吉大18秋学期《计算方法》在线作业一-2答案
吉林大学智慧树知到“计算机科学与技术”《计算方法》网课测试题答案1
吉林大学智慧树知到“计算机科学与技术”《计算方法》网课测试题答案(图片大小可自由调整)第1卷一.综合考核(共15题)1.微分和积分是一对互逆的数学运算。
()A、错误B、正确2.常用的折线函数是简单()次样条函数。
A、零B、一C、二D、三3.线性方程组的解法大致可以分为()。
A、直接法和间接法B、直接法和替代法C、直接法和迭代法D、间接法和迭代法4.改进的平方根法,亦称为()。
A、约当消去法B、高斯消去法C、追赶法D、乔累斯基方法5.数值运算中常用的误差分析方法有:概率分析法、向后误差分析法、区间分析法等。
()A、错误B、正确6.利用克莱姆法则求解行列式时,求解一个n阶方程组,需要()个n阶行列式。
A、nB、n+1C、n-1D、n*n7.迭代法的优点是算法简单,因而编制程序比较容易。
()A、错误B、正确8.以下近似值中,保留四位有效数字,()。
A、0.01234B、-12.34C、-2.20D、0.22009.通过点(x₀,y₀),(x₁,y₁)的拉格朗日插值基函数l₀(x₀),l₁(x₁)满足()。
A、l₀(x₀)=0,l₁(x₁)=0B、l₀(x₀)=0,l₁(x₁)=1C、l₀(x₀)=1,l₁(x₁)=0D、l₀(x₀)=1,l₁(x₁)=110.所谓()插值,就是将被插值函数逐段多项式化。
A、牛顿B、拉格朗日C、三次样条D、分段11.基于“使残差的平方和”为最小的准则来选取拟合曲线的方法称为曲线拟合的最小二乘法。
()A、错误B、正确12.按四舍五入原则数2.7182818与8.000033具有五位有效数字的近似值分别为2.7183和8.00000。
()A、错误B、正确13.设x=2.40315是真值2.40194的近似值,则x具有()为有效数字。
A、2B、3C、4D、514.在计算算法的复杂度时,主要关注乘除法的运算次数。
()A、错误B、正确15.二次插值的精度高于线性插值。
()A、错误B、正确第2卷一.综合考核(共15题)1.为了保证插值函数能更好地密合原来的函数,不但要求“过点”,即两者在节点上具有相同的函数值,而且要求“相切”,即在节点上还具有相同的导数值,这类插值称为()。
计算方法习题集及答案(总结版)
雅克比法:
3 10 12 5
3 (k ) 2 (k ) x1( k +1) = − 5 x2 − 5 x3 −
,x
( k +1) 2
(k ) 1 (k ) =1 4 x1 − 2 x 3 + 5
18 i
,x
( k +1) 3 −4
(k ) 3 =−1 + 10 x (2 k ) + 5 x1
取初始向量 x
(2) x (3) x
3
= 1+ x2 =
,对应迭代公式 x 对应迭代公式 x
0
k +1
= 3 1 + x k2 ;
2
1 , x −1
k
+1 =
1 xk − 1
。
0
判断以上三种迭代公式在 x 解: (1) ϕ ( x) = 1 + x1
2
= 1 .5
的收敛性,选一种收敛公式求出 x
2 x3
−
2 3
= 1 .5
5
习题 3
1.
设有方程组
5 x1 + 2 x 2 + x3 = −12 − x1 + 4 x 2 + 2 x3 = 20 2 x − 3x + 10 x = 3 2 3 1
( k +1) (k )
∞
(1)
考察用 Jacobi 法,Gauss-Seidal 法解此方程组的收敛性; −x (2) 用 Jacobi 法及 Gauss-Seidal 法解方程组,要求当 x
1.
x
k +1 k k
'
<1
公式收敛
吉大18秋学期《高等数学(理专)》在线作业一答案
Bf(x)在x0的任意去心领域有界
Cf(x)在x0的某个去心领域无界
Df(x)在x0的任意去心领域无界
【答案】参考选择:A
3、直线y=2x,y=x/2,x+y=2所围成图形的面积为()
A2/3
B3/2
C3/4
D4/3
【答案】参考选择:A
4、计算y= 3x^2在[0,1]上与x轴所围成平面图形的面积=()
A错误
B正确
【答案】参考选择:B
5、在有界闭区域D上的多元初等函数,必取得介于最大值和最小值之间的任何值。()
A错误
B正确
【答案】参考选择:B
6、函数y=cosx+tan2x的值域是所有实数()
A错误
B正确
【答案】参考选择:B
7、直线y=0是曲线y=e^{-x}的水平渐近线
A错误
B正确
【答案】参考选择:B
A连续点
B可去间断点
C跳跃间断点
D无穷间断点
【答案】参考选择:B
7、设f(x)是可导函数,则()
A∫f(x)dx=f'(x)+C
B∫[f'(x)+C]dx=f(x)
C[∫f(x)dx]'=f(x)
D[∫f(x)dx]'=f(x)+C
【答案】参考选择:C
8、已知y= 4x^3-5x^2+3x-2,则x=0时的二阶导数y"=()
A0
B1
C2
D3
【答案】参考选择:B
5、f(x)={0 (当x=0)} {1(当x≠0)}则()
Ax->0,lim f(x)不存在
Bx->0,lim [1/f(x)]不存在
计算方法-习题第一、二章答案.doc
第一章 误差1 问3.142,3.141,722分别作为π的近似值各具有几位有效数字?分析 利用有效数字的概念可直接得出。
解 π=3.141 592 65…记x 1=3.142,x 2=3.141,x 3=722.由π- x 1=3.141 59…-3.142=-0.000 40…知3411110||1022x π--⨯<-≤⨯ 因而x 1具有4位有效数字。
由π- x 2=3.141 59…-3.141=-0.000 59…知2231021||1021--⨯≤-<⨯x π因而x 2具有3位有效数字。
由π-722=3.141 59 …-3.142 85…=-0.001 26…知231021|722|1021--⨯≤-<⨯π因而x 3具有3位有效数字。
2 已知近似数x*有两位有效数字,试求其相对误差限。
分析 本题显然应利用有效数字与相对误差的关系。
解 利用有效数字与相对误差的关系。
这里n=2,a 1是1到9之间的数字。
%5101211021|*||*||)(|1211*=⨯⨯≤⨯≤-=+-+-n ra x x x x ε3 已知近似数的相对误差限为0.3%,问x*至少有几位有效数字?分析 本题利用有效数字与相对误差的关系。
解 a 1是1到9间的数字。
1112*10)1(2110)19(21102110003%3.0)(--⨯+≤⨯+⨯=⨯<=a x r ε 设x*具有n 位有效数字,令-n+1=-1,则n=2,从而x*至少具有2位有效数字。
4 计算sin1.2,问要取几位有效数字才能保证相对误差限不大于0.01%。
分析 本题应利用有效数字与相对误差的关系。
解 设取n 位有效数字,由sin1.2=0.93…,故a 1=9。
411*10%01.01021|*||*||)(-+-=≤⨯≤-=n ra x x x x ε解不等式411101021-+-≤⨯n a 知取n=4即可满足要求。
吉林大学网络教育作业考试练习题-计算方法
计算方法交卷时间:2018-10-15 14:46:52一、单选题1.(4分)当A ( )时,线性方程组的迭代解一定收敛• A. >=6• B. =6• C. <6• D. >6得分:0知识点:计算方法作业题展开解析答案D解析2.(4分)4.3490是4.3490287…的近似值,有( )位有效数字• A. 6• B. 5• C. 4• D. 7得分:0知识点:计算方法作业题展开解析答案B解析3.(4分)以下各值,当间隔分段n为()时,牛顿-柯斯特求积公式稳定性不好• A. 1• B. 4• C. 6• D. 12得分:0知识点:计算方法作业题展开解析答案D解析4.(4分)应用二分法求方程在区间[0, 1]上误差不超过的近似根,需要二分()次• A. 14• B. 15• C. 16• D. 17得分:0知识点:计算方法作业题展开解析答案D解析5.(4分)用简单迭代法求方程的近似根,下列迭代格式收敛的是( )• A. ex-x-1=0,[1,1.5],令xk+1 =In(xk+1)• B. x3-x2-1=0,[1.4,1.5],令x k+1=1+• C. x3-x2-1=0,[1.3,1.6],令xk+1</sup>=• D. 4-2x=x,[1,2],令xk+1=得分:0知识点:计算方法作业题展开解析答案D解析6.(4分)应用二分法求方程在区间[0, 1]上误差不超过的近似根,需要二分()次• A. 12• B. 15• C. 19• D. 20得分:0知识点:计算方法作业题展开解析答案C解析7.(4分)关于列主元高斯-约当消去法,以下说法正确的是()• A. 通常用来求解正定矩阵• B. 不能同时求解系数矩阵相同的多个方程组• C. 能够判断矩阵是否非奇异• D. 能够避免零主元或小主元得分:0知识点:计算方法作业题展开解析答案D解析8.(4分)假设矩阵是正定对称矩阵,并且,在矩阵的Cholesky分解中,下三角矩阵()• A.• B.• C.• D.得分:0知识点:计算方法作业题展开解析答案A解析9.(4分)用选主元方法解方程组,是为了()• A. 提高运算速度• B. 减少舍入误差• C. 增加有效数字• D. 方便计算得分:0知识点:计算方法作业题展开解析答案B解析10.(4分)应用二分法求方程在区间[0, 1]上误差不超过的近似根,需要二分()次• A. 4• B. 5• C. 6• D. 7得分:0知识点:计算方法作业题展开解析答案B解析11.(4分)设是对称正定矩阵,经过高斯消元法第一步后,变为,则有性质()• A.• B. 是对称正定矩阵• C. 是对称矩阵• D. 是正定矩阵得分:0知识点:计算方法作业题展开解析答案B解析12.(4分)关于预测-校正公式,以下描述正确的是()• A. 步长h较大• B. 进行多次迭代• C. 比龙格-库塔法精度高• D. 局部阶段误差为O(h3)得分:0知识点:计算方法作业题展开解析答案D解析(4分)以下方法中,哪个方法不能求解一元非线性方程的根?()• A. 逐步搜索法• B. 迭代法• C. 欧拉法• D. 区间二分法得分:0知识点:计算方法作业题展开解析答案C解析14.(4分)以下对欧拉法描述错误的是()• A. 用差商代替导数求常微分方程初值问题• B. 不能由数值微分方法推导得到• C. 用一条初始点重合的折线来近似表示曲线• D. 可用泰勒展开法导出得分:0知识点:计算方法作业题展开解析解析15.(4分)为使两点数值求积公式具有最高阶代数精度,则求积结点应为()• A. 任意• B.• C.• D.得分:0知识点:计算方法作业题展开解析答案C解析16.(4分)设方程f(x)=0的有根区间为[1, 2],使用二分法时,误差限为|xk+1-x*|≤(),其中• A. 1/2• B. 1/2 k• C. 1/2 k+1• D. 1得分:0知识点:计算方法作业题展开解析答案C解析17.(4分)用高斯―赛德尔迭代法解方程组收敛的充分必要条件是()• A.• B.• C.• D.得分:0知识点:计算方法作业题展开解析答案A解析18.(4分)满足插值条件的LAgrAnge插值多项式的次数()• A. 等于• B. 小于• C. 大于• D. 不超过得分:0知识点:计算方法作业题展开解析答案D解析(4分)用牛顿迭代法计算,取=10-3,正确结果为()• A. 5.55• B. 5.56• C. 5.57• D. 5.58得分:0知识点:计算方法作业题展开解析答案C解析20.(4分)拟合三点A(0,1),B(1,3),C(2,2)的直线是()• A. 2x-y+1=0• B. 2x-y+3=0• C. x-2y+5=0• D. x-2y+3=0得分:0知识点:计算方法作业题展开解析解析二、判断题1.(2分)算式在ALGOL中写为••得分:0知识点:计算方法作业题展开解析答案对解析2.(2分)解方程的牛顿迭代公式••得分:0知识点:计算方法作业题展开解析答案对解析3.(2分)源程序由开始部分、说明部分、语句部分、结束部分组成••得分:0知识点:计算方法作业题展开解析答案对解析4.(2分)浮点数的加法满足结合律••得分:0知识点:计算方法作业题展开解析答案对解析5.(2分)数值计算中,误差主要来源于模型误差••得分:0知识点:计算方法作业题展开解析答案错解析6.(2分)求解f(x)=0的牛顿法,误差具有平方收敛性••得分:0知识点:计算方法作业题展开解析答案对解析7.(2分)在实际进行插值时插值时,将插值范围分为若干段,然后在每个分段上使用低阶插值――――如线性插值和抛物插值,这就是所谓分段插值法•得分:0知识点:计算方法作业题展开解析答案对解析8.(2分)导数有三种差商,其中称为向前差商,称为向后差商,而则称为中心差商••得分:0知识点:计算方法作业题展开解析答案对解析9.(2分)对给定的数据点,插值函数必须要经过这些点,而拟合函数不一定经过•得分:0知识点:计算方法作业题展开解析答案对解析10.(2分)已知函数表,则一次差商0.8()算法是指解题方案的准确而完整的描述••得分:0知识点:计算方法作业题展开解析答案错解析考试成绩0 分用时: -2分-17秒交卷的时候提示提示关闭计算方法交卷时间:2018-10-15 14:47:09一、单选题1.(4分)用1+近似表示所产生的误差是( )误差• A. 舍入• B. 观测• C. 模型• D. 截断得分:0知识点:计算方法作业题展开解析答案D解析2.(4分)下列求积公式中用到外推技术的是()• A. 梯形公式• B. 复合抛物线公式• C. 龙贝格公式• D. 高斯型求积公式得分:0知识点:计算方法作业题展开解析答案B解析3.(4分)顺序高斯消去法的计算量近似为()• A.。
计算方法习题及答案
第一章 绪论一.填空题1.*x 为精确值x 的近似值;()**x f y=为一元函数()x f y =1的近似值;()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-:***rx x e x -=()()()*'1**y f x x εε≈⋅ ()()()()'***1**r r x f x y x f x εε≈⋅ ()()()()()**,**,*2**f x y f x y y x y x yεεε∂∂≈⋅+⋅∂∂()()()()()****,***,**222r f x y e x f x y e y y x y y y ε∂∂≈⋅+⋅∂∂2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差 。
3、 分别用2.718281,2.718282作数e的近似值,则其有效数字分别有 6 位和 7 位;又取1.73≈(三位有效数字),则-211.73 10 2≤⨯。
4、设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。
5、设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。
6、已知近似值 2.4560A x =是由真值T x 经四舍五入得到,则相对误差限为 0.000021 .7、递推公式,⎧⎪⎨⎪⎩0n n-1y =y =10y -1,n =1,2,如果取0 1.41y ≈作计算,则计算到10y 时,误差为8110 2⨯;这个计算公式数值稳定不稳定 不稳定 .8、精确值 14159265.3*=π,则近似值141.3*1=π和1415.3*2=π分别有 3 位和 4 位有效数字。
9、 若*2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10-5。
10、 设x*的相对误差为2%,求(x*)n 的相对误差0.02n 二、计算题1. 有一个长方形水池,由测量知长为(50±0.01)米,宽为(25±0.01)米,深为(20±0.01)米,试按所给数据求出该水池的容积,并分析所得近似值的绝对误差和相对误差公式,并求出绝对误差限和相对误差限. 解:设长方形水池的长为L ,宽为W,深为H ,则该水池的面积为V=LWH当L=50,W=25,H=20时,有 V=50*25*20=25000(米3) 此时,该近似值的绝对误差可估计为()()()()()()()=V V VV L W H L W HWH L HL W LW H ∂∂∂∆≈∆+∆+∆∂∂∂∆+∆+∆ 相对误差可估计为:()()r V V V∆∆=而已知该水池的长、宽和高的数据的绝对误差满足()()()0.01,0.01,0.01L W H ∆≤∆≤∆≤故求得该水池容积的绝对误差限和相对误差限分别为()()()()()()325*20*0.0150*20*0.0150*25*0.0127.5027.501.1*1025000r V WH L HL W LW H V V V -∆≤∆+∆+∆≤++=∆∆=≤=2.已知测量某长方形场地的长a=110米,宽b=80米.若()()**0.1 0.1a a b b -≤-≤米,米试求其面积的绝对误差限和相对误差限. 解:设长方形的面积为s=ab当a=110,b=80时,有 s==110*80=8800(米2) 此时,该近似值的绝对误差可估计为()()()()()=b s ss a b a ba ab ∂∂∆≈∆+∆∂∂∆+∆ 相对误差可估计为:()()r s s s∆∆=而已知长方形长、宽的数据的绝对误差满足()()0.1,0.1a b ∆≤∆≤故求得该长方形的绝对误差限和相对误差限分别为()()()()() 80*0.1110*0.119.019.00.0021598800r s b a a b s s s ∆≤∆+∆≤+=∆∆=≤= 绝对误差限为19.0;相对误差限为0.002159。
奥鹏东师 《计算方法》练习题参考答案.doc
《计算方法》练习题一 参考答案练习题第1套参考答案 一.填空题 1.210- 2.))((!2)(b x a x f --''ξ 3.524.按模最大 5.]0,2[- 二.单选题1.C 2.A 3.C 4.B 5.C 三.计算题1.22122122121)2()42()3(),(--+-++-+=x x x x x x x x ϕ,由0,021=∂∂=∂∂x x ϕϕ得:⎩⎨⎧=+=+9629232121x x x x , 解得149,71821==x x 。
2.⎰≈++++≈21697.0]217868581[81x dx ,9611612)(2=⨯≤M x R 。
3.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1142242644223214264426453426352回代得:Tx )1,1,1(-=4.因为A为严格对角占优阵,所以雅可比法收敛。
雅可比迭代公式为:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=+=+++Λ,1,0,)1(41)3(41)1(41)(2)1(3)(3)(1)1(2)(2)1(1m x x x x x x x m m m m m m m 。
取T x )1,1,1()0(=计算得: T x )5.0,25.1,5.0()1(=。
5.因为0875.0)5.0(,01)0(<-=>=f f ,所以]5.0,0[*∈x ,在]5.0,0[上,06)(,043)(2≥=''<-='x x f x x f 。
由0)()(0≥''x f x f ,选00=x ,由迭代公式:Λ,1,0,4314231=-+--=+n x x x x x n n n n n 计算得:25.01=x 。
四.证明题1.设))()(()()()(),)()(()(10110x t x t x k t L t f t g x x x x x k x R ----=--=,有x x x ,,10为三个零点。
吉林大学计算方法课后题答案
4 42
由求解结果可知: L3 (x) N3(x)
说明插值问题的解存在且唯一。
6. 已知由数据 (0, 0), (0.5, y1), (1,3)和(2, 2) 构造出的 Lagrange 插值多项式
计算方法习题答案
王新民 术洪亮编
第一章习题答案
1. 已知 f (1) 2, f (1) 1, f (2) 1,求 f (x) 的 Lagrange 插值多项式。
解:由题意知:
x0 1, x1 1, x2 2; y0 2, y1 1, y2 1
l0
(x ( x0
i0
n
令 x 0 即有 xinli 0 0 。 i0
i j
而当 k 1时有
n
x jl j
j0
x
n
n
j0 i0 i j
x xi x j xi
x
j
x
5. 依据下列函数表分别建立次数不超过 3 的 Lagrange 插值多项式和 Newton 插值多项式,并验证插值多项式的唯一性。
x
0
= 2x3
5x2
2x
l3 (x)
x x0 x3 x0
x x1 x3 x1
x x2 x3 x2
x0 20
x 0.5 2 0.5
x 1 = 1 x3 21 3
1 2
x2
1 6
x
L3 (x)
2019-2020学年第一学期期末考试《计算方法》大作业答案
吉林大学网络教育学院2019-2020学年第一学期期末考试《计算方法》大作业答案学生姓名专业层次年级学号学习中心成绩年月日作业完成要求:大作业要求学生手写,提供手写文档的清晰扫描图片,并将图片添加到word文档内,最终wod文档上传平台,不允许学生提交其他格式文件(如JPG,RAR等非word文档格式),如有雷同、抄袭成绩按不及格处理。
一、解线性方程(每小题8分,共80分)1、用矩阵的LU分解算法求解线性方程组X1+2X2+3X3= 02X1+2X2+8X3= -4-3X1-10X2-2X3= -11答:2、用矩阵的Doolittle分解算法求解线性方程组X1+2X2+3X3= 12X1– X2+9X3= 0-3X1+ 4X2+9X3= 1答:3、用矩阵的Doolittle分解算法求解线性方程组2X1+X2+X3= 46X1+4X2+5X3=154X1+3X2+6X3= 13答:4、用高斯消去法求解线性方程组2X1- X2+3X3= 24X1+2X2+5X3= 4-3X1+4X2-3X3= -3答:5、用无回代过程消元法求解线性方程组2X1- X2+3X3= 24X1+2X2+5X3= 4-3X1+4X2-3X3= -3答:6、用主元素消元法求解线性方程组2X1- X2+3X3= 24X1+2X2+5X3= 4-3X1+4X2-3X3= -3答:7、用高斯消去法求解线性方程组1231231232344272266x x x x x x x x x -+=++=-++=答:8、利用Doolittle 分解法解方程组Ax=b ,即解方程组12341231521917334319174262113x x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦ 答:9、利用Doolittle 分解法解方程组Ax=b ,即解方程组123421111443306776081011112x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ 答:10、用高斯消元法解方程组1237811351341231x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦答案:二、计算(每小题10分,共20分)1、已知节点x1,x2及节点处函数值f(x1),f(x2),构造线性插值多项式p1(x). 答:2、设f(xi)=i(i=0,1,2),构造二次式p2(x),使满足: p2(xi)=f(xi)(i=0,1,2)答:。
吉大16秋学期《计算方法》在线作业二答案
正确答案:C
14.常用的折线函数是简单()次样条函数
A.零
B.一
C.二
D.三
正确答案:B
15.改进的平方根法,亦称为()
A.约当消去法
B.高斯消去法
C.追赶法
D.乔累斯基方法
正确答案:D
吉大16秋学期《计算方法》在线作业二
二、判断题(共10道试题,共40分。)
1.用数值微分公式中求导数值时,步长越小计算就越精确。
B. n(n-1)
C. n(n+1)
D. n(n-1)(n+1)
正确答案:A
10.由于代数多项式的结构简单,数值计算和理论分析都很方便,实际上常取代数多项式作为插值函数,这就是所谓的()
A.泰勒插值
B.代数插值
C.样条插值
D.线性插值
正确答案:B
11.若x = 1.345678,|x*-x|=0.00041...,则x*的近似数x具有( )位有效数字.
D. D
正确答案:A
7.依据3个样点(0,1),(1,2)(2,3),其插值多项式p(x)为()
A. x
B. x+1
C. x-1
D. x+2
正确答案:B
8.题面如下,正确的是()
A. 2
B. 3
C. -2
D. 1
正确答案:B
9.利用克莱姆法则求解行列式时,求解一个n阶方程组,总共需要做( )次乘法
A. n!(n-1)(n+1)
A. 1
B. 2
C. 3
D. 4
正确答案:D
12.设x=2.40315是真值2.40194的近似值,则x具有()为有效数字
吉大18秋学期《刑法分论》在线作业一(满分)
------------------------------------------------------------------------------------------------------------------------------ (单选题) 1: 某国有公司出纳甲意图非法占有本人保管的公共财物,但不使用自己手中的钥匙和所知道的密码,而是使用铁棍将自己保管的保险柜打开并取走现金3万元。
之后,甲伪造作案现场,声称失窃。
关于本案,下列哪一选项是正确的?()A: 甲虽然是国家工作人员,但没有利用职务上的便利,故应认定为盗窃罪B: 甲虽然没有利用职务上的便利,但也不属于将他人占有的财物转移为自己占有,故应认定为侵占罪C: 甲将自己基于职务保管的财物据为己有,应成立贪污罪D: 甲实际上是通过欺骗手段获得财物的,应认定为诈骗罪正确答案:(单选题) 2: 甲对乙使用暴力,欲将其打残。
乙慌忙掏出手机准备报警,甲一把夺过手机装进裤袋并将乙打成重伤。
甲在离开现场五公里后,把乙价值7000元的手机扔进水沟。
甲的行为构成何罪?()A: 故意伤害罪、盗窃罪B: 故意伤害罪、抢劫罪C: 故意伤害罪、抢夺罪D: 故意伤害罪、故意毁坏财物罪正确答案:(单选题) 3: 甲持西瓜刀冲入某银行储蓄所,将刀架在储蓄所保安乙的脖子上,喝令储蓄所职员丙交出现金1万元。
见丙故意拖延时间,甲便在乙的脖子上划了一刀。
刚取出5万元现金的储户丁看见乙血流不止,于心不忍,就拿出1万元扔给甲,甲得款后迅速逃离。
对甲的犯罪行为,下列哪一选项是正确的?()A: 抢劫罪(未遂)B: 抢劫罪(既遂)C: 绑架罪D: 敲诈勒索罪正确答案:(单选题) 4: 甲某因工头乙某拖欠自己工资,遂于某日下午2时许将乙某之子丙某(5岁)诱骗至一工地内看管,并电话通知乙某当日交款。
当晚20时许,甲某在某车站取款时,被抓获归案。
甲某的行为:()A: 不构成犯罪B: 构成绑架罪C: 构成非法拘禁罪D: 构成拐骗儿童罪正确答案:(单选题) 5: 乙某持甲某的借条要甲某还钱,甲某不仅不还钱,反而指使丙某、丁某将乙某强行扣留在一暗室内,并对其进行殴打,直至乙某交出借条承诺永不索还,才将乙某释放。
天大18秋《数值计算方法》在线作业一
(单选题) 1: 若方阵A的谱半径小于1,则解方程组Ax=b的Jacobi迭代法收敛A: 正确B: 错误正确答案:(单选题) 2: 3.142和3.141分别为π的近似数具有()和()位有效数字A: 4和3B: 3和2C: 3和4D: 4和4正确答案:(单选题) 3: 若f(a)f(b)<0,则f(x)=0在(a,b)内一定有根A: 正确B: 错误正确答案:(单选题) 4: 二分法的基本思想就是逐步对分区间通过判断两端点函数值乘积的符号,进一步缩小有根区间A: 正确B: 错误正确答案:(单选题) 5: 方程求根的二分法的局限性是收敛速度慢,不能求偶重根A: 正确B: 错误正确答案:(单选题) 6:A: AB: BC: CD: D正确答案:(单选题) 7: 设Ax=b,准确解为X*,某一近似解为X,用()来判断误差A: ||AX-b||B: ||X-X*||C: bD: ||b-AX||正确答案:(单选题) 8: 若线性方程组Ax=b的系数矩阵A为严格对角占优矩阵,则解方程组的Jacobi迭代法和Gauss-Seidel迭代法()A: 都收敛B: 都发散C: Jacobi迭代法收敛,Gauss-Seidel迭代法发散D: Jacobi迭代法发散,Gauss-Seidel迭代法收敛正确答案:(单选题) 9: 下列说法不正确的是()A: 二分法不能用于求函数f(x)=0的复根B: 方程求根的迭代解法的迭代函数为?f(x),则迭代收敛的充分条件是?f(x)<1C: 用高斯消元法求解线性方程组AX=B时,在没有舍入误差的情况下得到的都是精确解D: 如果插值节点相同,在满足插值条件下用不同方法建立的插值公式是等价的正确答案:(单选题) 10: f(x)=x^2+1,则f[1,2,3,4]=()A: 4B: 3(单选题) 11: 若误差限为0.5×10^(-5),那么近似数0.003400有5位有效数字A: 正确B: 错误正确答案:(单选题) 12: 设求方程f(x)=0的根的牛顿法收敛,则它具有()收敛A: 超线性B: 平方C: 线性D: 三次正确答案:(单选题) 13: 已知多项式P(x),过点(0,0)(2,8)(4,64)(11,1331)(15,3375),它的三阶差商为常数1,一阶二阶差商均不是0,那么P(x)是()A: 二次多项式B: 不超过二次的多项式C: 三次多项式D: 四次多项式正确答案:(单选题) 14: 下列说法错误的是()A: 如果一个近似数的每一位都是有效数字,则称该近似数为有效数B: 凡是经“四舍五入”得到的近似数都是有效数C: 数值方法的稳定性是指初始数据的扰动对计算结果的影响D: 病态问题是由数学问题本身的性质决定的,与数值方法有关正确答案:(单选题) 15: 设f(1)=1,f(2)=2,f(3)=0,用三点式求f'(1)=()A: 1B: 1.5C: 2D: 2.5正确答案:(单选题) 16: 最小二乘原理是使误差的平方和达到最小A: 正确B: 错误正确答案:(单选题) 17: 用1+x近似表示e^x所产生的误差是()A: 模型误差B: 观测误差C: 截断误差D: 舍入误差正确答案:(单选题) 18: 如果插值结点相同,在满足相同插值条件下所有的插值多项式是等价的。
2018-2019学年第二学期期末考试《计算方法》大作业参考答案
吉林大学网络教育学院2018-2019学年第二学期期末考试《计算方法》大作业学生姓名专业层次年级学号学习中心成绩年月日一、构造次数不超过三次的多项式P3(X),使满足:(10分)P3(0)= 1;P3(1)=0;P3′(0)=P3′(1)=0。
二、设f(x i)=i(i=0,1,2),构造二次式p2(x),使满足:(10分) p2(x i)=f(x i)(i=0,1,2)三、设节点x i=i(i=0,1,2,3),f(0)=1,f(1)=0,f(2)=-7,f(3)=26,构造次数不超过3次的多项式p3(x),满足p3(x i)=f(x i),i=0,1,2,3 (10分)四、对于上题的问题,构造Newton插值多项式。
(10分)五、构造三次多项式P 3(X )满足:P 3(0)= P 3(1)=0,P 3′(0)=P 3′(1)=1。
(10分)六、利用Doolittle 分解法解方程组Ax=b 即解方程组 (15分) 12341231521917334319174262113x x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦解:用公式七、基于迭代原理证明(10分)+++=22 (22)八、构造二次多项式2()x p 满足: (10分)'010222()1;()0;()1p p p x x x ===九、构造一个收敛的迭代法求解方程3210x x --=在[1.3,1.6]内的实根。
合理选择一个初值,迭代一步,求出1x 。
(15分)作业完成要求:大作业要求学生手写,提供手写文档的清晰扫描图片,并将图片添加到word 文档内,最终word文档上传平台,不允许学生提交其他格式文件(如JPG,RAR等非word 文档格式),如有雷同、抄袭成绩按不及格处理。
计算方法及答案.docx
A. det A = 0B.detA k = 0(1 乞 k n)c. detA 0D. det A :: 0《计算方法》练习题一一、填空题1.理=3.14159…的近似值3.1428 ,准确数位是()。
2 .满足 f(a) = C, f(b) = d 的插值余项 R(X)=()。
3 .设{P k (x)}为勒让德多项式,则(F 2(χ), P 2(x)) - ( )o4 •乘幕法是求实方阵()特征值与特征向量的迭代法。
5 .欧拉法的绝对稳定实区间是()o6. e =2.71828…具有3位有效数字的近似值是( )。
7 .用辛卜生公式计算积分[fc ( ) oVHx8 .设A (kJ0 =(a (Z )第k 列主兀为a Pk J),则a (Pk A) =()10 •已知迭代法:X n 1 =(X n ), (n=0,1,…)收敛,则:(x)满足条件()。
、单选题1•已知近似数a,b,的误差限;(a), ;(b),则;(ab)=()。
A. E(a)E(b)B. E(a)+^(b)c. ag(a)+∣bw(b) D . a E (b)+'b w(a)2 .设 f(x) =X 2 X ,则 f[1,2,3]=()。
A.lB. 2C. 3D .4 3 . 设A =们 ,则化A 为对角阵的平面旋转 Q =().:1 3一ππππ A.—B .—C .—D .—23 464 . 若双点弦法收敛, 则双点弦法具有()敛速.A.线性B.超线性C.平方D .三次5 .改进欧拉法的局部截断误差阶是().A. o(h)Bo(h 2)C.o(h 3)D.o(h 4)6 .近似数 a = 20.47820 "0的误差限是()o1 一 c -51 _ -4 1__3 1 _ _2A. ×10B.×10 C.×10D . × 1022229 .已知贝TtJ 1 25 4_-7 .矩阵A满足(),则存在三角分解A=LR)&已知 X =(—1,3,-5)T ,则 X 1 =()。
2022年秋季国开一网一平台《计算方法》下载作业一
计算方法下载作业(一)姓名:提交作业方式有以下三种,请务必与辅导教师沟通后选择:1.将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2.在线提交word文档.3.自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题(每题2分,共10分)1./(0) = 1, /(2) = 3 ,用拉格朗日插值法求得的/⑴的近似值为•2.过(/"(/)), a,/区)),(/,/(%2))点的抛物插值多项式的余项为.3.用梯形公式计算积分.Ji %4.求矛盾方程组的最小二乘解是使最小.5.求向量X = (2,-4, 8)T的2-范数因b=.二、计算题(每题10分,共70分)1./ = 1, " = 2,亚=3,用牛顿插值法求正的近似值,并估计误差.X] += 4 X] 一 尤2 =3 21]-x 2 = 62.求矛盾方程组2.求矛盾方程组 的最小二乘解.求最小二乘一次式g]求)=% + a[x.4.求积分1)(幻口以/=;,%=;,%2=1为节点的内插求积公式,并求其代数精确度.5.用I复化梯形公式计算积打白“并估计误差.2X] + 3X2+5X3 = 2 6.用列主元消元法和全主元消元法解线性方程组<3再+5% +82=3 .X] + 3X2+3X3 = 22X1 + 3X 2 + 2X 3 = 1411+ 5X 2 + 3%3 = 2 .2%j + 4X 2 + 4X 3 = 27.用直接三角分解法解线性方程组 7.用直接三角分解法解线性方程组三、证明题(每题10分,共20分)n]1.设a(i=o,i,・・・.)为内插求积公式系数,其中〃>2,证明Zai=鼻(犷-。
D./=03.设X =0一.,%")' 证明口|X||C||X『<||X。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[奥鹏]吉大18秋学期《计算方法》在线作业一-2
18秋作业试卷参考答案
一、单选题共15题,60分
1、秦九韶算法的特点在于,它通过一次式的反复计算,逐步得出高次多项式的值,具体地说就是将一个n次多项式的求值问题,归结为重复计算()个一次式来实现。
An
Bn-1
Cn+1
Dn*n
这门答案选择:A
2、若 x = 1.345678,|x*-x|=0.00041... ,则x*的近似数x 具有( )位有效数字.
A1
B2
C3
D4
这门答案选择:D
3、题面如下所示,正确的是:
AA
BB
CC
DD
这门答案选择:C
4、差商形式插值公式称为()
A牛顿插值公式
B拉格朗日插值公式
C分段插值公式
D埃尔米特插值公式
这门答案选择:A
5、题面如下图所示,正确的是()
AA
BB
CC
DD
这门答案选择:B。