为什么要进行阻抗匹配
阻抗匹配的概念
阻抗匹配的概念你知道啥是阻抗匹配不?咱就这么说吧,阻抗匹配就像是一场完美的舞蹈搭档组合。
你想想看,跳舞的时候,如果两个人的节奏、步伐完全不协调,那能跳出好看的舞蹈吗?肯定不能啊!阻抗匹配也是这个道理。
在电子世界里,阻抗匹配就是要让不同的电子元件或者电路之间能够和谐地工作。
如果阻抗不匹配,那可就麻烦了。
就好比两个人说话,一个人声音特别大,另一个人声音特别小,那能交流得好吗?肯定不行嘛!阻抗不匹配会导致信号反射、功率损耗等一系列问题。
那阻抗匹配到底是咋做到的呢?这就需要一些技巧和方法啦。
比如说,可以通过调整电路中的电阻、电容、电感等元件的参数,来实现阻抗的匹配。
这就像是给两个不太合拍的舞蹈搭档调整步伐和节奏一样,需要耐心和技巧。
你可能会问,为啥要这么费劲地去做阻抗匹配呢?这可太重要啦!如果不进行阻抗匹配,信号在传输过程中就会像在崎岖的山路上行驶的汽车一样,颠簸得厉害,甚至可能会翻车。
而进行了阻抗匹配,信号就能够顺畅地传输,就像在平坦的高速公路上飞驰的跑车一样,速度快又稳定。
再打个比方,阻抗匹配就像是给电子设备穿上了一双合脚的鞋子。
如果鞋子不合脚,走路就会不舒服,甚至会磨脚。
电子设备也是一样,如果阻抗不匹配,就会影响性能,甚至可能会损坏设备。
在实际应用中,阻抗匹配无处不在。
比如在通信领域,为了保证信号的质量和传输距离,就必须进行阻抗匹配。
在音频设备中,阻抗匹配可以让声音更加清晰、动听。
在电力系统中,阻抗匹配可以提高能源的利用效率。
总之,阻抗匹配是电子世界里非常重要的一个概念。
它就像一场无声的舞蹈,让不同的电子元件能够和谐地共舞。
只有进行了阻抗匹配,电子设备才能发挥出最佳的性能,为我们的生活带来更多的便利和乐趣。
所以,一定要重视阻抗匹配哦!。
阻抗匹配的理想模型
阻抗匹配的理想模型
阻抗匹配的理想模型是信号源、传输线和负载之间达到完美的匹配,使得信号能够无反射地从信号源传输到负载。
这种情况下,信号源的输出阻抗和传输线的阻抗以及负载的输入阻抗都应该是相同的,通常这个阻抗值是50欧姆。
理想的情况是信号源、传输线和负载都拥有完美的50欧姆阻抗,这样能量能够完全传输,没有浪费。
然而,实际情况中,源阻抗、负载阻抗和传输线阻抗很难达到完全匹配,因此需要使用阻抗匹配电路来进行调整,使得信号能够尽可能完全地传输。
阻抗匹配电路通常由电感和电容组成,通过调整电容和电感的值,可以使得阻抗匹配,从而提高信号传输的效率和稳定性。
在实际应用中,阻抗匹配是一个重要的概念,广泛应用于射频、微波和高速数字信号传输等领域。
阻抗匹配及其作用
阻抗匹配及其作用2008-05-31 21:47终端电阻是为了消除在通信电缆中的信号反射在通信过程中,有两种信号因导致信号反射:阻抗不连续和阻抗不匹配。
阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射。
这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。
消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。
由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻。
引起信号反射的另个原因是数据收发器与传输电缆之间的阻抗不匹配。
这种原因引起的反射,主要表现在通讯线路处在空闲方式时,整个网络数据混乱。
要减弱反射信号对通讯线路的影响,通常采用噪声抑制和加偏置电阻的方法。
在实际应用中,对于比较小的反射信号,为简单方便,经常采用加偏置电阻的方法。
阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。
要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。
改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。
如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。
重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。
调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。
硬件知识阻抗匹配解析
硬件知识阻抗匹配解析什么是阻抗?具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。
阻抗常用Z表示。
阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。
阻抗的单位是欧。
阻抗匹配在高频设计中是一个常用的概念,这篇文章对这个“阻抗匹配”进行了比较好的解析。
回答了什么是阻抗匹配。
阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。
要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密斯图表(Smith chart)上。
改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。
如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。
重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。
调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配。
阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。
最大功率传输定理,如果是高频的话,就是无反射波。
对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。
阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了。
反之则在传输中有能量损失。
高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。
阻抗匹配的基本概念
阻抗匹配的基本概念
嘿,朋友们!今天咱来聊聊阻抗匹配这个有意思的玩意儿。
你说阻抗匹配像啥呢?咱就打个比方哈,它就像是一场舞会里的完美搭档。
你想想,在舞会上,要是男舞伴和女舞伴的舞步、节奏不协调,那跳起来得多别扭呀,说不定还会踩脚呢!这阻抗匹配啊,就是要让电路里的各个部分也像那配合默契的舞伴一样,和谐共舞。
咱平常生活里用的好多电子设备,那可都离不开阻抗匹配呢。
要是没做好,那可能就会出各种问题。
比如说信号不好啦,声音不清楚啦,这多闹心呀!
就好比一辆汽车,发动机就是动力的源头,而阻抗匹配呢,就像是让发动机和其他零部件之间的连接恰到好处。
如果这个连接没弄好,汽车能跑得顺畅吗?肯定不行呀!
再想想,要是音响系统没有做好阻抗匹配,那放出来的音乐能好听吗?说不定还会有杂音、破音啥的,这不是毁了咱们享受音乐的好心情嘛!
其实呀,这阻抗匹配也不是啥特别难理解的东西。
你就把它当成是让不同的部分能够好好合作,发挥出最佳效果的一个关键环节。
就好像一个团队里,大家都得相互配合,才能把事情干好,不是吗?
你看那些高科技的电子产品,为啥能那么好用?那可都是因为背后有阻抗匹配在默默地发挥作用呢!它就像是一个幕后英雄,虽然不显眼,但却至关重要。
咱平时也可以多留意一下身边的电子设备,想想它们是不是做好了阻抗匹配呢。
说不定你会对这些东西有更深的理解和认识哦!
总之啊,阻抗匹配真的很重要,它能让我们的电子世界更加美好、顺畅。
可别小瞧了它哟!
原创不易,请尊重原创,谢谢!。
天线阻抗匹配技术
天线阻抗匹配技术天线阻抗匹配技术是无线通信中的重要环节,它的作用是将天线输出的电信号与输入电路之间的阻抗进行匹配,以提高能量传输效率和信号质量。
本文将从天线阻抗的概念、影响因素、匹配技术和应用实例等方面进行探讨。
一、天线阻抗的概念天线阻抗是指天线输入端电路的特性阻抗,通常用复数表示。
它由两个参数组成:电阻(R)和电抗(X),分别表示天线输入电路的有功和无功部分。
阻抗匹配的目标是使天线的输入阻抗与发送端或接收端电路的输出阻抗相匹配,以最大限度地传输信号能量。
二、影响天线阻抗的因素1. 天线结构:天线的形状、尺寸和材料都会影响其阻抗。
例如,天线长度的变化会导致天线阻抗的变化。
2. 工作频率:天线在不同频率下的阻抗也会有所不同。
因此,在设计天线时需要考虑所工作的频率范围。
3. 天线布局:天线的布局方式也会对阻抗产生影响。
例如,天线与地面之间的距离、天线之间的距离等都会对阻抗进行调整。
1. 阻抗变换器:阻抗变换器是天线阻抗匹配的一种常用技术。
它通过将天线输入电路与发送端或接收端电路之间插入一个变压器或电容器等元件,来实现阻抗的匹配。
2. 线路长度调整:通过调整电缆长度可以改变阻抗,从而实现匹配。
这种方法适用于线缆长度可调的情况。
3. 平衡/不平衡转换:在天线和电路之间插入平衡/不平衡转换器,可以实现不同阻抗之间的匹配。
四、天线阻抗匹配的应用实例1. 无线通信系统:在无线通信系统中,天线阻抗匹配可以提高信号的传输效率和接收质量,减少能量损耗和信号衰减。
2. 射频识别(RFID)技术:RFID技术中的天线阻抗匹配是确保RFID 标签与读写器之间能够有效传输数据的重要环节。
3. 电视和广播接收器:电视和广播接收器中的天线阻抗匹配可以提高接收信号的质量,减少图像和声音的干扰。
天线阻抗匹配技术在无线通信领域起着重要作用。
通过合理的匹配设计,可以提高信号传输效率和接收质量,增强系统的可靠性和稳定性。
在实际应用中,需要根据具体情况选择合适的匹配技术,并结合工作频率、天线结构等因素进行优化设计,以实现最佳的阻抗匹配效果。
阻抗匹配——精选推荐
阻抗匹配阻抗匹配是指信号源或者传输线跟负载之间的⼀种合适的搭配⽅式。
阻抗匹配分为低频和⾼频两种情况讨论。
阻抗匹配主要有两点作⽤,调整负载功率和抑制信号反射。
{扩展:我们可以把⼀个实际电压源,等效成⼀个理想的电压源跟⼀个电阻r串联的模型。
假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越⼩,则输出电流越⼤。
负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越⼤,则输出电压Uo越⾼。
再来计算⼀下电阻R消耗的功率为:P = I2×R=[U/(R+r)]2×R = U2×R/(R2+2×R×r+r2)= U2×R/[(R-r)2+4×R×r]= U2/{[(R-r)2/R]+4×r}对于⼀个给定的信号源,其内阻r是固定的,⽽负载电阻R则是由我们来选择的。
注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最⼩值0,这时负载电阻R上可获得最⼤输出功率Pmax=U2/(4×r)。
即,当负载电阻跟信号源内阻相等时,负载可获得最⼤输出功率,这就是我们常说的阻抗匹配之⼀。
}如果我们需要输出电流⼤,则选择⼩的负载R;如果我们需要输出电压⼤,则选择⼤的负载R;如果我们需要输出功率最⼤,则选择跟信号源内阻匹配的电阻R。
有时阻抗不匹配还有另外⼀层意思,例如⼀些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。
在⾼频电路中,我们还必须考虑反射的问题。
当信号的频率很⾼时,则信号的波长就很短,当波长短得跟传输线长度可以⽐拟时,反射信号叠加在原信号上将会改变原信号的形状。
如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产⽣反射。
为什么阻抗不匹配时会产⽣反射以及特征阻抗的求解⽅法,牵涉到⼆阶偏微分⽅程的求解,在这⾥我们不细说了,有兴趣的可参看电磁场与微波⽅⾯书籍中的传输线理论。
什么是阻抗?什么是阻抗匹配?为什么要阻抗匹配?
什么是阻抗?什么是阻抗匹配?为什么要阻抗匹配?什么是阻抗?具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。
阻抗常用Z表示。
阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。
如果三者是串联的,又知道交流电的频率f、电阻R、电感L和电容C,那么串联电路的阻抗阻抗的单位是欧。
对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。
在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。
也就是阻抗减小到最小值。
在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。
阻抗匹配在高频设计中是一个常用的概念,这篇文章对这个“阻抗匹配”进行了比较好的解析。
回答了什么是阻抗匹配。
阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。
要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。
改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。
如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。
重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。
调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配。
阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。
最大功率传输定理,如果是高频的话,就是无反射波。
阻抗匹配的原理与方法
一、50ohm特征阻抗终端电阻的应用场合:时钟,数据,地址线的终端串联,差分数据线终端并联等。
终端电阻示图B.终端电阻的作用:1、阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。
2、减少噪声,降低辐射,防止过冲。
在串联应用情况下,串联的终端电阻和信号线的分布电容以及后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。
C.终端电阻取决于电缆的特性阻抗。
D.如果使用0805封装、1/10W的贴片电阻,但要防止尖峰脉冲的大电流对电阻的影响,加30PF的电容.E.有高频电路经验的人都知道阻抗匹配的重要性。
在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。
高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。
同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er决定:另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。
这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。
图1 同轴传送线路的终端电阻构成只有当同轴电缆的特性阻抗Zo和终端阻抗RT的值相等时,即ZIN=Zo=RT称为阻抗匹配。
Zo≠RT时随着频率f,ZIN变化。
作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。
图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。
当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.二、怎样理解阻抗匹配?阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。
阻抗匹配分为低频和高频两种情况讨论。
我们先从直流电压源驱动一个负载入手。
由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。
阻抗匹配及其作用
四、特性阻抗(Characteristic Impedance��?
4.1 、当某信号方波,在传输线组合体的信号线中,以高准位(High Level)的正压信号向前推进时,则距其最近的参考层(如接地层)中,理论上必有被该电场所感应出来的负压信号伴随前行(等于正压信号反向的回归路径Return Path),如此将可完成整体性的回路(Loop)系统。该“信号”前行中若将其飞行时间暂短加以冻结,即可想象其所遭受到来自信号线、介质层与参考层等所共同呈现的瞬间阻抗值(Instantanious Impedance),此即所谓的“特性阻抗”。是故该“特性阻抗”应与信号线之线宽(w)、线厚(t)、介质厚度(h)与介质常数(Dk)都扯上了关系��?
3.2 、当传输线本身的特性阻抗(Z0)被设计者订定为28 ohm时,则终端控管的接地的电阻器(Zt)也必须��?8 ohm,如此才能协助传输线对Z0的保持,使整体得以稳定在28 ohm的设计数值。也唯有在此种Z0 = Zt的匹配情形下,信号的传输才会最具效率,其“信号完整性”(Signal Integrity,为信号品质之专用术语)也才最好��?
A、由于串联匹配电阻的作用,驱动信号传播时以其幅度��?0%向负载端传播;
B、信号在负载端的反射系数接近��?,因此反射信号的幅度接近原始信号幅度��?0%;
C、反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同��?
D、负载端反射信号向源端传播,到达源端后被匹配电阻吸收��?
4.2 、阻抗匹配不良的后果:由于高频信号的“特性阻抗”(Z0)原词甚长,故一般均简称之为“阻抗”。读者千万要小心,此与低频AC交流电(60Hz)其电线(并非传输线)中,所出现的阻抗值(Z)并不完全相同。数位系统当整条传输线的Z0都能管理妥善,而控制在某一范围内(±10﹪或 ±5﹪)者,此品质良好的传输线,将可使得杂讯减少,而误动作也可避免。但当上述微带线中Z0的四种变数(w、t、h��?r)有任一项发生异常,例如信号线出现缺口时,将使得原来的Z0突然上升(见上述公式中之Z0与W成反比的事实),而无法继续维持应有的稳定均匀(Continuous)时,则其信号的能量必然会发生部分前进,而部分却反弹反射的缺失。如此将无法避免杂讯及误动作了。例如浇花的软管突然被踩住,造成软管两端都出现异常,正好可说明上述特性阻抗匹配不良的问题��?
pcb阻抗匹配总结
pcb阻抗匹配总结
PCB阻抗匹配总结。
在PCB设计中,阻抗匹配是一个非常重要的概念。
阻抗匹配是
指在电路中确保信号传输的阻抗与信号源和负载的阻抗相匹配,以
避免信号反射和损耗,从而确保信号的高质量传输。
在PCB设计中,阻抗匹配通常是指确保传输线的特性阻抗与信号源和负载的阻抗相
匹配。
阻抗匹配对于高速数字信号和高频模拟信号的传输非常重要。
如果传输线的阻抗与信号源和负载的阻抗不匹配,就会导致信号反
射和损耗,从而影响信号的稳定性和传输质量。
因此,在PCB设计中,需要特别注意阻抗匹配的问题。
为了实现阻抗匹配,设计师通常需要考虑以下几个方面:
1. 选择合适的传输线类型,不同类型的传输线具有不同的特性
阻抗,如微带线、同轴线等。
设计师需要根据具体的应用需求选择
合适的传输线类型。
2. 控制传输线的宽度和间距,传输线的宽度和间距会影响其特性阻抗,设计师需要通过合理的设计来控制传输线的特性阻抗。
3. 使用阻抗匹配元件,在一些特殊情况下,设计师可以使用阻抗匹配元件来实现阻抗匹配,如阻抗变压器、阻抗匹配电路等。
总的来说,阻抗匹配在PCB设计中起着至关重要的作用。
设计师需要在设计过程中充分考虑阻抗匹配的问题,以确保信号的稳定传输和高质量的性能。
通过合理的选择传输线类型、控制传输线的宽度和间距以及使用阻抗匹配元件,可以有效地实现阻抗匹配,提高PCB设计的质量和可靠性。
什么是阻抗匹配20080408
什么是阻抗匹配?阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。
要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。
改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。
如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。
重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。
调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。
最大功率传输定理,如果是高频的话,就是无反射波。
对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。
阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。
高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。
这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便.阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。
阻抗匹配确实很重要
阻抗匹配确实很重要,因为我国的教材大多没有详细的论述,没有明确指出其重要性,许多工程人员是在实践中体会出来的。
简单说,根据等效原理,任何信号源、前级都可等效为左边的电压源与电阻串联,输出电阻Ro ;任何阻性负载、后级都可等效为右边虚线内电阻,输入电阻Ri。
当Ri = Ro 时有最大的功率传输,你可用微分方法得出这结论。
当Ri 》 Ro 时有最大的电压传输,适合传输电压信号。
如电压放大器的输入阻抗越高越好。
当Ri 《 Ro 时有最大的电流传输,适合传输电流信号。
如电度表的电流检测线圈匝数很少。
模拟电路中典型应用是低频功率放大器,之前与前置放大器之间有输入变压器,之后与扬声器之间有输出变压器。
高频与微波中因阻抗是复数,匹配问题要复杂,主要解决反射,也是为了不失真传输信号。
阻抗匹配原理分析阻抗匹配是无线电技术中常见的一种工作状态,它反映了输人电路与输出电路之间的功率传输关系。
当电路实现阻抗匹配时,将获得最大的功率传输。
反之,当电路阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害。
阻抗匹配常见于各级放大电路之间、放大器与负载之间、测量仪器与被测电路之间、天线与接收机或发信机与天线之间,等等。
例如,扩音机的输出电路与扬声器之间必须做到阻抗匹配,不匹配时,扩音机的输出功率将不能全部送至扬声器。
如果扬声器的阻抗远小于扩音机的输出阻抗,扩音机就处于过载状态,其末级功率放大管很容易损坏。
反之,如果扬声器的阻抗高于扩音机的输出阻抗过多,会引起输出电压升高,同样不利于扩音机的工作,声音还会产生失真。
因此扩音机电路的输出阻抗与扬声器的阻抗越接近越好。
又例如,无线电发信机的输出阻抗与馈线的阻抗、馈线与天线的阻抗也应达到一致。
如果阻抗值不一致,发信机输出的高频能量将不能全部由天线发射出去。
这部分没有发射出去的能量会反射回来,产生驻波,严重时会引起馈线的绝缘层及发信机末级功放管的损坏。
为了使信号和能量有效地传输,必须使电路工作在阻抗匹配状态,即信号源或功率源的内阻等于电路的输人阻抗,电路的输出阻抗等于负载的阻抗。
阻抗匹配原理
阻抗匹配原理来源:互联网阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。
要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。
改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。
如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。
重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。
调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配。
阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。
最大功率传输定理,如果是高频的话,就是无反射波。
对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。
阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。
高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。
这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便。
阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。
阻抗匹配及其作用
阻抗匹配及其作用.txt世上有三种人:一是良心被狗吃了的人,二是良心没被狗吃的人,三是良心连狗都不吃的人。
︶﹋丶爱情是个梦,而我却睡过了头﹌阻抗匹配及其作用2008-05-31 21:47终端电阻是为了消除在通信电缆中的信号反射在通信过程中,有两种信号因导致信号反射:阻抗不连续和阻抗不匹配。
阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射。
这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。
消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。
由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻。
引起信号反射的另个原因是数据收发器与传输电缆之间的阻抗不匹配。
这种原因引起的反射,主要表现在通讯线路处在空闲方式时,整个网络数据混乱。
要减弱反射信号对通讯线路的影响,通常采用噪声抑制和加偏置电阻的方法。
在实际应用中,对于比较小的反射信号,为简单方便,经常采用加偏置电阻的方法。
阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。
要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。
改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。
如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。
重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为什么要进行阻抗匹配
电子行业的工程师经常会遇到阻抗匹配问题。
什么是阻抗匹配,为什么要进行阻抗匹配?本文带您一探究竟!
一、什么是阻抗
在电学中,常把对电路中电流所起的阻碍作用叫做阻抗。
阻抗单位为欧姆,常用Z表示,是一个复数Z= R+i( ωL–1/(ωC))。
具体说来阻抗可分为两个部分,电阻(实部)和电抗(虚部)。
其中电抗又包括容抗和感抗,由电容引起的电流阻碍称为容抗,由电感引起的电流阻碍称为感抗。
图1 复数表示方法
二、阻抗匹配的重要性
阻抗匹配是指信号源或者传输线跟负载之间达到一种适合的搭配。
阻抗匹配主要有两点作用,调整负载功率和抑制信号反射。
1、调整负载功率
假定激励源已定,那么负载的功率由两者的阻抗匹配度决定。
对于一个理想化的纯电阻电路或者低频电路,由电感、电容引起的电抗值基本可以忽略,此时电路的阻抗来源主要为电阻。
如图2所示,电路中电流I=U/(r+R),负载功率P=I*I*R。
由以上两个方程可得当R=r时P取得最大值,Pmax=U*U/(4*r)。
图2 负载功率调整
2、抑制信号反射
当一束光从空气射向水中时会发生反射,这是因为光和水的光导特性不同。
同样,当信号传输中如果传输线上发生特性阻抗突变也会发生反射。
波长与频率成反比,低频信号的波长远远大于传输线的长度,因此一般不用考虑反射问题。
高频领域,当信号的波长与传输线长出于相同量级时反射的信号易与原信号混叠,影响信号质量。
通过阻抗匹配可有效减少、消除高频信号反射。
图3 正常信号
图4 异常信号(反射引起超调)
三、阻抗匹配的方法
阻抗匹配的方法主要有两个,一是改变组抗力,二是调整传输线。
改变阻抗力就是通过电容、电感与负载的串并联调整负载阻抗值,以达到源和负载阻抗匹配。
调整传输线是加长源和负载间的距离,配合电容和电感把阻抗力调整为零。
此时信号不会发生发射,能量都能被负载吸收。
高速PCB布线中,一般把数字
信号的走线阻抗设计为50欧姆。
一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线(差分)为85-100欧姆。
四、阻抗匹配的应用
1、功放与音箱
无论是定阻抗式还是定电压式输出的功放,只有喇叭的总功率和功放的总功率相等时才能得到最佳的工作状态。
音箱系统若要完全达到匹配是非常困难的,它的音频成分总是在不停的变化,好在音箱系统对阻抗匹配度要求并不高。
最常见到的喇叭阻抗的标示值是8欧姆,它表示当输入1KHz的正弦波信号,它呈现的阻抗值是八欧姆;或者是在喇叭的工作频率响应范围内,平均阻抗为8欧姆。
图5 音箱
2、PCB走线
高频领域中,信号频率对PCB走线的阻抗值影响非常大。
一般来说当数字信号边沿时间小于1ns或者模拟信号频率超过300M时就要考虑阻抗问题。
PCB
走线阻抗主要来自寄生的电容、电阻、电感系数,主要因素有材料介电常数、线宽、线厚乃至焊盘的厚度等。
PCB 阻抗的范围是25 至120 欧姆,USB、LVDS、HDMI、SATA等一般要做85-100欧姆阻抗控制。
图6 走线匹配阻抗
3、天线设计
研究天线阻抗的主要目的是为实现天线和馈线间的匹配。
发射信号时应使发射天线与馈线的特性阻抗相等,以获得最好的信号增益。
接收信号时天线与负载应做共轭匹配,接收机(负载)阻抗一般认为只有实数部分,因此需要用匹配网络来除去天线的电抗部分并使它们的电阻部分相等。
图7为天线阻抗匹配时常用的π型网络,使用网络分析仪测量阻抗以确定C1、C2、C3 的取值,完成阻抗匹配。
图7 π型电路
4、终端匹配电阻
在设计CAN总线、485总线时常需要在差分线两端加终端电阻(匹配电阻),以减少由特性阻抗突变造成的信号反射。
如下图CAN总线网络,双绞线特性阻抗为120欧姆,若不加终端电阻两端直接悬空,空气的特性阻抗为无穷大。
此时,极易出现图4所示的信号反射。
图8 CAN总线网络
对于CAN总线来说,由于收发器对信号电平判断的采样点位置普遍靠后,因此信号反射一般不会影响通信错误率。
反射会影响产品的EMI特性,最直接的表现就是眼图实验效果差,存在两个异常凸起。
图9 CAN总线眼图
致远电子的M6G2C-256LI 核心板,主要器件由MPU、DDR、Flash、power 四部分构成,看似简单的架构又是如何保证核心板的稳定性呢?差分蛇形走线、等长控制、阻抗匹配、PCB 分层设计、高速信号参考地等设计来保证产品的设计合理性,再配合信号完整性、信号眼图、信号脉冲等等仪器测试为产品稳定性保驾护航。
图10 M6G2C-256LI工业级核心板。