Ξs L m 0Ξs L r R 2i m 1i t 1i m 2i t 2(1电机转子磁链与电流的关系为L m i m 1+L r i m 2=Ω2(2L m i t 1+L r i t 2=0(3将(2代入(1中第3行中,得:i m 2=-p Ω2R 2(4再代入(2解出i m 1:i m 1=-T 2p +1L m Ω2或得:Ω2=L m T 2p +1i m 1(5由式(1第4行可得:i t 2=-L m L r i t 1(6而由式(3第4行Ξs =-R 2Ω2i 2(7可将(6代入(7,并考虑到T 2=L r R 2,则Ξs =-L m i t 1T 2Ω2(8电机的电磁转矩公式为:T e =Mp L m L r i t 1Ω2(9电机运动方程为:T e -T l =J N pd Ξ d t (10其中,R 1,R 2为定转子电阻;T 2为转子励磁时间常数,T 2=L r R 2;L m 为定转子等效绕组间15第2期杨洋等:基于M A TLAB S I M UL I N K 的异步电机矢量控制调速系统仿真的互感,L m =(3 2L m 1;U m 1,U m 2为M T 轴坐标系中M 、T 轴定子电压;L s 为定子等效绕组的自感,L s =L m +L 11;i m 1,i t 1,i m 2,i t 2为M T 轴坐标系中M 、T 轴定向转子电流;L r 为转子等效绕组的自感,L r =L m +L 11;T e 电磁转矩;Ξ1为定子转速;N p 为极对数;Ξs 为转差;J 为转动惯量;Ξ为转子转速;Ω2为转子总磁链Ζ由上述式子可知,由于M T 坐标按转子磁场定向,在定子电流的两个分量之间实现了解耦,i m 1唯一决定磁链Ω2,当磁通不变时,i t 1则只影响转矩,与直流电机中的励磁电流和电枢电流相对应Ζ式(5,(8,(9,(10就是矢量控制的基本数学模型Ζ根据这些推导的式子,可以画出异步电机变压变频矢量控制系统结构图(图1Ζ图1中异步电机矢量变换数学模型如图2Ζ图2的模型中除根据(5,(9式绘得分解成磁通和转速的直流电机模型外,由转子频率和转差频率相加,得到定子频率信号,再经积分,即获得转子磁链的相位信号5,这是坐标变换所不可缺的参数Ζ如果将式(1展开,并代入式(2,(3,我们可以写出异步电机按转子磁场定向情况下的状态变量方程X α=A (Ξ1X +B U(11式中X =i m1i t 1Ω2,A (Ξ=ZΞ1L m R 2ΡL r -Ξ1-R 1L r ΡL m Ξ1ΡR 2L mL r 0-R 2L r ,B =L r Ρ00L r Ρ00,U =u m 1u t 1,Z =R 1L 2r +R 2L 2m ΡL r ,Ρ=L s L r -L 2m 从状态方程可以看出这是一个线性时变系统,虽然S I M UL I N K 中提供有状态方程模块,但主要是针对定常系统的,所以在S I M ULI N K 中用状态方程仿真电机系统较为不便Λ如希望用状态方程仿真,可直接在M A TLAB 中用M 文件编程建立仿真系统,只不过系统模型不如S I M UL I N K 所建的直观Λ本文主要的目的是在S I M UL I N K 下建立仿真模型,图1和图2的模型,可毫不费力地利用S I M UL I N K 提供的库模块来构建,这是后一节的重点Λ图1异步电机变压变频矢量控制系统结构图A 7R 为磁通调节器,A SR 为转速调节器25湖南大学学报(自然科学版2000年图2异步电机矢量变换数学模型2异步电机矢量控制系统的SI M UL I NK 仿真模型图1中,包含了坐标转换模块(2r 3s block ,电流控制型变频器模块(CSI block ,以及异步电机矢量变换模型(I nducti on m otor block ,这些模块可以由SI M UL I NK调用库模型分别建立,然后封装成Subsyste m Λ这里的坐标变换(2 3和图2中的坐标转换(3 2互为反变换Λ而电流控制型P WM 变压变频器的模型在M AT LAB 5.2中的POW ERS Y S 库中可以找到Λ这三个主要模块构造好后,其它环节也一样可以通过SI M UL I NK 模块库调入,输入不同参数,然后如图3连接,整个仿真模型就建好了Λ图中异步电机矢量变换模块展开内部结构如图4Λ系统中还包括两个P I 调节器,对应于图1中A 7R ,ASR ,这两个调节器也是定制好Subsyste m 后再封装而成Λ图3异步电机矢量控制变压变频调速SI M U L I NK 仿真模型3仿真实验35第2期杨洋等:基于M A TLAB S I M UL I N K 的异步电机矢量控制调速系统仿真图4异步电机矢量变换仿真模块(1仿真实验1转速输入设定为一阶跃函数,初值为100rad s (角频率,1s 后跃变为300rad s Λ磁通设为一定值1.1,由电流型逆变器给电机供电,让电机空载启动运行,仿真获得的转速、电磁转矩仿真曲线如图5,图6Λ图5电机输出速度仿真曲线图6电磁转矩仿真曲线(2仿真实验输入设定转速(角速度不变,300rad s ,磁通输入仍为1.1,电机空载启动,1s 后加入额定负载T L ,经SI M UL I NK 仿真模型仿真后得出的速度、电磁转矩曲线如图7,图8Λ图7电机输入速度仿真曲线图8电机电磁转矩变化曲线45湖南大学学报(自然科学版2000年项目: 科技支撑计划课题(2021BAG12A05-08定稿日期:2021-06-28作者简介:倪强(1987-,男,湖南益阳人,硕士研究生,研究方向为电力牵引交流传动及其控制技术。

异步电动机matlab与Simulink仿真设计

异步电动机matlab与Simulink仿真设计

异步电动机matlab与Simulink建模与仿真设计摘要本文通过结合Matlab / Simulink中的模块和s函数,建立了鼠笼式异步电动机的模型,并进行了分析。

通过改进定子电流和定子磁链的方程式增加了模型的准确性。

文中给出了增加负载时定子电流,磁链以及转子速度转矩的仿真结果。

仿真结果表明在αβ两相同步静止坐标系下的模型可以更准确的反映运行中电机的实际情况。

关键词:Matlab / Simulink 异步电动机状态方程1 前言随着电力电子技术与交流电动机的调速和控制理论的迅速发展,使得异步电动机越来越广泛地应用于各个领域的工业生产。

异步电动机的仿真运行状况和用计算机来解决异步电动机控制直接转矩和电机故障分析具有重要意义。

它能显示理论上的变化,当异步电动机正在运行时,提供了直接理论基础的电机直接转矩控制(DTC),并且准确的分析了电气故障。

在过去,通过研究的异步电动机的电机模型建立了三相静止不动的框架。

研究了电压、转矩方程在该模型的功能,同相轴之间的定子、转子的线圈的角度。

θ是时间函数、电压、转矩方程是时变方程这些变量都在这个运动模型中。

这使得很难建立在αβ两相异步电动机的固定框架相关的数学模型。

但是通过坐标变换,建立在αβ两相感应电动机模型框架可以使得固定电压、转矩方程,使数学模型变得简单。

在本篇论文中,我们建立的异步电机仿真模型在固定框架αβ两相同步旋转坐标系下,并给出了仿真结果,表明该模型更加准确地反映了运行中的电动机的实际情况。

2 异步电动机的数学模型2.1 三相-两相变换矩阵(1)2.2电压方程矩阵作为转子感应电动机是短路鼠笼式, Urα , Urβ =0。

电压方程可以得到:7(2)根据方程(2)我们可以得出状态方程为:(3)这个方程和电流的定子磁链定向的关系是一样的。

(4)(5)根据公式(4)(5),我们有了异步电动机与定子磁链定向的状态方程和电流作为状态变量:(6)转矩方程是:(7)速度方程是:8(8)3基于simulink的异步电动机模型它提供了一个异步电动机在电力系统仿真模块(SimPowerSystems 7.0版本)的MATLAB的仿真,使电力系统变得更方便。

基于Matlab_Simulink的交流异步电机矢量控制系统

基于Matlab_Simulink的交流异步电机矢量控制系统

基于Matlab/Simulink 的交流异步电机矢量控制系统张文哲1,2(1.上海理工大学上海200093;2.德国科堡应用科技大学巴伐利亚州科堡96450)摘要:着眼于讨论交流异步电机的矢量控制方法,在了解以及分析了交流异步电机的数学模型和调频控制原理的基础上,设计了一种电机的矢量控制方法以及建立模型并进行仿真。

利用Matlab/Simulink 的强大建模仿真功能,设计了各个功能模块,如:ACR 模块、ASR 模块,PI 调节模块、坐标转换模块、磁通计算模块等。

并且整合这些独立的模块成为一个矢量控制调速系统。

仿真实验结果证明了该模型设计的合理性有效性。

实验图表数据表明该建模方法能达到准确控制调速系统的要求。

关键词:交流异步电机;Matlab ;矢量控制;建模仿真中图分类号:TN7文献标识码:A文章编号:1674-6236(2014)15-0165-03AC asynchronous motor vector control system based on Matlab/SimulinkZHANG Wen 鄄zhe 1,2(1.University of Shanghai for Science and Technology ,Shanghai 200093,China ;2.Hochschule Coburg ,Coburg 96450,Germany )Abstract:This short essay come up with a modeling method about vector control system of AC asynchronous motor based on mathematical model of AC motor.Designed simulation model is made up by many independent function module ,like:ACR module ,ASR module ,PI regulator module ,Coordinate transformation module ,Magnetic flux calculation module and so on.The simulation experiment make clear that this model ’s method is accurate ,easy to realize and use.This model provide a checking method and research means for popularizing vector control system used in industry field.Key words:AC asynchronous motor ;Matlab ;vector control ;modeling and simulation收稿日期:2013-09-13稿件编号:201309097作者简介:张文哲(1989—),男,浙江德清人,硕士。

电机分析论文-基于MATLAB交流异步电机矢量控制系统建模与仿真

电机分析论文-基于MATLAB交流异步电机矢量控制系统建模与仿真

基于MATLA交流异步电机矢量控制系统建模与仿真李书圣,电气1302班,130301208 摘要:在分析异步电机的数学模型及矢量控制原理的基础上控制系统仿真模型。

仿真结果表明该系统转速动态响应快、验证了交流电机矢量控制的可行性、有效性。

关键词:交流异步电机,矢量控制,MATLAB 1、引言本文研究交流异步电机矢量控制调速系统的建模与仿真。

利用MATLAB^的电气系统模块构建异步电机矢量控制仿真模型,并对其动、静态性能进行仿真试验。

仿真试验结果验证了矢量控制方法的有效性、可行性。

2、参数由于交流异步电机在A-B-C坐标系下的数学模型比较复杂,需要通过两次坐标变换来简化交流异步电机的数学模型。

一次是三相静止坐标系和两相静止坐标系之间的变换(简称3s/2s变换),另一次是两相静止和两相同步旋转坐标系之间变换(简称2s/2r 变换)。

通过这两次变换,就可以得到在任意旋转坐标系d-q坐标系下交流异步电机的数学模型。

在d-q坐标系下的数学模型如下:⑴电压方程:⑵磁链方程:sd L s 0 L m 0 I sdsq 0 L s 0 L m i 'sqrd L m 0 L r 0 'rdrq 0 L m 0 L r 'rq(2.2 )⑶转矩方程:T e2 n3 p L m (i sq i rd'sd'rq)(2.3 )⑷运动方程:T e T m J r p/n p F r / n p(2.4)三相静止坐标系和两相静止坐标系,利用MATLAB t立异步电机矢量稳态静差小、抗负载扰动能力强U sd R s JP 丄s L m PU sq丄s R s L s P 1 —U rd L m P s L m R r L r PU rq s L m L m P s L r R rA-B-C与两相同步旋转坐标系d-q之间正变换3s/2r变换,反变换2r/3s 分别为 :'sd 2 cos cos( 2 /3) cos( 2 /3)'a' 'sq 3 s'n sin( 2 /3) s' n( 2 /3) lb'c(2.5 )i acos s'n 'sd'b 'cos( 2 /3) sin( 2 /3) 'sq L m P 'sqs L r 'rd(2.6 )J P当把转子旋转坐标系d-q坐标系磁链定向在同步旋转坐标系M-T坐标系的M轴时(此时d-q与M-T两坐标系重合,即d=mq=t),应有:rd rm rt(2.7 )由此可得交流异步电机矢量解耦控制的控制方程:r L m i sd / (1「P)(2.8)L r L1 r L m , L s T e3 ..~ n p L m i sq2r/L r(2.9)i sd (1 T r p) r / L m(2.10)L m i sq /(T r r)(2.11)(n p r s)dt(2.12)L1s L m ,T r L r /R r(2.13)式(2.1)~式(2.13 )中:R s、R r ――定子电阻、转子电阻;L1s、L1 r、L m、L s、L r 定子侧电感、转子侧电感、定转子互感、定子绕组电感、转子绕组电感;1、s、r ――定子频率的同步转速、转差转速、转子转速;――转子磁链角;u、i、—电压、电流、磁链;下标s、r ――表示定子、转子;下标d、q ――表示d轴、q轴;n p——极对数;T r ――转子时间常数;J ――机组转动惯量;T e、T m ------ 电磁转矩、负载转矩;F ---- 阻转矩摩擦系数;p——微分算子,p d/dt ;由式(2.8 )和式(2.9 )可以看出,转子磁链r只由定子电流励磁分量i sd决定,当转子磁链r达到稳态并保持不变时,电磁转矩T e 只有定子电流转矩分量i sq决定,此时磁链r与电磁转矩T e分别由i sd、i sq独立控制,实现了磁链和转矩的解耦。

基于MatlabSimulink异步电机矢量控制系统仿真

基于MatlabSimulink异步电机矢量控制系统仿真

基于Matlab/Simulink异步电机矢量控制系统仿真1、Matlab仿真程序及各仿真系统工作原理首先,读懂本文献并结合相关参考文献,分析异步电机矢量控制系统机构原理。

1.1矢量控制系统分析矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。

所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。

其中等效的直流电动机模型如图1所示,在三相坐标系上的定子交流电流i A、i B、i C,通过3/2变换可以等效成两相静止正交坐标系上的交流i sα和i sβ,再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流i sm和i st。

图1矢量控制系统原理结构图其次,原理分析清楚后,利用Matlab/Simulink强大的仿真能力,建立交流异步电机控制系统的仿真模型。

由于老师所给文献篇幅有限,学生又查阅了相关文献,结合其他相关文献,将控制系统分为几个功能模块:转速调节模块、定子电流励磁分量模块、定子电流转矩分量调节模块和坐标变换模块等,将这些模块有机组合,就可在Matlab/Simulink中搭建出交流异步电机系统的仿真模型。

1.2转速(ASR)调节模型图2 转速控制模型1.3磁链(APsirR、ACMR)控制模型图3 磁链控制模型1.4转矩计算(ACTR)模型图4 转矩控制模型1.5坐标变换(2s/2r、2r/2s)模型图5 坐标变换模块模型1.6整体模型图6 整体模型2、仿真结果及分析由于学生能力有限,在按照相关文献上的程序编写后,大致模块已经建立出来,但是,在电机建模上不太清楚,不能完整的运行程序,故无法来改变参数来进行完整的仿真,希望老师能够谅解。

基于Matlab交流异步电机矢量控制系统的仿真建模

基于Matlab交流异步电机矢量控制系统的仿真建模

内容摘要
希望本次演示的内容能为广大读者提供有益的参考和启示,也期待着未来研 究的新成果和新方向。
谢谢观看
未来研究方向
未来研究方向
交流异步电机矢量控制技术已经在许多领域得到了广泛应用,但仍然存在许 多有待研究和改进的地方。例如,如何进一步提高控制系统的响应速度和稳态精 度,如何解决矢量控制中的参数摄动和非线性问题,以及如何实现更为复杂的多 电机协调控制等问题,都是今后需要深入研究的方向。随着、物联网等新技术的 不断发展,也为交流异步电机矢量控制系统的研究与应用提供了新的机遇与挑战。
参考内容
交流电机矢量控制系统建模与仿 真
交流电机矢量控制系统建模与仿真
随着电力电子技术和控制理论的不断发展,交流电机矢量控制系统在工业应 用中越来越受到。本次演示将介绍基于MatlabSimulink的交流电机矢量控制系统 建模与仿真的方法和步骤。
一、交流电机矢量控制系统建模
一、交流电机矢量控制系统建模
基于Matlab交流异步电机矢量 控制系统的仿真建模
01 引言
03 仿真建模
目录
02 原理分析 04 实验验证
05 结论
07 参考内容
目录
06 未来研究断发展,交流异步电机矢量控制技术在许 多领域得到了广泛应用。这种控制技术通过将交流电机的定子电流分解为直轴和 交轴两个分量,分别进行控制,从而实现类似直流电机的控制效果。Matlab作为 一种强大的仿真和计算工具,为交流异步电机矢量控制系统的研究和设计提供了 便捷的平台。本次演示将介绍如何使用Matlab对交流异步电机矢量控制系统进行 仿真建模,并通过实验验证其有效性。
三、结论与展望
三、结论与展望
本次演示介绍了基于MatlabSimulink的交流电机矢量控制系统建模与仿真的 方法和步骤。首先,了解了交流电机的基本结构和工作原理;其次,建立了电压、 电流、转矩和位置等变量的模型,并借助MatlabSimulink搭建了系统模型;最后, 进行了系统仿真和数据分析。通过对比实测数据和仿真结果,验证了模型的准确 性,并得出了系统性能的结论。

异步电机矢量控制MATLAB仿真实验 (2)

异步电机矢量控制MATLAB仿真实验 (2)

学号:课程设计题目异步电机矢量控制MATLAB仿真实验(矢量控制部分)学院自动化学院专业自动化专业班级姓名指导教师曹雪莲2015 年 1 月7 日目录摘要 (1)1异步电动机矢量控制原理 (2)2坐标变换 (3)2.1坐标变换的基本思路 (3)2.2三相—两相变换(3/2变换) (4)2.3静止两相-旋转正交变换(2s/2r) (5)3转子磁链计算 (6)4矢量控制系统设计 (7)4.1按转子磁链定向矢量控制系统的电流闭环控制方式 (7)4.2MATLAB系统仿真系统设计 (8)4.3PI调节器设计 (10)5仿真结果 (12)5.1电机定子侧的电流仿真结果 (12)5.2电机输出转矩仿真结果 (13)5.3电机的转子速度及转子的磁链仿真结果 (13)心得体会 (15)参考文献 (16)附录 (17)摘要随着电力电子技术和自动化技术的不断发展,促进了交流异步电动机取代直流电机成为工业传动的主体,而矢量控制理论是实现这一转变的关键技术之一,由于交流异步电机是高阶、非线性、强耦合的多变量系统。

在矢量控制理论下通过坐标变换,可以消除瞬变过程中的周期性时变系统和降低方程阶数,从而简化数学模型。

可以通过对磁链的控制改善电机静态和动态性能。

矢量控制是在电机学、电磁学和坐标变换的基础上发展起来的一种先进的电机控制策略。

建立异步电动机矢量控制系统的仿真模型,能有效节省控制系统的α-)设计时间,及时验证控制系统算法的正确性。

本文采用二相静止坐标系(β电机模型,利用MATLAB/SIMULINK完成异步电机的矢量控制仿真。

仿真结果给出了转速、转矩、定子侧电流的波形图,并根据转速、转矩、电流波形相关参数进行分析。

关键词:矢量控制异步电机Matlab仿真11异步电动机矢量控制原理矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电机转矩的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

L ss Ls = - Ms - Ms L rr Lr = - Mr - Mr
- Ms L ss - Ms - Mr L rr - Mr
- Ms - Ms L ss - Mr - Mr L rr
R1 和 R2 分别为定、 转子每相绕组的电阻。 磁链方程: 用 ψ s 和 ψ r 分别表示定子磁链和转子磁链的 i s 和 i r 分别表示定子电流和转子电流的 列矩阵, 列矩阵, 则磁链方程可写为:
* 电流的 给 定 信 号 ism 和 电 枢 电 流 的 给 定 信 号 * ist * , i* i* 经过 Park 变换得到 i A 、 与交流异步 B 、 C , * *
{
U B = r2 i B + p ψ B
( 1)
式中
iB 、 i C 通过电流滞环调节 电机的反馈电流信号 i A 、 uB , uC , 器后得到了交流异步电机的输入电压 u A , 监测三相异步电动机的转速, 即可输出交流异步 电机调速所需的三项变频电流。 根据模块化建 模的思想, 将控制系统分割为各个功能独立的子 其中主要包括: 交流异步电机本体模块、 矢 模块, 量控制模块、 帕克变换模块、 电流滞环控制模块、 速度控制模块。通过这些功能模块的有机整合,
Simulation of Asynchronous Motor Vector Control System based on Matlab / Simulink
Jia Rui, Kang Jinping
( North China Electric Power University, Beijing 102206 , China) Abstract: In this paper, the mathematical model of the asynchronous motor was analyzed based on ABC coordinate system. A common and simple dynamic simulation model of asynchronous motor was given using Matlab / Simulink, and the model was applied to asynchronous motor vector control system. Based upon rotor flux orientation, the simulation model of the asynchronous motor vector control system was constructed. When using this model , one only needed to transfer it to the workspace and input proper motor parameters, it is demonstrated that the model has quick rewith flexible, convenient , intuitive and a series of advantages. Through the simulation of the asynchronous mosponse, tor vector control system, it is verified that this model was correct and effective. Key words: ABC coordinate system; asynchronous motor; vector control ; Matlab ; simulation
No. 9
2011
华北电力技术
NORTH CHINA ELECTRIC POWER
19
就是将公共坐标系统建立在转子定向磁场上的 矢量控制方法, 在 M - T 坐标按转子磁场定向后, 定子电流的两个分量实现了解耦 ,i M 唯一确定磁 链 Ψ r 的值,i T 只影响转矩, 与直流电动机中的励 转子方程大大简化, 磁电流和电枢电流相对应, 实现了磁通和转矩之间的解耦。 这样简化了多 变量、 强耦合的交流电动机调速系统的控制问 使交流 题。矢量控制主要的特点是动态响应快, 电机的调速性能有质的提高。 1 . 2 三相交流异步电机的数学模型 三相交流异步电机是一个高阶、 非线性、 强 耦合的多变量系统。为了便于分析, 假定: ( 1 ) 三相绕组对称, 忽略空间谐波, 磁势沿 气隙圆周按正弦分布; ( 2 ) 忽略磁饱和, 各绕组的自感和互感都是 线性的; ( 3 ) 忽略铁损, 不计涡流和磁滞损耗; ( 4 ) 不考虑频率和温度变化对绕组的影响 。 则三相定子的电压方程可表示为 : U A = r1 i A + p ψ A U C = r3 i C + p ψ C UA 、 UB 、 UC — — —定子三相电压; iA 、 iB 、 iC — — —定子三相电流; — —定子三相绕组磁链; ψA 、 ψB 、 ψC — r1 — — —定子各绕组电阻; p — — —微分算子 p = d / dt。 三相转子的电压方程为: U a = r2 i a + p ψ a U c = r2 i c + p ψ c Ub 、 Uc — — —转子三相电压; 式中 U a 、 ia 、 ib 、 ic — — —转子三相电流; — —转子三相绕组磁链; ψa 、 ψb 、 ψc — r2— — —转子各绕组电阻。 磁链方程为: ψ A L AA ψ L BA B ψ C L CA = ψ a L aA ψ L b bA ψ L cA c L AB L BB L CB L aB L bB L cB L AC L BC L CC L aC L bC L cC L Aa L Ba L Ca L aa L ba L ca L Ab L Bb L Cb L ab L bb L cb L Ac i A L Bc i B L Cc i C L ac i a L bc i b L cc i c ( 3)
18
华北电力技术
NORTH CHINA ELECTRIC POWER
No. 9
2011
基于 Matlab / Simulink 的异步电机矢量 控制系统仿真
贾 瑞, 康锦萍
( 华北电力大学, 北京 102206 ) 摘 要: 在 ABC 坐标系的基础上, 分析了异步电机的数学模型 。 利用 Matlab / Simulink 给出异步电机的一个
T u c]
则三相异步电动机的电压方程用矩阵表示为 :
20
华北电力技术
NORTH CHINA ELECTRIC POWER
No. 9
2011
图1
异步电动机矢量控制变频调速系统的仿真模型
[u ] [ 0 R ][i ] [ψ ]
us
r
=
Rs
0
is
r
+p
ψs
r
( 6)
s
R r 分别为定、 式中: R s 、 转子绕组的电阻矩阵, 均 为对角阵。 R1 Rs = 0 0 0 R1 0 0 0 ; R1 R2 Rr = 0 0 0 R2 0 0 0 R2
0
引言
本文在分析异步电动机矢量控制方法的基 础上, 应用 Simulink 建立了异步电动机矢量控制 调速系统的仿真模型, 同时对某电机进行了调速 控制仿真分析。
交流异步电动机的数学模型是一个高阶、 非 线性、 强耦合的多变量系统。 经典的交流电机理 论和传统控制系统分析方法不能完全适应于现 20 世纪 代交流调速系统。为了实现高动态性能, 70 年代, 许多专家学者经过潜心研究, 并在实践 中不断改进, 终于形成了目前所普遍应用的异步 电动机矢量控制变频调速系统。 按转子磁场定 向的矢量控制通过一系列的坐标变换, 实现了电 机定子电流中励磁分量和转矩分量的解耦控制。 将控制对象的感应电机当作直流电机来进行控 制, 实现了对电机电磁转矩的动态控制, 从而优 化了调速系统的性能。
M sr = M sr × cosθ cos( θ + 120°) cos( θ - 120°) cos ( - 120° ) cosθ cos( θ + 120°) θ cos( θ + 120°) cos( θ - 120°) cosθ T Mrs = Msr L rr 分别表示定、 式中: L ss 、 转子每相绕组的自感; Ms 、 M r 分别表示定、 转子三相绕组各相间的互感 大小; M sr 为定、 转子绕组间互感的幅值。 当定子的零序电流等于零 ( 如定子绕组为 Y L ss i A - 联结, 且 无 中 线) , 即 i A + i B + i C = 0 时, M s i B - M s i C = L ss i A - M s ( i B + i C ) = L1 i A , 则定子的 磁链方程可化简为: ψ s = L1 i s + M sr i r ; 同理, 转子的 : = L i + M i 。 磁链方程可化简为 ψ r 2 r rs s
{
U b = r2 i b + p ψ b
( 2)
就可在 Matlab 中搭建出交流异步电机控制系统 的仿真模型, 并实现双闭环的控制算法。 2. 1 交流异步电机本体模块 在整个控制系统的仿真模型中, 交流异步电 机本体模块是最重要的部分, 反映的是交流异步 电机的本质属性。 交流异步电机本体模块的输 uB , uC , 入是电流置换调节器的输出脉冲电压 u A , iB , i C 以及转速 n 和电磁 输出是定子三项电流 i A , 转矩 T e 。 电压方程: 用 u s 和 u r 分别表示定子绕组和转子绕组的 端 电压列矩阵, 即: T u A u B u C] us = [ ua ur = [ ub
相关文档
最新文档