交流异步电动机的矢量控制系统设计原理

合集下载

异步电机矢量控制可以转子磁链定向

异步电机矢量控制可以转子磁链定向
逆时针旋转90º,称之为T轴。这样就得到了按 转子磁链定向的两相同步旋转M、T坐标系。
在M-T坐标系上,磁链方程为
Ψms=Lsims+Lmimr Ψts=Lsits+Lmitr Ψmr=Lmims+Lrimr=Ψr Ψtr=Lmits+Lritr=0
(3) (4)
对于笼型转子异步电动机,其转子短路,端
对于矢量控制来说,i*ds类似于直流电动机的励磁 电流If,i*qs类似于直流电动机的电枢电流Ia。相 应地,我们希望类似地写出异步电动机的转矩表
达式为
Te CT r iqs
(1)
Te CT' idsiqs
(2)
式中 Ψr:正弦分布转子磁链空间矢量的峰值。
Ia
解耦
If
Ψa
Ia
Te CT f a CT' I f Ia If
正比关系,如果Ψr保持不变的话。
2.2 转子磁链模型
为了实现转子磁链定向矢量控制,关键是获
得实际转子磁链Ψr的幅值和相位角,坐标变换 需要磁链相位角(φ),转矩计算、转差计算等
需要磁链的幅值。但是转子磁链是电机内部的物 理量,直接测量在技术上困难很多。
在磁链计算模型中,根据所用实测信号的不 同,可以分为电压模型和电流模型两种。
2) 计算转子磁链的电流模型 根据磁链与电流的关系,由电流推算磁链,
称其为电流模型。
电流模型需要实测的电流与转速信号,优 点是:无论转速高低都能适用;但缺点是 都受电动机参数变化的影响。除了转子电 阻受温度和频率的影响有较大的变化外,
磁路的饱和程度也将影响电感Lm、Lr和Ls,
这些影响最终将导致计算出的转子磁链的 幅值和相位角偏离正确值,使磁场定向不 准,使磁链闭环控制性能降低。

异步电动机的矢量控制系统

异步电动机的矢量控制系统
电机MT
isT 轴模型
cosφ sinφ
cosφ sinφ
注意:如果忽略变频器可能产生的滞后,并认为控制器中反 旋转变换器与电机内部的旋转变换环节相抵消,2/3变换器 与电机内部的3/2变换环节相抵消,则虚框内的部分可以删 去,剩下的就是直流调速系统。
第28页/共68页
28
控制Βιβλιοθήκη i*sM M Ti*sT
(7 21)
小结:矢量控制基本方程☆
r
Lm 1 Tr
p
isM
或 : isM
1
Tr Lm
p
r
(7 12)
Te
np
Lm Lr
isT r
(7 15)
sl
Lm
Tr r
isT
(7 -17)
24
第25页/共68页
25
二、矢量控制方法
既然异步电动机经过坐标变换可以等效成直流电动机,那 么,模仿直流电动机的控制方法,给出直流电动机的控制量, 再经过相应的反变换就能控制异步电动机。
第29页/共68页
cosφ sinφ
根据单位矢量获取方法的不同,矢量控制方法可分为两种: ✓直接矢量控制(由Blaschke发明) ✓间接矢量控制(由Hasse发明) 。
当矢量控制所用单位矢量和磁链是直接检测到的或由检 测到的电机的端子量及转速计算得到时,被称为直接矢量 控制,也可称为磁通反馈矢量控制(Feedback Vector Control)。
MT坐标系: 规定d轴沿转子磁链Ψr方向,并称之为M (Magnetization)轴, q轴则逆时针转90º,即垂直于转子磁链Ψr,称之为T (Torque)轴。这样的两相同步旋转坐标系就规定为MT坐标系, 或称按转子磁场定向(Field Orientation)的坐标系。

异步电机矢量控制原理

异步电机矢量控制原理

异步电机矢量控制原理一、引言异步电机是一种广泛应用的电动机,其控制方式主要有直接转矩控制和矢量控制两种。

其中,矢量控制是一种更加精确、灵活的控制方式,可以实现高效率、高性能的运行。

本文将详细介绍异步电机矢量控制原理。

二、异步电机基础知识1. 异步电机结构和工作原理异步电机由定子和转子两部分组成,定子上有三个相位交流绕组,转子上则有导体条。

当三相电源施加在定子上时,会产生旋转磁场,进而感应出转子中的感应电动势,并使得导体条在旋转磁场中感受到一个旋转力矩,从而带动转子运动。

2. 异步电机参数异步电机的参数包括定子电阻、定子漏抗、定子互感、转子漏抗等等。

这些参数对于确定异步电机的特性非常重要。

3. 感应电动势和反电动势当三相交流电源施加在定子上时,会产生一个旋转磁场,并且这个旋转磁场的频率与供电频率相同。

这个旋转磁场会感应出转子中的感应电动势,从而产生一个旋转力矩。

同时,由于异步电机的运动,转子中也会产生一个反电动势,其大小与运动速度成正比。

三、矢量控制基础知识1. 矢量控制简介矢量控制是一种通过模拟直流电机的方式来控制交流电机的方法。

它可以实现非常精确的控制,并且可以根据需要调整转速和转矩。

2. 矢量控制原理在矢量控制中,将交流电机看作一个带有两个分量(即直流分量和交流分量)的向量。

通过对这两个分量进行分别控制,就可以实现对交流电机的精确控制。

四、异步电机矢量控制原理1. 矢量控制与异步电机结合在异步电机中使用矢量控制时,需要将交流电源输入到变频器中,并将其输出到异步电机上。

变频器会将交流信号转换为直流信号,并将其分解为两个分量:一个用于产生旋转磁场(即定子磁通),另一个用于产生反向转矩(即转子电流)。

2. 矢量控制中的定子电流和磁通在矢量控制中,定子电流和磁通是非常重要的参数。

定子电流决定了旋转磁场的大小,而磁通则决定了旋转磁场的方向。

因此,在进行异步电机矢量控制时,需要对定子电流和磁通进行精确控制。

交流异步电动机矢量控制系统的分析

交流异步电动机矢量控制系统的分析

图 1 异步 电动 机 的坐 标 变换 结 构 图
12 矢量变 换控制 系统的原理 .
异步电动机可以等效成直流 电动机 , 可以模仿直
流 电动机 的控 制方法 , 得 直 流电动 机 的控 制量 , 求 再 经过相应的反变换 , 即可 以按照控制 直流 电动机的方 式控制异步 电动机 。
只要 上述 3种方 法产 生的旋 转磁 动 势大 小和转 速都相等 时 , 可认 为三 相 绕组 、 就 两相 交 流绕 组和 旋 转的直 流绕组 等效。 即在三 相坐 标系 的定 子交 流 电流 “、 、c通 过三 相两相变换 , 以等效成 两相静 i 可
转子总磁链 = i
式 中
则是在不同的坐标 系下 , 电动机模 型所产生 的磁动势
相同。
1 矢量控制系统
11 异步 电动机的坐标变换结构 图 . ( ) 流电动机三相对称 的静止 绕组 A、 C, 1交 B、 通
过三相平衡正弦 电流时 , 生的合成 磁动 势是旋转 所产
磁动势 ,, 它在空 间呈 正弦分布 , 以同步转速 , 着 顺 A、 C的相序旋转 。 B、

() 3 同理 , 2 匝数 相等且 互相 垂直 的绕 组 埘 当 个
和 , 分别通 以直 流 电流 和 i 产 生 合成 磁动 势
电 磁 转矩 =P

i 。


,. 其位 置相 对 于绕 组 来 说是 固定 的 , 果让 包 含 2 如 个 绕组在 内的整个 铁 心 , 以同步 转 速旋 转 , 磁动 势 则 , 自然也随之旋转 , 成为旋 转磁动势 。
1 l } L Lf __【 __ l I I I . _ . .

交流异步电动机矢量控制调速系统设计

交流异步电动机矢量控制调速系统设计

目录摘要I1绪论11.1交流调速技术概况11。

2异步电动机矢量控制原理22矢量控制理论42.1矢量控制42.2异步电机的动态数学模型52.3坐标变换73矢量控制系统硬件设计93。

1矢量控制结构框图93.2矢量控制系统的电流闭环控制方式思想9 3。

3各个子系统模块103.4矢量控制的异步电动机调速系统模块124 SIMULINK仿真134.1MATLAB/S IMULINK概述134。

2仿真参数134。

3仿真结果145总结16参考文献17摘要异步电机的物理模型之所以复杂,关键在于各个磁通间的耦合。

本设计把异步电动机模型解耦成有磁链和转速分别控制的简单模型,就可以模拟直流电动机的控制模型来控制交流电动机。

综合矩阵变换的控制策略及异步电动机转子磁场定向理论,采用计算机仿真方法分别建立了矩阵变换仿真模型以及基于矩阵变换的异步电动机矢量控制系统仿真模型,对矩阵变换的控制原理、输入、输出性能以及矢量控制系统的优质的抗扰能力及四象限运行特性进行分析验证,展现了该新型交流调速系统的广阔发展前景,并针对基于矩阵变换的异步电动机矢量控制系统的特点,着重对矢量控制单元进行了软件设计。

直接矢量控制就是一种优越的交流电机控制方式,它模拟直流电机的控制方式使得交流电机也能取得与直流电机相媲美的控制效果.本文研究了矢量控制系统中磁链调节器的设计方法。

并用MATLAB最终得到了仿真结果。

关键词:坐标变换;矢量控制;MATLAB/simulink1绪论1.1交流调速技术概况工农业生产、交通运输、国防军事以及日常生活中广泛应用着电机传动,其中很多机械有调速要求,如车辆、电梯、机床及造纸机械等,而风机、水泵等为了减少损耗,节约电能也需要调速。

过去由于直流调速系统调速方法简单、转矩易于控制,比较容易得到良好的动态特性,因此高性能的传动系统都采用直流电机,直流调速系统在变速传动领域中占统治地位。

但是直流电机的机械接触式换向器结构复杂、制造成本高、运行中容易产生火花、需要经常的维护检修,使得直流传动系统的运营成本很高,特别是由于换向问题的存在,直流电机无法做成高速大容量的机组,如目前3000转/分左右的高速直流电机最大容量只有400千瓦左右,低速的也只能做到几千千瓦,远远不能适应现代生产向高速大容量化发展的要求.交流电机高效调速方法的典型是变频调速,它既适用于异步电机,也适用于同步电机.交流电机采用变频调速不但能实现无极调速,而且根据负载的特性不同,通过适当调节电压和频率之间的关系,可使电机始终运行在高效区,并保证良好的动态特性。

异步电动机矢量控制

异步电动机矢量控制
以下讨论坐标变换。
19
3、定子绕组轴系的变换 (A B C )
下图表示三相异步电动机定子三相绕组A、C、C和与之等效的二相
异步电动机定子绕组 、 中各相磁势矢量的空间位置。三相的A轴
与二相的 轴重合。
B
假设当二者的磁势波形按正弦分 布,当二者的旋三相绕组和二相绕
12
矢量变换控制的基本思想和控制过程可用框图来表示:
旋转坐标系
静止坐标系
控制通道
ω* ψ*
控制器
iT* iM*
旋转变换 A-21
iα*
iβ*
2/3相变换
iA*
i
*
B
iC*
A
-1 1
变频器
iT iM 旋转变换
iα iβ 3/2相变换 iA iB i C
M
A2
A1
反馈通道
以下任务是,从交流电机三相绕组中分离产生磁通势的直流分量和产生 电磁转矩的直流分量,以实现电磁解耦。解耦的有效方法是坐标变换。
组的瞬时磁势沿 、 轴的投影
β
N3iB
N2iα N2iβ
α N3iA A
应该相等。(N2、N3为匝数)
C N3iC
3/2变换
N 2ia
N3iA
N3iB
cos
2
3
N 3iC
cos
4
3
2
4
N 2i 0 N3iB sin 3 N3iC sin 3
20
经计算整理,得:
i
N3 N2
i
A
1 2
iB
1 2
第八章 异步电动机矢量控制
主要内容:
矢量控制的基本思想 坐标变换 异步电动机在不同坐标系下的数学模型 异步电动机矢量控制系统举例

交流异步电动机VF控制原理

交流异步电动机VF控制原理

定子相 电动势 (V)
定子相绕组有效匝数
E1 4.44 f1W1KW1Φm 每极磁通量(Wb)
定子频率(Hz)
绕组常系数数
VF 控制基本原理分析
三相异步电动机定子每相电动势的有效值为:
E1 4.44 f1W1KW1Φm
E1 f1
CΦm
(恒磁通控制)
Φ的m 值是由 E和1 共f同1 决定的 和E 1 进行f1
标准字号:24号
标准字体: 思源黑体 CN Normal (正文) Times New Roman (正文)
运动控制技术及应用
交流异步电动机 VF 控制基本原理
目录
01 VF 控制基本原理定义 02 VF 控制基本原理分析
01 VF 控制 基本原理定义
VF 控制基本原理定义
变频器的控制方式
V/f 控制方式 转差频率控制
矢量控制 直接转矩控制
VF 控制基本原理定义
异步电动机为了保证电机磁通和转矩 不变,电机改变频率时,需维持电压 V 和 频率 F 的比率近似不变,这种方式称为恒 压频比控制,即:VF控制。
适当的控制,就可以使气隙磁通 保Φ持m额定值
不变。
VF 控制基本原理分析
三相异步电动机定子每相电动势的有效值为:
U1 Z1I1 E1
E1 f1
U1
- Z1I1 f1
CΦm
VF 控制基本原理分析
E1 f1
U1 -Z1I1 f1
U1 f1
CΦm
带定子压降补偿
VF控制特性图
不带定子压降补偿
补录
VF 控制基本原理分析
电机高速运行时,定子阻抗压降 Z1I1所占 E 1
的比重较小,可以忽略。电机低速运行时,定子

异步电动机矢量控制_FOC_和直接转矩控制_DTC_方案的比较

异步电动机矢量控制_FOC_和直接转矩控制_DTC_方案的比较

异步电动机矢量控制_FOC_和直接转矩控制_DTC_方案的比较首先,我们来看看FOC方案。

FOC方案是基于电机矢量控制理论而发展起来的一种控制方法,在控制异步电动机时,可以通过精确测量和控制转子磁链矢量的方向和大小,来实现精确控制电机的转矩和转速。

其核心思想是将电动机的三相定子电流进行矢量拆分,分为一个磁场矢量和一个转矩矢量,从而实现转子磁链方向和大小的控制。

FOC方案的优点是控制精度高,响应速度快。

由于可以实时测量和控制电机的磁链矢量,FOC方案可以精确控制电机的转矩和转速。

此外,由于转子磁链矢量可以根据需要即时调整,FOC方案可以快速响应转矩和速度的变化,从而适用于需要快速响应和精确控制的应用。

然而,FOC方案也存在一些缺点。

首先,FOC方案的实现较为复杂,需要进行电流和电压的矢量控制,以及相应的转子定位和速度估算算法。

这些复杂的控制算法在实践中需要较高的计算能力和较多的计算资源,因此实现起来较为困难。

其次,FOC方案对于电机参数和系统模型的准确性要求较高。

由于FOC方案需要测量和控制转子磁链矢量,因此对电机参数和系统模型的准确性要求较高,如果参数不准确,将导致控制性能下降。

接下来,我们来看看DTC方案。

DTC方案是一种基于直接转矩控制原理的控制方法,其核心思想是通过采用转矩和磁链两个控制变量直接控制电机的转矩和速度。

DTC方案通过测量和计算磁链和转矩的误差,根据预定的控制规则直接调节电机的电压和频率,以实现对电机转矩和速度的控制。

DTC方案的优点是实现简单,控制快速。

DTC方案不需要进行电流和电压的矢量控制,只需要测量和控制磁链和转矩的误差,因此实现起来相对简单。

此外,DTC方案由于直接控制电机的电压和频率,可以快速响应转矩和速度的变化,适用于需要快速相应和简单控制的应用。

然而,DTC方案也存在一些缺点。

首先,DTC方案的动态性能较差。

由于DTC方案是基于磁链和转矩误差进行控制的,其控制性能受到不可避免的误差和延迟的影响,因此其动态性能较差,不能达到FOC方案的精确度和响应速度。

异步电机矢量控制原理

异步电机矢量控制原理

异步电机矢量控制原理
异步电机是目前应用最广泛的电机之一,它具有结构简单、体积小、重量轻、价格便宜等优点,因此在各个领域都有广泛的应用。

异步电机的控制方法也有很多种,其中矢量控制是一种常用的控制方式,它能够实现对异步电机的精确控制,提高系统的性能和效率。

矢量控制的基本思想是将异步电机分解为磁场定向和磁势定向两个控制量,通过对这两个量的控制来实现对电机的控制。

磁场定向是指将电机的磁场方向控制在与转子磁场同步的方向上,使电机的转子能够跟随旋转磁场运动;磁势定向是指将电机的磁势大小控制在所需的范围内,以实现对电机的转矩控制。

在矢量控制中,需要对电机的电流、转矩、转速等参数进行测量和计算,以实现对电机的控制。

其中,电流矢量的计算是矢量控制的核心。

电流矢量的计算通常使用dq坐标系,将三相交流电流转换为直流电流和交流电流分量,然后通过矢量旋转变换将dq坐标系转换为电机坐标系,从而实现对电机的控制。

在实际应用中,矢量控制通常需要配合PID控制器等控制算法一起使用,以实现对电机的精确控制。

PID控制器是一种常用的控制算法,它通过对误差、积分项和微分项的计算来实现对控制量的调节,从而使系统达到稳定状态。

除了基本的矢量控制外,还有一些改进的矢量控制算法,如自适应矢量控制、直接转矩控制、模型预测控制等。

这些算法在不同的应用场景中具有不同的优缺点,需要根据具体情况进行选择和应用。

异步电机矢量控制原理是一种常用的电机控制方法,它能够实现对电机的精确控制,提高系统的性能和效率。

在实际应用中,需要根据具体的需求选择合适的矢量控制算法,并进行合理的控制参数设计和调节,以实现最优的控制效果。

异步电动机矢量控制系统设计及仿真英文文献及翻译

异步电动机矢量控制系统设计及仿真英文文献及翻译

异步电动机矢量控制调速系统英语文献翻译The Design of the Vector Control System of AsynchronousmotorAbstract: Among various modes of the asynchronous motor speed control has the advantages of fast response ,stability ,transmission of high-performance and wide speed range ,For the need of the asynchronous motor speed control ,the design uses 89C196 as the controller , and introduces the designs of hardware and software in details .The design is completed effectively with good performance simple structure and good prospects of development.Key words :Asynchronous motor ,89C196 ,Vector control1.IntroductionAC asynchronous motor is a higher order ,multi-variable ,non-linear ,and strong coupling object ,using the concept of parameters reconstruction and state reconstruction of modern control theory to achieve decoupling between the excitation component of AC motor current and torque component ,and the control process of AC motor is equivalent to the control process of DC motor .the dynamic performance of AC speed regulation system obtainingnotable improvement ,thus makes DC speed replacing AC speed possible finally . The current governor of the higher production process has been more use of Frequency Control devices with vector-control.2.Vector ControlWith the criterion of producing consistent rotating magnetomotive force ,the stator AC current A i,B i,C i by 3S/2S conversion in the three-phase coordinate system ,can beequivalent to AC current i sd ,i sq.in two-phase static coordinatesystem .through vector rotation transformation of the re-orientation of the rotor magnetic field ,Equivalent to a synchronous rotation coordination of the DC current i e d,i e q.When observers at core coordinates with the rotation together ,AC machine becomes DC machine .Of these ,the AC induction motor rotor total flux r,it has become the equivalent of the DC motor motor flux ,windingsed equivalent to the excitation winding of DC motor , i e d equivalent to the excitation current ,windings q e equivalent to false static windings , i e q equivalent to the armature current proportional to torque .After the transformation above ,AC asynchronous motor has been equivalent to DC motor .As aresult of coordinate transformation of the current (on behalf of magnetic momentum)space vector ,thus ,this control system achieved through coordinate transformation called the vector control system ,referred to VC system .According to this idea ,could constitude the vector control system that can control ψand i e q directly , as show in Figure 1.In the figure a given rand feedback signal through the controller similar to the controller that DC speed control system has used ,producing given signal i e qs*of the excitation current and given signal i e ds*of the armature current ,after the anti-rotation transform VR1-obtaining i e qs*and i e ds*,obtains i A*,i B*,i C*by 3S/2S conversion .Adding the three signals controlled by current and frequency signal ω1obtained by controller to the inverter controlled by current and frequency conversion current that asynchronous motor needs for speed.3.The Content and Thought of the DesignThis system uses 80C196 as controller ,consists of detection unit of stator three-phase current unit of keyboard input ,LCD display modules , given unit of simulation speed detection unit of stator three-phase voltage ,feedback unit of speed and output of control signals .System block diagram show in Figure 2, the system applies 16 bits MCU 80C196 as control core ,with somehardware analog circuits composing the vector control system of asynchronous motor . On the one hand ,80C196 through the A/D module of 80C196 ,speed gun and the given speed feedback signals has been obtained ,obtaining given torque of saturated limiting through speed regulator ,to obtain the given torque current ;Use a given function generator to obtain given rotor flux ,through observation obtaining real flux ,through flux regulation obtaining given excitation current of given stator current ,then the excitation current and the torque current synthesis through the K/P transformation ,obtaining amplitude and phase stator current ,after amplitude of stator current compared to the testing current ,control the size of stator current through current regulator ;on the other hand ,the stator current frequency is calculated by the simultaneous conversation rate for the time constant of the control inverter ,regularly with timer ,through PI ,submitting trigger word to complete the trigger of the inverter.4.The Design of Hardware and SoftwareThe hardware circuits of system mainly consists of AC-DC-AC current inverter circuit ,SCR trigger inverter circuit ,rectifier SCR trigger circuit ,the speed given with the gun feedback circuit ,current central regulation circuit ,protection circuit andother typical circuits .The design of software includes ;speed regulator control and flux detection and regulation4.1AC-DC-AC Current Converter CircuitThe main circuit uses AC-DC-AC Current Converter in the system as shown in Figure 3,and main features can be known as follows:1)Main circuit with simple structure and fewer components .Forthe four-quadrant operation ,when the brake of power happens ,the current direction of the main circuit keeps the same ,just changing the polarity of the voltage ,rectifier working in the state of inverter ,inverter working in the state of rectifier .The inverter can be easily entered ,regenerative braking ,fast dynamic response .The voltage inverter has to connect to a group of inverters in order to regerative braking ,bringing the electric energy back to power grids. 2)Since the middle using a reactor ,current limit ,is constantcurrent source .Coupled with current Loop conditioning ,current limit ,so it can tolerate instantaneous load short-circuit ,automatic protection ,thereby enhancing the protection of over current and operational reliability .3)The current inverter can converter with force and the outputcurrent instantaneous value is controlled by currentinverter ,meeting the vector control requirements of AC motors .Converter capacitor charging and discharging currents from the DC circuit filter by the suppression reactor ,unlike a greater inrush current in voltage inverter ,the capacitor’s utilization is of high level .4)Current inverter and the load motor form a whole ,and theenergy storage of the motor windings is also involved in the converter ,and less dependent on the voltage inverter ,so it has a certain load capacity .4.2Inverter SCR trigger drive circuitThe Inverter SCR trigger drive circuit as shown in Figure 4 .Inverter trigger signal is controlled by PI of 80C196 ,slip signal outputting through PI via PWM regulation in the SCM through the photoelectric isolation to enlarge ,to control the trigger of the inverter .The system uses P1.6 as control and uses P1.0-P1.5 to control six SCR inverters separately ,so the trigger circuits is composed by six circuits above.The principles of drive circuit of SCR trigger inverter are as follows :when the PWM from PI is high signal after and gate ,photoelectric isolation is not on ,composite pipe in a state of on-saturated ,the left side of the transformer forming circuit ,and that the power of the signal amplifies (currentenlarges);when the PWM from PI is low signal after and gate ,photoelectric isolation is on ,composite pipe in a state of cut-off ,and the left side of the transformer can not form circuit ;thus ,composite pipe equivalent to a switch ,and its frequency of the PWM ,so the left side of the transformer form AC signals ,to trigger SCR inverter after transformer decompression ,half-wave rectifier and filter .4.3Current Loop conditioning circuitsAfter the vector calculation ,outputting given current through D/A module ,testing feedback current by the current testing circuit ,sending them to the simulator of the PI regulator to regulate ,can eliminate static difference and improve the speed of regulation .The output of the analog devices can be regarded as the phase-shifting control signals of the rectifier trigger .Current Loop conditioning circuits as shown in Figure 5.4.4The control of speed regulatorSpeed regulator uses dual-mode control .Setting a value TN of speed error ,when the system is more than the deviation (more than 10 percent of the rated frequency),as rough location of the start ,using on-off control ,at this time ,speed regulator is in the state of amplitude limit ,equivalent to speed loop being open-loop ,so the current loop is in the state of the most constantcurrent regulation .Thus ,it can play the overload ability of small deviation ,the system uses PI linear control instead of on-off control .As a result ,absorbing the benefits of non-linear ,the system meets stability and accuracy . The speed regulator flowchart is as show in Figure 6 .4.5 Flux RegulationSlip frequency vector control system can be affected by the motor parameters ,so that the actual flux and the given flux appear a deviation .This system is of observation and feedback in the amplitude of the magnetic flux ,regulating flux of the rotor ,actual flux with the changes of given flux .Flux regulator is also the same as the speed regulator ,using PI regulator .The discrete formula is :t e T e k i i ni S i m m m n n n n )}()({)1()(+∆+-= (1) Plus a reminder to forecast for correction :)1()(2--=n n i i I m m m (2)In the formula , k m is proportional coefficient , t n is integralcoefficient , T S is sampling period , I m is the actual out putvalue)1()(--=∆n e n e e n (3))()(2*2n n e n ΦΦ-= (4) When it is in the state of low frequency (f<5HZ), r 1 can not beignored ,the phase difference between V 1 and E 1 enlarges , and the formula V 1V '1≈ no longer sets up .Through theApproximate rotor flux observerand the formula L I r I V L I m T m m 1101112-)(ω-==Φto observe the fluxamplitude ,only open-loop control of flux ,that is ,to calculate from a given flux ,and that is L I mm Φ=*2 .In addition ,in order to avoid disorders ,or too weak and too strong magnetic ,limiting the output i m in preparation for the software ,making it in theranges from 75% to 115% rated value.5. Design SummaryThis text researches the vector control variable speed control system of the asynchronous motor design .The SCM 80C196 and the external hardware complete the asynchronous motor speed vector control system design efficiently ,and meet the timing control requirements .The vector control system design thinks clearly ,has a good speed performance and simple structure .It has a wide range of use and a good prospect of development from the analysis and design of the speed asynchronous motor vector control systems .The innovations ;(1) Complete the data acquisition of the speed andvoltage ,output the control signal and save the deviceseffectively with the help of the 80C196 microcontroller owned A/D ,D/A.(2)Because the Current Source Inverter uses forcedconverter ,the maximum operating frequency is free from the power grid frequency .And it is with speed range.(3)This system uses constant flux to keep the constant fluxstably .Use stator physical voltage amplitude to approximate the observed flux amplitude value .The magnetic flux overcomes the impact of the parameter changes .This way is simple and effective .Figure 1 .Vector Control System PrincipleFigure 2. Scheme of SystemFigure 3. AC-DC-AC Current inverter Circuit Figure 4. Inverter SCR trigger drive circuitFigure 5. Current Loop conditioning circuitsFigure 6. Flux regulation flowchart ReferencesHisao Kubota and Kouki Matsuse.(1994). Speed SensorlessField-Oriented Control of Induction Motor withRotor Resistance Adaptation .IEEE Trans .Ind. A ppl. V ol.30,No.5,pp.1219-1224.Li,Da, Yang ,Qingdong ,and Liu, Quan.(2007).The DSP permanent magnet synchronous linear motor vector control system Micro-computer information,09-2;195-196Liu,Wei. (2007).The application design about vector control of current loop control .Micro-computer information ,07-1;68-70Zhao ,Tao ,Jiang ,WeiDong ,Chen, Quan,and Ren,Tao .(2006).The research about the permanent magnet motor drive system bases on the dual-mode control .Power electronics technology,40(5):32-34异步电动机矢量控制调速系统设计摘要:异步电动机的各种调速方式中,矢量控制的调速方式响应快、稳定性好、传动性能高、调速范围宽。

交流电机矢量控制-转差频率控制系统和各种矢量控制方法

交流电机矢量控制-转差频率控制系统和各种矢量控制方法

' M
2iT
1
T
3 2
p
Lm L'22
' M
2iT
1
(2 112)
(2 105) (2 109)
➢ 转速表达 • 从T轴转子电压方程[式(2-106)第四行]

0 (1 )(LmiM1 L'22iM' 2 ) R2' ir' 2
(1
)
' M
2
R2' iT'
2
(2 108)
或(1
)
R2' iT' 2
第四章 交流电机矢量控制-
转差频率控制系统和 各种矢量控制方法
王军 教授 西华大学 电气信息学院
三、转差频率控制系统
1. 工作原理: 异步电机稳态运行时电磁转矩为
2. 转差频率控制系统构成
转差频率控制系统构成
在转差频率控制中,采用转子转速闭环控制, 电机给定角速度ω*信号与来自电机转速传感器 的反馈信号ω进行比较,其误差信号经过PI调节 器并限幅以后得到给定转差角频率。限幅的主 要目的在于限制转差角频率,使电机可以用逆 变器容许电流下的最大转矩进行加减速运转, 所以不需要设定加减速时间,就能以最短的时 间内实现加减速。系统的其他部分与V/F控制方 式相同。
转差频率控制系统
转差频率控制系统
转差频率控制系统
转差频率控制系统的特点:
优点: 采用转速闭环; 在动态过程中,转速调节器饱和,系 统快速性好. 缺点:
1. 控制规律是从电机稳态电路和稳态转矩公式出发. 2. 不能保持磁通恒定.
四、转子磁场定向异步电机矢量控制
取转子全磁通 ('2 对应转子全磁链

三相异步电机矢量变频

三相异步电机矢量变频

三相异步电机矢量变频三相异步电机作为现代工业中最为常见的电动机类型之一,其性能与运行效率对于整个工业体系的能源消耗和生产力具有重要影响。

随着科技的不断进步,对于三相异步电机的控制技术要求也日益提高。

其中,矢量变频技术作为一种先进的电机控制技术,为三相异步电机的高效、稳定运行提供了有力支持。

一、三相异步电机的基本原理三相异步电机是利用三相交流电源供电的一种交流电机。

其工作原理基于电磁感应定律,即当定子绕组通入三相交流电时,会在定子中产生一个旋转磁场。

这个旋转磁场以同步转速在定子中旋转,同时切割转子导条,从而在转子导条中产生感应电流。

这个感应电流与旋转磁场相互作用,产生电磁转矩,从而使转子转动。

二、矢量变频技术的引入传统的三相异步电机控制方法主要依赖于电机的稳态模型,难以实现对电机转矩和磁场的独立控制。

这在一定程度上限制了三相异步电机的性能发挥和节能潜力。

为了解决这一问题,矢量变频技术应运而生。

矢量变频技术,又称磁场定向控制或矢量控制,是一种基于电机动态模型的高性能控制方法。

它将三相异步电机的定子电流分解为磁场产生分量和转矩产生分量,并分别进行控制。

通过这种方法,可以实现对电机磁场和转矩的独立、精确控制,从而显著提高电机的运行效率和动态性能。

三、矢量变频技术的实现矢量变频技术的实现主要依赖于坐标变换和PWM(脉宽调制)技术。

坐标变换包括Clarke变换和Park变换,它们可以将三相异步电机在定子坐标系下的数学模型转换为旋转坐标系下的数学模型,从而简化控制算法的设计和实现。

PWM技术则用于将控制算法输出的电压或电流指令转换为适合逆变器开关的PWM信号,以驱动电机运行。

在矢量变频控制系统中,通常需要测量电机的转速、转子位置以及定子电流等信号作为反馈信号。

这些信号经过处理后与给定值进行比较,产生误差信号。

误差信号经过控制器(如PI控制器)的调节后输出控制指令,再经过坐标变换和PWM调制后驱动电机运行。

通过这种方法,可以实现对电机转速、转矩和磁场的精确控制。

异步电动机矢量控制的基本思路

异步电动机矢量控制的基本思路

异步电动机矢量控制的基本思路1. 什么是异步电动机?大家好,今天我们来聊聊异步电动机,听上去是不是有点生涩?其实,这个词儿就像一杯淡淡的咖啡,虽然乍一看不怎么样,但细品之下却充满了风味。

异步电动机,顾名思义,它的转速并不是和电源频率完全一致的。

简单点说,就是电机的转速和电网的频率有点“拉锯”,就像朋友之间的小争执,谁也不愿意让步。

它是我们生活中常见的电动机之一,广泛应用于各种机械设备,比如空调、洗衣机,还有咱们家里常用的电风扇。

1.1 异步电动机的工作原理说到工作原理,这个就像是每个电动机的小秘密。

它是利用电流通过线圈产生磁场,与转子之间的相互作用来实现转动的。

可以想象一下,当你在滑冰场上,滑冰者的动作和滑冰场的冰面就像电机和电源之间的关系。

电流通过定子线圈,形成旋转磁场,而转子则在这个磁场的“引导”下开始转动。

虽然这个过程听起来复杂,但其实它的运行就像在舞池里跳舞一样,只要节奏对了,所有的一切就会顺畅无比。

1.2 为何要用矢量控制?那么,矢量控制又是什么呢?听起来像是高大上的术语,其实就是让电动机更聪明、表现更好的一种方法。

咱们都知道,电动机的性能好不好,转速和扭矩是关键。

这就像是赛车比赛,车速和加速度决定了谁能先冲过终点线。

而矢量控制的核心就在于将电机的电流分解成两个部分:一个是产生转矩的部分,另一个是控制磁场的部分。

通过这样的方式,我们就能精准地控制电机的运行状态,确保它能在各种条件下都表现得游刃有余,简直就像是专业赛车手在赛道上飞驰,毫无压力。

2. 矢量控制的基本原理接下来,我们聊聊矢量控制的基本原理。

想象一下,你在玩一款射击游戏,敌人四处移动,而你需要精准瞄准才能一枪命中。

矢量控制的思路就是这样,通过实时监测电机的状态,动态调整控制策略,确保电机能够适应不同的负载和运行环境。

它主要依靠两个重要的参数:电流和电压。

通过控制这两个参数,我们就能精确调节电机的运行状态。

2.1 参考框架矢量控制可以看作是建立在一个参考框架上的。

异步电机矢量控制基本原理

异步电机矢量控制基本原理

VS
转矩控制
基于转矩的矢量控制策略通过直接控制电 机的转矩来实现对电机的精确控制。通过 调节电压和电流的相位和幅值,可以精确 地控制电机的输出转矩。
矢量控制中的参数优化
电机参数辨识
在矢量控制中,电机的参数如电阻、 电感等对控制性能有重要影响。因此 ,需要对这些参数进行辨识和补偿, 以提高控制的准确性。
按照实验要求,设定异步 电机的运行参数,如转速 、转矩等,并记录实验过 程中的数据。
数据处理
对实验数据进行处理,包 括滤波、归一化等操作, 以便进行结果分析和对比 。
结果展示
通过图表、曲线等形式展 示实验结果,便于观察和 分析。
结果对比与讨论
结果对比
将实验结果与理论值进行 对比,分析误差产生的原 因和改进方向。
异步电机矢量控制 基本原理
目录
• 异步电机基本原理 • 矢量控制原理 • 异步电机矢量控制技术 • 异步电机矢量控制的应用 • 异步电机矢量控制的实验研究与结果分析
01
CATALOGUE
异步电机基本原理
异步电机工作原理
异步电机是一种交流电机,其工作原 理基于电磁感应定律。当异步电机通 电后,其定子产生旋转磁场,该磁场 与转子电流相互作用,使转子转动。
通过计算异步电机的空间矢量,将异步电机的三相交流电流转换为直流电流,然后通过逆变器实现对异步电机的 控制。
基于旋转矢量的矢量控制
将异步电机视为一个旋转的坐标系,通过旋转坐标变换将异步电机的三相交流电流转换为直流电流,然后通过逆 变器实现对异步电机的控制。
矢量控制的优势与局限性
优势
矢量控制具有高精度、高动态性 能、高稳态性能等优点,能够实 现对异步电机的高效、精确、稳 定的控制。

异步电机的矢量控制

异步电机的矢量控制

异步电机的矢量控制
异步电机的矢量控制是一种先进的电机控制技术,能够提高电机的性能和效率。

在传统的电机控制方法中,通常使用直接转矩控制或者感应电机的矢量控制。

然而,这些方法在某些情况下存在一定的局限性,例如转矩响应速度较慢,效率不高等。

异步电机的矢量控制技术通过控制电机的电流和磁场,实现对电机的精准控制。

这种控制方法可以使电机在不同工况下都能够保持稳定的性能,提高电机的转矩响应速度和效率。

与传统的控制方法相比,异步电机的矢量控制具有更高的精度和可靠性。

在异步电机的矢量控制中,首先需要对电机的电流进行控制,以确保电机的磁场和转子的位置保持在理想状态。

通过对电机的电流进行精确控制,可以实现电机的高效运行,并且可以在不同负载条件下实现电机的平稳运行。

异步电机的矢量控制还需要对电机的转子位置进行准确检测和估算。

通常会使用编码器或者传感器来检测电机的转子位置,以便及时调整电机的控制参数。

通过准确的转子位置检测,可以确保电机在高速旋转时也能够保持稳定的性能。

除了电流控制和转子位置检测,异步电机的矢量控制还需要对电机的速度进行精确控制。

通过对电机的速度进行调节,可以实现电机的平稳启动和高速运行。

同时,还可以根据不同的工况调整电机的
转矩输出,以满足不同的应用需求。

总的来说,异步电机的矢量控制是一种先进的电机控制技术,能够提高电机的性能和效率。

通过精确控制电机的电流、转子位置和速度,可以实现电机在不同工况下的稳定运行,并且可以满足不同应用场景的需求。

随着电机控制技术的不断发展,相信异步电机的矢量控制技术将会得到更广泛的应用和推广。

异步电机的矢量控制

异步电机的矢量控制

异步电机的矢量控制引言异步电机是一种常用的电动机类型,多用于工业领域。

在控制异步电机的过程中,矢量控制技术被广泛应用。

本文将详细介绍异步电机的矢量控制原理及其应用。

矢量控制原理1.矢量控制概述矢量控制是一种基于电机磁链方向和大小的控制技术。

通过控制电机转子磁链,可以实现电机的启动、停止、加速、减速等控制操作。

2.矢量控制基本原理矢量控制的基本原理是通过实时测量电机的电流、转速、位置等参数,实现对电机转子磁链的实时控制。

控制器根据测量值计算出所需的电流矢量,并通过逆变器向电机施加相应的电流,使电机实现特定的运动。

矢量控制的参数测量与计算1.电机电流测量电机电流是矢量控制的重要参数之一。

可以通过采样电机两相之间的电压,利用欧姆定律计算得到电机电流。

2.电机转速测量电机转速测量可以通过安装编码器或霍尔传感器来实现。

编码器可以直接测量电机转子的位置,通过计算单位时间内的位置变化,可以得到电机转速。

3.电机位置测量电机位置测量可以通过编码器或霍尔传感器来实现。

编码器可以直接测量电机转子的位置,通过计算单位时间内的位置变化,可以得到电机位置。

4.电机磁链计算电机磁链可以通过测量电机的电流和电压来计算。

根据电机的等效电路模型,可以得到电机磁链的表达式。

矢量控制策略1.矢量控制模型矢量控制模型包括电流模型和转矩模型。

电流模型用于控制电机的电流矢量,转矩模型用于控制电机的转矩。

2.电流闭环控制电流闭环控制是矢量控制的重要组成部分。

通过对电机电流进行实时的测量、采样和控制,可以实现对电机转矩和速度的精确控制。

3.磁链闭环控制磁链闭环控制是矢量控制的关键环节。

通过对电机磁链进行实时的测量、采样和控制,可以实现对电机的磁场方向和大小的精确控制。

4.转速闭环控制转速闭环控制是矢量控制的基本要求之一。

通过对电机转速进行实时的测量、采样和控制,可以实现对电机速度和位置的精确控制。

矢量控制的应用1.电动汽车矢量控制技术在电动汽车中得到广泛应用。

异步电动机矢量控制调速系统设计

异步电动机矢量控制调速系统设计
16 O
异 步 电动 机矢 量 控 制 调 速 系 统 设计
异步电动机矢量控制调速系统设计
De i fAs n h o o s sgn o y c r n u Mo o co n r lSp e y t m t rVe t r Co to e d S se
陈 德 增 ( 岛科技 大学 , 东 青 岛 2 6 4 ) 青 山 6 0 2
流调 速 最 终 取代 直流 调 速 成 为 可 能 。 目前 对 调 速特 性 要 求 较 高
的生 产 工 艺 已较 多 地 采 用矢 量控 制 型 变 频 调速 装 置 。
1 矢 量 控 制
图 1 矢 量 控 制 系 统 原理 结构 图
以 产生 完 全 一 致 的 旋转 磁 动 势为 准 则 ,在 三 相 坐 标 系 下 的 定 子 交 流 电流 i i i通 过 3 / S变换 , 以等 效 成 两 相 静 止 坐 Bc 、 S2 可
de eo v lpmen o pe t . tpr s c s
Ke wor :s nc r n s oo ,e lt n, c o y dsa y h o ou m trr gua i Ve t rConr l o to
交 流 异 步 电动 机 是 一 个 高 阶 、 变 量 、 线 性 、 藕 合 的 被 多 非 强 控 对 象 ,采 用 参 数 重 构 和状 态 重 构 的现 代 控 制 理 论 概 念 可 以 实
经过 相应 的 坐 标反 变 换 , 能够 控 制 异 步 电动 机 了。由于进 行 坐 就
图2
系 统 框 图
三 相 电 压 检 测 单元 、 速 反馈 单 元 、 制 信 号 输 出 单 元 等 部分 组 转 控 成 。系 统 框 图 如 图 2所 示 , 统 是 以 1 系 6位 单 片 机 8 C1 6为 控 0 9 制 核 心 ,由一 些 硬 件 模 拟 电 路 组 成 异 步 电 动 机 的 矢 量控 制 变 频

三相异步电机 vf矢量控制

三相异步电机 vf矢量控制

三相异步电机vf矢量控制
三相异步电机的VF(Voltage-Frequency,电压-频率)控制是一种基本的交流调速技术,它通过改变电源的电压和频率来调节电机的速度。

这种控制方式在恒转矩负载下可以保持电机输出转矩与频率成正比变化,以实现电机速度的平滑调节。

然而,VF控制存在一些局限性,如低频时由于电压降低导致的转矩不足、动态响应较慢以及无法精确控制电机磁通等。

而矢量控制(Vector Control),也称为磁场定向控制(Field Oriented Control, FOC),则是一种更为先进的交流电动机控制方法,尤其是对三相异步电机而言。

矢量控制通过对定子电流进行解耦处理,分别控制励磁电流分量(产生磁场)和转矩电流分量(产生转矩),使得电机能够在宽广的速度范围内获得接近直流电机的性能表现。

在矢量控制中,控制器根据电机模型实时计算出应该施加到电机上的最佳电压矢量,从而精准地控制电机的磁场强度和转矩输出,达到高精度的速度控制和快速的动态响应效果。

相比于VF控制,矢量控制能够有效提高系统的稳定性和动态性能,并能在低频运行时保持较高的输出转矩,适用于对速度控制要求较高的场合。

矢量控制系统

矢量控制系统

摘要:交流电机矢量控制理论是德国学者K Hass和FBlaschke建立起来的,作为交流异步电机控制的一种方式,矢量控制技术已成为高性能变频调速系统的首选方案。

交流电机的矢量控制技术是基于交流电机的动态模型,通过建立交流电机的空间矢量图,采用磁场定向的方法将定子电流分解为与磁场方向一致的励磁分量和与磁场方向正交的转矩分量,并分别对磁通和力矩进行控制,而使异步电机可以像他励直流电机一样控制。

随着计算机技术飞速发展,功能强大的数字信号处理器(DSP)的广泛应用使得矢量控制逐渐走向了实用化。

本文先对矢量控制系统的原理进行简要说明,然后给出了一种矢量控制系统基于DSP芯片的实现方案,最后例举了一些目前应用较广泛的矢量型变频器。

关键词:矢量控制,DSP,变频器。

目录1.矢量控制 (3)1.1概述 (3)1.2基本原理 (4)1.3坐标变换 (6)2.转差频率矢量控制 (7)3.基于DSP芯片TMS320F2812的矢量控制系统 (11)4.西门子MicroMaster440变频器 (13)参考文献 (15)1.矢量控制1.1概述由于异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。

上世纪70年代西门子工程师F.Blaschke首先提出异步电机矢量控制理论来解决交流电机转矩控制问题。

矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。

具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。

简单的说,矢量控制就是将磁链与转矩解耦,有利于分别设计两者的调节器,以实现对交流电机的高性能调速。

矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交流异步电动机的矢量控制系统设计原理
本文主要利用电机矢量控制系统原理,提出了一种异步电机矢量控制系统及其控制策略总体设计方案,采用Simulink工具构建了矢量变频调速系统数学模型,详细介绍了各个子模块的构建方法和功能。

通过仿真可得系统的动态及稳态性能,表明系统具有较高的响应能力和鲁棒性,为矢量控制技术提供了一种前期检验方法和研究手段。

0引言
异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,矢量控制是电机控制系统的一种先进控制方法,由于其交流调速时的优越性被广泛应用到异步电机调速系统中。

基于Simulink的交流异步电机仿真可以验证系统设计方案的有效性,在实验室应用过程中可能遇到系统设计难题。

本文以双闭环矢量控制系统为研究对象,在Simu-link中进行仿真来验证控制系统的有效性。

通过分析仿真结果得到矢量控制系统的动静态特性,从而证实了本设计方案的可行性。

1矢量控制原理
矢量控制系统,简称VC系统,坐标变换是核心思想。

矢量控制的基本思想是以产生同样的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流等效成两相静止坐标系上的交流电流,在通过坐标旋转变换将其等效成同步旋转坐标系上的直流电流,等效过程中实现磁通和转矩的解耦控制,达到直流电机的控制效果,得到直流电动机的控制量。

便可将三相异步电动机等效为直流电动机来控制,获得与直流调速系统接近的动、静态性能。

矢量控制中矢量变换包括三相-两相变换和同步旋转变换,将d轴沿着转子总磁链矢量φr的方向称为M轴,将q轴逆时针转90°,即垂直于矢量φr的方向称为T轴,经过变换电压-电流方程改写为式(1),磁链方程为式(2):
化简可得转矩方程为:
由式(2)可得转子磁链φr仅由定子电流励磁分量isM产生,与转矩分量isT无关,而isM和isT是相互垂直的,这两者是解耦的。

矢量控制变频调速系统结构如图1所示,从图1上可以看出系统采用了转速、磁链的闭环控制。

图中标*的量为给定量,其余为实际测量值。

2基于Simulink的异步电机矢量控制系统仿真模型
2.1系统总体模型
根据矢量控制系统原理,利用Matlab/Simlink软件中的电气系统工具箱SimPowerSystems对系统进行仿真。

整体系统的仿真模型如图2所示。

2.2仿真模型中主要部分
2.2.1异步电动机与逆变模块
异步电动机选用SimPowerSystem模块库中的Asyn-chronous Machine SI Uints,选择在同步旋转坐标系的笼式异步电动机数学模型。

模块的A,B,C是异步电动机定子绕组输入端,与IGBT逆变器的输出相连。

逆变部分由SimPowerSystem模块库中的Power Electronic下的Universal Bridge 模块形成,逆变器的输入pulse端为PWM控制信号(6路),输出为三相ABC 交流电压。

2.2.2矢量控制模块
矢量控制模块的内部结构如图3所示。

子模块输入角速度给定和实际角速度值求偏差,并送入转速调节器(PI调节器);磁链给定的偏差信号用来作为磁链调节器(PI调节器)的输入,dq-abc、各计算环节及abc-dq实现转速和磁链的解耦控制,pulses generator单元产生脉冲信号控制IGBT逆变器达到变频调速的目的。

转子磁链相位角和励磁、转矩电流计算均根据矢量控制原理采用Simulink下的Fun模块设置函数,本文不再给出它们的具体仿真模型。

2.2.3脉冲发生器模块
脉冲发生器模块由滞环控制器和逻辑非运算器组成。

模块的输入信号是三相给定电流和三相实测电流,输出信号是由六路IGBT逆变器逆变来的六相脉冲信号。

模块将给定信号和实际测量信号进行比较,当实测电流小于给定电流且偏差大于滞环宽度时,输出为1,逆变器相正向导通,负向关断;当实际电流大于给定电流且偏差小于滞环宽度时,输出为0,逆变器相负向导通,正向关断。

采用逆变器通与断来调节逆变器输出线电压的频率,实现变频调速。

电流滞环控制器模型如图4所示。

2.2.4abc-dq,dq-abc坐标变换模块
abc-dq变换模块实现三相定子坐标到dq坐标的变换,变换模块模型如图5所示;dq-abc变换模块实现dq坐标到三相定子坐标的变换,变换模块仿真模型如图6所示。

采用三相到两相或两相到三相变换表达式设置变换模块中相应的函数表达式。

仿真采用的Simu-link/User-Defined Function/Matlab Fcn 模块实现不同形式的函数运算。

3仿真结果及分析
3.1参数设置
在启动仿真之前,首先要设置交流异步电机参数:
额定线电压220V、交变频率50Hz、磁极对数2,转动惯量J=1.662;阻尼系数D=0.1;定子内阻Rs=0.087Ω,定子漏感Ls=0.8mH;转子内阻Rr=0.028Ω,转子漏感Lr=0.8mH;定转子互感Lm=34.7mH.
逆变器参数:逆变器设置为三电平桥式电路IGBT,逆变器直流电源VDC= 780V,给定磁通值φ*r=0.96Wb;转速控制器(PI调节器)参数kp=13,ki
=26,限幅为300;电流控制器的滞环宽度H=20A.负载转矩为10N-m,给定角速度为20rad/s.
3.2仿真分析
通过选择适当的PID参数,采用不同的PID参数对电机的空载、负载及正常运行过程进行仿真,本仿真采用试凑的方法完成两个调节器PID参数选择。

结果得系统响应平稳、动静态性能都较好,转速超调小且稳态误差小。

仿真结果验证了该建模方法的有效性和正确性。

4结语
异步电机矢量控制系统一直都是系统原理和系统设计方案的重点和难点,基于Simulink的异步电机矢量控制系统模型为设计良好的矢量控制系统提供了完善的系统验证方法。

本文根据矢量控制原理完成了结构简明的按转子磁链定向的矢量控制系统,经过仿真实验,结果表明该矢量控制系统能有效控制异步电机的启动和调速,证明了本文所提出的设计方案具有很强的实用性。

相关文档
最新文档