最优控制理论与系统胡寿松版部分习题答案.docx

合集下载

最优控制胡寿松版部分习题答案

最优控制胡寿松版部分习题答案

2-5 求通过(0)1x =,(1)2x =,使下列性能泛函为极值的极值曲线*()x t :2(1)ft t J x dt =+⎰解:由题可知,始端和终端均固定被积函数21L x =+,0L x ∂=∂,2L x x ∂=∂, 2d L x dt x∂⋅=∂ 代入欧拉方程0L d L x dt x∂∂-⋅=∂∂,可得20x =,即0x = 故1x c = 其通解为:12x c t c =+代入边界条件(0)1x =,(1)2x =,求出11c =,21c = 极值曲线为*()1x t t =+2-6 已知状态的初值和终值为(1)4x =,()4f x t =式中f t 自由且f t >1,试求使下列性能泛函达到极小值的极值轨线*()x t :211[2()()]2ft J x t x t dt =+⎰ 解:由题可知,2122L x x =+,()4f t ψ=,()14x =,()4f x t = 欧拉方程:L 0d L x dt x∂∂-=∂∂ 横截条件:()00t x =x ,()()f f x t t ψ=,()0fTt L L x x ψ∂⎛⎫+-= ⎪∂⎝⎭易得到2dxdt= 故12x t c =+ 其通解为:()212x t t c t c =++根据横截条件可得:()()()122121114424f f f f f x c c x t t c t c x t t c ⎧=++=⎪⎪=++=⎨⎪=+=⎪⎩解以上方程组得:12569f t c c =⎧⎪=-⎨⎪=⎩将f t ,1c ,2c 代入J 可得5*201500502150233J x x dt =+=-=⎰ 极值轨线为()*269x t t t =-+2-7 设性能泛函为120(1)J x dt =+⎰求在边界条件(0)0x =,(1)x 自由情况下,使性能泛函取极值的极值轨线*()x t 。

解:由题可知,21L x =+,()00x =,()1x 自由欧拉方程:L 0d L x dt x∂∂-=∂∂ 横截条件:()00t x =x ,L 0ft x∂=∂,0fTt L L x x ∂⎛⎫+= ⎪∂⎝⎭易得到()x t a =其通解为:()x t at b =+代入边界条件()f x t a =,()00x =,1f t =,求出0a =,0b = 将f t ,a ,b 代入J 可得()1*211J x dt =+=⎰极值轨线为()*0x t = 2-9 求使泛函22211220(2)J x x x x dt π=++⎰为极值并满足边界条件1(0)0x =,2(0)0x =1()12x π=,2()12x π=- 的极值轨线*1()x t 和*2()x t 。

(完整word版)最优控制理论与系统胡寿松版部分习题答案

(完整word版)最优控制理论与系统胡寿松版部分习题答案

2-5 求通过(0)1x =,(1)2x =,使下列性能泛函为极值的极值曲线*()x t :2(1)ft t J x dt =+⎰解:由题可知,始端和终端均固定被积函数21L x =+,0L x ∂=∂,2L x x ∂=∂, 2d Lx dt x ∂⋅=∂代入欧拉方程0L d Lx dt x ∂∂-⋅=∂∂,可得20x =,即0x =故1x c = 其通解为:12x c t c =+代入边界条件(0)1x =,(1)2x =,求出11c =,21c = 极值曲线为*()1x t t =+2-6 已知状态的初值和终值为(1)4x =,()4f x t =式中f t 自由且f t 〉1,试求使下列性能泛函达到极小值的极值轨线*()x t :211[2()()]2ft J x t x t dt =+⎰ 解:由题可知,2122L x x =+,()4f t ψ=,()14x =,()4f x t = 欧拉方程:L 0d Lx dt x ∂∂-=∂∂横截条件:()00t x =x ,()()f f x t t ψ=,()0fT t L L x x ψ∂⎛⎫+-= ⎪∂⎝⎭易得到2dxdt= 故12x t c =+ 其通解为:()212x t t c t c =++根据横截条件可得:()()()122121114424f f f f f x c c x t t c t c x t t c ⎧=++=⎪⎪=++=⎨⎪=+=⎪⎩解以上方程组得:12569f t c c =⎧⎪=-⎨⎪=⎩将f t ,1c ,2c 代入J 可得5*201500502150233J x x dt =+=-=⎰ 极值轨线为()*269x t t t =-+2-7 设性能泛函为120(1)J x dt =+⎰求在边界条件(0)0x =,(1)x 自由情况下,使性能泛函取极值的极值轨线*()x t 。

解:由题可知,21L x =+,()00x =,()1x 自由欧拉方程:L 0d L x dt x∂∂-=∂∂ 横截条件:()00t x =x ,L 0ft x∂=∂,0fT t L L x x ∂⎛⎫+= ⎪∂⎝⎭易得到()x t a =其通解为:()x t at b =+代入边界条件()f x t a =,()00x =,1f t =,求出0a =,0b = 将f t ,a ,b 代入J 可得()1*2011J x dt =+=⎰极值轨线为()*0x t = 2-9 求使泛函22211220(2)J x x x x dt π=++⎰为极值并满足边界条件1(0)0x =,2(0)0x =1()12x π=,2()12x π=- 的极值轨线*1()x t 和*2()x t 。

胡寿松自动控制原理课后习题答案

胡寿松自动控制原理课后习题答案

1 请解释下列名字术语:自动控制系统、受控对象、扰动、给定值、参考输入、反馈。

解:自动控制系统:能够实现自动控制任务得系统,由控制装置与被控对象组成; 受控对象:要求实现自动控制得机器、设备或生产过程扰动:扰动就是一种对系统得输出产生不利影响得信号、如果扰动产生在系统内部称为内扰;扰动产生在系统外部,则称为外扰。

外扰就是系统得输入量。

给定值:受控对象得物理量在控制系统中应保持得期望值参考输入即为给定值、反馈:将系统得输出量馈送到参考输入端,并与参考输入进行比较得过程。

2请说明自动控制系统得基本组成部分。

解:作为一个完整得控制系统,应该由如下几个部分组成:①被控对象: 所谓被控对象就就是整个控制系统得控制对象;②执行部件: 根据所接收到得相关信号,使得被控对象产生相应得动作;常用得执行元件有阀、电动机、液压马达等。

③给定元件: 给定元件得职能就就是给出与期望得被控量相对应得系统输入量(即参考量);④比较元件: 把测量元件检测到得被控量得实际值与给定元件给出得参考值进行比较,求出它们之间得偏差、常用得比较元件有差动放大器、机械差动装置与电桥等。

⑤测量反馈元件:该元部件得职能就就是测量被控制得物理量,如果这个物理量就是非电量,一般需要将其转换成为电量。

常用得测量元部件有测速发电机、热电偶、各种传感器等;⑥放大元件: 将比较元件给出得偏差进行放大,用来推动执行元件去控制被控对象。

如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成得电压放大器与功率放大级加以放大。

⑦校正元件: 亦称补偿元件,它就是结构或参数便于调整得元件,用串联或反馈得方式连接在系统中,用以改善系统得性能、常用得校正元件有电阻、电容组成得无源或有源网络,它们与原系统串联或与原系统构成一个内反馈系统。

3请说出什么就是反馈控制系统,开环控制系统与闭环控制系统各有什么优缺点?解:反馈控制系统即闭环控制系统,在一个控制系统,将系统得输出量通过某测量机构对其进行实时测量,并将该测量值与输入量进行比较,形成一个反馈通道,从而形成一个封闭得控制系统;开环系统优点:结构简单,缺点:控制得精度较差;闭环控制系统优点:控制精度高,缺点:结构复杂、设计分析麻烦,制造成本高、4 请说明自动控制系统得基本性能要求。

胡寿松《现代控制理论》习题集部分解答

胡寿松《现代控制理论》习题集部分解答
品 卖 非
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
非 卖 品
ROnei(李荣辉)完成,仅供参考
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
品 卖 非
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
ROnei(李荣辉)完成,仅供参考
非 卖 品
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
非 卖 品
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
非 卖 品
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
非 卖 品
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
非 卖 品
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
非 卖 品
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
品 卖 非
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
非 卖 品
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考
非 卖 品
ROnei(李荣辉)完成,仅供参考
胡寿松《自动控制原理习题集》第九章现代控制理论B部分习题解答
ROnei(李荣辉)完成,仅供参考

《自动控制原理》 胡寿松 习题答案(附带例题课件)

《自动控制原理》 胡寿松 习题答案(附带例题课件)

二、本课程实验的基本理论与实验技术知识
采用 MATLAB 软件上机进行实验,就是利用现代计算机硬件和计算机软件技术,以数字仿真技术为核 心,实现对自动控制系统基本理论和分析方法的验证以及控制系统设计。 通过上机实验,使学生在 MATLAB 软件的基本使用、编程调试、仿真实验数订人:杨志超 大纲审定人:李先允 制订日期:2005 年 6 月
5
《自动控制原理》电子教案
《自动控制原理》课程实验教学大纲
一、实验教学目标与基本要求
《自动控制原理》 课程实验通过上机使用 MATLAB 软件, 使学生初步掌握 MATLAB 软件在控制理论中的 基本应用,学会利用 MATLAB 软件分析控制系统,从而加深对自动控制系统的认识,帮助理解经典自动控 制的相关理论和分析方法。 通过本课程上机实验, 要求学生对 MATLAB 软件有一个基本的了解, 掌握 MATLAB 软件中基本数组和矩阵的表示方法,掌握 MATLAB 软件的基本绘图功能,学会 MATLAB 软件中自动控制理论 常用函数的使用,学会在 MATLAB 软件工作窗口进行交互式仿真和使用 M_File 格式的基本编程方法,初步 掌握利用 MATLAB 软件进行控制系统设计,让学生得到撰写报告的基本训练。
4.频率法反馈校正的基本原理和方法(选讲)
(七)非线性控制系统 了解非线性系统与线性系统的区别,了解非线性特性和非线性系统的主要特征,学会非线性系统的描 述函数分析方法,了解非线性系统的相平面分析法(选讲) 。
3
《自动控制原理》电子教案
1. 非线性系统的基本概念 2. 典型非线性特性、非线性系统的主要特征 3. 描述函数定义、应用条件和求取方法 4. 应用描述函数分析非线性系统的稳定性 5. 非线性系统自激振荡分析和计算 6. 介绍非线性系统相平面分析法(选讲)

胡寿松自动控制原理课后习题问题详解

胡寿松自动控制原理课后习题问题详解

1 请解释下列名字术语:自动控制系统、受控对象、扰动、给定值、参考输入、反馈。

解:自动控制系统:能够实现自动控制任务的系统,由控制装置与被控对象组成;受控对象:要求实现自动控制的机器、设备或生产过程扰动:扰动是一种对系统的输出产生不利影响的信号。

如果扰动产生在系统内部称为内扰;扰动产生在系统外部,则称为外扰。

外扰是系统的输入量。

给定值:受控对象的物理量在控制系统中应保持的期望值参考输入即为给定值。

反馈:将系统的输出量馈送到参考输入端,并与参考输入进行比较的过程。

2 请说明自动控制系统的基本组成部分。

解:作为一个完整的控制系统,应该由如下几个部分组成:①被控对象:所谓被控对象就是整个控制系统的控制对象;②执行部件:根据所接收到的相关信号,使得被控对象产生相应的动作;常用的执行元件有阀、电动机、液压马达等。

③给定元件:给定元件的职能就是给出与期望的被控量相对应的系统输入量(即参考量);④比较元件:把测量元件检测到的被控量的实际值与给定元件给出的参考值进行比较,求出它们之间的偏差。

常用的比较元件有差动放大器、机械差动装置和电桥等。

⑤测量反馈元件:该元部件的职能就是测量被控制的物理量,如果这个物理量是非电量,一般需要将其转换成为电量。

常用的测量元部件有测速发电机、热电偶、各种传感器等;⑥放大元件:将比较元件给出的偏差进行放大,用来推动执行元件去控制被控对象。

如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器和功率放大级加以放大。

⑦校正元件:亦称补偿元件,它是结构或参数便于调整的元件,用串联或反馈的方式连接在系统中,用以改善系统的性能。

常用的校正元件有电阻、电容组成的无源或有源网络,它们与原系统串联或与原系统构成一个内反馈系统。

3 请说出什么是反馈控制系统,开环控制系统和闭环控制系统各有什么优缺点?解:反馈控制系统即闭环控制系统,在一个控制系统,将系统的输出量通过某测量机构对其进行实时测量,并将该测量值与输入量进行比较,形成一个反馈通道,从而形成一个封闭的控制系统;开环系统优点:结构简单,缺点:控制的精度较差;闭环控制系统优点:控制精度高,缺点:结构复杂、设计分析麻烦,制造成本高。

《自动控制原理》 胡寿松第五章习题解答

《自动控制原理》 胡寿松第五章习题解答

= 0.447 sin(t + 3.4 0 ) − 0.354 cos(2t − 90 0 )
e ss (t ) = c ss (t ) − r (t ) = 0.447 sin(t + 3.4 0 ) − 0.354 cos(2t − 90 0 ) − sin(t + 30 0 ) + cos(2t − 45 0 )
5-4 典型二阶系统的开环传递函数
2 ωn s( s + 2ζω n )
G( s) =
当取 r (t ) = 2 sin t 时,系统的稳态输出
css (t ) = 2 sin(t − 450 )
试确定系统参数 ω n , ζ 。 解:根据公式(5-16)和公式(5-17) 得到: c ss (t ) = A G B ( jω ) sin(ωt + ϕ + ∠G B ( jω ))
ξ = 0.6532
G( s) H ( s) =
K (τs + 1) ; s 2 (Ts + 1)
K ,τ , T > 0
试分析并绘制 τ > T 和 T > τ 情况下的概略开环幅相曲线。 解:相频特性为
ϕ (ω ) = −180 0 + arctan τω − arctan Tω
(1)
τ > T 时, ϕ (ω ) > −180 0 概略开环幅相曲线如下
胡寿松自动控制原理习题解答第五章
5-2 若系统单位阶跃响应为
h(t ) = 1 − 1.8e −4t + 0.8e −9t (t ≥ 0)
试确定系统的频率特性。 解:对单位阶跃响应取拉氏变换得:
1 1.8 0.8 36 − + = s s + 4 s + 9 s ( s + 4)( s + 9)

最优控制理论与系统胡寿松版课后习题答案

最优控制理论与系统胡寿松版课后习题答案

2-5 求通过(0)1x =,(1)2x =,使下列性能泛函为极值的极值曲线*()x t :2(1)ft t J x dt =+⎰解:由题可知,始端和终端均固定,被积函数21L x =+,0L x ∂=∂,2L x x ∂=∂, 2d L x dt x∂⋅=∂ 代入欧拉方程0L d Lx dt x∂∂-⋅=∂∂,可得20x =,即0x =故1x c = 其通解为:12x c t c =+代入边界条件(0)1x =,(1)2x =,求出11c =,21c = 极值曲线为*()1x t t =+2-6 已知状态的初值和终值为(1)4x =,()4f x t =式中f t 自由且f t >1,试求使下列性能泛函达到极小值的极值轨线*()x t :211[2()()]2ft J x t x t dt =+⎰ 解:由题可知,2122L x x =+,()4f t ψ=,()14x =,()4f x t = 欧拉方程:L 0d L x dt x∂∂-=∂∂ 横截条件:()00t x =x ,()()f f x t t ψ=,()0fTt L L xx ψ∂⎛⎫+-= ⎪∂⎝⎭易得到2dxdt= 故12x t c =+ 其通解为:()212x t t c t c =++根据横截条件可得:()()()122121114424f f f f f x c c x t t c t c x t t c ⎧=++=⎪⎪=++=⎨⎪=+=⎪⎩解以上方程组得:12569f t c c =⎧⎪=-⎨⎪=⎩ 还有一组解⎪⎩⎪⎨⎧===12121c c t f (舍去,不符合题意f t >1)将f t ,1c ,2c 代入J 可得3140)3(4)212(5025.2*=-=+=⎰⎰•t dt x x J . 极值轨线为()*269x t t t =-+2-7 设性能泛函为120(1)J x dt =+⎰求在边界条件(0)0x =,(1)x 自由情况下,使性能泛函取极值的极值轨线*()x t 。

自动控制原理(胡寿松)课后习题答案详解

自动控制原理(胡寿松)课后习题答案详解

N
G3
G2
1+G1G2H1

- C
再进一步化简得:
1+G1G2H1
G1
G2
20
胡寿松自动控制原理习题解答第二章
N

G3
G2
C
1+G1G2H1

1+G1G2H1
G1
G2
再进一步化简得:
N G2G3-1-G1G2H1 1+G1G2H1
G2
C
G2+G1 (1+G1G2H1)
所以: C(s) =
G2 (G2G3 − 1 − G1G2 H1 )
10 6s + 10
R(s) 1 + G(s)H (s) 1 + 20 10
6s + 10 20s + 5
E(s) =
10
=
10
R(s) 1 + G(s)H (s) 1 + 20 10
6s + 10 20s + 5
=
(6s
200(20s + 5) + 10)(20s + 5) +
200
=
200(20s + 5) 120s 2 + 230s + 250
Z2
=
R2
+
1 C2s
=
1 C2s
(R2C2s + 1) =
1 C2
s
(T2
s
+ 1)
所以: U 0 (s) = Z 2 =
1 C2
s
(T2
s
+
1)

(完整版)自动控制原理胡寿松第四版课后答案解析

(完整版)自动控制原理胡寿松第四版课后答案解析

1-3解:系统的工作原理为:当流出增加时,液位降低,浮球降落,控制器通过移动气动阀门的开度,流入量增加,液位开始上。

当流入量和流出量相等时达到平衡。

当流出量减小时,系统的变化过程则相反。

流出量希望液位图一1-4(1)非线性系统(2)非线性时变系统(3)线性定常系统(4)线性定常系统(5)线性时变系统(6)线性定常系统2 2-1 解:显然,弹簧力为 kx (t ) ,根据牛顿第二运动定律有:F (t ) − kx (t ) = m移项整理,得机械系统的微分方程为:d 2x (t ) dt 2m d x (t ) + kx (t )= F (t ) dt2对上述方程中各项求拉氏变换得:ms 2 X (s ) + kX (s ) =F (s )所以,机械系统的传递函数为:G (s ) = X (s ) =F (s )1ms 2+k2-2 解一:由图易得:i 1 (t )R 1 = u 1 (t ) − u 2 (t ) u c (t ) + i 1 (t )R 2 = u 2 (t ) du c (t )i 1 (t )= Cdt 由上述方程组可得无源网络的运动方程为:C ( R + R ) du 2 (t ) u (t ) = CRdu 1 (t ) u (t )1 2 dt+ 22 + 1 dt 对上述方程中各项求拉氏变换得:C (R 1 + R 2 )sU 2 (s ) + U 2 (s ) = CR 2 sU 1 (s ) + U 1 (s )所以,无源网络的传递函数为:G (s ) = U 2 (s ) =U 1 (s )1 + sCR 21 + sC (R 1 +R 2 ) 解二(运算阻抗法或复阻抗法):U (s ) 1 + R 2 1 + R Cs2 = Cs =2U (s ) R + 1 + R 1 + ( R + R )Cs 1 1 21Cs22-5 解:按照上述方程的顺序,从输出量开始绘制系统的结构图,其绘制结果如下图所示:依次消掉上述方程中的中间变量 X 1 , X 2 , X 3 , 可得系统传递函数为:C (s ) = R (s )G 1 (s )G 2 (s )G 3 (s )G 4(s )1 + G2 (s )G3 (s )G 6 (s ) + G 3 (s )G4 (s )G5 (s ) + G 1 (s )G 2 (s )G 3 (s )G 4(s )[G 7 (s ) − G 8 (s )]2-6 解:①将G1 (s) 与G1 (s) 组成的并联环节和G1 (s) 与G1 (s) 组成的并联环节简化,它们的等效传递函数和简化结构图为:G 12 (s) = G1(s) + G2(s)G 34 (s) = G3(s) −G4(s)②将G12 (s), G34 (s) 组成的反馈回路简化便求得系统的闭环传递函数为:2-7 解:C(s)=R(s)G12(s)1 + G12(s)G34(s)=G1(s) + G2(s)1 +[G1(s) + G2(s)][G3(s) −G4(s)]由上图可列方程组:[E(s)G1 (s) −C(s)H2(s)]G2(s) = C(s)R(s) −H1(s)C(s)G2(s)= E(s)联列上述两个方程,消掉E (s) ,得传递函数为:C(s)= R(s)G1(s)G2(s)1 + H1(s)G1(s) + H2(s)G2(s)联列上述两个方程,消掉C (s) ,得传递函数为:E(s)= R(s)1 + H2(s)G2(s)1 + H1(s)G1(s) + H2(s)G2(s)1 22 23 2-8 解:将①反馈回路简化,其等效传递函数和简化图为: 0.4G (s ) =2s + 1 =1 +0.4 * 0.5 2s + 15+ 3将②反馈回路简化,其等效传递函数和简化图为:1 G (s ) = s + 0.3s + 1 = 5s + 3 21 + 0.4 5s + 4.5s + 5.9s + 3.4(s + 0.3s + 1)(5s + 3)将③反馈回路简化便求得系统的闭环传递函数为:0.7 * (5s +3)Θo (s)= 5s 3 + 4.5s 2 + 5.9s + 3.4=3.5s + 2.1Θi (s) 1 +0.7 * Ks(5s +3)5s3+ (4.5 +3.5K )s 2+ (5.9 + 2.1K )s +3.42 5s3-3 解:该二阶系统的最大超调量:σp =e−ζπ/1−ζ2*100%当σp= 5% 时,可解上述方程得:ζ=0.69当σp= 5% 时,该二阶系统的过渡时间为:ts≈3ζwn所以,该二阶系统的无阻尼自振角频率w n 3-4 解:≈3ζts=30.69*2= 2.17由上图可得系统的传递函数:10 * (1 + Ks)C (s)= R(s)s(s + 2)1 +10 * (1 +Ks)s(s + 2)==10 * (Ks +1)s + 2 * (1 +5K )s +10所以w n =10 ,ζwn=1 +5K⑴若ζ= 0.5 时,K ≈0.116所以K ≈0.116时,ζ= 0.5⑵系统单位阶跃响应的超调量和过渡过程时间分别为:σ p = e−ζπ / 1−ζ2*100% = e−0.5*3.14 /1−0.52*100% ≈ 16.3%t s =3 ζw n= 3 0.5 *≈ 1.910⑶ 加入 (1 + Ks ) 相当于加入了一个比例微分环节,将使系统的阻尼比增大,可以有效地减小原系统的阶跃响应的超调量;同时由于微分的作用,使系统阶跃响应的速度(即变w 212p化率)提高了,从而缩短了过渡时间:总之,加入 (1 + Ks ) 后,系统响应性能得到改善。

胡寿松《自动控制原理》笔记和课后习题(含考研真题)详解(动态系统的最优控制方法)【圣才出品】

胡寿松《自动控制原理》笔记和课后习题(含考研真题)详解(动态系统的最优控制方法)【圣才出品】
二、最优控制中的变分法 (1)泛函 如果变量 J 对于某一类函数{x(t)}中的每一个函数 x(t),都有一个确定的值与之对 应,那么就称变量 J 为依赖于函数 x(t)的泛函,记为:J[x(t)]。
1 / 32
圣才电子书

(2)变分和变分法
十万种考研考证电子书、题库视频学习平台
t
tx t dt
试求:
(1)δJ 的表达式;
(2)当 x(t)=t2,δx=0.1t 和 δx=0.2t 时的变分 δJ 的值。
解:(1)由泛函变分规则可知:
4 / 32
圣才电子书 十万种考研考证电子书、题库视频学习平台

(2)由(1)可知,δx=0.1t 时:
δx=0.2t 时:
10-6 试求下列性能指标的变分 δJ。
J tf t2 x2 x&2 dt t0
解:由泛函变分规则,求得:
10-7 已知性能指标为: 求 J 在约束条件 t2+x12=R2 和边界条件 x1(0)=-R,x2(0)=0,x1(R)=0,x2 (R)=π 下的极值。 解:构造广义泛函为:
5 / 32
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 10 章 动态系统的最优控制方法
10.1 复习笔记
考研初试一般不考查本章内容,下文为最优控制问题的基础理论部分。
一、最优控制的基本概念 (1)最优控制 概念:在系统状态方程和约束条件给定的情况下,寻找最优控制律,使衡量系统的某一 性能指标达到最优(最小或最大)。 (2)最优控制问题 任何一个最优控制问题均应包含四方面内容:①系统数学模型;②边界条件与目标集; ③容许控制;④性能指标。 (3)最优控制的研究方法 包括:解析法;数值计算法;梯度型法。

《自动控制原理》 胡寿松 习题答案(附带例题课件)

《自动控制原理》 胡寿松 习题答案(附带例题课件)
《自动控制原理》电子教案
自动控制原理
电子教案
《自动控制原理》电子教案
《自动控制原理》课程教学大纲
课程编号: 课程名称:自动控制原理 英文名称:Automatic Control Theory 课程类型::专业基础必修课 总 学 时:64 学 学 时:64 分:4 讲课学时:56 上机学时:8
适用对象:电气工程及其自动化专业(电力系统及自动化、电力系统继电保护、电网监控技术、供 用电技术专业方向) 先修课程: 高等数学、大学物理、积分变换、电路、数字电子技术、模拟电子技术
大纲制订人:杨志超 大纲审定人:李先允 制订日期:2005 年 6 月
7
《自动控制原理》电子教案
自动控制原理授课计划(64 学时)
2.利用 MATLAB 程序绘制控制系统阶跃响应曲线、计算性能指标,讨论开环放大倍数对闭环系统响 应速度、稳定性和稳态误差的影响 。 (验证性实验) 2 学时
3. 利用 MATLAB 程序绘制控制系统的 Nyquist 曲线、 Bode 图, 计算控制系统的幅值裕度和相位裕度。 (验证性实验) 4.利用 MATLAB 软件设计控制系统(设计性实验) 2 学时 2 学时
六、实验报告要求
每次上机实验必须提交实验报告。实验报告由实验原理、实验内容、仿真程序、实验数据记录及分析 处理等内容组成。
七、考核方式与成绩评定标准
实验成绩:预习 10%、上机操作 50%、报告 40%
八、教材及主要参考资料
教 材: 《自动控制理论实验指导书》 ,王芳、杨志超编写,2007 年 参考书:《自动控制原理》,国防工业出版社,王划一主编,2001 年 《基于 MATLAB 的系统分析与设计》-控制系统,楼顺天、于卫编著,西安电子科技大学出 版社,1999 年 《MATLAB 控制系统设计与仿真》,赵文峰编著,西安电子科技大学出版社,2002 年

自动控制原理胡寿松第四版课后题答案

自动控制原理胡寿松第四版课后题答案
整理得:
C1C 2 R
d 2u0 du 0 u 0 d 2ui ui du C C C C R + ( + 2 ) + = + + 2C1 i 2 1 1 2 2 2 dt R R dt dt dt
2-5
设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式的模态。
试通过结构图等效变换求系统传递函数c14胡寿松自动控制原理习题解答第二章15胡寿松自动控制原理习题解答第二章16胡寿松自动控制原理习题解答第二章17胡寿松自动控制原理习题解答第二章18试简化图266中的系统结构图并求传递函数c18胡寿松自动控制原理习题解答第二章进一步化简得19胡寿松自动控制原理习题解答第二章再进一步化简得
2-7 设弹簧特性由下式描述:
F = 12.65 y 1.1
其中,是弹簧力;是变形位移。若弹簧在变形位移附近作微小变化,试推导的线性化方程。
解: 设正常工作点为 A,这时 F0 = 12.65 y 0 在该点附近用泰勒级数展开近似为:
1.1
df ( x) y = f ( x0 ) + ( x − x0 ) dx x0
整理上式得
&0 + f1 K 2 x & 0 + K1 f1 x & 0 + K1 f 2 x & 0 + K1 K 2 x0 f1 f 2 & x &i + f1 K 2 x &i + K1 f 2 x & i + K 1 K 2 xi = f1 f 2 & x
对上式去拉氏变换得
3
胡寿松自动控制原理习题解答第二章

《自动控制原理》 胡寿松 习题答案(附带例题课件)

《自动控制原理》 胡寿松 习题答案(附带例题课件)

大纲制订人:杨志超 大纲审定人:李先允 制订日期:2005 年 6 月
7
《自动控制原理》电子教案
自动控制原理授课计划(64 学时)
4.频率法反馈校正的基本原理和方法(选讲)
(七)非线性控制系统 了解非线性系统与线性系统的区别,了解非线性特性和非线性系统的主要特征,学会非线性系统的描 述函数分析方法,了解非线性系统的相平面分析法(选讲) 。
3
《自动控制原理》电子教案
1. 非线性系统的基本概念 2. 典型非线性特性、非线性系统的主要特征 3. 描述函数定义、应用条件和求取方法 4. 应用描述函数分析非线性系统的稳定性 5. 非线性系统自激振荡分析和计算 6. 介绍非线性系统相平面分析法(选讲)
二、本课程实验的基本理论与实验技术知识
采用 MATLAB 软件上机进行实验,就是利用现代计算机硬件和计算机软件技术,以数字仿真技术为核 心,实现对自动控制系统基本理论和分析方法的验证以及控制系统设计。 通过上机实验,使学生在 MATLAB 软件的基本使用、编程调试、仿真实验数据的获取、整理、分析以 及实验报告的撰写等基本技能得到训练。
三、实验方法、特点与基本要求
本课程实验采用计算机 MATLAB 软件仿真方法,其特点是利用 MATLAB 软件丰富的功能函数、灵活的编 程和调试手段以及强大的人机交互和图形输出功能,可以实现对控制系统直观和方便的分析和设计。 本课程实验的基本要求是, 使学生对 MATLAB 软件有一个基本的了解, 掌握 MATLAB 软件中基本数组和 矩阵的表示方法,掌握 MATLAB 软件的基本绘图功能,学会 MATLAB 软件中自动控制理论常用函数的使用, 学会在 MATLAB 软件工作窗口进行交互式仿真和使用 M_File 格式的基本编程方法,初步掌握利用 MATLAB 软件进行控制系统设计,让学生得到撰写报告的基本训练。

自动控制原理胡寿松主编课后习题答案详解-胡寿松第六版自控答案

自动控制原理胡寿松主编课后习题答案详解-胡寿松第六版自控答案

X 0 (s) =
f1 f2s2 + ( f1K2 + K1 f2 )s + K1K2
= K1K2
K 1
K2
X i (s) f1 f2s2 + ( f1K2 + K1 f1 + K1 f2 )s + K1K2
f1 f2 s2 + ( f1 + f2 )s +1+ f1
K1 K 2
K 1
K2
K2
( f1 s + 1)( f 2 s + 1)
于是传递函数为
X 0 (s) =
f1
X i (s) ms + f1 + f 2
②图 2—57(b):其上半部弹簧与阻尼器之间,取辅助点 A,并设 A 点位移为 x ,方向朝下;而在其下半部工。
引出点处取为辅助点 B。则由弹簧力与阻尼力平衡的原则,从 A 和 B 两点可以分别列出如下原始方程:
K1 (xi − x) = f (x& − x&0 )
=
1 C2s
(R2C2s + 1) =
1 C2
s
(T2
s
+ 1)
所以: U 0 (s) = Z 2 =
1 C2
s
(T2
s
+
1)
=
(T1s + 1)(T2 s + 1)
Ui (s)
Z1 + Z2
R1 T1s +
1
+
1 C2
s
(T2
s
+
1)
R1C2 s + (T1s + 1)(T2 s + 1)

胡寿松版完整答案自动控制原理第五版课后习题答案

胡寿松版完整答案自动控制原理第五版课后习题答案

自动控制原理课后答案1 请解释下列名字术语:自动控制系统、受控对象、扰动、给定值、参考输入、反馈。

解:自动控制系统:能够实现自动控制任务的系统,由控制装置与被控对象组成;受控对象:要求实现自动控制的机器、设备或生产过程扰动:扰动是一种对系统的输出产生不利影响的信号。

如果扰动产生在系统内部称为内扰;扰动产生在系统外部,则称为外扰。

外扰是系统的输入量。

给定值:受控对象的物理量在控制系统中应保持的期望值参考输入即为给定值。

反馈:将系统的输出量馈送到参考输入端,并与参考输入进行比较的过程。

2 请说明自动控制系统的基本组成部分。

解:作为一个完整的控制系统,应该由如下几个部分组成:①被控对象:所谓被控对象就是整个控制系统的控制对象;②执行部件:根据所接收到的相关信号,使得被控对象产生相应的动作;常用的执行元件有阀、电动机、液压马达等。

③给定元件:给定元件的职能就是给出与期望的被控量相对应的系统输入量(即参考量);④比较元件:把测量元件检测到的被控量的实际值与给定元件给出的参考值进行比较,求出它们之间的偏差。

常用的比较元件有差动放大器、机械差动装置和电桥等。

⑤测量反馈元件:该元部件的职能就是测量被控制的物理量,如果这个物理量是非电量,一般需要将其转换成为电量。

常用的测量元部件有测速发电机、热电偶、各种传感器等;⑥放大元件:将比较元件给出的偏差进行放大,用来推动执行元件去控制被控对象。

如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器和功率放大级加以放大。

⑦校正元件:亦称补偿元件,它是结构或参数便于调整的元件,用串联或反馈的方式连接在系统中,用以改善系统的性能。

常用的校正元件有电阻、电容组成的无源或有源网络,它们与原系统串联或与原系统构成一个内反馈系统。

3 请说出什么是反馈控制系统,开环控制系统和闭环控制系统各有什么优缺点?解:反馈控制系统即闭环控制系统,在一个控制系统,将系统的输出量通过某测量机构对其进行实时测量,并将该测量值与输入量进行比较,形成一个反馈通道,从而形成一个封闭的控制系统;开环系统优点:结构简单,缺点:控制的精度较差;闭环控制系统优点:控制精度高,缺点:结构复杂、设计分析麻烦,制造成本高。

自动控制原理 (胡寿松 著) 科学出版社 课后答案

自动控制原理 (胡寿松 著) 科学出版社 课后答案
课后答案网
《自动控制原理》习题参考答案 第1章
1.7.2 基础部分 1. 答:开环控制如:台灯灯光调节系统。 其工作原理为:输入信号为加在台灯灯泡两端的电压,输出信号为灯 泡的亮度,被控对象为灯泡。当输入信号增加时,输出信号(灯泡的亮度)增加,反之亦然。 闭环控制如:水塔水位自动控制系统。 其工作原理为:输入信号为电机两端电压,输出信号为水塔水位,被控 对象为电机调节装置。当水塔水位下降时,通过检测装置检测到水位下降,将此信号反馈至 电机,电机为使水塔水位维持在某一固定位置增大电机两端的电压,通过调节装置调节使水 塔水位升高。反之亦然。 2. 答:自动控制理论发展大致经历了几个阶段: 第一阶段:本世纪 40~60 年代,称为“经典控制理论”时期。 第二阶段:本世纪 60~70 年代,称为“现代控制理论”时期。 第三阶段:本世纪 70 年代末至今,控制理论向“大系统理论”和“智能控制”方向 发展。 3. 答:开环控制:控制器与被空对象之间只有正向作用而没有反馈控制作用,即系统的输 出量与对控制量没有影响。 闭环控制:指控制装置与被空对象之间既有正向作用,又有反向联系控制的过程。 开环控制与闭环控制的优缺点比较: 对开环控制系统来说,由于被控制量和控制量之间没有任何联系,所以对干扰造成的 误差系统不具备修正的能力。 对闭环控制系统来说,由于采用了负反馈,固而被控制量对于外部和内部的干扰都不 甚敏感,因此,有不能采用不太精密和成本低廉的元件构成控制质量较高的系统。 4. 答:10 线性定常系统; (2)非线性定常系统; (3)非线性时变系统; (4)非线时变系统; 1.7.3 提高部分 1.答:1)方框图:
kh da w. co m
40( S + 20) 系统在扰动作 S + 20 × 40 K1 + 20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档